
Project for QHack’s Open Hackathon

Battery Revenue Optimization
with

QAOA approach

Circuit and Optimizations

Team: alekospagon
alekospagon@gmail.com



Battery Revenue Optimization
with

QAOA approach

Circuit and Optimizations

Abstract

In this project, the technique QAOA is used to solve the Optimization Problem: Battery

Revenue Optimization. The problem was introduced to us in IBM’s Fall Challenge 2021 and we’ve

combined it with new mixers proposed from [1] to achieve faster convergence.

Initially, we define the Battery Revenue Optimization Problem and the algorithm QAOA. Then,

we set the parameters β and γ used by the unitary operators of QAOA, we express the objective

function to be maximized and we construct the quantum circuit that corresponds to the algorithm

[2].

Also, we introduce a series of optimizations for the circuit, which reduce its time and cost,

while simultaneously increase the algorithm’s precision. At last, we simulate the circuit in IBM’s

simulator and measure the results.
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1 Introduction

1.1 Battery Revenue Optimization Problem

The Battery Revenue Optimization problem is a constrained combinatorial problem and its defini-

tion (with an example scenario) is this: A company rents a battery for usage. Two markets M1 and

M2 are interested in renting the battery for up to n days, but the company has only one battery

and thus, must choose where to rent it every day. Market M1 offers λ(t)1 euros to rent the battery

at the t-th day and M2 offers λ(t)2 . The constraint is that with daily usage the battery is being

harmed, and our goal is to use only one battery for the time window of these n days. Additional

information is being given by the markets: M1 will damage the battery by c
(t)
1 at the t-th day

and M2 by c
(t)
2 . The battery has an endurance of Cmax. Hence, in a more precise mathematical

formulation the problem is expressed thus:

For a choice z = z1z2 · · · zn, (where zt = 0 means choosing M1 at day-t and zt = 1 means

choosing M2) we want to find:

argmax
zi∈{0,1}n

n∑
t=1

[
(1− zi)λ

(t)
1 + ziλ

(t)
2

]
s.t.

n∑
t=1

[
(1− zi)c

(t)
1 + zic

(t)
2

]
≤ Cmax

(1)

For the t-th day we have these options:

• If λ(t)1 ≥ λ
(t)
2 and c(t)1 ≤ c

(t)
2 , then we choose M1

• If λ(t)2 ≥ λ
(t)
1 and c(t)2 ≤ c

(t)
1 , then we choose M2

• If λ(t)2 ≥ λ
(t)
1 and c

(t)
2 ≥ c

(t)
1 , then our profit is at least λ(t)1 and the damage is at least c(t)1 .

Hence, choosing M2 gives us the pure profit λ(t)2 − λ
(t)
1 and damage c(t)2 − c

(t)
1 .

• If λ(t)1 ≥ λ
(t)
2 and c

(t)
1 ≥ c

(t)
2 , then our profit is at least λ(t)2 and the damage is at least c(t)2 .

Hence, choosing M1 gives us the pure profit λ(t)1 − λ
(t)
2 and damage c(t)1 − c

(t)
2 .

Cases 1 and 2 are trivial, where 3 and 4 are symmetric. Thus, without loss of generality, we

suppose we are always in case 3. This reduced problem is typically known as 0-1 KnapSack, which

we will discuss further in the optimization section. What interests us now is the complexity of

Battery Revenue Optimization Problem solved by a classical algorithm (which is the same as 0-1

KnapSack’s complexity since they are equivalent).

0-1 KnapSack is an NP-Complete problem. We will relax the problem by accepting approximate

solutions, meaning: solutions unacceptable (exceeding Cmax) and solutions acceptable, ideally close

to the max acquirable profit. Therefore, our reduction is to the Approximate 0-1 KnapSack, which

is solvable by classical algorithms, with the best FPTAS having run-time [3]:
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O

n log(1

ϵ

)
+
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1
ϵ

) 9
4

2
Ω
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log( 1
ϵ )

)
 (2)

This result is a bit discouraging, since we want the approximation 1 + ε to be pretty small,

giving a very big log( 1ϵ ).

Applications of the Battery Revenue Problem (or its equivalent KnapSack) are many and

important ones. For example:

• When choosing the most profitable investments under the constraint of a maximum risk.

• In telecommunications, when the sender chooses a compression or a segmentation of data, so

that all of them can be included in the biggest packet.

For such an important, yet difficult problem, we need a faster approach, so we incline towards

quantum computation.

1.2 Adiabatic Computing?

A first thought for solving the Battery Revenue Optimization Problem would be via Quantum

Adiabatic Computing. In this method we construct the Hamiltonian:

Ĥ(t) = (1− t) Ĥi + t · Ĥf , t ∈ [0, 1] (3)

where Ĥi is the initial state and Ĥf is the (wanted) final state of the system with its eigenstates

being the problem’s solutions. The idea is that, after some time, the system will have been moved

into the state Ĥf , waiting for us to fetch the result by simply measuring. However, this technique

fails to solve the (equivalent) KnapSack problem, as it has been shown [4]. In addition, this

Hamiltonian is very difficult to construct [5]. But, even though this technique is being rejected,

its basic idea will help form an educated guess, when choosing the QAOA’s parameters β, γ.

1.3 Quantum Approximate Optimization Algorithm

Quantum Approximate Optimization Algorithm is a Quantum Approximate Algorithm that solves

a whole group of combinatorial problems. Specifically, it corresponds to a bipartite circuit in which

we repeat its two components p-times in order to converge to the desirable optimum solution, the

idea being:

• We express the objective function f(z) to be maximized. That is, we seek z = argmax
zt∈{0,1}n

f(z),

where zt ∈ {0, 1} are the n choices we have to make.
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• We find an operator C, such that C |z⟩ = f(z) |z⟩ and we construct its corresponding unitary

operator U(C, γ) = e−iγC , with the angle γ being a multiplicative factor in γ ∈ (0, 2π)

adjusting its importance in the algorithm.

• If σx
t is the operator

(
1 0
0 1

)
applied to the t-th qubit, we define the operator B as ths sum of

all σx: B =
∑n

t=1 σ
x
t and its corresponding unitary operator U(B, β) = e−iβB

με β ∈ (0, π),

similarly to operator C.

Explanation:

Operator C "computes" f(z) when applied to |z⟩, since, by definition, it has f as its eigenstate. This

information is then stored in the qubit’s phase, not disturbing the qubit’s probabilities. That’s

why we actually use the corresponding unitary operator U(C, γ) = e−iγC . Now, operator B is

used for judging our "solution" by using the information written in the qubit’s phase. Of course,

we must again, construct the corresponding unitary operator. With these two operators used for

convergence, we only need an initial state of equal probabilities for every qubit, which is easily done

with Hadamard gates. Operators C and B are being repeated p-times with different parameters

(β, γ) and the produced state is:

|β, γ⟩ ≡ U(B, βp)U(C, γp) · · ·U(B, β1)U(C, γ1) |+⟩⊗n (4)

C’s expected value is Fp(β, γ) ≡ ⟨β, γ|C |β, γ⟩. From the Quantum Adiabatic Theorem we

have:

lim
p→∞

[
max
(β,γ)

Fp(β, γ)

]
= max

z∈{0,1}n
C(z) (5)

meaning: for infinitely many repetitions and different parameters (β, γ), our algorithm will

converge to the optimum solution: max
z∈{0,1}n

C(z). Practically, the bigger the p, the better the

convergence.

QAOA technique is extremely useful in combinatorial optimization problems, such as MAX-

CUT, KnapSack, MAX3-SAT [6] (All of them having NP-Complete complexity when searching

for the optimum solutions).

Thus, we choose QAOA to solve Battery Revenue Optimization Problem. Its main advantages

compared to the classical algorithms is its simplicity, its small time complexity O(pn log2(n))

or even O(p(log2 n)
3) with the help of O(n log2(n)) ancillary qubits [2] and its versatility (which

we’ll examine in the optimization section). Our job is to construct operators U(C, γ), U(B, β) in

circuit.
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2 Circuit

For a QAOA problem to be defined we only need to construct the circuits U(C, γ) and U(B, β).

The best choice of β and γ (for faster convergence) is not known [2, 1]. We could search for pairs,

but that is time-consuming and data-specific, so a fruitless, hence rejected attempt.

Here (as mentioned in the introduction) we take inspiration from Adiabatic Quantum Comput-

ing when choosing there parameters. Initially, our solution is very poor and the convergence must

be fast, hence β should be big and γ very small. As repetitions go on, β becomes smaller slowing

the convergence and γ becomes larger rewarding our proximity to the solution.

Thus, imitating an adiabatic behaviour we define (for the k-th repetition) [2, 5, 7]:

βk = 1− k

p
, βk

k→p→ 0

γk =
k

p
, γk

k→p→ 1

(6)

2.1 Number of Qubits

Our n choices being |z⟩ = |z1z2...zn⟩, we certainly need n qubits for measuring. Apart from

them, we also need some qubits to compute the battery’s damage. This value will be at most∑
t
max(c

(t)
1 , c

(t)
2 ), so we need at most d =

⌈
log2

(∑
t
max(c

(t)
1 , c

(t)
2 )

)⌉
ancillary qubits to store this

cost. These qubits we will represent with an 1D matrix A[i], 0 ≤ i ≤ d− 1. We also need a flag

qubit F that checks our solution’s viability:

F =

[(
cost(z) =

n∑
t=1

(1− zt)c
(t)
1 + ztc

(t)
2

)
≤ Cmax

]
0|1

2.2 Architecture and Hamiltonian

The objective function to be maximized is f(z) = return(z) + penalty(z) (bigger penalty gives

unwanted results [2], so we stick to a linear behaviour):

return(z = z1z2...zn) =

n∑
t=1

[
(1− zt)λ

(t)
1 + ztλ

(t)
2

]

penalty(z = z1z2...zn) =

{
0 if cost(z) ≤ Cmax

−a(cost(z)− Cmax) if cost(z) > Cmax

}
f(z) = return(z) + penalty(z)

At first, we prepare the state |z⟩ = |+⟩⊗n, by applying a Hadamard gate to every qubit. By

doing so, our initial probability distribution is the uniform 50-50 for the states |0⟩ and |1⟩ of every

qubit. As a whole we have |z⟩ ⊗ |0⟩ ⊗ |0⟩.
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After that, we make |z⟩ ⊗ |cost(z)⟩ ⊗ |0⟩ and finally we update the Flag qubit |z⟩ ⊗ |cost(z)⟩ ⊗

|cost(z) ≥ Cmax⟩

If Flag = 1, then we impose a penalty to our solution, by imposing a phase shift in the |cost(z)⟩

qubits, making the state |z⟩ ⊗ |cost(z′)⟩ ⊗ |F ⟩.

Later, we re-initialize the ancillary qubits, making the state |z′⟩ ⊗ |0⟩ ⊗ |0⟩. With this reverse

process the auxiliary qubits turn back to zero, while the penalty traces back to the choice |z⟩. Idea

being: if process A computes |cost(z)⟩ from |z⟩, then process A−1 computes |z′⟩ from |cost(z′)⟩

(while in the same time, re-initializes the ancillary qubits).

We repeat the parts U(C, γk) and U(B, βk) p-times and finally we measure the first n qubits.

|+⟩

U(C, γ1)

U(B, β1)

U(C, γ2)

U(B, β2)

· · ·

U(C, γp)

U(B, βp)
|+⟩ · · ·

|+⟩ · · ·

|+⟩ · · ·

|0⟩ · · ·
|0⟩ · · ·
|0⟩ · · ·

Figure 1: QAOA Circuit overview

The circuit grows linearly with respect to p and creates the state:

|β, γ⟩ ≡ U(B, βp)U(C, γp) · · ·U(B, β1)U(C, γ1) |+⟩⊗n
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2.3 C Operator

We construct the C operator according to the objective function f :

U(C, γ) = e−iγf(z) |z⟩

= e−iγ.penalty(z)e−iγ.return(z) |z⟩
(7)

2.3.1 Profit Calculation

Assuming being in case 3 (see introduction) our profits would be at least θ =
n∑

t=1
λ
(t)
1 . But, this

value does not depend on our choice and, as implied, it’s excluded. The pure profit we care about

is the extra (λ
(t)
2 − λ

(t)
1 ) for every t:

e−iγ.return(z) |z⟩ =
n∏

t=1

e−iγ.returnt(z) |z⟩

=��eiθ
n⊗

t=1

e−iγzt(λ
(t)
2 −λ

(t)
1 ) |zt⟩

(8)

Terms e−iγ(λ
(t)
2 −λ

(t)
1 )zt |zt⟩ can be computed in parallel with phase gates P (φ) =

(
1 0
0 eiφ

)
:

P
(
γ(λ

(1)
2 − λ

(1)
1 )
)

P
(
γ(λ

(2)
2 − λ

(2)
1 )
)

...

P
(
γ(λ

(n)
2 − λ

(n)
1 )
)

Figure 2: Profit Calculation

2.3.2 Cost Calculation

For every zi corresponding to the choice M{1|2} for day i we have:

• zi = 0 −→ M1

• zi = 1 −→ M2

And we add c(i)2 or c(i)1 under the constraint of zi into the A auxiliary array:

|z1⟩ • · · · X • · · · X

|z2⟩ • · · · X • · · · X

... (Market2) ... (Market1) ...
|zn⟩ · · · • X · · · • X

+(c
(1)
2 ) +(c

(2)
2 )

· · ·
+(c

(n)
2 ) +(c

(1)
1 ) +(c

(2)
1 )

· · ·
+(c

(n)
1 )

· · · · · ·

A

Figure 3: Cost Calculation
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Another idea would be to add c(i) in parallel, instead of serially. With a "devide and conquer"

technique: instead of n additions in series, we have n/2 and n/2 additions in parallel and then

in O(1) we mix the results. Recursively, n/4 then n/8 etc. This results in a log2(n)-deep circuit.

Ideally better, but must be turned down now, cause it demands too many qubits.

+

+

+

+

+

+

+

Figure 4: Cost Calculation in Parallel

The two approaches are shown in this table (we prefer less qubits than less time):

Method Circuit Depth Ancillary qubits
Serial Adders O(nlog2n) O(n)
Parallel Adders O((log2n)

3) O(nlog2(n))

2.3.3 Constraint Checking

Having in binary representation the cost of choice z, we set Flag Qubit to 1, if it exceeds Cmax.

But, Cmax is an arbitrary number, hence comparing with it is in general difficult. On the contrary,

comparing with power of 2 is very easy. So, we add a constant value w on both sides of the

inequality, making Cmax reach its immediately larger power of 2:

cost(z) ≤ Cmax
+w⇐⇒

cost(z) + w ≤ Cmax + w = 2c
(9)

Now, we set Flag if all qubits above this power of 2 are zero. This can be done with a Multi-

Controlled Not-Gate (which by the way, uses d-c-3 auxiliary qubits).
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A[0]

+w

...
A[c− 1]

A[c] X •

A[c+ 1] X •

...

A[d− 1] X •

F |cost(z) ≥ Cmax⟩

Figure 5: Constraint Checking

2.3.4 Penalty Dephasing

If F = 1, then penalty must be imposed:

a(cost(z)− Cmax) =

d−1∑
j=0

2jaA[j]− 2ca (10)

This penalty is being put into the qubits’ phase, according to the number’s binary representa-

tion:

A[0] P (20αγ)

A[1] P (21αγ)

...
...

A[d− 1] P (2d−1αγ)

F • • • −2cαγ

Figure 6: Penalty Dephasing

2.3.5 Re-initialization

To re-nullify the ancillary qubits, without destroying the state, we apply the "constraint checking"

and "cost calculation" circuits in reverse. This way, the ancillary qubits go back to |0⟩ while the

penalty applied on the |cost(z)⟩ traces back to |z⟩.

ConstraintTesting−1 CostCalculation−1

Figure 7: Re-initialization
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2.4 B operator

The second part is simpler: For every qubit we must use its phase to "judge" our solution, via a

multiplicative factor β. Thus, if σx
t is the operator

(
1 0
0 1

)
applied to the t-th qubit, we define

operator B as the sum of all these σx:

B =

n∑
t=1

σx
t (11)

and its corresponding unitary operator:

U(B, β) = e−iβB (12)

The unitary operator U(B, β) can be implemented with Rx(2β) gates upon every qubit.

U(B, β)

Rx(2β)

...
... = ...

Rx(2β)

Figure 8: Mixing Operator Circuit
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3 Optimizations

3.1 Reduction to Relaxed 0-1 Knapsack

The first optimization will be the reduction of Battery Revenue Optimization Problem to the

Relaxed 0-1 KnapSack problem (as mentioned in the introduction).

0-1 Knapsack Problem: Given n items, each with weight wi and value vi, we must decide

which ones we should put in a bag enduring a weight up to Wmax, while maximizing the total

value.

Typically, the problem has this mathematical formulation:

argmax
zt∈{0,1}n

n∑
t=1

ztvt

s.t.:
n∑

t=1

ztwt ≤Wmax

(13)

As explained above, without loss of generality, we choose case 3 of the Battery Revenue Opti-

mization Problem. Easily this problem reduces to 0-1 KnapSack if we set:

vt = (λ
(t)
2 − λ

(t)
1 )

wt = (c
(t)
2 − c

(t)
1 )

Wmax = Cmax −
n∑

t=1

c
(t)
1

(14)

The basic idea of the reduction is this: We must choose one of the two markets every day, but

being in case 3, we have a profit of at least λ(t)1 and a cost of at least c(t)1 . So, ignoring these values

which are implied, we care only for the excessive difference of the two. This way it’s like choosing

or not choosing Market M2 every day, similarly to choosing or not choosing an item to put in our

KnapSack bag.

By doing this, we reduce our additions to half since we need only add one value per day. Also

we avoid using X-gates to toggle between 0-1 of zi.

This alternation saves us n additions and 2n X-gates in each repetition!

|z1⟩ • · · ·

|z2⟩ • · · ·
... (preferMarket2) ...

|zn⟩ · · · •

+(c
(1)
2 − c

(1)
1 ) +(c

(2)
2 − c

(2)
1 )

· · ·
+(c

(n)
2 − c

(n)
1 )

· · ·

A

Figure 9: Optimized Cost Calculation
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3.2 QFT Adder

There are many quantum circuit implementing a binary adder. Typical among them are:

• Plain adder network [8]

• Ripple carry adder [9]

• QFT adder [10, 11]

We will use the QFT Adder, because it has a very important advantage: we have many additions

in series.

QFT Adder adds binary numbers represented by the states |A⟩ and |B⟩. The addition is easily

done in phase space:

• It applies a Quantum Fourier Transformation in the first addend |A⟩ QFT−→ |F(A)⟩

• It applies Controlled phase gates with B’s qubits as control qubits and A’s qubits as

target qubits: |F(A)⟩ Bphase−→ |F(A+ B)⟩

• It applies a Reverse Quantum Fourier Transformation from the phase space fetching

the result in the previously |A⟩ state: |F(A+ B)⟩ IQFT−→ |A+B⟩

|A⟩ QFT−→ |F(A)⟩ |F(A)⟩ ∗−→ |F(A+B)⟩ |F(A+B)⟩ IQFT−→ |A+B⟩

Figure 10: QFT Adder

That is, a specific act of phase gates into phase space corresponds to classical addition of two

binary represented numbers. Counter-intuitive as it may seem (cause the price is the many QFTs)

it’s very fast, cause the QFTs and IQFTs between additions cancel each other out. With a closer

look, it’s clear that only one QFT and one IQFT are needed. We enter only once the phase space

to do all additions and then we exit:

QFT ∗1 ����IQFT ���QFT ∗2 ����IQFT ���QFT ∗3 IQFT

Adder1 Adder2 Adder3

Figure 11: Serial Adder with QFTs

transforms into:
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QFT ∗1 ∗2 ∗3
· · ·

∗n IQFT
· · ·

Figure 12: Reduced serial adder with QFTs

The two wanted circuits are constructed thus:

|an⟩ H 1 · · · n− 2 n− 1 · · · |Fn(a)⟩

|an−1⟩ • H · · · n− 3 n− 2 · · · |Fn−1(a)⟩
...

|a2⟩ • • · · · H 1 |F2(a)⟩

|a1⟩ • • · · · • H |F1(a)⟩

Figure 13: QFT Circuit

where k is the gate corresponding to P ( π
2k
) =

(
1 0

0 e
iπ

2k

)
.

|bn⟩ • |bn⟩
|bn−1⟩ • • |bn−1⟩

...
...

|b2⟩ · · · • · · · • · · · • |b2⟩
|b1⟩ · · · • · · · • · · · • • |b1⟩

|Fn(α)⟩ 0 1 · · · n− 2 n− 1 · · · |Fn(α+ b)⟩

|Fn−1(α)⟩ 0 · · · n− 3 n− 2 · · · |Fn−1(a+ b)⟩
...

|F2(α)⟩ 0 1 |F2(α+ b)⟩

|F1(α)⟩ 0 |F1(α+ b)⟩

Figure 14: Phase Subroutine

Yet another advantage is that, in our specific case, number |B⟩ is known, hence expressible with

classical bits. So, the controlled phase gates can be substituted with simple phase gates (when

bi = 0) or no gates at all (when bi = 1).

1 •
0 • •

...
...

0 · · · • · · · • · · · •
1 · · · • · · · • · · · • •

|Fn(α)⟩ 0 �1 · · · ���n− 2 n− 1 · · · |Fn(α+ b)⟩

|Fn−1(α)⟩ �0 · · · ���n− 3 n− 2 · · · |Fn−1(a+ b)⟩
...

|F2(α)⟩ �0 1 |F2(α+ b)⟩

|F1(α)⟩ 0 |F1(α+ b)⟩

Figure 15: Phase Subroutine with no controlled gates
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But for simple phase gates holds: P (φ) ∗ P (ψ) = P (φ+ψ), therefore all phase gates per qubit

condense in one.

|Fn(α)⟩ Ptot(αn) |Fn(α+ b)⟩

|Fn−1(α)⟩ Ptot(αn−1) |Fn−1(a+ b)⟩
...

|F2(α)⟩ Ptot(α2) |F2(α+ b)⟩

|F1(α)⟩ Ptot(α1) |F1(α+ b)⟩

Figure 16: Improved Phase Subroutine

Also for our QFT we can ignore gates corresponding to small angles. In specific, we can add

gates with k up to k ≈ log2(n). Thus, our adder which needed 1
2n(n + 1) = O(n2) gates, now

needs only O(nlog2n) [10]. So we choose the Approximate QFT Adder [12].

By choosing the apprQFT Adder and our optimizations, we have at last a grid of phase gates

for the whole cost calculation (each layer controlled by some zi, not shown here):

|0⟩

apprQFT

P P P · · · P

apprIQFT

|0⟩ P P P · · · P

|0⟩ P P P · · · P

|0⟩ P P P · · · P

|0⟩ P P P · · · P

Figure 17: Optimized Cost Calculation Circuit

(Note: We have one more addition in constraint checking. We can postpone the IQFT until we

have added w there).

Examining the adder more closely, we notice that the initial QFT is applied into qubits which

are in the |0⟩ state. Hence, the phase gates have no meaning, and the QFT degenerates into simple

Hadamard gates (optimizing our circuit even further!). At last we have:

|0⟩ H P P P · · · P

apprIQFT

|0⟩ H P P P · · · P

|0⟩ H P P P · · · P

|0⟩ H P P P · · · P

|0⟩ H P P P · · · P

Figure 18: Final Cost Calculation Circuit

15



3.3 Avoiding Flag Qubit

While checking the constraint we used an extra qubit, namely: Flag Qubit. We added the value

w missing from Cmax to reach its immediately bigger power of 2 (2c) and then we checked via a

multi-controlled X-gate (which used another d− c− 3 ancillary qubits).

We propose this improvement: Instead of reaching the next power of 2 (2c ≥ Cmax), we aim

for the biggest power of 2, fitting inside the qubits of array A.

That is: w′ = 2d − Cmax .

The idea remains the same: We add the new w′ on both sides of the inequality: cost(z) <

Cmax ⇒ cost(z) + w′ < Cmax + w′ = 2d, so our last qubit acts as the new Flag Qubit and in the

same time we discard the multi-CNOT.

Therefore we add w′ on our data:

• If the last qubit d became 1, then cost(z) > Cmax

• Otherwise, cost(z) ≤ Cmax

We avoid d− c X-gates and d− c− 3 auxiliary qubits. Of course, we must modify the penalty

dephasing circuit: Gates are controlled from the last qubit (there is no Flag qubit now).

A[0] P (20αγ)

A[1] P (21αγ)

...
...

A[d− 2] P (2d−2αγ)

A[d− 1] • • • P (−2d−1αγ)

Figure 19: Improved Penalty Dephasing Circuit

3.4 Precision Increase

In our circuit, we initially apply a Hadamard gate in each qubit, meaning we force a uniform 50-50

probability distribution. This choice, though convenient, is completely arbitrary in respect to the

data given, and as a result a better ansatz can and should be found.

Of course, choosing another distribution means constructing another mixer, one corresponding

to it. For the initial distribution (|+⟩⊗n) we used X-gates, because this gate has the eigenstates

(|0⟩+ |1⟩)/
√
2 and (|0⟩ − |1⟩)/

√
2. In general, though, we need a mixer corresponding to an arbi-

trary probability distribution [1]:

|pi⟩ :=
√
1− pi |0⟩+

√
pi |1⟩

|p⊥i ⟩ := −√
pi |0⟩+

√
1− pi |1⟩

|p⟩ = |p1⟩ ⊗ |p2⟩ ⊗ · · · |pn⟩ .

(15)
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Therefore we need a mixer ZX with eigenstates: ZXpi |pi⟩ = − |pi⟩ and ZXpi |p⊥i ⟩ = + |pi⟩. We

notice that Z-gate has the eigenstates |0⟩ and |1⟩, so ZX can be written as the linear combination

of X and Z (that’s why the symbol ZX is used, as their overlapping):

ZXpi
= −(1− 2pi)Z − 2

√
pi(1− pi)X

= −
(

1− 2pi 2
√
pi(1− pi)

2
√
pi(1− pi) 1− 2pi

) (16)

Of course, in the extreme cases: ZX0 = −Z , ZX1/2 = −X. The only thing remaining is to

construct this gate (which, naturally enough, will be made out of rotation gates). Indeed, defining

the angles corresponding to the probabilities φpi
= 2 sin−1(

√
pi) we have the matrix:

ZXpi
= −

cos(φpi
) sin(φpi

)

sin(φpi
) − cos(φpi

)



= −

 1− 2 sin2(
φpi

2 ) 2 cos(
φpi

2 ) sin(
φpi

2 )

2 cos(
φpi

2 ) sin(
φpi

2 ) −(1− 2 sin2(
φpi

2 ))


(17)

With further investigation, this matrix can be written as ZXpi
= RY (φpi

)ZRY (φpi
)† and the

corresponding unitary operator: e−iβZXpi = RY (φpi
)e−iβZRY (φpi

)†. Also, RY (φpi
)† = RY (−φpi

).

Finally, this mixer can be implemented with this circuit:

RY (−φp1
) Z(2β) RY (φp1

)

RY (−φp2) Z(2β) RY (φp2)

...
...

RY (−φpn−1
) Z(2β) RY (φpn−1

)

RY (−φpn) Z(2β) RY (φpn)

Figure 20: Mixer for the probability distribution pi

As for the distribution: an initial idea would be to choose a completely constant distribution

that has estimated cost Cmax, bringing us to the edge of "acceptable" solutions from the beginning.

To achieve this we set the same probability for all qubits (Constant Biased State):

Pr([Qi = 1]) =
Cmax∑
t
ci (18)

At the average case we exploit most of the cost Cmax.

E[cost(z)] =

n∑
t=1

ci · pi =

n∑
t=1

ci · Cmax

n∑
t=1

ci

= Cmax (19)
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This approach treats all the days as same, giving equal probability to every one of them. The

complete opposite would be a totally biased distribution: including surely some choices and ex-

cluding others (Lazy Greedy).

Thinking this way, we put in descending order all the items with criterion the ratio ri = λi

ci

(their "normalized" value) and choosing the first m items until we exceed the limit Cmax. Linear

in time, though it rarely guesses the correct answer. In our terms, the first m items in this scale

have a probability pi = 1 and the next have pi = 0, with rstop being the ratio on the limit.

These two distributions are the extreme opposites (one constant and one completely biased)

and both are totally greedy. Their behaviour is shown in the figures below.

Figure 21: Two extreme probability distributions: Constant and Lazy Greedy

They will probably fail on our task. That’s why we create a distribution in between them: The

known Logistic [1]. A parameter k is our measure of how much the distribution inclines towards

one of the two extremes:

pi =
1

1 + Ce−k(ri−rstop)

με C =

∑
i ci

Cmax
− 1

(20)

• With lim
k→0

pi = Constant Biased State

• With lim
k→∞

pi = Lazy Greedy State

A sample of this distribution is shown in this figure (with the limit rstop):

18



Figure 22: Logistic with a small parameter k

With a few tries we get a good value for k.
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4 Results

4.1 Precision measurements

Since our algorithm is approximate, we must measure the precision of our results. The quantum

computer gives a different answer every time, and so we must measure how many of them are

acceptable (cost(z) ≤ Cmax) and how much are these close to the optimum profit λopt. Hence, as

a metric we use the average profit compared to the optimum profit (R(z) = return(z) = profit of

choice z):

∑
z

[(
R(z)−

∑
t
λ
(t)
1

)
H(cost(z) ≤ Cmax)

]
Nfeasible ·

(
λopt −

∑
t
λ
(t)
1

) (21)

The precision for the |+⟩⊗n and the Logistic (with k=5) distributions are shown below:

Figure 23: Algorithm precision for distributions |+⟩⊗n and Logistic (k = 5) [x100%]

4.2 Circuit Cost

For the circuit cost we are interested mainly on its depth (which will determine the run-time) and

the number of used gates.

Since we use IBM’s simulator we will analyse the circuit into the basic gates rz,sx,cx with the

instruction transpile(QCircuit, basis_gates=[’cx’, ’rz’,’sx’]).

The result of the simulations, for different values of n and p is shown in these figures:
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Figure 24: Circuit Depth and Number of Gates

As it seems from the pictures, the cost and run-time of the circuit grow linearly in respect to

the length of the input and the algorithm’s repetitions (as expected).

21



5 Epilogue

5.1 Conclusions

As shown in this project, problems equivalent to the Battery Revenue Optimization can be solved

(in theory) by a quantum computer with a QAOA approach. With the Logistic distribution we

achieved a sufficient precision of 0.9. Although, we notice that the precision does not improve for

bigger values of p: this may be due to the parameters (βk, γk), which do not contribute much when

k → p. However, for small values of p the precision is enough and the run-time is very low.

5.2 Thoughts for further improvement

To optimize the circuit even more we could try:

• Better probability distributions.

• Better mixers, preferably many-qubit mixers [1], taking into consideration the joint prob-

ability distribution function: when probabilities rise for one qubit, they must decrease for

all others (since there is the limit of Cmax). This approach though, needs to update every

qubit for every other qubit, resulting in O(n2) gates and these updates as operators do not

commute!

• Additions in parallel [2], which we avoided to use as few qubits as possible.

• Better adders.
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6 Code

We import the necessary libraries:

from qiskit import QuantumCircuit, QuantumRegister
from typing import List, Union
import math
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, assemble
from qiskit.compiler import transpile
from qiskit.circuit import Gate
from qiskit.circuit.library.standard_gates import *
from qiskit.circuit.library import QFT

6.1 (Optimized) Circuit

# knapSack reduced
def solver_function(L: list, C: list, C_max: int, p: int) -> QuantumCircuit:

# the number of qubits representing answers
index_qubits = len(L)

# data qubits and QFT approximation degree
max_c = sum(C)
data_qubits = math.ceil(math.log(max_c, 2)) + 1 if not max_c & (max_c - 1) == 0

else math.ceil(math.log(max_c, 2)) + 2
appr = math.floor(math.log(data_qubits, 2))

# LOGISTIC BIASED STATE
# sort indexes by ratio in ratios zipped list
ratios = zip([l/c for (l,c) in zip(L,C)], range(n))
ratios = sorted(ratios, key = lambda t: t[0], reverse=True)

# find r_stop
r_sum , r_stop = 0, 0
for i in range(index_qubits):

r_stop = ratios[i][0]
if r_sum + C[i] > C_max:

break
else:

r_sum += C[i]

# find phi_i for every p_i
phi = [0]*index_qubits
for i in range(index_qubits):

# parameters
C_const = sum(C)/C_max - 1
r_i = L[i] / C[i]
k = 5

# p_i and phi_i
p_i = 1 / ( 1 + C_const * math.e**(-k*(r_i - r_stop)) )
phi[i] = 2 * math.asin( math.sqrt(p_i) )

def phase_return(index_qubits: int, gamma: float, L: list, to_gate=True)
-> Union[Gate, QuantumCircuit]:

qr_index = QuantumRegister(index_qubits, "index")
qc = QuantumCircuit(qr_index)

for i in range(index_qubits):
qc.p( - gamma * L[i] / 2 , qr_index[i])

return qc.to_gate(label=" phase return ") if to_gate else qc

def subroutine_add_const(data_qubits: int, const: int, to_gate=True)
-> Union[Gate, QuantumCircuit]:
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qc = QuantumCircuit(data_qubits)

# accumulate phases per qubit
phases = [0.0] * data_qubits
for i in range(data_qubits):

for j in range(i+1):
if (const>>j)&1 == 1:

phases[i] += math.pi / (1<<(i-j))

for i in range(data_qubits):
qc.p(phases[i], data_qubits-1-i)

return qc.to_gate(label=" [+"+str(const)+"] ") if to_gate else qc

def cost_calculation(index_qubits: int, data_qubits: int, C: list, to_gate = True)
-> Union[Gate, QuantumCircuit]:

qr_index = QuantumRegister(index_qubits, "index")
qr_data = QuantumRegister(data_qubits, "data")
qc = QuantumCircuit(qr_index, qr_data)

# QFT Once here (+ add + add w) then IQFT
qc = qc.compose(QFT(data_qubits, appr), qr_data[:])

for i in range(index_qubits):
gate = subroutine_add_const(data_qubits, C[i]).control()
qc.append(gate, [qr_index[i]] + qr_data[:])

return qc.to_gate(label=" Cost Calculation ") if to_gate else qc

def constraint_testing(data_qubits: int, C_max: int, to_gate = True)
-> Union[Gate, QuantumCircuit]:

qr_data = QuantumRegister(data_qubits, "data")
qc = QuantumCircuit(qr_data)

# add w'
rest = 2**(data_qubits-1) - C_max
qc.append(subroutine_add_const(data_qubits, rest), qr_data[:])
# IQFT
qc = qc.compose(QFT(data_qubits, approximation_degree=appr, inverse=True), qr_data[:])

return qc.to_gate(label=" Constraint Testing ") if to_gate else qc

def penalty_dephasing(data_qubits: int, alpha: float, gamma: float, to_gate = True)
-> Union[Gate, QuantumCircuit]:

qr_data = QuantumRegister(data_qubits, "data")
qc = QuantumCircuit(qr_data)

# dephase qubits
for i in range(data_qubits-1):

qc.cp((2**i)*alpha*gamma, qr_data[data_qubits-1], qr_data[i])

# dephase yourself
phase = 2**(data_qubits-1)
qc.p(phase*alpha*gamma, qr_data[data_qubits-1])

return qc.to_gate(label=" Penalty Dephasing ") if to_gate else qc

def reinitialization(index_qubits: int, data_qubits: int, C: list, C_max: int, to_gate = True)
-> Union[Gate, QuantumCircuit]:

qr_index = QuantumRegister(index_qubits, "index")
qr_data = QuantumRegister(data_qubits, "data")
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qc = QuantumCircuit(qr_index, qr_data)

# clear ancillary qubits
qc.append(constraint_testing(data_qubits, C_max).inverse(), qr_data[:])
qc.append(cost_calculation(index_qubits, data_qubits, C).inverse(), qr_index[:] + qr_data[:])

return qc.to_gate(label=" Reinitialization ") if to_gate else qc

def mixing_operator(index_qubits: int, beta: float, to_gate = True)
-> Union[Gate, QuantumCircuit]:

qr_index = QuantumRegister(index_qubits, "index")
qc = QuantumCircuit(qr_index)

# Biased state mixer Ry(theta) exp(-ibetaZ) Ry(-theta)
# Ry(w)^dagger = Ry(-w)
for i in range(index_qubits):

qc.ry(-phi[i], qr_index[i])
qc.rz(2*beta, qr_index[i])
qc.ry( phi[i], qr_index[i])

return qc.to_gate(label=" Mixing Operator ") if to_gate else qc

##############################

qr_index = QuantumRegister(index_qubits, "index")
qr_data = QuantumRegister(data_qubits, "data")
cr_index = ClassicalRegister(index_qubits, "c_index")
qc = QuantumCircuit(qr_index, qr_data, cr_index)

alpha = 1 # penalty parameter

# Logistic initial state
for i in range(index_qubits):

qc.ry(phi[i], qr_index[i])

for i in range(p):

beta = 1 - (i + 1) / p
gamma = (i + 1) / p

qc.append(phase_return(index_qubits, gamma, L), qr_index)
qc.append(cost_calculation(index_qubits, data_qubits, C), qr_index[:] + qr_data[:])
qc.append(constraint_testing(data_qubits, C_max), qr_data[:])
qc.append(penalty_dephasing(data_qubits, alpha, gamma), qr_data[:])
qc.append(reinitialization(index_qubits, data_qubits, C, C_max), qr_index[:] + qr_data[:])
qc.append(mixing_operator(index_qubits, beta), qr_index)

qc.measure(qr_index, cr_index[::-1])

return qc

6.2 Classical algorithm using DP

To measure precision, we need a classical algorithm to solve 0-1 KnapSack:

def knapSack(W, wt, val, n):
K = [[0 for x in range(W + 1)] for x in range(n + 1)]

# Build table K[][] in bottom up manner
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for i in range(n + 1):
for w in range(W + 1):

if i == 0 or w == 0:
K[i][w] = 0

elif wt[i-1] <= w:
K[i][w] = max(val[i-1] + K[i-1][w-wt[i-1]], K[i-1][w])

else:
K[i][w] = K[i-1][w]

return K[n][W]

6.3 Precision and Cost Measurements

from qiskit import *
import random
import matplotlib.pyplot as plt
import numpy as np

dataX, dataY = [], []
precisions, depths , gates = [], [], []

for n in range(4, 15):
for p in range(1,15):

test_cases = 5
precision = 0
qgates = 0
qdepth = 0

for t in range(test_cases):

# Random input of length n
C = [random.randint(1, 3) for i in range(n)]
L = [random.randint(1, 4) for i in range(n)]
C_max = random.randint(2, sum(C)-1)

# solve classicaly with DP
l_opt = knapSack(C_max, C, L, n)

# solve in QC
qc = solver_function(L, C, C_max, p)
Ns = 1024//test_cases
counts = execute(qc, Aer.get_backend('qasm_simulator'), shots=Ns).result().get_counts()
data = sorted(counts.items(), key = lambda x:x[1], reverse=True)

# evaluate cost or value of your choice
def evaluate(L: List[int], a: str):

s = 0
for i in range(len(L)):

if a[i] == '1':
s += L[i]

return s

Nf , my_sum = 0, 0
for i in data:

cost = evaluate(C, i[0])
val = evaluate(L, i[0])
shots = i[1]
if cost <= C_max:

Nf += shots
my_sum += val * shots

# transpile into basis gates
qc = transpile(qc, basis_gates=['cx', 'rz','sx'])

# take measurements
qdepth += qc.depth()
qgates += len(qc.get_instructions('cx')) + len(qc.get_instructions('rz')) + len(qc.get_instructions('sx'))
precision += 100 * my_sum / (Nf * l_opt)

# take avg of measurements
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dataX.append(n)
dataY.append(p)

precisions.append(precision/test_cases)
gates.append(qgates/test_cases)
depths.append(qdepth/test_cases)

norm = mpl.colors.Normalize(vmin=0, vmax=100)
plt.scatter(dataX, dataY, s=1600, c=precisions, cmap=plt.cm.get_cmap("cividis"), norm=norm, marker='s')
plt.xlabel("n: time-window")
plt.ylabel("p: repeats")
for i, z in enumerate(precisions):

plt.annotate(str(int(z)), (dataX[i], dataY[i]))
plt.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=plt.cm.get_cmap("cividis")))
plt.show()
print("Average precision: ", sum(precisions) / len(precisions))

plt.scatter(dataX, dataY, s=1600, c=gates, cmap=plt.cm.get_cmap("cividis"), marker='s')
plt.xlabel("n: time-window")
plt.ylabel("p: repeats")
plt.colorbar()
plt.show()

norm = mpl.colors.Normalize(vmin=0, vmax=100)
plt.scatter(dataX, dataY, s=1600, c=depths, cmap=plt.cm.get_cmap("cividis"), norm=norm, marker='s')
plt.xlabel("n: time-window")
plt.ylabel("p: repeats")
plt.colorbar()
plt.show()
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