QAOA aproach to Battery
Revenue Optimization

Problem

Circuit and Optimizations
alekospagon
alekospagon@gmail.com

February 22, 2022

Abstract

Problem definition
Quantum approach

Circuit construction
Improve run-time

Improve algorithm precision

Simulate circuit on Qiskit

Measure efficiency and cost

I Battery Revenue Optimization Problem [1]

m Two renters want to use a battery for n days

m They offer)\gt) and)\gt) for the tt" day

m But they damage the battery for c{t) and cét), respectively.

m Which choice maximizes the profit while it prevents the
battery's destruction?

s B - $9

M1|v vV
M2 v v

I Battery Revenue Optimization: Importance

m Wide range of applications (Investments, Network packet
fragmentation, etc)

m Exact solution: NP-Complete

m Approximate solution (classically): in FPTAS class [2]

I Battery Revenue Optimization: Mathematical Formulation

m With z; denoting our choice for the t;, day:
Zy = 0— M]_
Zy = 11— M2

m We want to maximize the profit:

argmax (i: [(1 _ Zt))\() 4 = (t)])
1

ze{0,1}"

m Subject to the constraint:

n

Z {(1 —zt) i€)+Zt (t)} < Cinax

t=1

I Quantum Approximate Optimization Algorithm

m QAOA [1, 3]: Approximation Scheme
m Goal: Maximize function f(Z2)

m Calculate C operator such that: ‘ C|2) = f(2)|2) ‘

m We construct the state:
|ﬁv ’7> = U(Ba ﬁp)U(C7’Yp) T U(Ba BI)U(Cv /71) H‘>®n
m Quantum Adiabatic Theorem ensures convergence to

solution: lim {max [Fp(g,?)}}: max C(2)

p—00 (55) ze{0,1}"

for "carefully selected" angles g,?

I QAOA: Circuit Overview

Iz

T

U(C,m1) HH U(B,B1) — U(C,v2) HH U(B,B2) — --- — U(C,) I U(B,Bp)

T

+ +
I £

4=

State: |5, 7) = U(B, B,)U(C,7,) - -- U(B, B1)U(C,m) |+

T

~

I Architecture: Qubits

m Index qubits: n
m Cost Value Qubits:

d= {Iogz <Z max <:1 ,C2t))>—‘

m Flag qubit (for constraint testing): F

I Architecture: QAOA Parameters

m Objective function ‘ f(z) = return(z) + penalty(z) ‘

m return(Z) = 3 [(1 —z)A 4 mgﬂ]
t=1
0, cost(z) < Crax }

u Pena/t)’(z) = { —a(COSt(Z) — Cmax)v COSt(Z) > Cmax

State manipulation

Initialize and then repeat this p-times:

————————————————————————

————————————————————————

I C operator overview

m f(z) = return(z) + penalty(z)
- U(C,’}/) |Z> _ e—iq/f(z) ’Z) — e—i'y.penalty(z)e—iq/.return(z) |Z—'>

m Return Part:

L Gop o)

{eGoP @)

e (o0)]

I 2) Penalty Part: Cost calculation

Calculate cost(z):

7

|1) [x]
|22) [x]

(Market,) : (Markety)
|2n) (X]

“{ D) | |+ +H™) HD) | | +(P)

I 2) Penalty Part: Constraint Checking

Comparing with an arbitrary number

is difficult. But, comparing with a

power of 2 is an easy process. Adding on
both sides leaves the difference invariant:

cost(z) < Cpax &

cost(z) + w < Cpax +w = 2°
We only need to check

the higher power qubits
to set the flag

Al0]
Alc —1] —

Alel — 4w
Ale +1] —
Ald — 1] —

F

I 2) Penalty Part: Penalty Dephasing

Penalty:
a(cost(Z) — Crmax) Z2faAL/]

A0] % P(2%ay)|

Al P(2'an)|
Ald — 1] P29 1ay)

I 2) Penalty Part: Reinitialization

1z) A
10)

10)

—|Z) -

—| cost (z))

LI F) .

penalty

-|Z) -

| cost (z'))

L F) -

- Z')

o)

-10)

I B operator overview

Mixer Operator: flip qubits by some degree

of is <é (1)> applied on t-th qubit.

n
m Mixing all qubits: B =) of

=1

U(B,3) = e”"B — R,(2) gate on every qubit

I B Operator Circuit

Mix qubits in parallel:

U(B, b)

R«(20)

R«(20)

I Optimization |: Reduction to 0-1 Knapsack

m Actual goal: when do we prefer market M, over M;? So we
get the reduction:

=087 -\)

m W= (czt) — c:ft)) 1 2 3

= (1) v v
B Whax = mx_E C
g v = v

n

-

4
v
el []

n
m Goal: argmax > z;v¢
z:€{0,1}" t=1

n
m Constraint: > zwy < Winax
t=1

I Optimization |: Reduction to 0-1 Knapsack

1) Ed (X}
|22) x] Ed
(Markety) : (Markety) :
|Zn) T @ I @*
A {: @ [+ el ([[+ [e
JReduction
|1)
22
: (Markety)
22 ’

AT [-y [dr -

I Optimization II: QFT Adders

Quantum (binary) adders come in many implementations:
m Plain adder network [4]
m Ripple carry adder [5]
m QFT adder [6, 7]

QFT Adders, in our case, have many advantages. So we choose
them.

I Optimization |I: QFT Adder overview

QFT Adder Idea: Add in phase space, where it's simpler.

n |A) L F ()

n |F(A)) P25 | F(A+ B))
m [F(A+B) YA+ B)

FTIFAY | | IFA) == |FA+B) | | |FA+B) T 1A+ B)

i

Optimizati

We have a

on II: QFT Adder's main advantage

dditions in series = QFT and IQFT only once!

I e T ! L 1L 1 L 1 1 T e L
I T T T
| QFT *1 1QFT |1 1| QFF *2 AQFT |11| QFT *3 IQFT |
| || || |
c—Tt— 7T Tt T Tt T T

Adder, Adder, Adders

) —— — 0 1

| |

QFT | 1| =%) *3 *n |1 | IQFT
| |
Y = == _ _ _ _ == —|

All adders in phase space

I Optimization II: QFT Adder circuits

QFT circuit implementation:

|an) [1)-—{n_2Hn_1] IFa(2))
lan—1) . [H]---—n=3Hn-2F—————— |Fr(a))

a2} 1Fala))

Jar) IFi(a))

1 0
where is the gate corresponding to P(3;) = (i

I Optimization II: QFT Adder circuits

Addition in phase-space (circuit):

‘b"> |bn>
‘bn71> |bn71>

\bz>: :|b2>

| b1) * [b1)
|Fala)) foH1]---—{n—2Hn-1 |l + b))

[Fo-1(a)) [o]---—{n-3n—-2]-- |[Fn_1(a + b))

Fa(a)) - o1-1] Fala+)
|F1(e)) [0} [|F(a+b))

1 0
where | k | is the gate corresponding to P(3;) = (-)

i
0 ek

I Optimization II: QFT Adder circuits

|B) qubits are classical bits, which we know.

When b; is zero delete gate, when b; is one keep gate.

1
0
0 5
1 P
[Fn(a)) @—@ n—2—n-1
[Fn-1(c)) @ n—3-Hn—-2
|Fa(a)) gH1]
| F1(e)) [0}

|7n(a + b))

|Fn-1(a+ b))

|F2(e + b))

|F1(e + b))

I Optimization II: QFT Adder phase reduction

But for (uncontrolled) phase gates: ‘ P(o)P(v) = P(p + w)‘
So we reduce into one gate per qubit, containing the whole phase!

[Fala)) —

Pox(an)

| Fn—1(a)) — Pox(an—1)

[Fa(a)) —

PO)\(OQ)

|F1(a)) —

Pox(a)

| Fn(a + b))

[Fn1(a+ b))

|F2(a = b)>

[F1(a+ b))

I Optimization II: QFT Adder approximation

0 .. :
Phase gates | k | — P(3) = (0 e:;> with big k can be ignored!

Approximate QFT circuit is viable for k down to: k = log,(n) [6,
8].
So QFT circuit complexity reduces: O(n?) — | O(nlog, n)

I Optimization |I: QFT Adder special case

In our case, QFT is applied into the state |0).
So the circuit is equivalent to hadamard gates:

| Il
0y A P]

0 —{HI PHPHPT-
[H

S
nldy
o {AHPHPHE}-—{PH
aldy

QFT

appr IQFT

Additions

IQFT

I Optimization IlI: Avoid Flag qubit

We added w into cost(z) to compare with 2¢. But, we can add up
to 29 and avoid the Multi-NOT gate.

(Note: Multi-NOT gate was using d — ¢ — 3 ancillary qubits!)

So we change penalty dephasing as well:

A — [P

Al1] P(2la)|
Ald — 2] P(29%a)
Ald —1] . P(—Qd_lofy)

I Optimization IV: Increase precision

Initial possibility distribution (50/50) is completely arbitrary!
We must find a more data-specific one [9].

Of course, that would change the mixer.

The default mixer (= X gate) has as its eigenstates:

0+ 10-11)
V2 V2

That's why we had X gates as mixer for 50-50 distribution

I Optimization IV: Mixer and possibilities relation

A mixer must correspond to a possibility distribution:

|pi) = v/1—pi|0) +/pi|1)
) = —v/Pi |0) + /1 — pi 1)
Ip) =1p1) ® |p2) ® -~ |pn) -

having the eigenstates:

Xy, lpi) = —|pi)
Xy lpi) = +|pi)

I Optimization IV: Hourglass mixers

Xy = RY(SOP,')e_i/BZRY(_(‘OPi)

—{Rv(Cem) 2B Ry (em) |
% Ry (—0m) | 2(28) Ry (2s) P

4{RY —Pp_y HZ(Zﬂ)HRY Ppn 1)}*
— Ry (=¢p) FH Z(28) [Ry (¢0.) | —

I Optimization IV: Possibility distributions

Now we must find some good possibility distribution.
One Idea: Constant Biased State: we exhaust Cp,ax

Pr([Q; = 1) = <=

t

n

n Z & ° Crrere
E[cost(2)] = Z G- pi= tzlni = Crax
= Z Cj
t=1

I Optimization IV: Possibility distributions

Another approach: Mimic Lazy-Greedy algorithm.

: . . Ai
Lazy-Greedy: Sort choices by the efficiency ratio | r; = ?' and
i
choose the most efficient ones up to Cpax (With corresponding
ratio fstop).

It is easy and very greedy, unlike the constant approach.

Optimization IV: Distribution combination

The two opposite approaches (constant and completely biased):

—e— Constant Biased State 10 { —e— LG Biased State

Optimization IV: Distribution combination

Combine the two approaches: The constant with the most greedy!

—e— Logistic Biased State

I Optimization IV: Distribution combination

Using the Logistic function distribution:

1
- 1 —+ Ce*k(ri*fstop)

e
_ .
CT e

Pi

I Analytics: Measure efficiency

Estimated returns = (0, 1):

Precision measure: optimum returns

D [(R(z) -3 Agf)) H(cost(z) < Cmax)]

Nfeasible : <>\opt - Z)‘(lt)>
t

where H(x) is the Heaviside step function.

Analytics: Precision comparison

Precision for distributions |[+)®" and Logistic (k = 5) [100%]

Analytics: Depth and Gates

We transpile the circuit into the basis gates: [rz,sx,cx]

Depth and basis gates growing linearly for p and n

I End

Thank you for your time!

I References |

“Knapsack problem variants of qaoa for battery revenue
optimisation”. In: arXiv preprint arXiv:1908.02210 (2019).

“An improved FPTAS for 0-1 knapsack”. In: arXiv
preprint arXiv:1904.09562 (2019).

IIA
quantum approximate optimization algorithm". In: arXiv
preprint arXiv:1411.4028 (2014).

“Quantum
networks for elementary arithmetic operations”. In: Physical
Review A 54.1 (1996), p. 147.

“A new quantum ripple-carry addition
circuit”. In: arXiv preprint quant-ph/0410184 (2004).

I References |l

“Addition on a quantum computer”. In:
arXiv preprint quant-ph/0008033 (2000).

“Quantum
arithmetic with the quantum Fourier transform”. In: Quantum
Information Processing 16.6 (2017), p. 152.

“Approximate quantum Fourier
transform and decoherence’. In: Physical Review A 54.1
(1996), p. 139.

“Quantum Optimization Heuristics with
an Application to Knapsack Problems”. In: arXiv preprint
arXiv:2108.08805 (2021).

