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Quantum programming languages enable developers to implement algorithms for quantum computers that

promise computational breakthroughs in classically intractable tasks. Programming quantum computers

requires awareness of entanglement, the phenomenon in which measurement outcomes of qubits are correlated.

Entanglement can determine the correctness of algorithms and suitability of programming patterns.

In this work, we formalize purity as a central tool for automating reasoning about entanglement in quantum

programs. A pure expression is one whose evaluation is unaffected by the measurement outcomes of qubits

that it does not own, implying freedom from entanglement with any other expression in the computation.

We present Twist, the first language that features a type system for sound reasoning about purity. The type

system enables the developer to identify pure expressions using type annotations. Twist also features purity

assertion operators that state the absence of entanglement in the output of quantum gates. To soundly check

these assertions, Twist uses a combination of static analysis and runtime verification.

We evaluate Twist’s type system and analyses on a benchmark suite of quantum programs in simulation,

demonstrating that Twist can express quantum algorithms, catch programming errors in them, and support

programs that existing languages disallow, while incurring runtime verification overhead of less than 3.5%.
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1 INTRODUCTION

Quantum programming languages [Altenkirch and Grattage 2005; Bichsel et al. 2020; Clairambault

and de Visme 2019; Green et al. 2013; Paykin et al. 2017; Rand et al. 2019; Rennela and Staton 2017;

Selinger 2004; Selinger and Valiron 2005; Svore et al. 2018; Wecker et al. 2014; Ying 2016] allow

programmers to utilize the computational primitives enabled by the quantum computers of today

and tomorrow. Algorithms for quantum computers offer computational breakthroughs in integer

factorization [Shor 1997], search [Grover 1996], cryptographic and communication protocols [Ben-

nett and Brassard 2014; Bennett et al. 1993], computational physics and chemistry [Childs et al.

2018; Kassal et al. 2011], and machine learning [Biamonte et al. 2017].
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Quantum computation relies on the manipulation of quantum states consisting of qubits, the

quantum analogs of classical data and bits. A quantum state exists in a superposition, a weighted

sum over classical states. Measurement causes a superposition to assume a classical state, with

probability derived mathematically from the weight ascribed to that state in the sum. In the standard

QRAM [Knill 1996] model, computations execute on a classical computer with access to a quantum

device that supports initializing and operating on quantum states.

1.1 Entanglement

Entanglement, the phenomenon of correlation between qubits,1 is critical to the quantum computa-

tional advantage [Jozsa and Linden 2003]. Given a pair of entangled qubits, measuring one forces

the other to assume a state consistent with the measurement. Thus, the measurement outcome of

one qubit causes operations on the other to potentially yield different behavior.

In many instances, reasoning about entanglement is either necessary or beneficial. During

debugging, determining whether two qubits are entangled at a particular point is a sanity check

that an algorithm has been implemented correctly [Huang andMartonosi 2019]. Another application

is in the handling of temporary qubits used by several algorithms2 and programming patterns3

that must be measured and deallocated so that physical qubits may be reused. If these temporaries

remain entangled with the primary results of the computation, their measurement will cause the

results to be incorrect [Bichsel et al. 2020; Green et al. 2013; Rand et al. 2019].

A further application is mitigation of information-leakage attacks on Shor’s algorithm [Azuma

2017] and quantum bit-commitment schemes [Lo and Chau 1998] in which attackers introduce

surreptitious entanglement that is rendered impossible if the sensitive state is verified to be not

entangled. Yet another application is to compiler analyses that leverage descriptions of which qubits

are entangled to optimize usage of resources such as qubits in programs [Häner et al. 2020].

Entanglement is thus a key to reason about the correctness of an algorithm, verify the suitability

of a programming pattern, and empower compiler analyses. Though languages [Amy et al. 2017;

Bichsel et al. 2020; Rand et al. 2019] have recently been developed to reason about quantum

phenomena such as reversibility of computation, prior work has yet to facilitate sound reasoning

about entanglement in quantum programs.

1.2 Purity

We introduce the concept of the purity of an expression, which enables reasoning about entan-

glement in quantum programs. Operationally, quantum expressions contain references to qubits,

analogous to pointers to classical memory, and evaluate by executing operations known as gates

on them. We say that an expression owns a qubit when the final value to which it evaluates, such

as a tuple of qubits, contains a reference to that qubit.

An expression is pure if its evaluation is unaffected by the measurement outcome of any qubit it

does not own, and mixed otherwise. Specifically, the qubits that a pure expression owns are only

potentially entangled with each other and are separable, or free of entanglement, from those in

the remainder of the program. Pure and mixed expressions coincide with the established quantum

mechanical definitions of pure and mixed states [Nielsen and Chuang 2010] in that evaluating a

pure expression results in its owned qubits constituting a pure sub-state of the program state.

1More precisely, the measurement outcomes of entangled quantum states have statistical correlations that cannot be

explained by physical theories with local realism [Nielsen and Chuang 2010].
2Such as oracle functions in Grover’s algorithm [Grover 1996] or modular multiplication in Shor’s algorithm [Shor 1997].
3Such as conditionally executing statements depending on some predicate over qubits [Bichsel et al. 2020].
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1.3 Specification and Verification of Purity

We present Twist, the first language that enables programmers to specify that an expression is

pure and soundly verify that the specification holds. Twist provides a type system to specify that

an expression is of pure type, purity assertions to declare the absence of entanglement, and a

combination of static analysis and runtime verification to ensure that purity specifications hold.

Purity Types. The type system enables a programmer to specify the type of a qubit or tuple of

qubits as either pure ś unaffected by measurements of other qubits in the computation ś or mixed

ś potentially affected by other qubits. The type system reasons about purity by tracking potential

entanglement between qubits, conservatively identifying that any quantum gate operating on

two qubits may entangle them. We introduce a type of entangled pairs of quantum data that are

potentially entangled with each other, so that the outputs of multi-qubit quantum gates are of

entangled tuple type. Elements projected from an entangled pair have mixed type to reflect their

potential entanglement with each other.

Purity Assertions. Because the application of a quantum gate may in fact remove the entanglement

of a qubit with others in the computation, the language provides constructs to assert the absence

of entanglement relationships in the program. Twist provides two purity assertions: cast, which

asserts that an expression is pure, and split, which asserts that the components of a pure entangled

pair are separable from each other and hence pure. These two assertions work in concert to

identify tuples of qubits that have no external entanglement, and then further assert the absence of

entanglement between individual qubits within a tuple.

Purity Assertion Verification. Despite progress in statically characterizing the effect of gates on

entanglement [Rand et al. 2021b], in a general quantum program, verifying that a qubit is pure is at

least as hard as simulating the program [Gurvits 2003; Hayden et al. 2014]. Twist therefore relies

on a combination of both static analysis and runtime verification to check purity assertions.

To verify the cast assertion, Twist first executes a conservative static analysis to determine

whether the set of qubits that an expression owns is separable from all others in the program. To

do so, the analysis identifies the qubits that ever share an entangled pair with any qubit in this set.

If all such qubits are also in this set, then the analysis concludes the expression is pure.

To verify split, Twist tests at runtime whether two precise sets of qubits are separable from

each other. These checks rely on a primitive that determines whether the runtime quantum state is

separable or entangled. Similarly to the quantum assertions of Huang and Martonosi [2019]; Li

et al. [2020]; Liu and Zhou [2021], we abort execution if the condition fails.

Separability Testing. Twist’s purity assertions rely on a primitive that tests whether the runtime

quantum state is separable. Harrow and Montanaro [2013]; Walborn et al. [2006] have proposed

implementations of such a test in hardware, which remain a topic of active research. In this work, we

implement Twist on a state vector-based quantum simulator, examples of which include Abraham

et al. [2019]; Gheorghiu [2018]. We present a concrete implementation of separability testing in

simulation based on the Schmidt decomposition [Schmidt 1907] of quantum states.

Summary. Together, Twist’s purity types, purity assertions, and analysis techniques work to

ensure the sound verification of purity specifications in quantum programs. The developer may use

purity types to require pure expressions in computations, use purity assertion constructs to state

conditions to be verified, and execute the static analysis and runtime verification on the assertions.

The resulting guarantees of purity enable the programmer to debug algorithms, leverage idioms,

and enjoy correctness guarantees in their programs.
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1.4 Contributions

In this paper we present the following contributions:

• Purity. We present the novel definition of pure expressions in a quantum program, those that

are unaffected by measurement outcomes of the remainder of the program. We formulate purity

within the operational and denotational semantics of a functional quantum language.

• Purity Types. We present a type system that identifies pure expressions, and prove that in it,

expressions of pure type are in fact pure.

• Purity Assertions. We present two types of purity assertions that state the absence of entangle-

ment in the output of quantum gates: one stating that an expression is pure, and one stating

that the two components of a pure entangled pair are individually pure.

• Purity Assertion Verification. We present a static analysis and runtime verifications for the purity

assertions, such that programs passing verification satisfy their purity specifications.

• Evaluation. We implement Twist, a language featuring purity types and assertions, in quantum

simulation. We show that Twist can express quantum algorithms and reject programming

errors in them, that its runtime verification executes with overhead less than 3.5%, and that it

can express semantically valid programs that existing languages disallow.

Our work introduces the powerful notion of purity to quantum programming, enabling sound

reasoning for entanglement. Using Twist, developers can recognize quantum entanglement not as a

cognitive burden but rather as a clarifying tool to understanding the correctness of their programs.

2 BACKGROUND ON QUANTUM COMPUTATION

The following is an overview of key concepts in quantum computation relevant to this work and

our notational choices. Nielsen and Chuang [2010] provide a comprehensive reference.

2.1 Pure State Formalism

We first define a pure quantum state and the main formalism of quantum mechanics in this work.

Qubit. The basic unit of quantum information is the qubit, a linear combination 𝛾0 |0⟩ + 𝛾1 |1⟩
known as a superposition, where |0⟩ and |1⟩4 are basis states and 𝛾0, 𝛾1 ∈ C are amplitudes satisfying

|𝛾0 |2 + |𝛾1 |2 = 1 describing relative weights of basis states. Examples of qubits include the classical

zero bit |0⟩, classical one bit |1⟩, and the superposition states ( |0⟩ + |1⟩)/
√
2 and (𝑖 |0⟩ − |1⟩)/

√
2.

Quantum State. A 2𝑛-dimensional pure quantum state |𝜓 ⟩ is a superposition over 𝑛-bit strings.

For example, ( |00⟩ + |11⟩)/
√
2 is a quantum state over 2 qubits. Equivalently, we may represent any

pure state as a state vector, a length-2𝑛 vector of normalized complex amplitudes.5

Multiple qubits form a quantum state system by means of the tensor product ⊗. Thus, the state
|01⟩ is equal to the product |0⟩ ⊗ |1⟩. We use subscripts to denote the names of individual qubits or

sets of qubits. For example, to denote a two-qubit system in which a qubit named 𝛼 has state |0⟩
and qubit 𝛽 has state |1⟩, we write |0⟩𝛼 ⊗ |1⟩𝛽 .6

We define the empty state |·⟩ to be the length-20 vector containing amplitude 1, which effectively

describes a system of zero qubits. The tensor product of any |𝜓 ⟩ and |·⟩ is accordingly |𝜓 ⟩. The
domain of a state, dom |𝜓 ⟩, is the set of qubit names it contains.

4The Dirac ket notation | · ⟩ is customary in quantum mechanics. In our work, it simply denotes a quantum state.
5For example, the state vector corresponding to ( |00⟩ + |11⟩)/

√
2 is [1/√2, 0, 0, 1/√2]⊤, with the elements corresponding to

amplitudes of |00⟩, |01⟩, |10⟩, and |11⟩ respectively.
6In our notation, we treat the tensor product as commutative, so that |1⟩𝛽 ⊗ |0⟩𝛼 refers to the same state as |0⟩𝛼 ⊗ |1⟩𝛽 ,
with the understanding that qubits are actually stored in some canonical order in the state.
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Unitary Operators. A 2𝑛-dimensional unitary operator is a linear operator on state vectors repre-

sented by an 2𝑛 × 2𝑛 matrix 𝑈 that preserves inner products and whose inverse is its Hermitian

adjoint. We denote the state produced by a unitary operator acting on qubit 𝛼 in state |𝜓 ⟩ by
𝑈𝛼 |𝜓 ⟩.7 In this work, we use single-qubit quantum gates such as:

• X ś bit-flip (NOT) gate, which maps |0⟩ to |1⟩ and vice versa;

• Z ś phase-flip gate, which leaves |0⟩ unchanged and maps |1⟩ to − |1⟩;
• H ś Hadamard gate, which maps |0⟩ to ( |0⟩ + |1⟩)/

√
2 and |1⟩ to ( |0⟩ − |1⟩)/

√
2.

We also use two-qubit gates, such as controlled-NOT (CNOT), controlled-Z (CZ), and SWAP. The

controlled gates perform NOT or Z on their target qubit if their control qubit is in state |1⟩.
The SWAP gate swaps two qubits in a quantum state, and inserting SWAP gates enables us to

rename qubits at will. We use |𝜓 ⟩ [𝛾/𝛼] to denote renaming qubit 𝛼 to a new name 𝛾 in |𝜓 ⟩ by
implicitly inserting SWAP gates. For example, |𝜓 ⟩ = |0⟩𝛼 ⊗ |1⟩𝛽 becomes |𝜓 ⟩ [𝛾/𝛼] = |1⟩𝛽 ⊗ |0⟩𝛾 .

Measurement. A quantum measurement is a probabilistic operation over quantum states. When a

qubit 𝛾0 |0⟩ + 𝛾1 |1⟩ is measured,8 the outcome is |0⟩ with probability |𝛾0 |2 and |1⟩ with probability

|𝛾1 |2. Measuring a qubit within a larger quantum state will cause the entire state to probabilistically

assume one of two outcomes. The outcome state after measurement is equal to the tensor product

of the just-measured qubit in a basis state and the new state of the remainder of the system.

We denote the state produced by measurement of qubit 𝛼 in state |𝜓 ⟩ as 𝑀𝛼 |𝜓 ⟩. To define

measurement, we first rewrite the state into the form |𝜓 ⟩ = 𝛾0 |0⟩𝛼 ⊗ |𝜓0⟩ +𝛾1 |1⟩𝛼 ⊗ |𝜓1⟩ where |𝜓0⟩
and |𝜓1⟩ are unique quantum states.9 Then, with probability |𝛾0 |2 we obtain𝑀𝛼 |𝜓 ⟩ = |0⟩𝛼 ⊗ |𝜓0⟩,
and with probability |𝛾1 |2 we obtain𝑀𝛼 |𝜓 ⟩ = |1⟩𝛼 ⊗ |𝜓1⟩.

Pure and Mixed States. Unlike the pure states defined so far, the result of a measurement is a

classical probability distribution over pure states, known as a mixed state.

For example, ( |0⟩ + |1⟩)/
√
2 is a pure state, whereas the distribution of |0⟩ with probability 1/2 and

|1⟩w.p. 1/2 is a mixed state. Thoughmeasuring these two states immediately yields the same outcome

distribution, they behave differently under unitary operators. For example, applying a Hadamard

gate to ( |0⟩ + |1⟩)/
√
2 always produces |0⟩. Applying Hadamard to the mixed state instead produces

another mixed state that when measured yields either 0 or 1 with equal probability.10

Entanglement and Separability. A bipartite quantum state |𝜓 ⟩ is a state over the disjoint union of

two qubit sets 𝐴 ⊔ 𝐵. A bipartite state is separable if it can be written as a tensor product of two

states over each set, |𝜓𝐴⟩ ⊗ |𝜓𝐵⟩, or entangled otherwise.

For example, the two-qubit state ( |00⟩ + |01⟩ + |10⟩ + |11⟩)/2 is separable because it is the product
of two copies of ( |0⟩ + |1⟩)/

√
2. By contrast, the Bell state [Bell 1964] ( |00⟩ + |11⟩)/

√
2 is entangled

because it cannot be written as the product of two single-qubit states.

Given the bipartite state |𝜓 ⟩, measuring the qubits of 𝐵 will have different consequences for the

remaining state of 𝐴, depending on whether |𝜓 ⟩ is separable. If |𝜓 ⟩ is separable, the measurement

will leave 𝐴 in a pure state, and if it is entangled, measurement will leave 𝐴 in a mixed state. For

example, measuring one of the qubits in the entangled Bell state ( |00⟩ + |11⟩)/
√
2 results in the

remaining qubit taking on a mixed state, |0⟩ with probability 1/2 and |1⟩ with probability 1/2.
7In this work, we will work with one- and two-qubit unitary operators on named qubits with the understanding that they

will be padded to all 𝑛 qubits in the system by tensor product with the identity matrix.
8We concern ourselves primarily with projective computational (i.e. 0/1) basis measurements, though our results can be

generalized to other measurement forms.
9Scaling a quantum state by a coefficient 𝑒𝑖𝜃 known as a global phase factor produces another state indistinguishable from

the original by any measurement. Thus, we define equality and uniqueness of states to be up to global phase.
10In particular, this mixed state is ( |0⟩ + |1⟩)/

√
2 with probability 1/2 and ( |0⟩ − |1⟩)/

√
2 with probability 1/2.
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Schmidt Decomposition. Given a bipartite pure state |𝜓 ⟩ over qubit sets 𝐴 ⊔ 𝐵, we may compute

its unique Schmidt decomposition [Schmidt 1907], |𝜓 ⟩ = ∑

𝑗 𝜆 𝑗 |𝜓𝐴 𝑗 ⟩ ⊗ |𝜓𝐵 𝑗 ⟩ where |𝜓𝐴 𝑗 ⟩ and |𝜓𝐵 𝑗 ⟩
are states of 𝐴 and 𝐵 and 𝜆 𝑗 are positive real Schmidt coefficients satisfying

∑

𝑗 𝜆
2
𝑗 = 1. The Schmidt

decomposition provides a criterion for separability ś |𝜓 ⟩ is separable if and only if it has only one

nonzero Schmidt coefficient.

2.2 Mixed State Formalism

We next describe mixed states, a more expressive alternative formalism for quantum computation.

Mixed states model statistical ensembles of states arising over multiple program executions.

Density Matrix. Given a 2𝑛-dimensional state vector |𝜓 ⟩, we use |𝜓 ⟩⟨𝜓 | to denote its outer product
with itself, which is a 2𝑛 × 2𝑛 matrix. A mixed state is mathematically represented as a density

matrix 𝜌 , a linear combination 𝜌 =
∑

𝑗 𝑝 𝑗 |𝜓 𝑗 ⟩⟨𝜓 𝑗 | where each 𝑝 𝑗 > 0 and 𝜌 is positive semidefinite.

The domain of a density matrix, dom 𝜌 , is the set of qubits contained in each |𝜓 𝑗 ⟩.
A density matrix is normalized if

∑

𝑗 𝑝 𝑗 = 1 and tr 𝜌 = 1. Partial density matrices [Ying 2016] relax

the conditions to
∑

𝑗 𝑝 𝑗 ≤ 1 and tr 𝜌 ≤ 1 and can be added to form normalized density matrices.

Unitary Operators. A unitary quantum operator 𝑈 applies to a density matrix 𝜌 by matrix

conjugation, so that the resulting matrix is𝑈𝜌𝑈 † where𝑈 † is the Hermitian adjoint of𝑈 .

Measurement. A quantum measurement is represented by a set of projections 𝑃 𝑗 corresponding

to possible outcomes, where
∑

𝑗 𝑃 𝑗 = 𝐼 . Outcome 𝑃 𝑗 occurs with probability tr (𝜌𝑃 𝑗 ), and results in

normalized density matrix 𝑃 𝑗𝜌𝑃 𝑗/tr (𝜌𝑃 𝑗 ). 𝑃 𝑗𝜌𝑃 𝑗 is its probability-weighted partial density matrix.

The principle of deferred measurement states that any computation that conditionally executes

gates based on the measurement of a qubit produces the same mixed state as one that uses quantum

conditioned gates and defers measurement until the end of the computation.11

Product States and Separability. We can construct a composite of mixed states using the tensor

product 𝜌1 ⊗ 𝜌2. We use the notation 𝜌 [𝛾/𝛼] to rename qubit 𝛼 to 𝛾 in 𝜌 by implicitly inserting

SWAP gates. A mixed state 𝜌 is simply separable if there exist 𝜌1 and 𝜌2 where 𝜌 = 𝜌1 ⊗ 𝜌2.

Partial Trace. The partial trace of 𝜌 over 𝐴, Tr𝐴 (𝜌), is the unique linear operator satisfying:
Tr𝐴 ( |𝜓𝐴⟩⟨𝜓𝐴 | ⊗ |𝜓𝐵⟩⟨𝜓𝐵 |) = tr ( |𝜓𝐴⟩⟨𝜓𝐴 |) |𝜓𝐵⟩⟨𝜓𝐵 |

where 𝐴 = dom |𝜓𝐴⟩. In the special case where 𝜌 is simply separable as 𝜌𝐴 ⊗ 𝜌𝐵 where dom 𝜌𝐴 = 𝐴

and dom 𝜌𝐵 = 𝐵, we have Tr𝐵 (𝜌) = 𝜌𝐴 and Tr𝐴 (𝜌) = 𝜌𝐵 .

Purity. A mixed state 𝜌 is pure if it is not an ensemble of more than one state: 𝜌 = |𝜓 ⟩⟨𝜓 | for some

pure state |𝜓 ⟩. The rank test states that 𝜌 is pure if and only if tr (𝜌2) = (tr 𝜌)2 = 1. We similarly

have that a partial density matrix 𝜌 = 𝑝 |𝜓 ⟩⟨𝜓 | if and only if tr (𝜌2) = (tr 𝜌)2 by linearity of trace.

3 EXAMPLE

We illustrate the value of purity and Twist with the protocol of quantum teleportation [Bennett

et al. 1993], a demonstration of the power of entanglement and a building block for techniques

such as gate teleportation [Gottesman and Chuang 1999]. The protocol transmits the information

stored in one qubit to a receiver an arbitrary distance away by transferring only two classical bits

of information. Though the original protocol uses measurement-conditioned gates to emphasize

classical information exchange, we examine a variant [Kumar et al. 2020; Miller et al. 2011] that

instead uses quantum-conditioned gates and defers all measurement to the end of the program.

11e.g. uses a CNOT gate rather than choosing whether to execute a NOT gate based on a classical measurement outcome.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 30. Publication date: January 2022.



Twist: Sound Reasoning for Purity and Entanglement inQuantum Programs 30:7

q1

q2

q3

|𝜓 ⟩ 𝐻

|00⟩ + |11⟩
√
2

𝑍 |𝜓 ⟩

Fig. 1. Teleportation protocol with deferred measurement expressed as a quantum circuit. The inputs are q1,
the qubit to be teleported, and a Bell pair of two qubits. The circuit applies conditional-NOT (CNOT) and
conditional-Z (CZ) gates to q3. It measures two qubits and outputs one with the teleported state of q1.

1 fun teleport (q1 : qubit) : qubit =

2 let (q2 : qubit, q3 : qubit) = bell_pair () in

3 let (q1 : qubit, q2 : qubit) = CNOT (q1, q2) in

4 let q1 : qubit = H (q1) in

5 let (q2 : qubit, q3 : qubit) = CNOT (q2, q3) in

6 let (q1 : qubit, q3 : qubit) = CZ (q1, q3) in

7 let _ : bool * bool = measure (q1, q2) in q3

Fig. 2. Implementation of the teleportation circuit of Figure 1 as a quantum program.

Figure 1 presents a quantum circuit for the deferred-measurement variant of teleportation that

accepts as input a qubit q1 to be teleported.12 We assume a pair of qubits (q2, q3) exist in a Bell

state (Section 2). The circuit entangles q1 and q2 by a CNOT gate, applies a Hadamard (H) gate to

q1, and applies CNOT and CZ gates in succession on q3. Finally, the circuit measures q1 and q2

and outputs q3, which now contains the original state of q1.

Figure 2 presents a program implementing this circuit, as a function accepting a qubit q1 and

returning the teleported output, where the helper bell_pair allocates a Bell pair.

3.1 Entanglement and Purity

The specification of the teleportation protocol is that the final state of q3 is the same as the initial

state of q1. Thus, a central property that ensures the correctness of this program is that q3 is pure ś

free of entanglement with q1 and q2 and hence unaffected by the measurements of these qubits.

Consider instead if one were to replace the CZ gate on line 6 of Figure 2 with a different gate

that causes q3 to remain entangled with q1 and q2, for example a CNOT gate. After replacing CZ

with CNOT, q3 would be affected by the measurements on line 7.

Because q3 is now entangled with q1 at the time of measurement, the program no longer satisfies

the specification that q3 assumes the original state of q1. Instead, if q1 initially has the state

( |0⟩ + |1⟩)/
√
2, then q3 will assume a different state:

{ |0⟩+|1⟩√
2

with probability 1
2

−|0⟩+|1⟩√
2

with probability 1
2

This probability distribution over pure states is a mixed state (Section 2) that stems from different

measurement outcomes of q1 and q2. By contrast, pure expressions must always evaluate to unique

final states not dependent on the measurements of other qubits.

12For the purpose for demonstrating our results, understanding the rationale behind this circuit is not necessary; we refer

the reader to Nielsen and Chuang [2010] for a detailed explanation.
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1 fun teleport (q1 : qubit<P>) : qubit<M> = (* mixed type *)

2 let q23 : (qubit & qubit)<P> = bell_pair () in

3 let (q2 : qubit<M>, q3 : qubit<M>) = q23 in

4 let q12 : (qubit & qubit)<M> = CNOT (q1, q2) in

5 let (q1 : qubit<M>, q2 : qubit<M>) = q12 in

6 let q1 : qubit<M> = H (q1) in

7 let (q2 : qubit<M>, q3 : qubit<M>) = CNOT (q2, q3) in

8 let (q1 : qubit<M>, q3 : qubit<M>) = CZ (q1, q3) in

9 let _ : bool * bool = measure (q1, q2) in q3

Fig. 3. Teleportation program in Twist, using purity types. The return type of the function is currently mixed.

1 fun teleport (q1 : qubit<P>) : qubit<P> = (* pure type *)

2 let q23 : (qubit & qubit)<P> = bell_pair () in

3 let (q2 : qubit<M>, q3 : qubit<M>) = q23 in

4 let (q1 : qubit<M>, q2 : qubit<M>) = CNOT (q1, q2) in

5 let q1 : qubit<M> = H (q1) in

6 let (q2 : qubit<M>, q3 : qubit<M>) = CNOT (q2, q3) in

7 let (q1 : qubit<M>, q3 : qubit<M>) = CZ (q1, q3) in

8 let q123 : ((qubit & qubit) & qubit)<M> = ((q1, q2), q3) in

9 (* assert ((q1, q2), q3) is pure; check statically *)

10 let q123 : ((qubit & qubit) & qubit)<P> = cast<P>(q123) in

11 (* assert q3 is separable from (q1, q2); check dynamically *)

12 let (q12 : (qubit & qubit)<P>, q3 : qubit<P>) = split<P>(q123) in

13 let _ : bool * bool = measure (q12) in q3

Fig. 4. Teleportation example with purity types and assertions so that its return type is refined to be pure.

3.2 Purity Types

Figure 3 presents the teleportation program from Figure 2, but written in Twist with type

annotations for purity. In a Twist program, every quantum expression is of a type that is either

pure or mixed. Pure expressions are those that are unaffected by the measurement of other qubits

whereas mixed expressions are those that may be affected.

We say that an expression owns a qubit if it evaluates to a value that contains a reference to

the qubit. If a qubit owned by an expression is entangled with another unowned qubit, then the

measurement outcome of the unowned qubit inevitably affects the state of the owned qubit. We

describe entanglement in the type system using a type of entangled pairs, denoted by the type

constructor &, such as on line 2 of Figure 3. An entangled pair stipulates that its two components

potentially share entanglement.

Operations such as bell_pair (line 2) and CNOT (line 4) return entangled pairs, indicating that

two qubits are potentially entangled. Projection from an entangled pair results in an expression of

mixed type. For example, when the program projects q2 and q3 from the entangled pair q23 on

line 3, each qubit has mixed type because they may be entangled with each other. Finally, q3 has

mixed type according to the rules of the type system, denoting that this implementation may not

satisfy its specification of returning a pure qubit.

3.3 Purity Assertions

Figure 4 presents an implementation of the teleport function that instead soundly returns a

pure output by leveraging the purity assertions of Twist. The program performs two steps to verify

that q3 is not entangled with any other qubits in the program.
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1 fun teleport (q1 : qubit<P>) : qubit<P> =

2 let q23 : (qubit & qubit)<P> = bell_pair () in

3 let (q2 : qubit<M>, q3 : qubit<M>) = q23 in

4 let (q1 : qubit<M>, q2 : qubit<M>) = CNOT (q1, q2) in

5 let q1 : qubit<M> = H (q1) in

6 let (q2 : qubit<M>, q3 : qubit<M>) = CNOT (q2, q3) in

7 let (q1 : qubit<M>, q3 : qubit<M>) = CZ (q1, q3) in

8 let _ : bool * bool = measure (q1, q2) in

9 cast<P>(q3) (* direct assertion of q3 as pure *)

Fig. 5. Teleportation program that asserts the purity of q3 with a single purity assertion on line 9. Checking
the assertion that q3 is pure after the measurements of q1 and q2 requires reasoning on mixed states, which
is inefficient in practice. Consequently, our static analysis rejects this program.

In the first step, the program forms an entangled pair containing all three qubits on line 8 and

then on line 10 uses cast<P>, a purifying-cast assertion that states that this triple is pure and has

no entanglement with the rest of the program.

In the second step, on line 12, the program uses split<P>, a purifying-split assertion that states

that the two components of the triple, one containing q1 and q2, and the other q3, are not entangled

with each other, confirming that they are both individually pure.

3.4 Purity Assertion Verification

Twist uses a static analysis to verify cast, whereas it verifies split at runtime.

Verifying cast. The static analysis determines that an expression is pure if it contains either zero

or both components of every entangled pair created by the execution of the program. In Figure 4,

Twist determines that q123 is not entangled with the rest of the program, because it contains both

components of the pure entangled pair q23 created by bell_pair on line 2, along with the pure

function argument q1, all of which never interact with any other qubits.

Verifying split. In contrast to using static analysis as with cast, Twist verifies split at runtime,

because statically checking separability necessitates direct reasoning about the quantum semantics

of gates, which to the best of our knowledge is at least as hard as simulation except for circuits

constructed from restricted classes of gates [Hayden et al. 2014].

Specifically, Twist determines whether the two components of a pure entangled pair are entangled

with each other via a runtime separability test. Our implementation of this test obtains the simulated

state vector of the program at line 12, and determines whether it is separable along the components

of the pair by means of the Schmidt decomposition (Section 2). Because q3 is in fact pure in this

program, the assertion always succeeds.

Efficiency. We have designed split and cast to be used in concert to make their verification

more efficient. Consider instead the program in Figure 5 that gives q3 pure type, but does not use

split and only uses cast on line 9. While this program type checks and has a valid semantic

meaning, the static analysis rejects this program by virtue of the fact that the operand of the cast

(q3) does not contain all potentially entangled qubits (q1 and q2) as was the case in Figure 4.

The reason we have designed the static analysis to reject this program is because the measure-

ments of q1 and q2 (line 8) imply that q3 could be in a mixed state, if q3were in fact entangled with

either q1 or q2. It is not possible to dynamically verify purity for a qubit within a mixed state by

separability tests on the runtime quantum state alone. To perform this check, Twist would instead

have to simulate the full density matrix of the program. However, density matrix simulation is
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1 fun teleport (q1 : qubit<P>) : qubit<P> =

2 let (q2 : qubit<M>, q3 : qubit<M>) = bell_pair () in

3 let (q1 : qubit<M>, q2 : qubit<M>) = CNOT (q1, q2) in

4 let q1 : qubit<M> = H (q1) in

5 let (q2 : qubit<M>, q3 : qubit<M>) = CNOT (q2, q3) in

6 let (q1 : qubit<M>, q3 : qubit<M>) = CZ (q1, q3) in

7 let q123 : ((qubit & qubit) & qubit)<M> = ((q1, q2), q3) in

8 let (q12 : (qubit & qubit)<P>, q3 : qubit<P>) = split<P>(cast<P>(q123)) in

9 q3 (* safely discard pure expression q12 *)

Fig. 6. Concise teleportation program in Twist that implicitly discards a pure value q12 on line 9.

inefficient compared to state vector simulation. In a quantum simulator, density matrices have

quadratic space overhead over state vectors, and standard simulators such as Abraham et al. [2019]

support only half as many qubits in mixed-state simulation.13

By only performing runtime verification of split, whose argument is of pure type, Twist may

exploit the available relative efficiency of testing separability of a runtime pure quantum state.

Put together, Twist balances both static analysis to identify pure types where statically practical ś

discharging the cast operator in Figure 4 ś as well as runtime verification to dynamically enforce

purity where it too can be done practically ś the split operator on a pure quantum state.

3.5 Discarding Pure Values

Twist’s purity types enable us to write the teleportation program even more concisely than Figure 4.

Line 13 of Figure 4 explicitly measures q12, a value the program no longer needs. Instead, in Figure 6

we remove this measurement operation and simply discard q12.

The reason that discarding unused qubits is a potential point of contention is the deferred

measurement principle (Section 2). The principle states that discarding a qubit or allowing it to

leave scope has the same effect as measuring it at its last point of use, meaning that discarding

a value is always akin to measuring it. Measurement may in general affect the states of values

elsewhere in the program, which would be an unintuitive consequence if it occurred when we

implicitly discarded a variable.

However, the measurement outcomes of a pure expression cannot affect the states of qubits it

does not own, and thus the outcome of the measurement of q12 cannot have any impact on the

remaining computation. In general, Twist supports implicitly measuring a pure expression when it

is discarded and goes out of scope.

Existing languages such as Paykin et al. [2017]; Selinger [2004] forbid programs from implicitly

discarding quantum data. The language Silq [Bichsel et al. 2020] can automatically uncompute

certain temporary qubits, restoring their value to zero and obviating the need to explicitly measure

them. However, in Figure 4, Silq would not be able to automatically uncompute q12, because

teleportation invokes the Hadamard gate, which has a phase component that Silq cannot support.

Thus, safely writing the teleportation program in any existing quantum programming language

requires the user to explicitly measure q12 after manually verifying that it is separable from q3. By

contrast, Twist leverages the guarantee made by its purity type system that the discarded value

cannot impact the remaining computation, resulting in a concise and safe program.

13In quantum mechanics, mixed states have more general definitions of entanglement and separability than pure states. We

show in Appendix A that the special case of simple separability is appropriate for reasoning about purity in Twist. This is

fortunate, as testing for more general separability is an open problem for non-trivially-small cases [Harrow and Montanaro

2013; Horodecki et al. 1996], and was proved by Gurvits [2003] to be NP-hard in the dimension of the density matrix.
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4 𝝁Q LANGUAGE

To formally define evaluation and purity in quantum programs, we present 𝜇𝑄 , a small quantum

language. 𝜇𝑄 is a functional language featuring classical control and quantum data, in the style of

the linear quantum 𝜆-calculus of Selinger and Valiron [2005].

In this section, we present 𝜇𝑄’s syntax and operational semantics. In Section 5, we develop

its semantic properties, including purity, in terms of executions in the operational semantics.

In Section 6, we present 𝜇𝑄 ’s denotational semantics, which provides a more concise definition of

purity useful to formulate Twist’s purity assertions. In Section 7, we develop the language Twist by

adding to 𝜇𝑄 the purity assertions that reason about purity within the language itself.

4.1 Syntax

The syntax of 𝜇𝑄 consists of types, expressions, and programs.

Type 𝜏 F bool | 𝜏1 × 𝜏2 | 𝜏1 → 𝜏2 | qubit
Expression 𝑒 F 𝑥 | 𝑓 | 𝑒1 (𝑒2) | (𝑒1, 𝑒2) | let (𝑥,𝑦) = 𝑒1 in 𝑒2 | if 𝑒 then 𝑒1 else 𝑒2 | T | F

| qinit () | 𝑈 (𝑒) | 𝑈2 (𝑒) | measure(𝑒) | ref[𝛼]
Program𝑚 F fun 𝑓 𝑥 = 𝑒;𝑚 | fun main () = 𝑒

𝜇𝑄 features the types 𝜏 of classical Booleans, pairs, functions, and qubits. Its expressions 𝑒 include

the classical constructs of variables 𝑥 , functions 𝑓 , applications, pairs, and let14 and if-expressions.

Boolean literals, which we denote with metavariable 𝑏, are T and F.
Other expressions interact with the quantum state. The operator qinit () creates a new qubit

initialized to |0⟩. The operator 𝑈 (𝑒) applies a single-qubit unitary to qubit 𝑒 , and 𝑈2 (𝑒) applies a
two-qubit unitary gate to a pair 𝑒 of two qubits.15 The operator measure(𝑒) performs a quantum

measurement of 𝑒 , returning the classical outcome. The last operator ref[𝛼] is a qubit reference
that only appears in intermediate evaluations, as 𝜇𝑄 programs do not expose concrete qubit names.

Finally, every program𝑚 is a sequence of function declarations followed by a main function.

4.2 Type System

Figure 7 presents the judgment Γ ⊢Δ 𝑒 : 𝜏 that assigns the expression 𝑒 the type 𝜏 given the context

Γ and the qubit context Δ. A context Γ maps variables to types, and a qubit context Δ is a set of

allocated qubits. We define the classical types to be Booleans, functions, and pairs of classical types.

Both contexts are linear, except for classical types, which may be freely duplicated or discarded.16

To ensure that qubits are not duplicated, we use the disjoint set union ⊔, defined only when its

arguments are disjoint. We populate the initial context with types of function declarations using

the judgment Γ ⊢𝑚 ok (defined in Appendix D), stating that a program𝑚 is well-formed.

The typing rules for variables, functions, applications, pairs, and let-expressions are standard

as in a linear 𝜆-calculus. We define the quantum types to be qubits and pairs of quantum types. The

rule for if imposes a condition that the type of the branches is a quantum type, which will simplify

14We also use let 𝑥 = 𝑒1 in 𝑒2 as syntactic sugar for let (𝑥, _) = (𝑒1, T) in 𝑒2 (where T is arbitrarily chosen).
15For simplicity, we do not represent larger gates, which can be decomposed into single- and two-qubit operators using

constructions like Kitaev [1997].
16To prevent qubits from being duplicated or discarded due to the quantum no-cloning [Wootters and Zurek 1982] and

no-deleting theorems [Pati and Braunstein 2000], the type system of 𝜇𝑄 does not allow the structural rules of contraction

or weakening for quantum data.
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T-Var

𝑥 : 𝜏 ⊢∅ 𝑥 : 𝜏

T-Fun

𝑓 : 𝜏 → 𝜏 ′ ⊢∅ 𝑓 : 𝜏 → 𝜏 ′

T-App

Γ1 ⊢Δ1
𝑒1 : 𝜏1 → 𝜏2 Γ2 ⊢Δ2

𝑒2 : 𝜏1

Γ1, Γ2 ⊢Δ1⊔Δ2
𝑒1 (𝑒2) : 𝜏2

T-Pair

Γ1 ⊢Δ1
𝑒1 : 𝜏1 Γ2 ⊢Δ2

𝑒2 : 𝜏2

Γ1, Γ2 ⊢Δ1⊔Δ2
(𝑒1, 𝑒2) : 𝜏1 × 𝜏2

T-Let

Γ1 ⊢Δ1
𝑒1 : 𝜏1 × 𝜏2 Γ2, 𝑥 : 𝜏1, 𝑦 : 𝜏2 ⊢Δ2

𝑒2 : 𝜏

Γ1, Γ2 ⊢Δ1⊔Δ2
let (𝑥,𝑦) = 𝑒1 in 𝑒2 : 𝜏

T-If

𝜏 is a quantum type

Γ1 ⊢Δ1
𝑒 : bool Γ2 ⊢Δ2

𝑒1 : 𝜏 Γ2 ⊢Δ2
𝑒2 : 𝜏

Γ1, Γ2 ⊢Δ1⊔Δ2
if 𝑒 then 𝑒1 else 𝑒2 : 𝜏

T-Bool

· ⊢∅ 𝑏 : bool

T-Qinit

· ⊢∅ qinit () : qubit

T-U1

Γ ⊢Δ 𝑒 : qubit

Γ ⊢Δ 𝑈 (𝑒) : qubit

T-U2

Γ ⊢Δ 𝑒 : qubit × qubit

Γ ⊢Δ 𝑈2 (𝑒) : qubit × qubit

T-Measure

Γ ⊢Δ 𝑒 : qubit

Γ ⊢Δ measure(𝑒) : bool

T-Ref

· ⊢{𝛼 } ref[𝛼] : qubit

Fig. 7. 𝜇𝑄 type system.

our presentation. Booleans have Boolean type and qinit () has qubit type. Unitary operators

operate on one qubit or a pair of qubits, and have the same type as their argument. Measurement

of a qubit results in a classical Boolean type.17 Qubit references have qubit type.

4.3 Operational Semantics

Figure 8 presents an operational semantics for 𝜇𝑄 as a probabilistic transition system over program

states ś pairs of quantum states |𝜓 ⟩ and classical expressions 𝑒 .18 The semantics depend on particular

measurement outcomes described by an outcome map 𝑂 . An outcome map is a set of pairs (𝛼,𝑏),
each meaning that qubit 𝛼 was measured, and classical outcome 𝑏 was observed for it.

Judgments. The value judgment 𝑣 val states that functions, Boolean literals, qubit references,

and pairs of values are values. The step judgment |𝜓 ⟩; 𝑒 𝑂↦−→𝑝 |𝜓 ′⟩; 𝑒′ states that the expression 𝑒

under state |𝜓 ⟩ steps to 𝑒′ and new state |𝜓 ′⟩ after observing the measurement outcomes in𝑂 with

probability 𝑝 . The evaluation judgment |𝜓 ⟩; 𝑒 𝑂↦−→∗
𝑝 |𝜓 ′⟩; 𝑣 states that expression 𝑒 under state |𝜓 ⟩

evaluates to a value 𝑣 and state |𝜓 ′⟩ having observed outcomes 𝑂 with probability 𝑝 .

Functions. The semantics makes use of an unchanging global function context 𝜙 that maps

function names 𝑓 to definitions 𝜆𝑥 .𝑒 . A program executes by collecting all function definitions into

𝜙 and then evaluating the body of the main function until it reaches a value.

Operators. Figure 8 presents a selection of the rules, with the remaining left-to-right call-by-value

rules presented in Appendix D. The first two rules step application and let-expressions in the

standard way, with no effect on |𝜓 ⟩. The qinit () operator adds a new qubit named 𝛼 in state |0⟩
to |𝜓 ⟩ and steps to a reference to 𝛼 . A single-qubit unitary operator on a qubit reference to 𝛼 steps

to its argument and a new state with 𝑈 applied on qubit 𝛼 . Similarly, a two-qubit unitary operator

applied on qubits 𝛼 and 𝛽 steps to its argument and a new state with 𝑈 applied on 𝛼 and 𝛽 . An

17We also allow measurement of tuples as syntactic sugar for sequentially measuring each component.
18Any program state can take exactly one or two transitions, with probabilities adding to one. For a formal model of

probability in our semantics, see the probabilistic reduction system introduced by Selinger and Valiron [2005].
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S-App

𝜙 (𝑓 ) = 𝜆𝑥 .𝑒 𝑒′ val

|𝜓 ⟩; 𝑓 (𝑒′) ∅↦−→1 |𝜓 ⟩; [𝑒′/𝑥]𝑒

S-Let

𝑒1 val 𝑒2 val

|𝜓 ⟩; let (𝑥,𝑦) = (𝑒1, 𝑒2) in 𝑒′ ∅↦−→1 |𝜓 ⟩; [𝑒1, 𝑒2/𝑥,𝑦]𝑒′

S-Qinit

𝛼 fresh in |𝜓 ⟩
|𝜓 ⟩; qinit () ∅↦−→1 |𝜓 ⟩ ⊗ |0⟩𝛼 ; ref[𝛼]

S-U1

|𝜓 ⟩;𝑈 (ref[𝛼]) ∅↦−→1 𝑈𝛼 |𝜓 ⟩; ref[𝛼]

S-U2

|𝜓 ⟩;𝑈2 (ref[𝛼], ref[𝛽]) ∅↦−→1 𝑈𝛼,𝛽 |𝜓 ⟩; (ref[𝛼], ref[𝛽])

S-IfT

|𝜓 ⟩; if T then 𝑒1 else 𝑒2
∅↦−→1 |𝜓 ⟩; 𝑒1

S-IfF

|𝜓 ⟩; if F then 𝑒1 else 𝑒2
∅↦−→1 |𝜓 ⟩; 𝑒2

S-MeasureT

𝑀𝛼 |𝜓 ⟩ = |1⟩𝛼 ⊗ |𝜓 ′⟩ w.p. 𝑝 𝑂 = {(𝛼, T)}
|𝜓 ⟩; measure(ref[𝛼]) 𝑂↦−→𝑝 |𝜓 ′⟩; T

S-MeasureF

𝑀𝛼 |𝜓 ⟩ = |0⟩𝛼 ⊗ |𝜓 ′⟩ w.p. 𝑝 𝑂 = {(𝛼, F)}
|𝜓 ⟩; measure(ref[𝛼]) 𝑂↦−→𝑝 |𝜓 ′⟩; F

E-Val

𝑣 val

|𝜓 ⟩; 𝑣 ∅↦−→∗
1 |𝜓 ⟩; 𝑣

E-Step

|𝜓 ⟩; 𝑒 𝑂1↦−→𝑝1 |𝜓 ′⟩; 𝑒′ |𝜓 ′⟩; 𝑒′ 𝑂2↦−→∗
𝑝2

|𝜓 ′′⟩; 𝑣 𝑂 ′
= 𝑂1 ∪𝑂2

|𝜓 ⟩; 𝑒 𝑂 ′↦−→∗
𝑝1𝑝2

|𝜓 ′′⟩; 𝑣

Fig. 8. Selected 𝜇𝑄 operational semantics rules. The full rules are given in Appendix D.

if-expression chooses a branch to step to depending on the condition. Measurement of a qubit has

two probabilistic outcomes, classical true or false, with a new state under each outcome. The step

rules for measurement transition to each outcome with its occurrence probability (Section 2).

Notation. We define the following new notations for judgments.

• |𝜓 ⟩; 𝑒 ↦→ · means that there exists a set 𝐼 where for each 𝑖 ∈ 𝐼 , there exist 𝑝𝑖 > 0,𝑂𝑖 , |𝜓𝑖⟩ and
𝑒𝑖 where |𝜓 ⟩; 𝑒 𝑂𝑖↦−→𝑝𝑖 |𝜓𝑖⟩; 𝑒𝑖 and

∑

𝑖 𝑝𝑖 = 1.

• |𝜓 ⟩; 𝑒 ↦→ |𝜓 ′⟩; 𝑒′ means that there exist 𝑂 and 𝑝 where |𝜓 ⟩; 𝑒 𝑂↦−→𝑝 |𝜓 ′⟩; 𝑒′.
• |𝜓 ⟩; 𝑒 ↦→∗ |𝜓 ′⟩; 𝑒′ means that there exist 𝑂 and 𝑝 where |𝜓 ⟩; 𝑒 𝑂↦−→∗

𝑝 |𝜓 ′⟩; 𝑒′.

4.4 Type Safety

We now state the type safety properties of 𝜇𝑄 . Progress states that a well-typed expression is a

value or can step under a quantum state containing all qubits that the expression references.

Theorem 4.1 (Progress). If · ⊢Δ 𝑒 : 𝜏 , then 𝑒 val or for all |𝜓 ⟩ where Δ ⊆ dom |𝜓 ⟩, |𝜓 ⟩; 𝑒 ↦→ ·.

The proof is by induction on the derivation of · ⊢Δ 𝑒 : 𝜏 . The preservation theorem states that a

step preserves the type of the expression under the new qubit context.

Theorem 4.2 (Preservation). If Γ ⊢Δ 𝑒 : 𝜏 and Δ ⊆ dom |𝜓 ⟩ and |𝜓 ⟩; 𝑒 ↦→ |𝜓 ′⟩; 𝑒′, then we have

Γ ⊢Δ′ 𝑒′ : 𝜏 where Δ′ ⊆ dom |𝜓 ′⟩.

The proof is by induction on the derivation of |𝜓 ⟩; 𝑒 ↦→ |𝜓 ′⟩; 𝑒′.
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5 SEMANTIC PROPERTIES

In this section, we define the semantic property of purity using the operational semantics of 𝜇𝑄 .

Purity states that an expression executes independently of measurement outcomes of unowned

qubits, or equivalently, the qubits owned by a pure expression are separable from those it does not

own. Formally, purity states that there is only one possible final program state after evaluating an

expression and measuring all qubits that it does not own.

5.1 Implicit Measurement

An expression 𝑒 evaluates under a quantum state |𝜓 ⟩ to a value 𝑣 and state |𝜓 ′⟩. The resulting state
|𝜓 ′⟩ may contain qubits to which 𝑣 does not refer. If these qubits are measured later in the program,

then their measurement outcomes may affect the state of the qubits in 𝑣 through entanglement.

To capture the effect of the eventual measurement of unowned qubits, we define a relation called

implicit measurement. Given a state |𝜓 ⟩ and a value 𝑣 , implicit measurement measures all qubits in

|𝜓 ⟩ to which 𝑣 does not refer. Define Refs(𝑣) to be the sequence, or set when order is irrelevant, of

qubit names referenced in 𝑣 .

Definition 5.1 (Implicit Measurement). A state |𝜓 ⟩ implicitly measuresmodulo a value 𝑣 to produce

a new state |𝜓𝑣⟩ with probability 𝑝 , written |𝜓 ⟩; 𝑣 ⇓𝑝 |𝜓𝑣⟩, when 𝑀𝐴 |𝜓 ⟩ = |𝜓𝐴⟩ ⊗ |𝜓𝑣⟩ with
probability 𝑝 where 𝐴 = dom |𝜓 ⟩ \ Refs(𝑣) and dom |𝜓𝑣⟩ = Refs(𝑣).

We use notation |𝜓 ⟩; 𝑣 ⇓ |𝜓 ′⟩ to denote that there exists some 𝑝 such that |𝜓 ⟩; 𝑣 ⇓𝑝 |𝜓 ′⟩. A value

has a unique implicit measurement in |𝜓 ⟩ if and only if its referenced qubits are separable in |𝜓 ⟩.

5.2 Qubit Equivalence

We consider two program states ( |𝜓1⟩ , 𝑣1) and ( |𝜓2⟩ , 𝑣2) to be equivalent if they are equal up to

consistent renaming of qubits. For example, we define

( |0⟩𝛼 ⊗ |1⟩𝛽 , (ref[𝛼], ref[𝛽])) ≡ (|1⟩𝛾 ⊗ |0⟩𝛿 , (ref[𝛿], ref[𝛾]))

because they can be substituted for each other in a program with no operational effect.

Definition 5.2 (Qubit Equivalence). ( |𝜓1⟩ , 𝑣1) ≡ (|𝜓2⟩ , 𝑣2) holds when |𝜓2⟩ [ℓ1/ℓ2] = |𝜓1⟩ and
𝑣2 [ℓ1/ℓ2] = 𝑣1 for two duplicate-free sequences of qubit names ℓ1, ℓ2 of equal length.

≡ is reflexive, symmetric, and transitive, making it an equivalence relation.We define the action of

rewriting using qubit equivalence as replacing a value 𝑣1 of quantum type with any qubit-equivalent

value 𝑣2 of the same type by also modifying the quantum state correspondingly.

5.3 Purity

The purity property states that a state and expression always evaluate and implicitly measure to a

unique final state and value up to qubit equivalence.

Definition 5.3 (Purity). An expression 𝑒 is pure under state |𝜓 ⟩, denoted |𝜓 ⟩; 𝑒 pure, when if

|𝜓 ⟩; 𝑒 ↦→∗ |𝜓1⟩; 𝑣1 and |𝜓1⟩; 𝑣1 ⇓ |𝜓 ′
1⟩, and also |𝜓 ⟩; 𝑒 ↦→∗ |𝜓2⟩; 𝑣2 and |𝜓2⟩; 𝑣2 ⇓ |𝜓 ′

2⟩, then we have

( |𝜓 ′
1⟩ , 𝑣1) ≡ (|𝜓 ′

2⟩ , 𝑣2).

Purity asserts that under state |𝜓 ⟩, expression 𝑒 evaluates to a unique value 𝑣 and final state |𝜓 ′⟩
where 𝑣 has a unique implicit measurement in |𝜓 ′⟩. This definition formalizes the intuition that the

eventual measurement outcome of unowned qubits cannot affect the state of those it owns.
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6 DENOTATIONAL SEMANTICS OF 𝝁Q

The operational definition of purity quantifies over all possible executions of a 𝜇𝑄 program. In this

section, we present the denotational semantics for 𝜇𝑄 , which enables a more concise definition

of purity based on the closed-form denotation of an expression. Denotational semantics reasons

directly about an expression’s effect on the distribution of the program state across all executions,

using mixed states represented as density matrices to describe distributions over pure states.

Eliminating Nondeterminism. A 𝜇𝑄 program executes nondeterministically in terms of both

its quantum and classical state. An expression may evaluate to multiple distinct values when

measurement outcomes influence classical control flow. Because this nondeterminism in the pro-

gram’s classical state complicates the development of a denotational semantics, we instead force all

nondeterminism to occur in the quantum state.

Any expression of function type always evaluates to a unique value, by a simple induction

argument over the operational semantics. For Booleans, we utilize the deferred measurement

principle (Section 2) to interpret Booleans as deferred qubit measurements that are not resolved

until the end of the program. For quantum types, we canonicalize values that differ only in the

order of appearance of qubits. To do so, we use rewriting under qubit equivalence (Section 5) to

dynamically rename qubits so that every value refers to the same qubits in the same order.

6.1 Semantics

Figure 9 presents the denotational semantics of 𝜇𝑄 . The denotation of an expression 𝑒 is a function

from a context 𝛾 mapping variables to values and an input partial density matrix 𝜌 to the final

partial density matrix 𝜌 ′ and value 𝑣 to which 𝑒 evaluates. The denotation of a program𝑚 adds

functions to the initial 𝛾 and is always a normalized density matrix.

Basic Operators. The values of variables reside in the context 𝛾 . Values do not evaluate further.

Pairs and let-bindings propagate the state through their evaluation. The denotation of function

application is the application of 𝑓 , the denotation of 𝑒1, to the denotation of 𝑒2. The denotation of

qinit () adds a new qubit 𝛼 in state |0⟩ by tensor product with its density matrix form, which is an

outer product |0⟩⟨0|. The denotation of unitary operators performs matrix conjugation (Section 2).

Measurement and Conditional Branches. The denotations of if and measure encode deferred

measurement. A measurement has no immediate effect and simply evaluates its argument, where

the notation ref★[𝛼] differentiates a measured from an unmeasured qubit. An if-expression first

determines whether its condition is a literal T or F and if so executes an appropriate branch.

Otherwise, the condition is a deferred measurement of a qubit 𝛼 . The denotation computes the

partial density matrices corresponding to each outcome using the matrix 𝑃𝛼 projecting qubit 𝛼 to

|1⟩ in 𝜌 . It executes the corresponding branches to obtain matrices 𝜌1 and 𝜌2. It next corrects their

dimensions usingmatch_sizes, defined as taking tensor product with copies of |0⟩⟨0| on the smaller

matrix. This operation allocates the same number of qubits created by qinit to both branches.

The values 𝑣1 and 𝑣2 returned by the two branches are of the same type but may refer to different

qubits. The denotation unifies 𝑣1 and 𝑣2 by renaming each qubit in 𝑣2 and 𝜌
′
2 into the corresponding

reference in 𝑣1. It adds the two partial density matrices to weigh each outcome by its probability.

6.2 Semantics Equivalence

In this section, we show that the operational and denotational semantics are equivalent in terms

of final program states under particular measurement outcomes. Let 𝜙 denote the initial context

containing only top-level function declarations. Given an outcome map 𝑂 and a value 𝑣 , we define
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Jfun 𝑓 𝑥 = 𝑒 ;𝑚K𝛾 = let 𝛾 ′ = 𝛾 [𝜆𝑣. J𝑒K𝛾 [𝑣/𝑥 ] /𝑓 ] in J𝑚K𝛾 ′

Jfun main ( ) = 𝑒K𝛾 = J𝑒K𝛾 ( | ·⟩⟨ · | )

J𝑥K𝛾 (𝜌 ) = (𝜌,𝛾 (𝑥 ) )
J𝑣K𝛾 (𝜌 ) = (𝜌, 𝑣) when 𝑣 val

J(𝑒1, 𝑒2 )K𝛾 (𝜌 ) = let 𝜌1, 𝑣1 = J𝑒1K𝛾 (𝜌 ) in let 𝜌2, 𝑣2 = J𝑒2K𝛾 (𝜌1 ) in (𝜌2, (𝑣1, 𝑣2 ) )
Jlet (𝑥, 𝑦) = 𝑒1 in 𝑒2K𝛾 (𝜌 ) = let 𝜌1, (𝑣1, 𝑣2 ) = J𝑒1K𝛾 (𝜌 ) in J𝑒2K𝛾 [𝑣1,𝑣2/𝑥,𝑦 ] (𝜌1 )

J𝑒1 (𝑒2 )K𝛾 (𝜌 ) = let 𝜌1, 𝑓 = J𝑒1K𝛾 (𝜌 ) in let 𝜌2, 𝑣 = J𝑒2K𝛾 (𝜌1 ) in 𝑓 (𝑣) (𝜌2 )
Jqinit ( )K𝛾 (𝜌 ) = (𝜌 ⊗ |0⟩⟨0 |𝛼 , ref[𝛼 ] ) where 𝛼 is fresh in 𝜌

J𝑈 (𝑒 )K𝛾 (𝜌 ) = let 𝜌 ′, ref[𝛼 ] = J𝑒K𝛾 (𝜌 ) in (𝑈𝛼𝜌
′𝑈 †

𝛼 , ref[𝛼 ] )

J𝑈2 (𝑒 )K𝛾 (𝜌 ) = let 𝜌 ′, (ref[𝛼 ], ref[𝛽 ] ) = J𝑒K𝛾 (𝜌 ) in (𝑈𝛼,𝛽𝜌
′𝑈 †

𝛼,𝛽
, (ref[𝛼 ], ref[𝛽 ] ) )

Jmeasure(𝑒 )K𝛾 (𝜌 ) = let 𝜌 ′, ref[𝛼 ] = J𝑒K𝛾 (𝜌 ) in (𝜌 ′, ref★[𝛼 ] )
Jif 𝑒 then 𝑒1 else 𝑒2K𝛾 (𝜌 ) = let 𝜌 ′, 𝑣 = J𝑒K𝛾 (𝜌 ) in case 𝑣 of T → J𝑒1K𝛾

(

𝜌 ′
)

| F → J𝑒2K𝛾
(

𝜌 ′
)

| ref★[𝛼 ] →
let 𝑃𝛼 = |1⟩⟨1 |𝛼 ⊗ 𝐼dom𝜌\{𝛼 } in

let 𝜌1, 𝑣1 = J𝑒1K𝛾 (𝑃𝛼𝜌𝑃𝛼 ) and 𝜌2, 𝑣2 = J𝑒2K𝛾 ( (𝐼dom𝜌 − 𝑃𝛼 )𝜌 (𝐼dom𝜌 − 𝑃𝛼 ) ) in
let 𝜌 ′1, 𝜌

′
2 = match_sizes(𝜌1, 𝜌2 ) in (𝜌 ′1 + 𝜌 ′2 [Refs(𝑣1 )/Refs(𝑣2 ) ], 𝑣1 )

Fig. 9. 𝜇𝑄 denotational semantics.

apply(𝑂, 𝑣) to be the value syntactically identical to 𝑣 except that every instance of ref★[𝛼] is
replaced with 𝑏 where (𝛼,𝑏) ∈ 𝑂 . In the opposite direction, we define defer(𝑂) to be the tensor

product of all outcomes in 𝑂 expressed as quantum states:

defer(𝑂) =
⊗

{if 𝑏 = T then |1⟩𝛼 else |0⟩𝛼 | (𝛼,𝑏) ∈ 𝑂}

The following theorem states that the denotation of an expression captures every execution up to

qubit equivalence. 𝜌 contains all final |𝜓𝑖⟩ and outcomes 𝑂𝑖 and some number of unused padding

qubits, and deferred and operational measurement outcomes align in the final value 𝑣 .

Theorem 6.1. Given |𝜓 ⟩ and 𝑒 , let the multiset 𝑆 = [(𝑝𝑖 , |𝜓𝑖⟩ , 𝑣𝑖 ,𝑂𝑖 ) | |𝜓 ⟩; 𝑒 𝑂𝑖↦−→∗
𝑝𝑖

|𝜓𝑖⟩; 𝑣𝑖 ]. Then,

J𝑒K𝜙 ( |𝜓 ⟩⟨𝜓 |) = (𝜌, 𝑣) where 𝜌 =
∑

(𝑝𝑖 , |𝜓𝑖 ⟩,𝑣𝑖 ,𝑂𝑖 ) ∈𝑆 𝑝𝑖 |𝜓 ′
𝑖 ⟩⟨𝜓 ′

𝑖 | and ( |𝜓 ′
𝑖 ⟩ , 𝑣) ≡ (|𝜓 ′′

𝑖 ⟩ , 𝑣 ′)
where |𝜓𝑖⟩ ⊗ defer(𝑂𝑖 ) ⊗ |0⟩∗ = |𝜓 ′′

𝑖 ⟩ and 𝑣𝑖 = apply(𝑂𝑖 , 𝑣
′).

The proof is by induction on the derivations of |𝜓 ⟩; 𝑒 𝑂𝑖↦−→∗
𝑝𝑖

|𝜓𝑖⟩; 𝑣𝑖 . Most operators in the deno-

tational semantics follow a left-to-right eager evaluation of the arguments and return the same

value as the step rule in the operational semantics. The interesting cases are for unitary operators,

if-expressions, and measurement, where we appeal to the correspondence between the state vector

and density matrix models of quantum mechanics as well as the principle of deferred measurement.

6.3 Purity

The following corollary provides an equivalent definition of purity using denotational semantics.

Corollary 6.2. |𝜓 ⟩; 𝑒 pure holds if and only if J𝑒K𝜙 ( |𝜓 ⟩⟨𝜓 |) = (𝜌 ⊗ 𝜌 ′, 𝑣) where dom 𝜌 = Refs(𝑣)
and 𝜌 is a pure state, i.e. 𝜌 = |𝜓 ′⟩⟨𝜓 ′ | for some |𝜓 ′⟩.

Thus, computing the denotation of 𝑒 under |𝜓 ⟩ gives us a direct way of testing whether |𝜓 ⟩; 𝑒 pure.
We leverage this fact in the following sections to define the purity assertion operators of Twist.
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7 TWIST LANGUAGE

In this section, we present the formal core of the Twist language. Twist extends 𝜇𝑄 with a purity

type system that specifies which expressions are pure. We present the two purity assertion operators

that specify and check purity in a quantum program.

We present both a denotational and operational semantics of Twist. Denotationally, we define pu-

rity assertions using mathematical separability conditions on mixed-state denotations. Operationally,

we implement them using a separability test primitive on runtime pure states.

7.1 Syntax

To develop Twist, we augment the syntax of 𝜇𝑄 as follows, where new syntax is in black:19

Purity 𝜋 F P | M
Quantum type <latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙF qubit | <latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙ1 & <latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙ2

Type 𝜏 F bool | 𝜏1 × 𝜏2 | 𝜏1 → 𝜏2 | <latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙ𝜋

Quantum value 𝑞 F ref[𝛼] | [𝑞1, 𝑞2]
Expression 𝑒 F 𝑥 | 𝑓 | 𝑒1 (𝑒2) | (𝑒1, 𝑒2) | let (𝑥,𝑦) = 𝑒1 in 𝑒2 | if 𝑒 then 𝑒1 else 𝑒2 | T | F

| qinit () | 𝑈 (𝑒) | 𝑈2 (𝑒) | measure(𝑒) | 𝑞𝜋

| entangle𝜋 (𝑒) | split𝜋 (𝑒) | cast𝜋 (𝑒)

We introduce purity annotations 𝜋 , either pure, P, or mixed,M. We also introduce a sort of quantum

types <latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙ,20 either a qubit or an entangled pair <latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙ1 & <latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c=">AAACaHicbVHLbhNBEBwvr7C8HDggxGUUC4kDWLtBSjhG4cLBhyBhJ5K9inrH7XiSeTHTg7BW/geu8Gf8Al/BrO1DnNDSSKWq7p6u7topGago/nSyO3fv3X+w8zB/9PjJ02fd3eejYKMXOBRWWX9WQ0AlDQ5JksIz5xF0rfC0vvrU6qff0QdpzVdaOKw0XBg5kwIoUaPJN+scnHd7Rb9YBb8Nyg3osU2cnO92BpOpFVGjIaEghHFZOKoa8CSFwmU+iQEdiCu4wHGCBjSGqlmNu+RvEjPlM+vTM8RX7PWKBnQIC12nTA00Dze1lvyfNo40+1g10rhIaMT6o1lUnCxvvfOp9ChILRIA4WWalYs5eBCUNpRvtTL2fdv/HcXUqWraQYNDkZwFJA3StEwzkCb+4ANZYzJucK0GMOGaeixtOk7Uy20bys2hRoJlnudp/+XNbd8Go/1+edD/8GW/d3S8ucQOe8322FtWskN2xD6zEzZkgl2yn+wX+935m3Wzl9mrdWrW2dS8YFuR7f0Dkya8QA==</latexit>ϙ2 of two quantum types. They describe quantum

values 𝑞, either a reference to a qubit or an entangled pair [𝑞1, 𝑞2] of two quantum values.

The new forms of expressions manipulate purity and have no effect on the quantum state. A

purity-annotated quantum value 𝑞𝜋 is an expression that only arises in intermediate evaluations.

The entangle𝜋 (𝑒) operator constructs an entangled pair from its argument, the split𝜋 (𝑒) operator
destructs an entangled pair into two components, and cast𝜋 (𝑒) modifies the purity of an expression.

7.2 Type System

Figure 10 presents the type system of Twist, extending the type system of 𝜇𝑄 to the new operators.

The new judgment ⊢Δ 𝑞 :
<latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙ assigns the quantum value 𝑞 the quantum type <latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙ under the context Δ.

A reference to qubit 𝛼 has qubit type under a context only containing 𝛼 , and an entangled pair has

entangled pair type if its components have quantum types.

We next modify the typing judgment Γ ⊢Δ 𝑒 : 𝜏 , showing only the rules that change, with

the remainder in Appendix D. The rule for if requires its branches to have the same quantum

type and now returns a mixed version of that type. The qinit () operator returns a pure qubit.
Unitary operators operate on a qubit or entangled pair of any purity and have the same purity as

their argument. The measure(𝑒) operator accepts a qubit of any purity and returns a Boolean. A

purity-annotated quantum value 𝑞𝜋 has type <latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙ𝜋 if 𝑞 has quantum type <latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c=">AAACaHicbVHLbhNBEBwvr7C8HDggxGUUC4kDWLtBSjhG4cLBhyBhJ5K9inrH7XiSeTHTg7BW/geu8Gf8Al/BrO1DnNDSSKWq7p6u7topGago/nSyO3fv3X+w8zB/9PjJ02fd3eejYKMXOBRWWX9WQ0AlDQ5JksIz5xF0rfC0vvrU6qff0QdpzVdaOKw0XBg5kwIoUaPJN+scnHd7Rb9YBb8Nyg3osU2cnO92BpOpFVGjIaEghHFZOKoa8CSFwmU+iQEdiCu4wHGCBjSGqlmNu+RvEjPlM+vTM8RX7PWKBnQIC12nTA00Dze1lvyfNo40+1g10rhIaMT6o1lUnCxvvfOp9ChILRIA4WWalYs5eBCUNpRvtTL2fdv/HcXUqWraQYNDkZwFJA3StEwzkCb+4ANZYzJucK0GMOGaeixtOk7Uy20bys2hRoJlnudp/+XNbd8Go/1+edD/8GW/d3S8ucQOe8322FtWskN2xD6zEzZkgl2yn+wX+935m3Wzl9mrdWrW2dS8YFuR7f0Dkya8QA==</latexit>ϙ.

Entangled Pairs and Purity Assertions. The purpose of the entangled pair type is to denote values

that may have been entangled by a two-qubit unitary operator. The entangle𝜋 operator creates an

entangled pair of purity 𝜋 from an ordinary pair of quantum values of that same purity.

19We describe in Appendix C additional syntactic features of Twist, such as implicit measurement of discarded pure values.
20Lowercase Greek letter qoppa.
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Q-Ref

⊢{𝛼 } ref[𝛼] : qubit

Q-Pair

⊢Δ1
𝑞1 :

<latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙ1 ⊢Δ2
𝑞2 :

<latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙ2
⊢Δ1⊔Δ2

[𝑞1, 𝑞2] : <latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙ1 & <latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c=">AAACaHicbVHLbhNBEBwvr7C8HDggxGUUC4kDWLtBSjhG4cLBhyBhJ5K9inrH7XiSeTHTg7BW/geu8Gf8Al/BrO1DnNDSSKWq7p6u7topGago/nSyO3fv3X+w8zB/9PjJ02fd3eejYKMXOBRWWX9WQ0AlDQ5JksIz5xF0rfC0vvrU6qff0QdpzVdaOKw0XBg5kwIoUaPJN+scnHd7Rb9YBb8Nyg3osU2cnO92BpOpFVGjIaEghHFZOKoa8CSFwmU+iQEdiCu4wHGCBjSGqlmNu+RvEjPlM+vTM8RX7PWKBnQIC12nTA00Dze1lvyfNo40+1g10rhIaMT6o1lUnCxvvfOp9ChILRIA4WWalYs5eBCUNpRvtTL2fdv/HcXUqWraQYNDkZwFJA3StEwzkCb+4ANZYzJucK0GMOGaeixtOk7Uy20bys2hRoJlnudp/+XNbd8Go/1+edD/8GW/d3S8ucQOe8322FtWskN2xD6zEzZkgl2yn+wX+935m3Wzl9mrdWrW2dS8YFuR7f0Dkya8QA==</latexit>ϙ2

T-If

Γ1 ⊢Δ1
𝑒 : bool Γ2 ⊢Δ2

𝑒1 :
<latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c=">AAACaHicbVHLbhNBEBwvr7C8HDggxGUUC4kDWLtBSjhG4cLBhyBhJ5K9inrH7XiSeTHTg7BW/geu8Gf8Al/BrO1DnNDSSKWq7p6u7topGago/nSyO3fv3X+w8zB/9PjJ02fd3eejYKMXOBRWWX9WQ0AlDQ5JksIz5xF0rfC0vvrU6qff0QdpzVdaOKw0XBg5kwIoUaPJN+scnHd7Rb9YBb8Nyg3osU2cnO92BpOpFVGjIaEghHFZOKoa8CSFwmU+iQEdiCu4wHGCBjSGqlmNu+RvEjPlM+vTM8RX7PWKBnQIC12nTA00Dze1lvyfNo40+1g10rhIaMT6o1lUnCxvvfOp9ChILRIA4WWalYs5eBCUNpRvtTL2fdv/HcXUqWraQYNDkZwFJA3StEwzkCb+4ANZYzJucK0GMOGaeixtOk7Uy20bys2hRoJlnudp/+XNbd8Go/1+edD/8GW/d3S8ucQOe8322FtWskN2xD6zEzZkgl2yn+wX+935m3Wzl9mrdWrW2dS8YFuR7f0Dkya8QA==</latexit>ϙ𝜋 Γ2 ⊢Δ2

𝑒2 :
<latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙ𝜋

Γ1, Γ2 ⊢Δ1⊔Δ2
if 𝑒 then 𝑒1 else 𝑒2 :

<latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙM

T-Qinit

· ⊢∅ qinit () : qubitP

T-U1

Γ ⊢Δ 𝑒 : qubit𝜋

Γ ⊢Δ 𝑈 (𝑒) : qubit𝜋

T-U2

Γ ⊢Δ 𝑒 : (qubit& qubit)𝜋

Γ ⊢Δ 𝑈2 (𝑒) : (qubit& qubit)𝜋

T-Measure

Γ ⊢Δ 𝑒 : qubit𝜋

Γ ⊢Δ measure(𝑒) : bool

T-Qval

⊢Δ 𝑞 :
<latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c=">AAACaHicbVHLbhNBEBwvr7C8HDggxGUUC4kDWLtBSjhG4cLBhyBhJ5K9inrH7XiSeTHTg7BW/geu8Gf8Al/BrO1DnNDSSKWq7p6u7topGago/nSyO3fv3X+w8zB/9PjJ02fd3eejYKMXOBRWWX9WQ0AlDQ5JksIz5xF0rfC0vvrU6qff0QdpzVdaOKw0XBg5kwIoUaPJN+scnHd7Rb9YBb8Nyg3osU2cnO92BpOpFVGjIaEghHFZOKoa8CSFwmU+iQEdiCu4wHGCBjSGqlmNu+RvEjPlM+vTM8RX7PWKBnQIC12nTA00Dze1lvyfNo40+1g10rhIaMT6o1lUnCxvvfOp9ChILRIA4WWalYs5eBCUNpRvtTL2fdv/HcXUqWraQYNDkZwFJA3StEwzkCb+4ANZYzJucK0GMOGaeixtOk7Uy20bys2hRoJlnudp/+XNbd8Go/1+edD/8GW/d3S8ucQOe8322FtWskN2xD6zEzZkgl2yn+wX+935m3Wzl9mrdWrW2dS8YFuR7f0Dkya8QA==</latexit>ϙ

· ⊢Δ 𝑞𝜋 :
<latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙ𝜋

T-Entangle

Γ ⊢Δ 𝑒 :
<latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙ1𝜋 × <latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙ2𝜋

Γ ⊢Δ entangle𝜋 (𝑒) : ( <latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙ1 & <latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙ2)𝜋

T-Split

Γ ⊢Δ 𝑒 : ( <latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙ1 & <latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙ2)𝜋

Γ ⊢Δ split𝜋 (𝑒) : <latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙ1𝜋 × <latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙ2𝜋

T-Cast

Γ ⊢Δ 𝑒 :
<latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙ𝜋 ′

Γ ⊢Δ cast𝜋 (𝑒) : <latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙ𝜋

Fig. 10. Twist purity type system. Only rules changed from Figure 7 shown; full rules in Appendix D.

When a program extracts the two components of an entangled pair of any purity, conservatively

the type system assumes they became entangled and now constitute mixed states, and assigns them

mixed type. The operator splitM (𝑒) destructs a mixed entangled pair into two mixed components,

and castM (𝑒) sets the purity of any expression to mixed.

Two purity assertion operators obtain pure types for quantum expressions. The purifying-split

operator splitP destructs a pure entangled pair into two pure components, and the purifying-cast

operator castP sets the purity of any expression to pure. To ensure that expressions of pure type

are actually pure, the semantics of the purity assertions impose conditions on their usage.

7.3 Denotational Semantics

Figure 11 presents the denotational semantics of Twist, extending the semantics of 𝜇𝑄 to the new

operators. We define L 𝑣 M to strip purity annotations and replace entangled pairs with ordinary

pairs in 𝑣 , so that the denotation of a value 𝑣 is L 𝑣 M. Operators entangle𝜋 , castM, and splitM only

manipulate purity annotations, and so their denotation is simply the denotation of their argument.

splitP and castP evaluate their arguments and then assert a condition about the resulting

partial density matrix. If the condition holds, the operator leaves the state unchanged. Otherwise,

its denotation is the special element ⊥ corresponding to the program aborting at runtime.

Separability Conditions. Given a partial density matrix 𝜌 and a partition of its domain, a separa-

bility condition states that 𝜌 is simply separable into sub-states whose domains are the qubit sets

of the partition. The splitP operator asserts that 𝜌 is simply separable into, i.e. is the product of

three sub-states, where two are pure and correspond to 𝑞1 and 𝑞2. The definition of castP is similar,

asserting that the state has a pure sub-state corresponding to 𝑞.

Path Sensitivity. A purity assertion under one branch of an if-expression checks that an expres-

sion is pure across states satisfying that branch of the if-condition. The typing rule for if ensures

that a pure value inside a branch will be considered mixed at the end of the if-expression. For

example, suppose 𝑥 and 𝑦 are two qubits in a Bell pair. Each castP within

if measure(𝑥) then castP (𝑦) else castP (𝑦) : qubitM
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L 𝑣 M = 𝑣 when 𝑣 is 𝑓 , 𝑏, or ref[𝛼 ]
L𝑞𝜋 M = L𝑞 M

L [𝑞1, 𝑞2 ] M = (L𝑞1 M, L𝑞2 M)

J𝑣K𝛾 (𝜌 ) = (𝜌, L 𝑣 M) when 𝑣 val

Jentangle𝜋 (𝑒 )K = JcastM (𝑒 )K = JsplitM (𝑒 )K = J𝑒K

JsplitP (𝑒 )K𝛾 (𝜌 ) = J𝑒K𝛾 (𝜌 ) if J𝑒K𝛾 (𝜌 ) = (𝜌1 ⊗ 𝜌2 ⊗ 𝜌0, (𝑞1, 𝑞2 ) ) else ⊥
where dom 𝜌1 = Refs(𝑞1 ) and dom 𝜌2 = Refs(𝑞2 )
and 𝜌1 and 𝜌2 are pure

JcastP (𝑒 )K𝛾 (𝜌 ) = J𝑒K𝛾 (𝜌 ) if J𝑒K𝛾 (𝜌 ) = (𝜌1 ⊗ 𝜌0, 𝑞) else ⊥
where dom 𝜌1 = Refs(𝑞) and 𝜌1 is pure

Fig. 11. Selected Twist denotational semantics. Only rules changed from Figure 9 shown.

S-IfT

|𝜓 ⟩; if T then 𝑒1 else 𝑒2
∅↦−→1 |𝜓 ⟩; castM (𝑒1)

S-IfF

|𝜓 ⟩; if F then 𝑒1 else 𝑒2
∅↦−→1 |𝜓 ⟩; castM (𝑒2)

S-Entangle

|𝜓 ⟩; entangle𝜋 (𝑞1𝜋 , 𝑞2𝜋 ) ∅↦−→1 |𝜓 ⟩; [𝑞1, 𝑞2]𝜋

S-SplitMixed

|𝜓 ⟩; splitM ( [𝑞1, 𝑞2]M) ∅↦−→1 |𝜓 ⟩; (𝑞1M, 𝑞2M)

S-SplitPure

|𝜓 ⟩ = |𝜓1⟩ ⊗ |𝜓2⟩ ⊗ |𝜓0⟩
dom |𝜓1⟩ = Refs(𝑞1) dom |𝜓2⟩ = Refs(𝑞2)
|𝜓 ⟩; splitP ( [𝑞1, 𝑞2]P) ∅↦−→1 |𝜓 ⟩; (𝑞1P, 𝑞2P)

S-Cast

(𝑢𝑛𝑐ℎ𝑒𝑐𝑘𝑒𝑑)
|𝜓 ⟩; cast𝜋 (𝑞𝜋

′ ) ∅↦−→1 |𝜓 ⟩;𝑞𝜋

Fig. 12. Selected Twist operational semantics. The full rules are given in Appendix D. Rule (S-Cast) is unsound
because purity cannot be verified using |𝜓 ⟩ on one execution alone. Combining this semantics with the static
analysis in Section 8 enables building a sound interpreter.

is valid because if 𝑥 was measured to be |0⟩, 𝑦 must also be in the pure state |0⟩, and measuring |1⟩
for 𝑥 would likewise yield |1⟩ for 𝑦. Nevertheless, the expression overall is mixed ś the type of if

is always mixed because the type system cannot assume any particular outcome for 𝑥 .

Verifying Separability Conditions. Soundly verifying Twist’s purity assertions requires verifying

their separability conditions. If desired, a mixed-state quantum simulator can be used for this

purpose. The simulator determines whether a density matrix is simply separable by taking its

partial trace and executing the rank test (Section 2). Though this approach supports simulating all

well-typed Twist programs, it is tied to a computationally inefficient mixed-state simulator.

7.4 Operational Semantics

The operational semantics of Twist manipulates a pure quantum state over an individual pro-

gram execution. The semantics verifies separability conditions concretely using a separability test

primitive that determines whether the runtime state is separable or entangled.

Figure 12 presents the updated step judgment, and in Appendix D, we modify the value judgment

to state that 𝑞𝜋 val. For if-expressions, because a different evaluation of the condition could have

resulted in taking the other branch, the result may depend on the measurement outcome of some

unspecified qubit. Thus, the rule for if casts its output to mixed. The entangle𝜋 operator creates

an entangled pair, and splitM destructs an entangled pair into an ordinary pair containing its

components annotated as mixed. We next define semantics for splitP and castP.
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Separability Tests. Given the pure state |𝜓 ⟩ and a partition of its domain, a separability test

determines whether |𝜓 ⟩ is separable into pure sub-states whose domains are the sets in the partition.

Verifying split. The split operator soundly verifies purity using a separability test on the

runtime quantum state |𝜓 ⟩. Sound verification is possible because the typing rule for splitP (𝑒)
guarantees that 𝑒 is pure. The expression splitP (𝑒) evaluates under state |𝜓 ⟩ by first evaluating 𝑒

to a unique value [𝑞1, 𝑞2]P and state |𝜓 ′⟩. Purity guarantees that no qubit in [𝑞1, 𝑞2] is entangled
with the rest of |𝜓 ′⟩. Thus, |𝜓 ′⟩ = |𝜓12⟩ ⊗ |𝜓0⟩ where dom |𝜓12⟩ = Refs( [𝑞1, 𝑞2]), and furthermore

|𝜓12⟩ is identical across all executions. To verify the purity of 𝑞1 and 𝑞2, the premises of the splitP
step rule test whether |𝜓12⟩ = |𝜓1⟩ ⊗ |𝜓2⟩ where dom |𝜓1⟩ = Refs(𝑞1) and dom |𝜓2⟩ = Refs(𝑞2).

Verifying cast. By contrast, the state of the current execution alone cannot indicate whether a

castP is sound. For example, suppose that 𝑥 and 𝑦 are in a Bell pair, and consider the expression:

(measure(𝑥), castP (𝑦)) : bool × qubitP

This expression returns a qubit 𝑦 that is in a mixed state because 𝑦 was entangled with 𝑥 before 𝑥

was measured, and hence the castP assertion is invalid. However, on any particular execution of

the program, 𝑦 appears to take on a pure state of either |0⟩ or |1⟩. Upon reaching the castP, it is

not possible to determine that 𝑦 is mixed, because the probabilistic branch has already occurred.

Thus, the operational semantics for castP cannot precisely verify its separability condition and

is necessarily unsound or incomplete. Figure 12 presents an operational semantics in which castP
is unsound and does not verify purity. Instead, we present in Section 8 a sound static analysis that

guarantees that all uses of castP occur on pure expressions. Combining this analysis with the

operational semantics allows Twist to verify a large class of programs featuring purity assertions

using only the runtime pure state of the program.

Executing Separability Tests. The operational semantics uses a separability test primitive that

operates on the runtime pure quantum state. Though this work does not focus on the hardware

implementation of this primitive, we overview in Appendix B a proposed implementation based

on work by Harrow and Montanaro [2013]. In a pure-state simulator, Twist verifies splitP using

the Schmidt decomposition (Section 2). Twist computes the Schmidt coefficients of a state vector

by interpreting it as a matrix and taking its singular value decomposition using well-studied

algorithms [Golub and Reinsch 1970]. Then, Twist checks that there is only one nonzero coefficient.

7.5 Type Safety

We now state the type safety properties for Twist. We introduce a judgment to state that an attempt

to step a splitP aborts the program if its separability condition fails, denoted |𝜓 ⟩; 𝑒 ̸↦→split and

fully defined in Appendix D. The progress theorem states that well-typed closed expressions are

values, can step, or will fail at runtime due to failing a splitP separability condition:

Theorem 7.1 (Progress). If · ⊢Δ 𝑒 : 𝜏 , then either 𝑒 val or for all |𝜓 ⟩ where Δ ⊆ dom |𝜓 ⟩, we have
either |𝜓 ⟩; 𝑒 ↦→ · or |𝜓 ⟩; 𝑒 ̸↦→split.

The proof is given in Appendix F.1.1 and is analogous to Theorem 4.1, extended to the operators

in Twist. The preservation theorem is identical to Theorem 4.2 and proved analogously.

7.6 Semantics Equivalence

The denotational semantics constrain valid operational executions in the presence of the castP
operator. The following theoremmodifies Theorem 6.1 by stating that if the denotation of a program

is a valid density matrix, then it agrees with the operational semantics:
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Theorem 7.2. Let the multiset 𝑆 = [(𝑝𝑖 , |𝜓𝑖⟩ , 𝑣𝑖 ,𝑂𝑖 ) | |𝜓 ⟩; 𝑒 𝑂𝑖↦−→∗
𝑝𝑖

|𝜓𝑖⟩; 𝑣𝑖 ]. Then, if

J𝑒K𝜙 ( |𝜓 ⟩⟨𝜓 |) = (𝜌, 𝑣) then 𝜌 =
∑

(𝑝𝑖 , |𝜓𝑖 ⟩,𝑣𝑖 ,𝑂𝑖 ) ∈𝑆 𝑝𝑖 |𝜓 ′
𝑖 ⟩⟨𝜓 ′

𝑖 | and ( |𝜓 ′
𝑖 ⟩ , 𝑣) ≡ (|𝜓 ′′

𝑖 ⟩ , 𝑣 ′)
where |𝜓𝑖⟩ ⊗ defer(𝑂𝑖 ) ⊗ |0⟩∗ = |𝜓 ′′

𝑖 ⟩ and 𝑣𝑖 = apply(𝑂𝑖 , 𝑣
′).

The proof of this theorem adds cases for entangle𝜋 , castM, and splitM, which evaluate to

values with the same denotation as their argument, as well as splitP, whose operational and

denotational separability conditions align, and castP when its separability condition holds.

Similarly, we weaken Corollary 6.2 to state that the denotation having a pure sub-state is a

sufficient condition for purity. Definition 5.3 for purity holds vacuously when the program aborts

at runtime and there is no execution to a final value. While the denotation of an illegal assertion is

always ⊥, corresponding to the program aborting at runtime, the operational semantics does not

verify the separability condition of castP and may not abort.

7.7 Purity Soundness

We now prove that under the operational semantics, the purity type system excluding the castP
operator is sound. In this section, we assume expressions contain no instances of castP. We first

establish a relationship stating that quantum states respect pure annotations in expressions:

Definition 7.3 (Compatibility). An expression 𝑒 is compatible with quantum state |𝜓 ⟩, denoted
|𝜓 ⟩ ⊨ 𝑒 , if for every 𝑞P appearing within 𝑒 , we have |𝜓 ⟩;𝑞P pure.

For example, the expression ref[𝛼]P of pure type is only pure if qubit 𝛼 is separable from the

rest of the system in |𝜓 ⟩. We maintain the compatibility property through a preservation theorem

for Twist that augments Theorem 4.2:

Theorem 7.4 (Preservation). If Γ ⊢Δ 𝑒 : 𝜏 and Δ ⊆ dom |𝜓 ⟩ and |𝜓 ⟩ ⊨ 𝑒 and |𝜓 ⟩; 𝑒 ↦→ |𝜓 ′⟩; 𝑒′,
then Γ ⊢Δ′ 𝑒′ : 𝜏 where Δ′ ⊆ dom |𝜓 ′⟩ and |𝜓 ′⟩ ⊨ 𝑒′.

The proof is by induction on the derivation of |𝜓 ⟩; 𝑒 ↦→ |𝜓 ′⟩; 𝑒′ and given in Appendix F.1.2. The

main soundness theorem states that an expression with pure type is pure. Assuming the expression

satisfies runtime verification for splitP, it evaluates to a unique final value and state.

Theorem 7.5 (Purity Soundness). If · ⊢Δ 𝑒 : <latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙP, Δ ⊆ dom |𝜓 ⟩, and |𝜓 ⟩ ⊨ 𝑒 , then |𝜓 ⟩; 𝑒 pure.

The proof is by logical relations. For the relation, we define purity at a type 𝜏 , lifting purity to

function types by stating that they take pure inputs to pure outputs and to pairs by stating that

their components are pure. We give the full proof in Appendix F.1.3, strengthening the theorem

to open terms using a substitution of free variables for pure expressions, and then proceeding by

induction on the derivation of Γ ⊢Δ 𝑒 : 𝜏 using the strengthened inductive hypothesis.

8 STATIC ANALYSIS FOR PURITY

In this section, we present a static analysis guaranteeing that all uses of castP operators are sound,

obviating the need to verify them using mixed-state simulation. This analysis verifies that the qubits

owned by an expression are separable from all others in the system, including those that were

measured. The analysis is sound and conservative, relying on the fact that qubit 𝛼 may only become

entangled with qubit 𝛽 by entering the same entangled pair as 𝛽 or a qubit 𝛾 that is entangled with

𝛽 . Thus, the analysis tracks possibly-entangled qubits by a variant of data-dependence analysis.
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A-If

Γ1 ⊢𝐴 𝑒 : bool Γ2 ⊢𝐴 𝑒1 :
<latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙ𝑓 Γ2 ⊢𝐴 𝑒2 :

<latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙ𝑔

Γ1, Γ2 ⊢𝐴 if 𝑒 then 𝑒1 else 𝑒2 :
<latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙM

A-Entangle

Γ ⊢𝐴 𝑒 :
<latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙ1 𝑓 × <latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙ2𝑔 ℎ = Combine(𝑓 , 𝑔)

Γ ⊢𝐴 entangle𝜋 (𝑒) : ( <latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙ1 & <latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙ2)ℎ

A-SplitMixed

Γ ⊢𝐴 𝑒 : ( <latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙ1 & <latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙ2) 𝑓 𝑗 fresh 𝑔 = Split(𝑓 , 𝑗)
Γ ⊢𝐴 splitM (𝑒) : <latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙ1𝑔 × <latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c=">AAACaHicbVHLbhNBEBwvr7C8HDggxGUUC4kDWLtBSjhG4cLBhyBhJ5K9inrH7XiSeTHTg7BW/geu8Gf8Al/BrO1DnNDSSKWq7p6u7topGago/nSyO3fv3X+w8zB/9PjJ02fd3eejYKMXOBRWWX9WQ0AlDQ5JksIz5xF0rfC0vvrU6qff0QdpzVdaOKw0XBg5kwIoUaPJN+scnHd7Rb9YBb8Nyg3osU2cnO92BpOpFVGjIaEghHFZOKoa8CSFwmU+iQEdiCu4wHGCBjSGqlmNu+RvEjPlM+vTM8RX7PWKBnQIC12nTA00Dze1lvyfNo40+1g10rhIaMT6o1lUnCxvvfOp9ChILRIA4WWalYs5eBCUNpRvtTL2fdv/HcXUqWraQYNDkZwFJA3StEwzkCb+4ANZYzJucK0GMOGaeixtOk7Uy20bys2hRoJlnudp/+XNbd8Go/1+edD/8GW/d3S8ucQOe8322FtWskN2xD6zEzZkgl2yn+wX+935m3Wzl9mrdWrW2dS8YFuR7f0Dkya8QA==</latexit>ϙ2𝑔

A-CastMixed

Γ ⊢𝐴 𝑒 :
<latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙ𝑓

Γ ⊢𝐴 castM (𝑒) : <latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙ𝑓

A-CastPure

Γ ⊢𝐴 𝑒 :
<latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙP

Γ ⊢𝐴 castP (𝑒) : <latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙP

Fig. 13. Selected rules of analysis type system. The full rules are given in Appendix E.

8.1 Tracking Split Entangled Pairs

If a pure entangled pair is split into two components 𝑒1 and 𝑒2, any expression containing only 𝑒1
or 𝑒2 is potentially mixed. For an expression to be pure it must contain, for every splitM in the

program, either zero or both of its components. Based on this observation, the analysis tracks for

each expression the fraction of each splitM in the program it contains.

Our approach is similar to fractional permissions [Boyland 2003] in that we associate each type

with a fractional quantity that is divided upon destructing a type into constituents. Specifically, we

associate each expression with one fraction per entangled pair created by the program, representing

the components of the pair. We modify the type system from Section 7 to generalize purities P and

M to a data structure that we call a history.

Definition 8.1. A history is a linear combination
∑

𝑖 𝑐𝑖𝑥𝑖 where each 𝑐𝑖 ∈ Q, 0 ≤ 𝑐𝑖 < 1 and each

𝑥𝑖 is a symbol distinguishable from 𝑥 𝑗 when 𝑖 ≠ 𝑗 .

The analysis assigns each instance of splitM in the program a unique index 𝑖 and associates it

with the symbol 𝑥𝑖 . An expression’s history specifies the fraction of each splitM it contains.

Split and Combine. We define two operations to manipulate histories. Letting histories 𝑓 =
∑𝑁

𝑖=0 𝑎𝑖𝑥𝑖 and 𝑔 =
∑𝑁

𝑖=0 𝑏𝑖𝑥𝑖 , and a fresh index 𝑗 > 𝑁 , define:

Split(𝑓 , 𝑗) = 1
2

(

𝑓 + 𝑥 𝑗
)

and Combine(𝑓 , 𝑔) = ∑𝑁
𝑖=0 frac (𝑎𝑖 + 𝑏𝑖 ) 𝑥𝑖

The Split(𝑓 , 𝑗) operator adds a new term 𝑥 𝑗 to 𝑓 and halves every coefficient, representing the

components that each hold half of the parent. The Combine(𝑓 , 𝑔) operator adds two histories

term-wise, taking the fractional part of each coefficient so that fractions adding to one cancel.

The definition performs this cancellation because if an expression contains either zero or both

components of every splitM in the program, it must be pure.

Pure Expressions. The history containing zero terms contains no fractional component of any

splitM in the program, meaning it represents a pure expression. We denote this history P for sake

of continuity. As an example, suppose [𝑞1, 𝑞2] has history 𝑓 =
1
2𝑥1+

3
4𝑥2. Applying splitM produces

two expressions with history Split(𝑓 , 3) = 1
4𝑥1 +

3
8𝑥2 +

1
2𝑥3. Neither expression can become pure

unless combined with the other to cancel the 𝑥3 term. Now suppose that value 𝑞3 has 𝑔 =
1
2𝑥1 +

1
4𝑥2.

Then [[𝑞1, 𝑞2], 𝑞3] has history Combine(𝑓 , 𝑔) = P and is pure. Thus, [[𝑞1, 𝑞2], 𝑞3] has no outside

entanglements because it cannot contain a fraction of any splitM in the program.

Analysis Type System. Formally, the analysis accepts a program by assigning it a type under a

modified type system with purities replaced by histories. Figure 13 presents the typing judgment

Γ ⊢𝐴 𝑒 : 𝜏 used by the analysis. Nearly all of its defining rules are derived directly from the original

type system, and only the shown typing rules are modified substantially.
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An if-expression obtains a special historyM where Split(M, 𝑗) = M and Combine(𝑓 ,M) = M

for any history 𝑓 . The reason is that the static analysis cannot know which branch the if takes.

The rule for entangle𝜋 invokes Combine(𝑓 , 𝑔) on its argument, disregarding the annotation 𝜋 .

The rule for splitM invokes Split(𝑓 , 𝑗) on its arguments to compute the type of the result. The

castM operator has the same history as its argument, and the castP operator is only valid when

the analysis knows its argument to be pure.

8.2 Purity Soundness

The following theorem states that a well-typed program that passes the analysis will satisfy its

purity specification at runtime. An expression of pure type is pure, and assuming it satisfies runtime

verification for splitP, it evaluates to a unique final value and state.

Theorem 8.2 (Purity Soundness). If · ⊢𝐴 𝑒 :
<latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙP, then |·⟩; 𝑒 pure.

We give the full proof in Appendix F.2.1, proceeding by induction on · ⊢𝐴 𝑒 :
<latexit sha1_base64="Stp+8Gyohkudp2hHGLKX6ENZc6c="></latexit>ϙP to show that an

expression with pure history does not own any qubit that is entangled with any unowned qubit. A

program passing the static analysis may only invoke castP on expressions of history P, which are

never the results of if-expressions or entangled with unowned qubits, and hence are pure.

9 EVALUATION

We now implement the type checker, static analysis, and interpreter for Twist,21 and use them to

analyze and execute a set of benchmark programs and answer the following research questions:

RQ1. Is Twist expressive enough to permit writing standard quantum algorithms?

RQ2. Does Twist reject programs that contain bugs caused by violating purity specifications?

RQ3. How does Twist’s runtime performance compare between pure- and mixed-state simulators?

RQ4. What is the runtime overhead of Twist’s purity assertions in simulation?

RQ5. Is Twist expressive enough to permit programs that existing languages disallow?

9.1 Implementation

We implemented the interpreter in OCaml, using Quantum++ [Gheorghiu 2018], a state-of-the-art

C++ quantum simulator. We perform measurements and unitary gates by invoking Quantum++

functions. The implementation adds support for three-qubit Toffoli (CCNOT) and Fredkin (CSWAP)

gates and arbitrary (controlled) phase rotation gates. We implemented purity assertions using both

pure- and mixed-state simulation (Section 7), which Quantum++ natively supports.

9.2 Methodology

For RQ1, we wrote a set of benchmark programs, described in the next section, and annotated

each with purity specifications. For RQ2, we modified several programs to introduce a small bug,

for example deleting a vital unitary gate or using an incorrect gate, such that the program would

yield incorrect results. We then executed the type checker, static analysis, and both pure- and

mixed-state runtime verification on the programs. We did not execute later analysis passes on

ill-typed programs, nor did we execute the pure-state simulator when the static analysis failed.

For RQ3 and RQ4, we wrote a family of programs invoking runtime verification on an increasing

number of qubits, described in the next section. We executed them using both the pure- and

mixed-state simulators and measured their execution time, specifically the portion of time spent

21The implementation is available at https://www.github.com/psg-mit/twist-popl22.
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1 fun teleport (q1 : qubit<P>) : qubit<P> =

2 let (q2 : qubit<M>, q3 : qubit<M>) = bell_pair () in

3 let (q1 : qubit<M>, q2 : qubit<M>) = CNOT (q1, q2) in

4 let q1 : qubit<M> = H (q1) in

5 let q3 = if measure (q2) then X (q3) else q3 in

6 let q3 = if measure (q1) then Z (q3) else q3 in

7 cast<P>(q3)

Fig. 14. Teleport-Measure benchmark, a variant of Teleport-Deferred that uses classical if-expressions.

performing runtime verification. We executed all benchmarks on a MacBook Pro with 2.4GHz

8-core Intel Core i9 processor and 64 GB of RAM. We invoked optimization level -O3 and enabled

OpenMP (used by Quantum++). All reported timings are the average of 10 executions.

For RQ5, we compare the results of Twist’s analyses on the benchmarks with the type system of

Silq [Bichsel et al. 2020], a recent quantum programming language. We chose to compare against

Silq because of its claim to express high-level constructs while preventing unintuitive or physically

unrealizable behavior, and because it claims to subsume features of languages such as Green et al.

[2013]; Paykin et al. [2017]; Svore et al. [2018]. Because our benchmarks extensively utilize purity

annotations, which Silq does not support, we did not translate them to Silq, but instead reasoned

about whether its type system would accept an equivalent program.

9.3 Benchmark Programs

We implemented a range of programs featuring entangled states, including well-known quantum

algorithms. These benchmarks include Teleport-Deferred, the example from Section 3 of deferred-

measurement teleportation; a classical AND oracle function; a faulty substitution of a Bell state by

a Greenberger-Horne-Zeilinger state [Greenberger et al. 1989]; Deutsch, Deutsch-Jozsa [Deutsch

1992], and Grover’s [Grover 1996] algorithms; a quantum Fourier transform [Coppersmith 1994];

and Shor’s nine-qubit error-correcting code [Calderbank and Shor 1996]. For the benchmarks

AndOracle, Deutsch, DeutschJozsa, Grover, and ShorCode, we also implemented erroneous variants

that violate their purity specifications and yield incorrect results.

The Teleport-Measure benchmark (Figure 14) is a variant of Teleport-Deferred that does not

use quantum conditional gates. Instead, the program measures q1 and q2 and uses the classical

outcomes to conditionally execute gates on q3 via if-expressions followed by a purifying cast.

To study the performance of runtime verification on increasingly complex programs, we im-

plemented a benchmark ModMul(𝑛), inspired by Huang and Martonosi [2019], which implements

modular multiplication for a number of qubits 𝑛 ranging from 4 to 22, with a different version of

the program for each input size. The programs use purity assertions to verify that after a condi-

tional modular multiplication followed by its inverse, the condition qubit is separable from the

multiplicand. We also implemented an erroneous variant ModMul(𝑛)-NotInverse where the inverse

operation is incorrect, resulting in the condition qubit remaining entangled.

Full descriptions of all benchmark programs may be found in Appendix G, and their full sources

are provided in Appendix H. The sources utilize syntax extensions to Twist described in Appendix C.

9.4 RQ1 and RQ2: Analysis Results

We list in Table 1 the analysis outputs for each benchmark compared to ground-truth knowledge.

Detailed descriptions of the analysis results may be found in Appendix G.
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Table 1. Evaluation results on benchmark programs. The column łvalidž denotes the ground truth of whether
the program is valid under its purity specification, and the following three columns state whether the program
passed the type check, static analysis, and runtime verification respectively. Pure- and mixed-state simulations
agreed in all instances where both were run. If type checking failed, the later analyses were not executed.
∗ For tests that failed the static analysis, only the mixed-state simulator was executed.
† For Teleport-Measure, the static analysis was sound but imprecise (overly conservative).

purity specifications Twist

correctName # qubits valid types static dynamic

Teleport-Deferred 3 ✓ ✓ ✓ ✓ ✓¬

Teleport-NoCZ 3 ✗ ✓ ✓ ✗ ✓¬

Teleport-Measure 3 ✓ ✓ ✗ ✓
∗ −†

AndOracle 3 ✓ ✓ ✓ ✓ ✓¬

AndOracle-NotUncomputed 3 ✗ ✗ N/A N/A ✓

Bell-GHZ 3 ✗ ✗ N/A N/A ✓

Deutsch 2 ✓ ✓ ✓ ✓ ✓¬

Deutsch-BadResultBasis 2 ✗ ✓ ✓ ✗ ✓

DeutschJozsa 3 ✓ ✓ ✓ ✓ ✓¬

DeutschJozsa-MixedInit 3 ✗ ✓ ✗ ✗
∗

✓

Grover 4 ✓ ✓ ✓ ✓ ✓¬

Grover-BadOracle 4 ✗ ✓ ✗ ✗
∗

✓

QFT 3 ✓ ✓ ✓ ✓ ✓

ShorCode 9 ✓ ✓ ✓ ✓ ✓¬

ShorCode-Drop 9 ✗ ✗ N/A N/A ✓

ModMul(𝑛) 4ś22 ✓ ✓ ✓ ✓ ✓¬

ModMul(𝑛)-NotInverse 4ś22 ✗ ✓ ✓ ✗ ✓

Research Question 1. We can express quantum algorithms such as Deutsch, DeutschJozsa, Grover,

QFT, and ShorCode, and Twist correctly determines that they satisfy their purity specification.

Research Question 2. The type checker correctly rejects three of the benchmarks, AndOracle-

NotUncomputed, Bell-GHZ, and ShorCode-Drop, which use mixed expressions in contexts that

require pure expressions. The static analysis correctly rejects two of the benchmarks, DeutschJozsa-

MixedInit, and Grover-BadOracle, that inappropriately use the purifying-cast operator to coerce a

mixed expression into a pure one. Runtime verification correctly rejects three of the remaining

benchmarks, Teleport-NoCZ, Deutsch-BadResultBasis, and ModMul(𝑛)-NotInverse, due to failing the

separability condition for the purifying-split operator.

For Teleport-Measure, the static analysis is imprecise. The static analysis rejects the final purifying-

cast assertion and does not permit the result to be annotated as pure, even though it is pure. As a

result, we must use the mixed-state simulator to determine that the program is valid.

9.5 RQ3 and RQ4: Timing Results

We display in Figure 15 the runtime performance of the ModMul(𝑛) family of programs. All static

analyses terminated within 50 ms and are not counted as part of runtime.

Research Question 3. Mixed-state simulation rapidly becomes impractical to execute compared to

pure-state simulation, taking longer on 11 qubits than the pure-state simulator did on 22 qubits.
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Fig. 15. Execution performance ofModMul(𝑛) programs in Twist. The first plot depicts total execution time
as the number of qubits 𝑛 increases, and the second depicts the percentage of total execution time spent on
runtime verification. Error bars display the standard error of the mean of ten runs.

Research Question 4. In pure-state simulation, runtime verification is not a large performance

burden. On a program with 4 qubits, the relative overhead of runtime verification is the largest, at

3.5% of total runtime. As the number of gates and qubits increases, the relative overhead of runtime

verification diminishes, and is approximately 0.5% for 22-qubit programs.

Mixed-state simulation is similar, with runtime verification overhead being about 3% for 4-qubit

programs and approximately 0.3% for 12-qubit programs. Though the relative overhead is ostensibly

lower for mixed than pure states, the baseline is much slower for mixed-state simulation.

The reason why the relative overhead decreases with more qubits in this application is that

the larger test cases require more gates to encode multiplication over more qubits. However, each

program needs only one purity assertion to enforce its purity specification.

9.6 RQ5: Comparison to Silq

We compare Twist with Silq [Bichsel et al. 2020], a recent language that claims to enable high-level

programming. Silq supports type annotations expressing freedom from effects such as mutation

and measurement, letting it automatically uncompute certain temporary qubits that exit scope.

Unlike Silq, Twist’s type system detects programs that violate user-defined purity specifications.

Also, Twist permits discarding pure values, allowing the developer to write programs that discard

temporary values that are separable from the ongoing computation.

Silq rejects the Teleport-Deferred, Deutsch, and ShorCode benchmarks, which discard a temporary

expression that has become separable at the end of the computation. Though Silq supports auto-

matically uncomputing certain qubits that exit scope, it does so only for qubits that are introduced

within the same scope and not subjected to unsupported gates with phase-level effects. In these

benchmarks, Silq cannot determine whether an arbitrary expression, such as the input or output

of a function, is separable and safe to discard, and requires the developer to manually measure it.

However, Twist accepts these programs, because it can determine that measuring a pure expression

cannot affect the ongoing computation, and thus permits implicitly measuring it.
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10 EXTENSIONS AND LIMITATIONS

Language Features. We overview in Appendix C the higher-level syntactic features that we

have already implemented in Twist to enable writing more concise programs. Adding additional

features such as arrays, loops, quantum conditional blocks, and automatic adjoints may further

improve ease of use. Currently, the user must annotate purities in types, and type inference would

make programming faster and more concise, especially if the developer could use it as a tool to

immediately see the inferred purity specification of their programs.

Classical Control. Classical control affects the precision of our static analysis, as seen in the

Teleport-Measure example. Programs that use classical control currently require the mixed-state

approach of purity assertion verification, which is inefficient. Further work may improve the

precision of the static analysis on classical control and enable execution on a pure-state simulator.

Hardware Execution. In this work, we operate in an idealized model of quantum computation

and describe how the purity assertions of Twist can be implemented in simulation using the

primitive of separability testing. In quantum hardware, determining whether a state is separable is

a form of quantum state tomography [Vogel and Risken 1989], where ascertaining properties of

an unknown quantum state generally requires many copies of the state to obtain high accuracy.

In Appendix B, we describe a procedure to determine with high probability whether a pure quantum

state is separable, based on Harrow and Montanaro [2013]. Additionally, existing runtime quantum

assertion frameworks such as Huang and Martonosi [2019]; Li et al. [2020]; Liu and Zhou [2021]

support some form of separability testing which Twist could leverage. These methods indicate that

separability testing is potentially achievable natively in quantum hardware.

Simulation Accuracy. Twist’s runtime verification as implemented relies on numeric floating-

point arithmetic in the quantum simulator, which may introduce the possibility of imprecision error.

Our attempts to exploit imprecision to cause separability tests to pass on an entangled state were

unsuccessful, but it is possible that very slightly entangled states or excessive error accumulation

in the simulator could lead to unsoundness, which would require further effort to mitigate.

11 RELATED WORK

Entanglement Reasoning. Honda [2015]; Perdrix [2005, 2008]; Prost and Zerrari [2009] present

logical systems for reasoning about entanglement in quantum programs based on type systems and

abstract interpretation. These frameworks track fine-grained entanglement between specific qubits,

making them limited in scale and unable to handle more complex programs such as teleportation.

Rand et al. [2021a,b] propose a type system establishing circumstances under which gate outputs

are separable, based on their Heisenberg representation. Unlike ours, it does not guarantee purity,

and can only determine separability in specific bases. However, this direction may enable better

static checking for separability conditions, increasing the utility of purity specifications.

Researchers have developed compilers that perform reasoning about entanglement in a quantum

circuit. For example, ScaffCC [JavadiAbhari et al. 2014] provides a disentanglement check warning

the user when possibly entangled qubits exit scope. Unlike Twist, this check is purely syntactic

and cannot be refined by semantic knowledge about the program. Häner et al. [2020] leverage

entanglement annotations to optimize circuit gate count, but do not ensure that the annotations

are sound. By contrast, we proved that pure-typed expressions are in fact pure.

Frameworks for quantum runtime assertions support reasoning about entangled and separable

states, such as Huang and Martonosi [2019] who use statistical hypothesis testing on measurement

outcomes of repeated program executions, Li et al. [2020] who check predicates using projection
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operators, and Liu and Zhou [2021] who propose quantum circuits implementing approximate

assertions. Though these tools do not support sound reasoning for whole programs, their techniques

may be useful to implement runtime verification in Twist.

Quantum Program Verification. Separation logic [Reynolds 2002] is a well-studied formalism for

reasoning about memory aliasing in classical programs, and researchers have extended it into the

probabilistic [Barthe et al. 2020] and quantum [Zhou et al. 2021] realms, generalizing the notion of

separation to probabilistic independence and quantum separability respectively. They have also

adapted classical techniques such as model checking [Gay et al. 2008], abstract interpretation [Yu

and Palsberg 2021], and Hoare logic [Singhal 2020; Unruh 2019], and developed relational proof

strategies [Barthe et al. 2019] for quantum programs. Verification tools have enabled applications

such as analysis of robustness against error [Hung et al. 2019; Tao et al. 2021] and mechanized

soundness proofs for optimizations [Hietala et al. 2021; Shi et al. 2020].

Twist’s pure annotation can be construed as separable conjunction in separation logic, a con-

nection worthy of additional study. However, an advantage of our type system is that it is directly

usable during programming ś purity is a first-class construct, and the type checker and analyses

automate reasoning about purity. The programmer may simply write a program with annotations

and execute it to be confident that it satisfies the specification. Our automated reasoning does not

require the programmer to understand a proof framework external to the language.

Twist’s static analysis relies on manipulations of fractions in a similar way as fractional permis-

sions [Boyland 2003], originally introduced to reason about mutable effects and which has been

extended to separation logic [Bornat et al. 2005], symbolic rather than concrete quantities [Heule

et al. 2011], and applications in memory management [Suenaga and Kobayashi 2009]. To our knowl-

edge, we are the first to use fractional permissions-style reasoning for quantum entanglement.

Ancilla Correctness. One application of purity guarantees in a quantum program is the correctness

of temporary qubits, known as ancillas, and verifying uncomputation of ancillas. Silq [Bichsel et al.

2020] automatically inserts sound uncomputation for ancillas or rejects programs not supporting

uncomputation. Paradis et al. [2021] provide a general scheme to synthesize uncomputation for

circuits, and Rand et al. [2019] provide a mechanized system for proving ancilla correctness. In

general, Twist benefits from the presence of automatic or provable uncomputation, because it can

trust the correctness of the uncomputation and elide the runtime verification.

In turn, systemswith automatic uncomputation benefit from soundness guarantees of purity types

and convenience of implicitly discarding pure values statically known to not require uncomputation.

We demonstrated that Twist can detect incorrect programs that these languages cannot. In addition,

Twist does not require distinguishing particular qubits as ancillas, and its runtime verification can

perform reasoning that they cannot, for example recognizing gates like Hadamard as self-inverse.

12 CONCLUSION

Quantum computing presents unique challenges to programmers who must reason about phenom-

ena such as entanglement that have no analog in the classical world, and if improperly addressed

can result in unintuitive bugs. So far, quantum programming languages have sought to ensure valid

semantics under the laws of quantum mechanics, but have not developed comprehensive means of

understanding entanglement. The result is that the developer must manually determine whether

their computations are affected by measurement outcomes of seemingly unrelated qubits.
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In this work, we introduce Twist, the first language with sound reasoning for purity, the property

of an expression that states its evaluation is unaffected by measurement outcomes of unowned

qubits. We present language constructs to assert purity of expressions and verifications for these

assertions. Twist enjoys a soundness guarantee stating that in programs that pass its verifications,

every expression of pure type is in fact pure and free from entanglement.

To our knowledge, this work is the first to define the powerful notion of purity, which enables

sound reasoning about entanglement in quantum programs. We hope this work paves the way to

languages featuring abstractions that align with the complex and unintuitive phenomena inherent

in quantum computing, allowing classical programmers to reap its computational benefits.
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