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fun phi_plus () : (qubit & qubit)<P> = CNOT (H (ginit ()), ginit ())

2> fun phi_minus () : (qubit & qubit)<P> = CNOT (H (X (ginit ())), ginit ())
3 fun flip_second (xy : (qubit & qubit)<P>) : (qubit & qubit)<P> =

4 let (x : qubit<M>, y : qubit<M>) = xy in

5 let (xy : (qubit & qubit)<P>) = (x, X (y)) in xy

6 fun psi_plus () : (qubit & qubit)<P> = flip_second (phi_plus ())

7 fun psi_minus () : (qubit & qubit)<P> = flip_second (phi_minus ())

Fig. 16. Definitions of the four Bell states. The listing uses Twist syntax extensions described in Appendix C.

A  ENTANGLEMENT FOR PURE AND MIXED STATES

In this work, we focus on the analysis of entanglement and separability in the sense of pure states
rather than mixed states. However, from the perspective of quantum mechanics, the notions of
separability for pure states and mixed states are not equivalent, and it is conceivable that one would
want to analyze quantum programs using the mixed-state definition of separability instead.

In this section, we briefly illustrate differences between the two formalisms and argue that the
pure-state definition, known as simple separability when applied to density matrices, is appropriate
for reasoning about purity in quantum programs. Thus, the separability tests powering Twist’s
purity assertions are precise and avoid the extra complexity of general separability of mixed states.

A.1 Definitions of Entanglement: Concurring Case

We present example programs that we analyze using the frameworks of pure- and mixed-state
entanglement. First, we show a case where the pure- and mixed-state definitions align.

Figure 16 presents Twist functions that produce the four maximally entangled Bell states [Bell
1964], the first of which is used throughout examples in this work:
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In Twist, pure quantum values have the property that even when the overall program is in a
mixed state, the qubits owned by a pure value constitute a pure sub-state of the program state.
For example, consider the program in Figure 17, in which we produce a qubit x in state |1) and
two qubits y and z in the Bell state |®*). When we measure z, the whole program enters a mixed
state: [1), ® |0), with probability 1/2 and |1), ® |1), with probability 1/2. Nevertheless, x is pure, as
evidenced by the fact that in either branch, the program state is separable into some sub-state for y
and a sub-state for x which is always the same: |1),.

We can equivalently express the program state, and this property of the pure expression x, using
the mixed state formalism. Mathematically, the density matrix corresponding to the program state
immediately after the measurement of z is:

p = WA WG] e 1yo) = 1), 8 10y, 19) = I @ 1),
[0X0l, +[1X1l,
2
The fact that the density matrix p is separable into density matrices for x and y, where the factor
|1X1|, is a pure density matrix, indicates in this specific example that the expression x is pure. Here,
the pure- and mixed-state notions of separability coincide.

[1X1lx ®
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1 let x : qubit<P> = X (qinit ()) in
2 let (y : qubit<M>, z : qubit<M>) = phi_plus () in
3 let _ = measure (z) in (x, y)

Fig. 17. A quantum program that produces a mixed state with a sub-state for the qubit x that is pure.

1 fun random_bool () : bool = measure (H (ginit ()))
> fun random_bell () : (qubit & qubit)<M> =

if random_bool () then if random_bool () then phi_plus () else phi_minus ()
4 else if random_bool () then psi_plus () else psi_minus ()

Fig. 18. A quantum program that produces one of the four Bell states at random.

A.2 Definitions of Entanglement: Contrasting Case

We now examine a case where the mixed-state definition of entanglement yields a different
conclusion from the pure-state definition. Figure 18 presents a program that produces, uniformly
randomly, one of the four Bell states. The function random_bell returns an entangled pair of
qubits whose state is one of these four with 1/4 probability each. The result is not a pure expression,
because the final state is a mixed state and each individual execution depends on the measurement
outcomes of the intermediate qubits used by random_bool as a source of randomness.

In the output of random_bell, both qubits of the pair are also mixed when considered in isolation
because they are entangled with each other. If we, for example, extract one qubit (and measure
the other), there is no sound manner in Twist to coerce it to a qubit of pure type. The static and
dynamic verifications will reject attempts using the purifying-cast and split operators because on
any execution, regardless of which of the four Bell states is produced, the two qubits are entangled.

However, remarkably, the mixed state corresponding to the output of random_bell is separable
by the mixed state definition. Mathematically, we can confirm:

o= |OTXPH| + |7 XP™| + [PXYF[ + [¥ XY |
4

s 0 0 0
0 Y4 0 0 20 /2.0
“lo o s o0 :(0 1/z)®(0 1/2)
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_ 10X0l +[1X1] - |0XO[ + [1X1]
B 2 2
Thus, quantum mechanically, the uniform mixture of the four Bell states is indistinguishable (by
any measurement process) from two independent copies of one single qubit in a uniform mixture
of |0) and |1). The mixed-state definition of separability thus recovers a fact that the pure-state
definition, which always concludes that x and y are not separable, cannot.

A.3 Sufficiency of Pure-State Entanglement

As the example demonstrates, there are situations where using the mixed-state formalism provides
more fine-grained information about how the program state factors into independent sub-states.
However, for the purposes of Twist, knowing that the program state is separable into two mixed
states does not always refine our reasoning about the purity of expressions. After all, we are
interested in whether there is a pure sub-state in the program, not a mixed one, and ultimately,
Twist is concerned not with separability but with purity.
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Effectively, the mixed-state definition of separability is too general for Twist. Mixed states can
be separable in ways that do not contribute to purity reasoning:

o The mixed state is separable, but the components are not pure states, and thus do not provide
information about purity of sub-expressions (random_bell). In this case, the sub-expressions
are individually in mixed states.

e The mixed state is separable, but only as a convex combination of tensor products. For
example, decomposing p = /M also does not provide information about purity of
sub-expressions. In this case, the sub-expressions may be classically correlated.

Only if a density matrix p is simply separable into p; ® p, where one factor is a pure state does
separability guarantee that a sub-expression is pure in the sense of Twist. Simple separability is
stronger than separability for mixed states because it guarantees that there exists no classical
correlation between the two sub-states.

However, we can recover the information of simple separability through pure-state reasoning.
After all, assuming without loss of generality that p; = [¢X¢| and p, = X; p; [¥/;X¥/;|, we have

p=1oXgl® D pi Xyl = D ps (1) @ 1y) (9l (5])
J J

which is equivalent to the statement that all executions of the program yield states that share a
common factor |¢), and can be checked by pure-state separability tests alone.

B SEPARABILITY TESTING IN HARDWARE

In this section, we briefly discuss a potential implementation of separability testing on a hardware
quantum computer. We utilize concepts from the density matrix formalism of quantum mechanics,
including reduced density matrices and the quantity of purity. We refer the reader to Nielsen and
Chuang [2010] for the technical background to this section.

Adapting the following procedure to Twist requires re-executing a program to produce new
copies of a state that is being subject to a separability test, as separability testing is a form of
quantum state tomography [Vogel and Risken 1989] that in general requires multiple copies of a
state to characterize it.

The SWAP test [Buhrman et al. 2001] is a separability-testing scheme that consumes two copies
of a d-qubit quantum state |/}, and in O(log d) time accepts separable states with probability 1,
using O(1) extra qubits. Given a state |¢/), we divide it into subsystems A and B of dimensions d
and dp with reduced density matrices p4 and pp.

First, we produce two copies |) ® |/) of the state under test. We swap the A subsystems of the
two states, conditioned on an ancilla qubit, and apply the same procedure to the B subsystems. If
a subsystem is a single qubit, this amounts to a single Fredkin gate; in general, it requires log d
Fredkin gates. Finally, we perform a measurement to detect the phase acquired by the ancilla qubits.

The SWAP test accepts with probability p = % + %p, where p = tr(p3) = tr(p3) is the subsystem
purity. During the swaps, the ancilla qubits acquire a phase depending on the purity of the respective
subsystems, which are equal for a bipartite state. The phase can be detected by an interferometric
measurement, yielding the expression for p. More precisely, define the distance € between |¢/) and
the nearest separable state as:

€ =1 - max {|(1//|go)|2 : |¢) is a separable state}
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This testing scheme then yields a false positive rate that depends on €, such that the test accepts
with probability 1 — ae < p < 1 — fle, where a = 2 and = 11/512 [Harrow and Montanaro 2013].
The test has been realized experimentally [Walborn et al. 2006]. However, these bounds given
assume perfect operation of the quantum hardware; accounting for the cost of imperfect gates in
near-term hardware remains an open problem.

To bound e above with high probability, one could run n repetitions of the SWAP test, registering
observations X = (X1, Xz, ..., Xp). If [{/) is a separable state, and hardware operations are perfect,
these will result in X; = 1 for all i. To control the distance parameter €, we can express the test as a
parameter estimation problem, and bound the probability that the actual distance is greater than
some fixed €* conditioned on the observations by Markov’s inequality:

Prle > " | X] < E—[EJFX]
€
where the conditional expectation term may be obtained from the known quantity Pr[X | €] = p"
and a prior distribution over € given by a Haar-uniform distribution [Haar 1933] over states. This
quantity could equally well be computed in terms of the purity p, rather than €, and closed-form
expressions for the corresponding distribution are known [Giraud 2007]. In this way, one can
achieve any desired level of confidence in the separability of |i/), by setting the parameter €¢* and
adjusting the number of iterations n to upper-bound the probability of a false negative.

C ADDITIONAL SYNTACTIC FEATURES OF TWIST

In this section, we discuss syntactic features of Twist that enable writing more concise programs.

C.1 Affine Pure Types
As discussed, Twist allows pure expressions to be discarded and implicitly measured. Formally, we
perform a syntactic translation to insert measurements of unused variables of type of and discard
the result of the measurement. Specifically, we translate functions and let-bindings:
Ax.e ~ Ax.let _=measure(x) ine
let (x,y) = ¢’ ine~» let (x,y) = ¢ in let _ = measure(x) ine
when x has type of and does not appear in e, and likewise for y if necessary. It is irrelevant when

the implicit measurement takes place, and we do so before evaluating e. To discard a pair containing
only pure and classical types, we recursively measure and discard its contents.

C.2 Inferring Conversion Operators

Converting between ordinary and entangled product types, as well as between different purities,
requires appropriate entangle, split, and cast operators. Instead of forcing the user to write
these operators, Twist exposes a generalized let-expression using type annotations from which
the language can automatically insert appropriate operators. The generalized 1et-expression binds
an expression to a pattern p which is either a type-annotated variable or a pair of patterns:

Pattern p = x : 7 | (p1, p2)
This expression is a derived form that recursively translates into core constructs:
let (p1,p2) =eine’ ~ let (x,y) =einletp; =xinletp,=yine

The procedure to infer conversion operators is type-directed. For every let-expression binding the
expression e to a pattern p, it synthesizes the type 7 of e and the type 7’ that p expects to bind. It
then follows rules to transform e by inserting conversions so that its type becomes 7”:
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e If 7 = 7/, do nothing to e.
e If 7 = o and 7’ = oM, replace with casty/(e).
e Ifr=oMand ¢ = ¢, replace with castp(e).
o If 7 = (0; &03)" and 7’ = 0, X 0,7, replace with split,(e).
o If 1 =09;" X0," and 7’ = (0; &0,)”, replace with let (x,y) = e in entangle,(x,y).
o In other cases, recursively descend into 7 and 7’ and apply the above rules.
As an example, a program that takes an entangled pair of qubits as input and performs a phase
flip conditioned on the first qubit requires a number of conversions:
fun f (gs : (qubit & qubit)<P>) : (qubit & qubit)<P> =
let (g1 : qubit<M>, g2 : qubit<M>) = split<M>(cast<M>(gs)) in
let g1 : qubit<M> = Z (q1) in
cast<P>(entangle<M>(ql, q2))
Conversion operator inference allows us to express the program much more concisely as:
fun f (gs : (qubit & qubit)<P>) : (qubit & qubit)<P> =
let (g1 : qubit<M>, g2 : qubit<M>) = gs in
let g1 = Z (q1) in
let out : (qubit & qubit)<P> = (g1, g2) in out

C.3 Polymorphism over Purity

The fact that functions must provide specific purities in their types can result in code duplication
with pure and mixed variants. Thus, the language supports generic purity parameters where
functions instantiate at a given purity at call site. Polymorphism allows more concise programs
that more accurately describe the effect of functions on purity, and also allows the static analysis
of Section 8 to be more precise. We extend the syntax of purities to allow variables:

T:=P|M| a

We require that every purity variable be introduced exactly once in the argument of the function in
which it is used. We do not permit split,(e) for generic = because its operation fundamentally
differs for P or M,** but we permit generics in entangle and cast, which are statically checked.

To check a function with generic purity, the static analysis instantiates for each purity variable a
unique index i and associated history x;, guaranteeing that it cannot be conflated with any other in
the system. We also augment the type system to instantiate a function of polymorphic type when
it is applied to an argument of specific type.

Generic purities increase the precision of the static analysis. Consider the following program:

fun f (q : qubit<M>) : qubit<M> = q

fun g (q : qubit<P>) : qubit<P> = cast<P>(f (cast<M>(q)))
This program does not pass the static analysis because the function f returns a qubit annotated as
mixed rather than pure. However, f is over-specified to only take mixed qubits to mixed qubits,
and simply inlining its definition into g results in a well-typed program. A more sophisticated
interprocedural static analysis might realize this fact, but a superior solution is to allow f to be
polymorphic in the purity of g. We can annotate the argument to f with the generic purity ’p,
which g then instantiates with P:

fun f (q : qubit<'p>) : qubit<'p> = q

fun g (g : qubit<P>) : qubit<P> = f (q)

The example now passes the static analysis and more clearly expresses the effect of f on purity.

220ne may cast to M to invoke splityy, then later cast back.
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Ix:trge: 1 I,f:t—> 17 +Fmok Trpe:t

I+ fun f x = e;m ok T + funmain () = e ok

Fig. 19. Definition of well-formed programs in pQ and Twist.

V-Fun V-BooL V-QREF V-PAIR
eq val ey val
f val b val refla] val (e1, ez) val

Fig. 20. Definition of value judgment in pQ.

S-App S-ApPL S-ApPR
é(f) =Ax.e € val [¥)ser vy 1Y) €] e val [¥);es vy 1Y )56
) fle) v S 1y); e /x]e [¥)se1(es) ¥, 1Y) €] (e2) [¥)ser(es) ¥, 1Y) er(e))
S-PaIrL S-PAIRR
[¥)er v, 1Y )se] erval  [Y)iea v, ¥ )ie)
[¥); (er, e2) ¥ [¥/); (€], €2) [¥); (1, e2) ¥ [¥/); (e1, )
S-LET
eq val ey val

[¥);let (x, y) = (e1,e2) ine’ N [¥); [e1, e2/x, yle’

S-LETS E-VaL
[¥); e »—(l)p [¥'); e v val

V)i let (x, y) = er ine; D [¥): let (x, y) = €] ine; V0 55 [0

E-STEP
[)se v, [y )e’ |y )i ¥ [y )0 0/ =01U0,

g
[¥)ie vy, Y7 )0

Fig. 21. Operational semantics for classical constructs in pQ and Twist.

D FULL LANGUAGE SEMANTICS
D.1 pQ Language

Figure 19 defines the typing judgment for programs in pQ and Twist. Figure 20, Figure 21, and
Figure 22 contain the full operational semantics of Q.

D.2 Twist Language
Figure 23 contains the full type system of Twist. Figure 24, Figure 21, and Figure 25 contain the full
operational semantics of Twist.

E FULL STATIC ANALYSIS TYPE SYSTEM

Figure 26 contains the full type system. There is no rule for ¢” which is not written by the user.

F PROOFS OF SEMANTIC PROPERTIES
In this section, we provide proofs of progress, preservation, and purity soundness theorems for
Twist.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 30. Publication date: January 2022.



Twist: Sound Reasoning for Purity and Entanglement in Quantum Programs 30:39

S-QINIT S-U1 S-U1S
o fresh in |¢> W/>;e._0_)p |¢/>;e/
[¥):qinit ) =51 [9) @ [0),:reflal [¥):U(refla]) w251 U ) refla] [¥):U(e) ¥Sp |9/ ):U(e')
S-U2 S-U2S
[9)se Sy [y ;e
[): Uz (reflal, ref[B]) =251 Unp |9); (reflal, ref[B]) [): Uz(e) ¥y |9 ): Un(e')
S-MEASURET S-MEASUREF
My |Y) =) ®Y) wp.p  O={(aT)} Mo |9 =10)o ® [¥') wp.p  O={(aF)}
|);measure(refal) »—o—>p W' »T |¢); measure(refla]) »&p [y F
S-MEASURES S-IrT
9y e vy [y ;e
[/);measure(e) »—o—>p [ );measure(e’) [¥); i T then e; else e; m1 /) e
S-IrF S-IrS

o
[V);er=p Y )€’
[/);if F then e; else e; NS [¥);es |¥);if e then e; else e; »—O—>p [¢');if €’ then e; else e;

Fig. 22. Full operational semantics of quantum constructs in uQ.

Q-ReF Q-PAIR T-VAR T-Fun
FAp 91001 FAy 92 102
Fla} refla] : qubit Fagun, [91,g2] 101 &0 X:ThpXx:T firotTrgfiro7
T-LET
T-Aprpr T-PAIR Likp e1:T1 X1
I Fap €1:7T1 = T2 I Fay €21 71 I Fap €1: 71 I, kA, €21 T2 Ix:r, Y:iTabpy €2: 7T
T, T bagua, e1(e2) i 72 T, T2 Fajun, (€1 €2) t 71 X 72 I, T2 Fajua, let (x,y) =eriney: 7
T-Ir T-BooL T-QINIT
I Fp, e :bool T kp, €1:07 T kp, €2:07
I1, T2 Faun, if € then e else ey : oM - +g b : bool - kg ginit () : qubit?
T-U1 T-U2 T-MEASURE T-Qvar
Trae:qubit” Trae: (qubit &qubit)”™ Thpe:qubit” FA Q0
T'kp U(e) : qubit™ T'tp Usz(e) : (qubit & qubit)”™ T +p measure(e) : bool AN SRR
T-ENTANGLE T-SpLIT T-CasT ,
Trre:01" X0 Trre: (01 &0)" Trpe:o"
T kp entangle, (e) : (91 &02)7 T kp splity(e) : 0" X 2" I kp casty(e) : 0"

Fig. 23. Full type system of Twist.

V-Fun V-BooL V-QvaL V-PAIR
e val ey val
fval b val q”" val (€1, ez) val

Fig. 24. Definition of value judgment in Twist.
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S-QINIT S-U1
a freshin [¢)
[¥):qinit O =51 [9) @ [0),:refla]™ [¥);U(ref[a]™) w21 Uy [); reflal™
S-U1S o S-U2
[V)ier=p Y );e
YU (e) ¥y 9/ ) U () [9); U ([reflal, ref[B117) o1 Ugp 1); [reflal, ref[B117
S-U2S o S-MEASURET
[);e =y |Y' )€ Mo |9y =g ®Y) wp.p  O={(aT)}
[¥):Uz(e) ¥ [9): Un(e') |§); measure(ref[a]™) v, [§/);T
S-MEASUREF S-MEASURES o
Ma |Y) =10)e®Y') wp.p  O={(aF)} [V);e =y |/ ); e’
|/);measure(ref[a]™) »—O—>p [Y'); F [/);measure(e) b—o—>p |/ );measure(e’)
S-IrT S-IrF
|[#);if T then e; else ez o, |[¥); castm(er) |#);if F then e; else e; o, |[¢); castm(ez)
S-IFS ° S-ENTANGLE
[V);er=p Y )€’
[¢);if e then e; else ey »—O—>p [¢');if €’ then e; else e; [¥);entangle . (17, q2") F51 |¥); [q1, 9217
S-ENTANGLES o S-SpLiTS o
[)ie =y Y );€ [V);er=p Y )€
|¥/); entangle; (e) »—O—>p [/ );entangle . (e’) [¥);split,(e) b—(iy, [¥");split, (e')
S-SPLITPURE
S-SPLITMIXED [¥) = 1¥1) ® |[¥2) ® |Y0)
dom |¢1) = Refs(q1) dom |¢) = Refs(qz)
[9)s splity ([, @21™) w51 19); (@™, ™) ¥);splitp([q1, 4217) o1 19): (01", @2°)
S-CasT S-CasTtS
(unchecked) |¥);e >—O—>p [¥'y; e
[¥)icasty (g ) Do [¥):q" ¥} cast(e) ¥, |9/ );casty (e')

Fig. 25. Operational semantics of quantum constructs in Twist.

F.1 Twist Language

F.1.1  Progress (Theorem 7.1). First, we state canonical forms lemmas for values:

LEmMMA F.1. IfT Fp e : 7 and e val, then:

o IfrisQ”, thene is " whereta q: 0.
e Ifr isbool, then e is one of T or F.
o IfTist X 1, then e is (e1, e;) where ey val and e, val.

o Ifristy — 1y, thene is f and ¢(f) = Ax.e.
ProoF. By inversion of e val. O

LEMMA F.2. Iftp q: 0, then ifo is qubit then q is ref[a] for some a and if ¢ is [Qq,02] then q is
[q1. g2] for some g1, q».

Proor. By inversion of a g : Q. O

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 30. Publication date: January 2022.



Twist: Sound Reasoning for Purity and Entanglement in Quantum Programs 30:41

A-VAR A-Fun A-Arp A-PAIR
ILx:tiktpe: Ntae g > n hrtae:ny IHrtae g Dtae:n
X:ThAX:T Traldxe:1p > I, kg e1(e2) i 12 I, ks (e1,€2) : 11 X 1
A-LET A-IF A-BooL
Drae:y X1 M,x:1,y:2ka€ i1 Ty Fa e : bool le—Aelzof I baer:o?
I,z Fa let (x,y) =eine’ : 7 I,y k4 if e then e else e; : QM -+ b :bool
A-QINIT A-U1l A-U2 A-MEASURE
Tl—Ae:qubitf Thtae: (qubit&qubit)f Fl—Ae:qubitf
ka4 qginit () : qubit? Tra Ule) : qubit! T+ Uz(e) : (qubit&qubit)f T 4 measure(e) : bool
A-ENTANGLE A-SPLITMIXED
Trae:0f X099 h=Combine(f,g) Trae:(01&o)  jfresh  g=Split(f,))
I +4 entangle, (e) : (91 &oz)h T +a splity(e) : 919 X 09
A-SPLITPURE A-CASTMIXED A-CASTPURE
F»—Ae:(ol&oz)P Fl—Ae:of Trae:of
T ra splitp(e) :01P X ozp I'+4 castym(e) of I +4 castp(e) 0P

Fig. 26. Full static analysis type system.

Next, we prove the main theorem:

Proor. Proceed by induction on the derivation of - 5 e : 7. T-VAR does not apply.

In cases T-ABs, T-QvaL, T-BooL we have e val.

In cases T-App, T-PAIR, by IH either |/);e; + - or e; val. In the former case, apply S-ArprL or
S-PaIrL to obtain |/);e +> -. In the latter case, by IH either |/);e; + - or e; val. In the former
case, apply S-APPR or S-PAIRR and in the latter case apply S-App or V-PAIR.

In cases T-LET, T-U1, T-U2, and T-ENTANGLE, by IH either |{);e +> - or e val. In the former
case, apply S-LETS, S-U1S, S-U2S, or S-ENTANGLES. In the latter case, apply S-LeT, S-U1, S-U2, or
S-ENTANGLE.

In case T-QINIT, apply S-QINIT. In case T-IF, by IH either |/);e + - or e val. In the former case,
apply S-IFS. In the latter case, apply S-IFT or S-IFF.

In case T-MEASURE, by IH either |/);e +> - or e val. In the former case, apply S-MEASURES. In
the latter case, apply one of S-MEASURET or S-MEASUREF, whose probabilities resulting from a
two-outcome quantum measurement add to 1.

In case T-Spr1T, by IH we have |{/); e + - or e val. In the former case, apply S-SpL1TS. In the latter
case, either apply S-SPLITMIXED, or if the premises of S-SPLITPURE are true, apply S-SPLITPURE,
otherwise apply S-SpLITFAIL.

In case T-CasT, by IH we have [{/);e + - or e val. In the former case, apply S-CasTS. In the
latter case, apply S-CAsT. O

F.1.2  Preservation (Theorem 7.4). In the following, we use |¢/'); q pure as shorthand for |¢/); ¢¥ pure.
We first state a helpful lemma. Its proof follows from the fact that purity of quantum values is
equivalent to separability, and separable qubits remain separable under irrelevant measurement or
unitary operations:

LemmA E3. If |{); q pure and (') is any sequence of Ma or U applied to |) where A contains no
qubits owned by q, then |{/’); q pure.

Next, we prove the main theorem:
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Proor. Proceed by induction on the derivation of |/); e — |{/’); e’. In each case, to show that
|’y £ €', we show that every pure annotation inside a term that the step introduces is pure. If
the step does not introduce pure annotations and does not have any effect on |¢/), then |) ke
immediately implies [§/') E €’.

In case S-APp, by inversion of I1,I; Fa, a, (Ax.e)(e’) : 7 we have that I}, x : 7" Fp, e : T and
I; b, € : 7. Thus we have I, I, o, a, [€//x]e: 7.

In case S-LET, by inversion of typing we have that I, x : 7,y : 7y Fa €’ : Tand I Fp, e : 7y and
I; kp, €z : 72. Thus we have I', I, I Faa a, [e1.e2/x,yle : 7.

In case S-QINIT, the introduced term ref[a]® has type qubit® and is separable and thus pure in
19) [0},

In case S-SPLITMIXED, there are no introduced pure annotations. By inversion of
T Fan, splity([qi, qz]M) : (o1 &OZ)M, we have that ko, g1 : 01 and Fp, ¢2 : Q, meaning
that T Fa, 8, (1™, g2™) : (01 &o)M.

In case S-ENTANGLE, by inversion of T ka, a, entangle, (g1”. ¢2") : (01 &02)" wehavera, g1 : 01
and kp, g2 : 0z, meaning I' ka, 4, [q1,2]" ¢ (01 &02)”. If 7 is M then no pure annotations are
introduced. If 7 is P, by the IH we know that |{/); ¢; pure and |{/); ¢ pure, meaning |¥/); [q1, g2] pure
and we have |{) E [ql,qz]P.

In case S-Cast, where 7 is M, no pure annotations are introduced. By inversion of I' Fp
castm(q”) : oM we have k5 g : 9, meaning ' +5 g™ : oM.

In case S-U1, by inversion of T rp U(ref[a]™) : ¢ we have +p ref[a] : o, meaning I +p
ref[a]™ : ¢”. If 7 is M no pure annotations are introduced. If  is P, then by the IH we know
that |¢/); q; pure. Because the unitary operator only acts on «, we have Uy, |i/); g1 pure meaning
Uy ) E refla]®.

In case S-U2, the same reasoning applies as for S-U1, except that if 7 is pure then by the IH we
know that |{); [ref[a], ref[f]] pure and the unitary operator only acts on «, 8, meaning we have
Uap [9); [reflal, ref[] pure and Uy s |9) & [ref[al, ref[]]".

In cases S-IFT and S-IFF, by inversion of I' 5 if e then e; elsee; : oM, where e is T or F, we
haveT' Fp e; : 9" and T +p e; : 07, meaning I' Fp casty(er) : oMandT Fu castum(ez) : oM.

In cases S-MEASURET and S-MEASUREF, no pure annotations are introduced. By inversion of
typing, measure(ref[a]”) also has Boolean type.

In case S-SPLITPURE, by inversion of I' ko, o, splitp([q1, qg]P) : 01F x 0,F we have that FA, 1 ¢
01 and kp, ¢z : 0z, meaning T+, 4, (¢17, ¢2F) : 0¥ x 0,F. The premise is the separability condition
that implies compatibility.

In cases S-AprL, S-APPR, S-PAIRL, S-PAIRR, S-LETS, S-SpLITS, S-ENTANGLES, S-CAsTS, S-U1S, S-
U2S, S-I¥S, S-MEASURES, and S-SpLITS, the IH directly implies type preservation and state/expression
compatibility. O

F.1.3  Purity Soundness (Theorem 7.5). First, we state two properties of the language that hold as a
consequence of it being a variant of the linear simply-typed A-calculus with type safety.

LEMMA F.4 (STRONG NORMALIZATION). If- F e : T then for all |) such that A C dom |y'), there
exists v such that |/);e —" |¢/');v and v val.

This lemma implies the existence of an evaluation |¢/); e —* |¢'); v for some |¢’) and v.

LEmMA F.5 (CALL-BY EQUIVALENCE). |¢); (Ax.e)(e’) =™ |¢);v such that v val if and only if
[); [e'/x]e =" |¢'); 0. Likewise, |/); 1let (x,y) = (e1,e2) in e —* [’);v where v val if and only if
[V): [er e2/x, yle =" [Y);0.
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In this statement, ¢’, e; and e, need not be values, and thus this lemma asserts the equivalence
of call-by-name and call-by-value evaluation strategies. Because we operate in a linear A-calculus
where every variable occurs once without discarding or duplication, any effects (measurement
or unitary operator) of the eagerly-evaluated argument of a function application or let-binding
still occur exactly once if they are instead substituted before evaluation. Furthermore, the order of
effects of two components of a pair does not matter, because linearity requires them to refer to
disjoint sets of qubits, and reversing the order of measurements or unitary operators on disjoint
sets of qubits cannot change the computation outcome.

We now give a proof for the purity soundness theorem by logical relations, strengthening the
induction hypothesis to describe types other than of and typing judgments that involve non-empty
contexts. For our relation, we define the notion of purity at a type 7, denoted |¢/); e pure,.

[¥/); e purege = |¢); € pure
[); e puregu = T
|¢>, € purépyo) = T
l¥);e pure, ,, =Ve',[);e’ pure, = [});e(e’) pure,
[Y);e pure, s, = Ve, ea e, (|1); el pure, = [¥); e, pure, = [¥); [er, e2/x, y]e’ pure.)
= |¢);let (x,y) = e ine’ pure,

Purity at type of simply invokes the existing definition. At mixed or Boolean type, purity contains
no information. A function 7; — 7, is pure when applying it to a pure argument at 7; yields an
output pure at 7. Finally, a pure product 7; X 7, contains two elements that are pure at 7; and 7,
respectively. We represent this by stating the elimination form of a product, a let-expression, is
pure at 7 if its body €’ is pure at 7 after being substituted with two expressions pure at 7; and 7.
The following lemma states that reversal of deterministic steps preserves the purity relation.

LemMa F.6. If|¢); e =1 [¢'); €’ deterministically and |/'); e’ pure then |{/); e pure.

The proof follows directly from the definition of purity. Next, we define the standard notion of a
substitution y mapping an open expression e to a closed expression y(e). Define the compatibility
judgment y £ T, A, |/) to mean that y maps every variable x; : 7; in T to a closed term ¢; such that
- Fa,; €t 7; where A and all A; are disjoint, and |{) F A; and [¢); e; pure,..

Now we state the strengthened purity soundness theorem. When 7 is of and T is empty, the
strengthening implies the original theorem.

THEOREM F.7. IfT' Fp e: T andy eI, A |) and () E y(e), then |{); y(e) pure,.

Proor. Proceed by induction on the derivation of T Fp e : 7.

The case for T-VAR holds directly from the hypothesis. In case T-QvAL, no substitution can occur.
If a = M then purity is trivial. Otherwise, because |{/) k e we have |¢/); e pure. In case T-QINIT, no
substitution can occur, and e has only one deterministic transition and purity is trivial.

In case T-U1, by the TH, - 5 y(e) : qubit® and |¢/) £ y(e) so |¢/);y(e) pure. Any evalua-
tion |¢); U(y(e)) = |¢/'); e’ where ¢’ val is of the form |¢);U(y(e)) +— yY;U(e)) — ...
Y'Y ;U(ref[a]®) 1 Ug ¢y ;refla]®. Inverting each step, because |i/); y(e) pure we have that
the execution up to |¢’) is unique. By preservation, Uy, [{/') E ref[a]® so U, [Y'); ref[a]® pure.
By Lemma F.6, we have |¢/); U(ref[a]®) pure. Stitching the two deterministic executions together,
we conclude that |/); y(U(e)) pure.

Case T-U2 follows by the same reasoning as for T-U1, with the only difference being that we
execute a two-qubit operator Uy, g on a pair of qubits in the deterministic step.
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Case T-ENTANGLE also follows by similar reasoning. If a = M then purity is trivial. Otherwise,
every execution first evaluates y(e) to a compatible final state and value |¢/) £ [q1, 2], implying
[¥); [q1, q2] pure. Reverse this step and stitch together the deterministic executions of y(e;) and
y(e2) to obtain [/); y(entangle,(ey, e2)) pure.

In case T-ABs, we have that x : 7 Fao y(e) : 7. By the IH we have that if [{/); e’ pure, then
[¥); [e’ /x]y(e) pure,. From this we have |i/); (Ax.y(e))(e’) pure, by Lemma F.5. We also have
that |¢/); y(Ax.e) pure__, .

In case T-PAIR, we have that - Fa, y(e;) : 7y and - Fp, y(ez) : 72. By the IH we have that
[¥);y(e1) pure, and [¢);y(ez) pure,,. Thus, if we assume [/); [y(e1), y(e2)/x, y]e pure , then we
have [/); let (x,y) = (y(e1),y(e2)) in e pure, by Lemma F.5, and so [{/); (y(e1), y(e2)) pure, ...

In case T-Arp, we have that - +p, y(e1) : 71 = 72 and - Fp, y(ez2) : 7y. By the IH we have
[¥);y(e1) pure, _,,, and [{/);y(ez) pure, , thus [¢);y(ei(ez)) pure,,.

In case T-LET, we have that - 5, y(e) : 7y Xy and x : 73,y : 2 Fp, y(e’) : 7. By the IH we
have |¢); y(e) pure, ., and that if [/); e; pure_ and [{); e, pure,, then [); [e1, e2/x, y]y(e’) pure,.
Thus, we have |i/); y(let (x,y) = e ine’) pure,.

In case T-SPLITPURE, we have - +p y(e) : (01&0,)" and need to show that
[¥); splitp(y(e)) pureg ryq,r- By the IH we have that |i/); y(e) pure.

Proceed by the same reasoning as case T-U1 to fully evaluate y(e) by rule S-SprL1TS and deter-
ministically obtain [y, ¢;]¥ under the unique state [i/’).

First assume that the separability condition holds. The next step is S-SPLITPURE, and inverting it
yields its premises |/') = [¢1) ® [¢2) ® [¢)o), dom |¢)1) = Refs(qy), dom [¢)2) = Refs(qz), implying
that [{/'); q1 pure and |{/'); q; pure. Thus, if we assume |¢'); [¢:¥, ¢.¥ /x, y]e’ pure,, from Lemma F.5
we have that [¢/); let (x,y) = (¢:F, ¢2¥) in ¢’ pure,.

Now assume that the separability condition fails. Then, every evaluation of splitp(y(e)) will
next take step S-SPLITFAIL, meaning that every evaluation fails and purity holds vacuously.

The remaining cases yield outputs of mixed or Boolean type, for which purity holds trivially. O

F.2 Static Analysis for Purity

F.2.1  Purity Soundness (Theorem 8.2). We have already shown that all P annotations introduced
by the semantics of Twist without castp are on pure expressions. We next show that if the static
analysis assigns an expression e a pure quantum type, then e is pure. If so, rule S-Cast only
introduces P annotations on pure expressions, implying the soundness theorem.

ProoOF. Proceed by induction on the derivation of T +4 e : 0. We only need to examine new P
annotations introduced by the 4 judgment.

In case A-CAsTPURE, if e has pure type then by the TH it is pure, meaning castp(e) is also pure.

In case A-SPLITMIXED, g = Split(f, j) is never P, so purity is trivially satisfied.

In case A-ENTANGLE, if h is not P then purity is trivial. In addition, if f and g are both P then the
same reasoning as in the original proof applies. If f and g are not P but & is pure, we must show that
entangle (ey, e;) is pure. Suppose it is not. The first possibility is that it evaluates to an entangled
pair [ey, ez] that is entangled with some qubit & not owned by e; or e;. But this means one of e; or
ez is entangled with a; without loss of generality let it be e;. Then, some splity occurred with «
on one side and e; on the other, introducing a term for x; in the history f. Because « is not owned
by ey, x; is absent from the history g and must be present in h = Combine(f, g), contradicting the
fact that h is P. The second possibility is that the evaluation of entangle, (e;, ;) encounters an
if-expression that evaluates to a mixed state that is not discarded. But then this if-expression
appears in the evaluation of e; or e;, meaning by preservation that either f or g is M and thus
h = Combine(f, g) is M, which is also a contradiction.
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All other rules follow by the same reasoning as in the proof of Theorem F.7. O

G FULL BENCHMARK DESCRIPTIONS

Teleport-Deferred. This program implements the deferred-measurement teleportation from Sec-
tion 3. We also implemented an erroneous variant, Teleport-NoCZ, which replaces the CZ gate with
a CNOT and results in the final qubit actually being entangled, and a third variant Teleport-Measure
that measures the ancillas and uses classical rather than quantum conditioning.

AndOracle. This program inverts the phase of the state conditioned on two qubits, as may be
seen in an oracle for Grover’s algorithm. We also implement an erroneous variant AndOracle-
NotUncomputed that does not correctly uncompute the ancilla.

Bell-GHZ. This program attempts to illegally substitute a sub-state of a Greenberger-Horne-
Zeilinger state [Greenberger et al. 1989] for a Bell state, by dropping an entangled ancilla.

Deutsch. This program implements Deutsch’s algorithm [Deutsch 1992], which determines
whether a black-box function f : {0,1} — {0, 1} is the constant function. We also implemented an
erroneous variant Deutsch-BadResultBasis, which omits an essential Hadamard gate, causing the
result qubit to be in the incorrect basis, and attempts to drop an entangled ancilla.

DeutschJozsa. This program implements the Deutsch-Jozsa algorithm [Deutsch 1992], a general-
ization of Deutsch’s algorithm, which determines whether a black-box function f : {0, 1}" — {0, 1}
is constant or balanced (returns 1 for exactly half of the domain). We also implemented an erroneous
variant Deutschjozsa-MixedInit, which uses an incorrect initial state of (|00) + |11))/V?2 rather than
(]00) +101) + |10) + |11))/2 and will produce an incorrect result. This variant uses a purifying cast
to try to force the algorithm to accept this incorrect state.

Grover. This program implements Grover’s search algorithm [Grover 1996] on a two-qubit, four-
element database, locating a distinguished element in cell [11). We also implemented an erroneous
variant Grover-BadOracle, which uses AndOracle-NotUncomputed and drops an entangled ancilla. It
uses a purifying cast to try to force the algorithm to accept this incorrect oracle.

QFT. This program implements the quantum Fourier transform [Coppersmith 1994], a building
block for Simon’s algorithm and Shor’s algorithm, on three qubits. The purity specification of the
QFT is that its output has the same purity annotation as its input.

ShorCode. This program implements encoding and decoding operations for Shor’s error cor-
recting code [Calderbank and Shor 1996], which uses nine physical qubits to correct an arbitrary
single error on one qubit. The program also implements a phase flip error channel and runs error
correction on a qubit subject to phase-flip error. The purity specifications on the encoding and
decoding operations allows the program to discard the extra parity bits that are separable from the
decoded data. We also implemented an erroneous variant ShorCode-Drop, which is the result of a
programmer error that shadows a function argument that is not known to be pure.

ModMul(n). We followed the scheme of Markov and Saeedi [2012] for quantum circuits for
modular multiplication, which generalizes a predictable structural pattern for arbitrary n, with the
number of gates linear in n. For each n, we implemented conditional multiplication mod 2" — 1 by
some k and also by k~!. Applying the first operation on a n-qubit register and a condition qubit
entangles the register and qubit. Then, applying the inverse operation must disentangle the register
and condition. Thus, the program uses a purifying-split operator to verify that the condition qubit
is pure at program termination. We also implemented an erroneous variant ModMul(n)-NotInverse
where multiplication by k! is defective, resulting in a register and condition that are still entangled.
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G.1 Analysis Result Descriptions

Teleport-Deferred. We determine that the teleportation circuit satisfies its purity specification,
taking a pure qubit to another pure qubit. We also determine that the erroneous variant that
substitutes a CZ gate does not correctly separate the output qubit from the temporaries, meaning
that measuring the temporaries causes the qubit to enter a mixed state.

AndOracle. We determine that the oracle correctly uncomputes ancillas and yields a pure output.
We also determine that the variant that does not uncompute an ancilla may yield a mixed output,
violating its specification.

Bell-GHZ. We determine that the program is ill-typed due to its attempt to directly return mixed
qubits in a function whose output is specified to be pure.

Deutsch. We determine that the algorithm satisfies its specification, including the fact that an
ancilla is separable from the output and can be safely dropped. We also determine that the erroneous
variant results in an entangled ancilla and rejects the attempt to drop it at runtime.

Deutschjozsa. We determine that the algorithm satisfies its specification. For the erroneous
variant with a defective initial state, we determine at the use site of the state that it has an incorrect
purity and the attempt to directly cast the type of the state fails the static analysis.

Grover. We determine that the algorithm satisfies its specification. For the erroneous variant
with a defective oracle, the attempt to directly cast the result of the oracle fails the static analysis.

QFT. We determine that the algorithm satisfies its purity specification, taking pure inputs to
pure outputs. The result indicates that the output is correct and lacks entanglement with any other
qubit in the system.

ShorCode. We determine that the algorithm satisfies its purity specification, including the fact
that at the end of the decoding process, the extra check bits may be safely discarded without
disrupting the decoded data. For the erroneous variant with a programming error, the type checker
detects that a value not known to be pure cannot be shadowed.

ModMul(n). We determine that the algorithm satisfies its purity specification that the condition
bit is separable from the output, implying that the inverse operation was implemented correctly. For
the erroneous variant with incorrect inverse, the runtime verification fails, indicating the condition
bit is still entangled and that the algorithm is incorrect.

H FULL BENCHMARK PROGRAMS

In this section, we present the full source code for each benchmark. Several benchmarks use
syntactic features of Twist not discussed in the main paper, including inference of purity assertions
and polymorphic purity annotations, which are described in Appendix C.

H.1 Teleport-Deferred

1 fun bell_pair () : (qubit & qubit)<P> =

2 CNOT (H (ginit ()), ginit ())

3

1 fun teleport (g1 : qubit<P>) : qubit<P> =

5 let (g2 : qubit<M>, g3 : qubit<M>) = bell_pair () in

6 let (g1 : qubit<M>, g2 : qubit<M>) = CNOT (q1, g2) in

7 let g1 = H (q1) in

8 let (g2 : qubit<M>, g3 : qubit<M>) = CNOT (g2, g3) in
9 let (g1 : qubit<M>, g3 : qubit<M>) = CZ (q1, g3) in

10 let all : ((qubit & qubit) & qubit)<P> = ((q1, g2), q3) in
11 let (_ : (qubit & qubit)<P>, g3 : qubit<P>) = all in g3
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12
13 fun main () : qubit<P> = teleport (H (ginit ()))

H.2 Teleport-NoCZ
All other functions are identical to the Teleport-Deferred example.

1 fun teleport (q1 : qubit<P>) : qubit<P> =

2 let (g2 : qubit<M>, g3 : qubit<M>) = bell_pair () in

3 let (g1 : qubit<M>, g2 : qubit<M>) = CNOT (q1, g2) in

4 let g1 : qubit<M> = H (q1) in

5 let (g2 : qubit<M>, g3 : qubit<M>) = CNOT (g2, qg3) in

6 let (g1 : qubit<M>, g3 : qubit<M>) = CNOT (q1, g3) in

7 let all : ((qubit & qubit) & qubit)<P> = ((q1, g2), q3) in
8 (* Dynamic separability check failure: argument entangled *)
9 let (discard : (qubit & qubit)<P>, g3 : qubit<P>) = all in
10 let discard = measure (discard) in g3

H.3 Teleport-Measure

All other functions are identical to the Teleport-Deferred example.

1 fun teleport (gl : qubit<P>) : qubit<P> =

2 let (g2 : qubit<M>, g3 : qubit<M>) = bell_pair () in

3 let (g1 : qubit<M>, g2 : qubit<M>) = CNOT (q1, qg2) in

4 let g1 : qubit<M> = H (q1) in

5 let g3 = if measure (g2) then X (g3) else g3 in

6 let g3 = if measure (q1) then Z (g3) else g3 in

7 cast<P>(q3) (x Static analysis failure: q1 and g2 not covered *)

H.4 AndOracle

1 fun and_oracle (p@ : qubit<P>, p1 : qubit<P>) : (qubit & qubit)<P> =

2 let x = ginit () in

3 let (p@ : qubit<M>, (p1 : qubit<M>, x : qubit<M>)) = TOF (p@, (p1, x)) in
4 let (p@ : qubit<M>, (p1 : qubit<M>, x : qubit<M>)) = TOF (p@, (p1, x)) in
5 let gs : (qubit & (qubit & qubit))<P> = (x, (p@, p1)) in

6 let (x : qubit<P>, rest : (qubit & qubit)<P>) = gs in rest

7 fun main () : (qubit & qubit)<P> = and_oracle (H (qinit ()), X (qinit ()))

H.5 AndOracle-NotUncomputed

1 fun and_oracle (p@ : qubit<P>, p1 : qubit<P>) : (qubit & qubit)<P> =

2 let x = ginit () in

3 let (p@ : qubit<M>, (p1 : qubit<M>, x : qubit<M>)) = TOF (p@, (p1, x)) in
4 let p@ = Z (p@) in

5 let _ = measure x in

6 entangle<P>(p@, pl1) (* Type error: p@ and pl are mixed *)

7 fun main () : (qubit & qubit)<P> = and_oracle (H (qinit ()), X (ginit ()))

H.6 Bell-GHZ

fun main () : (qubit & qubit)<P> =
let gq1 = H (ginit ()) in
let (g1 : qubit<M>, g2 : qubit<M>) = CNOT (q1, ginit ()) in
let (g1 : qubit<M>, g3 : qubit<M>) = CNOT (q1, ginit ()) in
5 let _ = measure g3 in
6 entangle<P>(ql, qg2) (* Type error: gl and g2 are mixed *)

AW N =
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H.7 Deutsch

1
2
3
4
5

fun deutsch (uf : (qubit & qubit)<P> -> (qubit & qubit)<P>) : bool =
let input : (qubit & qubit)<P> = (H (ginit ()), H (X (ginit ()))) in
let (x : qubit<P> : qubit<P>) = uf (input) in
measure (H (x))

y -

fun cnot (xy : (qubit & qubit)<P>) : (qubit & qubit)<P> = CNOT (xy)
fun always_true (xy : (qubit & qubit)<P>) : (qubit & qubit)<P> =
let (x : qubit<M>, y : qubit<M>) = xy in
cast<P>(entangle<M>(x, X (y)))

fun always_false (xy : (qubit & qubit)<P>) : (qubit & qubit)<P> = xy

fun main () : ((bool * bool) * bool) =
((deutsch (always_false), deutsch (always_true)), deutsch (cnot))

H.8 Deutsch-BadResultBasis

All other functions are identical to the Deutsch example.

1
2
3
4
5

6

H.

1
2
3
4
5

19
20
21
22
23
24
25
26
27
28
29
30
31

32

fun deutsch (uf : (qubit & qubit)<P> -> (qubit & qubit)<P>) : bool =
(*x Dynamic separability check failure: argument entangled *)
let (x : qubit<P>, y : qubit<P>) =
uf (entangle<P>(H (qinit ()), (X (qinit ())))) in
let _ = measure (y) in
measure (H (x))

9 Deutschjozsa

type oracle = ((qubit & qubit) & qubit)<P> -> ((qubit & qubit) & qubit)<P>
type domain = (qubit & qubit)<P>

(* An (entangled) domain-codomain pair *)
type graph_pt = ((qubit & qubit) & qubit)<P>

(* Prepare domain qubits in [@> + [1> %)
fun init_domain () : (qubit<P> % qubit<P>) = (H (qinit ()), H (qinit ()))

(* Prepare output qubit in 0> - [1> %)
fun init_output () : qubit<P> = H (X ginit ())

fun test_oracle (f : oracle) : graph_pt =
let out : qubit<P> = init_output () in
let dom : (qubit<P> % qubit<P>) = init_domain () in
let all : graph_pt = (dom, out) in
let inout : graph_pt = f (all) in
let ((d@ : qubit<M>, d1 : qubit<M>), out: qubit<M>) = inout in
(* Hadamard the domain qubits )
let (inout_post : ((qubit & qubit) & qubit)<M>) =
(((H d@), (H d1)), out) in
cast<P>(inout_post)

(* A balanced function {0, 1}*2 -> {0, 1} that selects states with second
qubit [1> %)
fun is_odd (pt : graph_pt) : graph_pt =
let ((do : qubit<M>, d1 : qubit<M>), out : qubit<M>) = pt in
let (d1 : qubit<M>, out : qubit<M>) = (CNOT (d1, out)) in
let (inout : ((qubit & qubit) & qubit)<M>) = ((d@, d1), out) in
cast<P>(inout)

fun main () : graph_pt = test_oracle (is_odd)

H.10 Deutschjozsa-MixedlInit

The other functions are identical to the Deutschjozsa example.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 30. Publication date: January 2022.

Charles Yuan, Christopher McNally, and Michael Carbin



Twist: Sound Reasoning for Purity and Entanglement in Quantum Programs 30:49

1 fun init_domain () : (qubit<M> * qubit<M>) =
2 let (x : qubit<M>, y : qubit<M>) = CNOT (H (qinit ()), qinit ()) in
3 let _ = measure (y) in
4 (x, cast<M>(qinit ()))
5

6 fun test_oracle (f : oracle) : graph_pt =

7 let out : qubit<P> = init_output () in

8 let dom : (qubit<M> * qubit<M>) = init_domain () in

9 let all : graph_pt = (dom, out) in

10 let inout : graph_pt = f (all) in

11 let ((d@ : qubit<M>, d1 : qubit<M>), out: qubit<M>) = inout in

12 (*x Hadamard the domain qubits x)

13 let (inout_post : ((qubit & qubit) & qubit)<M>) =

14 (((H d@), (H d1)), out) in

15 (x Static analysis failure: mixed output of init_domain () not covered *)

16 cast<P>(inout_post)

H.11 Grover

1 type addr = (qubit & qubit)<P>

2 type oracle = (qubit & qubit)<P> -> (qubit & qubit)<P>
3 fun init_addr () : addr = entangle<P>(H qinit(), H ginit ())
4 fun diffuse (p : addr) : addr =

5 let (p@ : qubit<M>, p1 : qubit<M>) = p in

6 let (p@ : qubit<M>, p1 : qubit<M>) = (H p@, H p1) in
7 let (p@ : qubit<M>, p1 : qubit<M>) = (Z p@, Z p1) in
8 let (p@ : qubit<M>, p1 : qubit<M>) = CZ (p@, p1) in
9 let (p@ : qubit<M>, p1 : qubit<M>) = (H p@, H p1) in
10 let p = entangle<M>(p@, p1) in

1 cast<P>(p)

13 fun grover (f : oracle) : addr =
14 let addr = init_addr () in

15 let addr = f (addr) in

16 let addr = diffuse (addr) in
17 addr

19 fun final_addr (p : addr) : addr = (CZ (p))
20 fun main () : addr = grover (final_addr)

H.12 Grover-BadOracle

The other functions are identical to the Grover example.

1 fun final_addr (p : addr) : addr =
2 let (p@ : qubit<M>, p1 : qubit<M>) = p in

3 let x = ginit () in

4 let (p@ : qubit<M>, (p1 : qubit<M>, x : qubit<M>)) = TOF (p@, (p1, x)) in
5 let (x : qubit<M>, p@ : qubit<M>) = CZ (x, p@) in

6 let _ = measure x in

7 cast<P>(entangle<M>(p@, p1)) (* Static analysis failure: x not covered #*)

I

13 QFT

fun gft_sub_1 (q : qubit<'p>) : qubit<'p> =H q

let (g0 : qubit<M>, g1 : qubit<M>) = cast<M>(gs) in
let g0 = gft_sub_1 (g@) in
6 (x Controlled phase of 2 pi / 2 *x 2 %)
7 let (gs : (qubit & qubit)<M>) = CPHASE 0.250 (ql1, g@) in
8 let (g1 : qubit<M>, g@ : qubit<M>) = gs in
9 let (gs : (qubit & qubit)<M>) = (g0, q1) in
10 cast<'p>(qgs)
11
12 fun gft_sub_3 (gs : ((qubit & qubit) & qubit)<'p>) :
13 ((qubit & qubit) & qubit)<'p> =
14 let (gs : (qubit & qubit)<M>, g2 : qubit<M>) = gs in
15 let gs = gft_sub_2 (gs) in

1

2

3 fun gft_sub_2 (gs : (qubit & qubit)<'p>) : (qubit & qubit)<'p> =
1

5
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16 let (g0 : qubit<M> , g1 : qubit<M>) = gs in

17 (x Controlled phase of 2 pi / 2 *x 3 %)

18 let (g2 : qubit<M>, q@ : qubit<M>) = CPHASE 0.125 (g2, g@) in
19 let (gs : ((qubit & qubit) & qubit)<M>) = ((g@, q1), g2) in
20 cast<'p>(qgs)

22 fun qft_1 (q : qubit<'p>) : qubit<'p> = gft_sub_1 (q)

24 fun gft_2 (gs : (qubit & qubit)<'p>) : (qubit & qubit)<'p> =
25 let gs = gft_sub_2 (gs) in

26 let (g0 : qubit<M>, g1 : qubit<M>) = gs in

27 let g1 = gft_1 (q1) in

28 let (gs: (qubit & qubit)<M>) = (q@, q1) in

29 cast<'p>(qgs)

31 fun gft_3 (gs : ((qubit & qubit) & qubit)<'p>) :

32 ((qubit & qubit) & qubit)<'p> =

33 let gs = gft_sub_3 (gs) in

34 let ((q0 : qubit<M>, q1 : qubit<M>), g2 : qubit<M>) = gs in
35 let tail : (qubit & qubit)<M> = (q1, g2) in

36 let (g1 : qubit<M>, g2 : qubit<M>) = qgft_2 (tail) in

37 let (gs: ((qubit & qubit) & qubit)<M>) = ((q@, q1), g2) in
38 cast<'p>(gs)

40 fun main () : ((qubit & qubit) & qubit)<P> =
41 let gs : ((qubit & qubit) & qubit)<pure> = ((qinit(), X qinit()), qinit()) in
42 qft_3 (as)

s

.14 ShorCode

1 type triple_p = (qubit & (qubit & qubit))<P>
2 type triple_m = (qubit & (qubit & qubit))<M>
3 type nonuple_p = ((qubit & (qubit & qubit)) &
4 ((qubit & (qubit & qubit)) &
5

&
E (qubit & (qubit & qubit))))<P>
6 type nonuple_m = ((qubit & (qubit & qubit)) &
7 ((qubit & (qubit & qubit)) &
8 (qubit & (qubit & qubit))))<M>

10 (* Encode a qubit with the three-qubit bit-flip code *)

11 fun enc_bit (q : qubit<'p>) : (qubit & (qubit & qubit))<'p> =
12 let (al : qubit<M>) = qginit () in

13 let (a2 : qubit<M>) = qginit () in

14 let (q : qubit<M>, a2 : qubit<M>) = (CNOT (q, a2)) in

15 let (q : qubit<M>, al : qubit<M>) = (CNOT (q, al)) in

16 let (out : (qubit & (qubit & qubit))<M>) = (q, (al, a2)) in
7 cast<'p>(out)

19 (* Encode a qubit with the three-qubit phase-flip code *)

20 fun enc_phase (q : qubit<'p>) : (qubit & (qubit & qubit))<'p> =

21 let (x : qubit<M>, (y : qubit<M>, z : qubit<M>)) = enc_bit (q) in
22 let (out : (qubit & (qubit & qubit))<M>) = (H x, (Hy, H z)) in
23 cast<'p>(out)

25 (* Encode a qubit with the nine-qubit Shor code by concatenating the bit- and
26  * phase-flip codes x)

7 fun enc_shor (q : qubit<P>) : nonuple_p =

28 let (x : qubit<M>, (y : qubit<M>, z : qubit<M>)) = enc_phase (cast<M>(q)) in
29 let (out : nonuple_m) = (enc_bit (x), (enc_bit (y), enc_bit (z))) in

30 cast<P>(out)

32 (* Decode the three-qubit bit-flip code *)

33 fun dec_bit (enc : (qubit & (qubit & qubit))<'p>) :

34 (qubit & (qubit & qubit))<'p> =

35 let (g0 : qubit<M>, tail : (qubit & qubit)<M>) = enc in

36 let (g1 : qubit<M>, g2 : qubit<M>) = tail in

37 let (g0 : qubit<M>, g1 : qubit<M>) = (CNOT (g@, q1)) in

38 let (g0 : qubit<M>, g2 : qubit<M>) = (CNOT (g0, g2)) in

39 let (g2 : qubit<M>, (q1 : qubit<M>, q@ : qubit<M>)) = TOF (g2, (ql, g@)) in
40 let env : (qubit & qubit)<M> = entangle<M>(ql, q2) in
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41 let out : (qubit & (qubit & qubit))<M> = entangle<M>(q@, env) in
42 cast<'p>(out)
43

44 (* Decode the three-qubit phase-flip code x)

45 fun dec_phase (enc : (qubit & (qubit & qubit))<'p>) :

46 (qubit & (qubit & qubit))<'p> =

47 let (x : qubit<M>, (y : qubit<M>, z : qubit<M>)) = enc in

48 let gs : (qubit & (qubit & qubit))<M> = (H x, (H y, H z)) in

49 let out : (qubit & (qubit & qubit))<'p> = dec_bit (cast<'p>(gs)) in
50 out

52 (* Decode the Shor code, without discarding the extra bits *)
53 fun dec_shor (enc : nonuple_p) : nonuple_p =

54 let (x : triple_m, (y : triple_m, z : triple_m)) = enc in
55 let (x : triple_m, (y : triple_m, z : triple_m)) =

56 (dec_bit (x), (dec_bit (y), dec_bit(z))) in

58 let (x@ : qubit<M>, (x1 : qubit<M>, x2 : qubit<M>)) = x in

59 let (y@ : qubit<M>, (y1 : qubit<M>, y2 : qubit<M>)) =y in

60 let (z0@ : qubit<M>, (z1 : qubit<M>, z2 : qubit<M>)) = z in

61 let heads : triple_m = (x0, (y@, z@)) in

62 let (x@ : qubit<M>, (y@ : qubit<M>, z@ : qubit<M>)) = dec_phase (heads) in

64 let x = (x0, (x1, x2)) in

65 lety = (ye, (y1, y2)) in

66 let z = (z0, (z1, z2)) in

67 let dec : nonuple_m = (x, (y, z)) in
68 cast<P>(dec)

70 fun test_bitflip (q : qubit<P>) : qubit<P> =

71 let (g0 : qubit<M>, tail : (qubit & qubit)<M>) = enc_bit (q) in
72 let (g1 : qubit<M>, g2 : qubit<M>) = tail in

73 let gs : (qubit & (qubit & qubit))<M> = (g0, (q1, g2)) in

74 let (q : qubit<P>, env : (qubit & qubit)<P>) =

75 dec_bit (cast<P>(gs)) in

78 (* Accept a qubit and a noise operation. Encode the qubit, apply the given noise
79  * operation on the physical qubits, then decode and discard the extra bits. *)
80  fun shor_ecc (qop : (qubit<P> * (nonuple_p -> nonuple_p))) : qubit<P> =

81 (*x Encode the qubit *)

82 let (g : qubit<P>, op : nonuple_p -> nonuple_p) = qop in

83 let enc = enc_shor (q) in

84 (*x Disturb the encoded state with the noise operation *)
85 let enc = op (enc) in

86 (x Decode and discard the parity bits )

87 let dec = dec_shor (enc) in

88 let (x : triple_p, (y : triple_p, z : triple_p)) = dec in
89 let (dec : qubit<P>, others : (qubit & qubit)<P>) = x in
90 dec

91

92 (x A unitary channel that produces a single phase flip *)
93 fun phaseflip_channel (enc : nonuple_p) : nonuple_p =

94 let (x : triple_m, (y : triple_m, z : triple_m)) = enc in
95 let (x@ : qubit<M>, x_tail : (qubit & qubit)<M>) = x in
96 let x@ = Z x@ in

97 let x : triple_m = (x@, x_tail) in

98 let enc : nonuple_p = (x, (y, z)) in

99 cast<P>(enc)

100

101 fun main () : qubit<P> = shor_ecc ((H (ginit ()), phaseflip_channel))

H.15 ShorCode-Drop
All other functions are identical to the ShorCode example.
fun enc_bit (q : qubit<'p>) : ((qubit & qubit) & qubit)<'p> =
let (al : qubit<M>) = qginit () in

1

2

3 let (a2 : qubit<M>) = qginit () in

4 let (q : qubit<M>) = qginit () in (* Type error: drops shadowed q *)
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5 let (q : qubit<M>, a2 : qubit<M>) = (CNOT (q, a2)) in

6 let (q : qubit<M>, al : qubit<M>) = (CNOT (q, al)) in

7 let (out : ((qubit & qubit) & qubit)<M>) = ((q, al), a2) in

cast<'p>(out)

H.16 ModMul(4)

We next show the modular multiplication benchmark for n = 4. All other benchmarks in this family
are very similar.

1 type five = (qubit & (((qubit & qubit) & qubit) & qubit))<P>

2 type four_m = (((qubit & qubit) & qubit) & qubit)<M>

3 type four_p = (((qubit & qubit) & qubit) & qubit)<P>

4

5 (x controlled multiply by 7 mod 15,

6 % using negation followed by three controlled swaps *)

7 fun mult7 (cqgs : five) : five =

8 let (c : qubit<M>, gs : four_m) = cgs in

9 let (((q1 : qubit<M>, g2 : qubit<M>), g3 : qubit<M>), g4 : qubit<M>) = gs in
10 let (¢ : qubit<M>, g1 : qubit<M>) = CNOT (c, q1) in

1 let (c : qubit<M>, g2 : qubit<M>) = CNOT (c, g2) in

12 let (¢ : qubit<M>, g3 : qubit<M>) = CNOT (c, g3) in

13 let (¢ : qubit<M>, g4 : qubit<M>) = CNOT (c, g4) in

14 let (c : qubit<M>, (g2 : qubit<M>, g3 : qubit<M>)) = FRED (c, (g2, g3)) in
15 let (c : qubit<M>, (g1 : qubit<M>, g2 : qubit<M>)) = FRED (c, (g1, g2)) in
16 let (c : qubit<M>, (q1 : qubit<M>, g4 : qubit<M>)) = FRED (c, (ql, g4)) in
17 let res : five = (c, (((al, 92), q3), g4)) in

18 res

19

20 (* controlled multiply by 13 mod 15 *)

21 fun mult13 (cgs : five) : five =

22 let (c : qubit<M>, gs : four_m) = cgs in

23 let (((q1 : qubit<M>, g2 : qubit<M>), g3 : qubit<M>), g4 : qubit<M>) = gs in
24 let (c : qubit<M>, g1 : qubit<M>) = CNOT (c, q1) in

25 let (¢ : qubit<M>, g2 : qubit<M>) = CNOT (c, g2) in

26 let (¢ : qubit<M>, g3 : qubit<M>) = CNOT (c, g3) in

27 let (c : qubit<M>, g4 : qubit<M>) = CNOT (c, g4) in

28 let (c : qubit<M>, (g1 : qubit<M>, g4 : qubit<M>)) = FRED (c, (ql, g4)) in
29 let (¢ : qubit<M>, (g1 : qubit<M>, g2 : qubit<M>)) = FRED (c, (g1, g2)) in
30 let (c : qubit<M>, (g2 : qubit<M>, g3 : qubit<M>)) = FRED (c, (g2, g3)) in
31 let res : five = (c, (((ql, 92), qg3), g4)) in

32 res

33

34 fun z () : qubit<P> = qginit ()

35 fun o () : qubit<P> = H (qinit ())

36 fun main () : (qubit<P> * four_p) =

37 let ¢ =0 () in

38 (* 0b1001 = 9 *)

39 let num : four_p = ((((o ), z O), z O), o ) in

40 let (c : qubit<P>, rest : four_p) = mult13 (mult7 (entangle<P>(c, num))) in
41 (* restored to 0b1001 *)

42 (c, rest)

H.17 ModMul(4)-Notlnverse
All other functions are identical to the ModMul(4) example.

fun mult13 (cgs : (qubit & (((qubit & qubit) & qubit) & qubit))<P>) :

1

2 (qubit & (((qubit & qubit) & qubit) & qubit))<P> =

3 let (c : qubit<M>, gs : (((qubit & qubit) & qubit) & qubit)<M>) = cgs in

4 let (((q1 : qubit<M>, g2 : qubit<M>), g3 : qubit<M>), g4 : qubit<M>) = gs in
5 let (¢ : qubit<M>, g1 : qubit<M>) = CNOT (c, q1) in

6 let (¢ : qubit<M>, g2 : qubit<M>) = CNOT (c, g2) in

7 let (c : qubit<M>, g3 : qubit<M>) = CNOT (c, q3) in

8 let (¢ : qubit<M>, g4 : qubit<M>) = CNOT (c, qg4) in

9 let (c : qubit<M>, (q1 : qubit<M>, g4 : qubit<M>)) = FRED (c, (ql, g4)) in
10 let (¢ : qubit<M>, (g1 : qubit<M>, g3 : qubit<M>)) = FRED (c, (ql, g3)) in (* WRONG =*)
11 let (c : qubit<M>, (g2 : qubit<M>, g3 : qubit<M>)) = FRED (c, (g2, g3)) in
12 let res : (qubit & (((qubit & qubit) & qubit) & qubit))<P> =
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13 (c, (((a1, a2), a3), g4)) in
14 res

16 fun main () : (qubit<P> % four_p) =

17 let c =0 () in

18 let num : four_p = (((C0 O), z O), z ), o )) in

19 (* Dynamic separability check failure: argument entangled *)

20 let (c : qubit<P>, rest : four_p) = mult13 (mult7 (entangle<P>(c, num))) in
21 (c, rest)
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