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Abstract:

The CERN Quantum Technology Initiative declared five quantum computing and algo-
rithms projects of interest to the HEP community. One of these projects is particle tracking
reconstruction. Particle tracking reconstruction is a fundamental research aspect for parti-
cle collider experiments, which aim to validate the elementary particle theories through the
observation of particle trajectories after collisions. With the upgrade of the Large Hadron
Collider (LHC) to High Luminosity (HL-LHC) at CERN in the near future (circa 2027), the
rate of collisions will be further ramped up, yielding many more detector hits and a larger
scale of data. Therefore, being able to efficiently identify the particle trajectories from data
of a large scale and increased complexity may be the key to unveil the nature of particle
physics. With the development of quantum computers on its own growth curve, untangling
the information from big data via quantum computing appears to be a promising solution.
Our work focused on improving the existing state-of-the-art of Quantum Graph Neural Net-
works (QGNNs) to solve the particle tracking reconstruction problem. Specifically, we have
have resolved the vanishing/exploding gradient problem during early stages of training, in-
troduced new ansätze for the parameterized quantum circuits (PQCs) used in the Edge/Node
networks, and tested these new ansätze on a modified dataset after pre-processing. After
experimenting with a variety of different circuit architectures, we have constructed two high
performing circuit ansätze: “qc102_pqc(VanBuren)” and “qc103_pqc(Coolidge)”. Both
circuits, coupled together with an improved QGNN outperform the “qc10_pqc” ansätze
used by CERN in the original experiment on a smaller dataset.
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1 Overview

Figure 1: A scheme of the full detector layout for the virtual TrackML detector. Source: [1, 2]

1.1 Quantum graph neural networks for particle tracking
To understand the structure of subatomic particles and the laws of nature governing them, particle physicists
use colliders as a research tool to accelerate particles to very high speeds and energies in order to cause
collisions to happen. In each collision, particles are scattered in every direction. The detectors, also known
as “trackers,” that are spread around the device can measure particles properties (such as momentum,
time...). When the particles pass through the detectors, “hits” are registered without loss of energy to
the particle. The challenge comes in reconstructing the particle trajectories in 3D from the detector data.
Particularly, the Large Hadron Collider (LHC) [3] at CERN is planned to be completely upgraded to the
High Luminosity Large Hadron Collider (HL-LHC) by the end of 2027 [4]. The significantly rising rate
of collisions coming from the HL-LHC will not only bring more high-energy physics to explore, but also
subsequent challenges to reconstruct the particle tracking with much larger amounts of data. Accordingly,
the search for more efficient algorithms to tackle the particle track reconstruction becomes urgent and
critical. CERN even hosted a Kaggle challenge named “TrackML” [6] in 2018, intending to encourage

Figure 2: A graph representation of track hit data. Source: [5]

people of different academic/professional backgrounds to try and solve this particle tracking reconstruction
problem. The TrackML Challenge dataset contains 10000 events to simulate the HL-LHC conditions [1].
Each event has O(105) space-point hits, corresponding to O(104) particles. With such an exponentially
large amount of data, it is conceivable to seek out solutions that may exist from Maching Learning (ML) or
Deep Learning (DL) approaches. The idea to implement Quantum Graph Neural Networks (QGNNs) for
the particle tracking problem is as follows: Firstly, in the TrackML detector layout (Fig. 1), the geometry of
the detected “hits” distributed in real space is layer-by-layer (Fig. 2). The hits can be the “nodes” while the
traveling path between hits (from one layer to the next layer) can be the “edges” if we borrow the language
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from Graph Neural Networks (GNNs). Therefore, applying GNNs to the measured particle data appears to
be a promising way to reconstruct the particle trajectories [5]. Secondly, with the rapid development and
growth of quantum computing (QC), a fertile area of research is Quantum Machine Learning (QML) where
qubits can be used directly in a neural network. By replacing each node of the GNN structure as a qubit
and constructing the corresponding quantum circuits, we can combine both DL and QC into the QGNN
approach to attack the particle tracking reconstruction problem.

In prior work [2], the authors mentioned problems with training times and vanishing gradients. We hope
during this short period of time to look into these issues as well as attempting to benchmark these circuits
on actual quantum hardware instead of the classical simulators that the authors used.

1.2 Vanishing/Exploding Gradient Problem
A known issue of recurrent neural networks is the vanishing gradient problem and the quantum graph neural
network used in this work is no exception. Training an RNN requires using back-propagation through time
(BPTT), which means that you choose a number of time steps N , and you unroll your network so that it
becomes a feed-forward neural network (FFNN) with N duplicates of the original network.

Figure 3: An unrolled recurrent neural network. Source: [7]

So training an RNN with BPTT is equivalent to unrolling the RNN into a deep FFNN and proceeding
to calculate the gradients as you normally would with a FFNN (backpropagation). However, we soon face
difficulties with this approach. It becomes unwieldy to compute the gradients of the early layers of the
unrolled RNN as N scales. This is due to the nature of BPTT, where the early layer’s gradients are the
products of all succeeding terms and thus are prone to vanishing or exploding gradients.

The quantum graph neural network proposed in existing literature uses a similar recurrent architecture
where each layer/step of message passing can be thought of as a time step, and thus faces the vanishing
gradient problem as the number of cycles of message passing increase. Our project aims to provide a solution
to the vanishing gradient problem faced by quantum graph neural networks. In the following section, we
consider how we draw from the progress of RNNs in classical machine learning to introduce a novel solution
to help with the training of QGNNs.
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Figure 4: The information of the highlighted initial node propagates through the graph network with each
layer of message passing (propagation). Source: [8]

2 Data Analysis & pre-processing
The raw data used in our work is from the TrackML dataset [1], which contains 10000 events. Each event
refers to each launched collision happening at z = 0 (after the particle beams propagate along the z-
axis), which involves roughly 8k hits. The dataset includes the spatial coordinates (and also velocities,
momentums...etc.) of each particle from each hit. Our task is to convert these datasets to graph datasets
for QGNN implementation.

In the original QGNN paper [2], the authors mention that training time was on the order of a week even
with a reduced dataset (100 events out of 10000 events). For this project, we unfortunately don’t have a
full week and are hoping to test and compare the vanishing gradient issues among different quantum circuit
models, so it will be necessary to find a set of criteria to decrease the amount of data we process, all-the-while
keeping important connections and original distributions. If successful, then the results we obtain should
offer insight into how an even smaller dataset might extrapolate to the overall, larger dataset.

2.1 Analysis of the Original Data
The original (unpre-processed) data as in Fig. 5 is hard to distinguish visually. The “true” paths and “fake”
paths are across each other densely, prohibiting us to analyze. The meanings of the physical quantities are
explained as follows: r =

√
x2 + y2 is the transverse radius in the (x−y) plane. ϕ ∈ [−π, π] is the azimuthal

angle in the (x − y) plane, with ϕ = 0 denoting the x-axis. The pseudo-rapidity η = log(tan(θ/2)) quantifies
the similarity along the z-axis, with the polar angle θ ∈ [0, π] measured from the z-axis. For example,
η = ±∞ is very close to ±z direction, while η = 0 is vertical to z-axis. Due to the cylindrical symmetry
of the particle beams collisions along the z-axis, we can divide the space along the z-axis by two and the
transverse space (x − y plane) by N sections (N = 8 in all the path graphs in Sec. 2). In fact, the condensed
paths in Fig. 5 are even just from one of the 16 equal divisions in the sptial space. So it is very essential to
pre-process the data.

2.2 Data pre-processing
Before we pre-processed our data, we decided to see how the pre-processed data would look like under certain
selection constraints in the original paper [2]. Fig. 6 is one of the subfigures of their pre-processed data,
which demonstrates more true edges than fake edges, thus making the model training data biased.

In the TrackML detector layout (Fig. 2), there are three kinds of barrel detectors expressed in differ-
ent colors arranged layer-by-layer horizontally and vertically. In the original paper [2], they focus on the
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Figure 5: One of the subfigures of the unpre-processed data from one event.

Figure 6: The pre-processed data from the original QGNN paper [2,9]. One of 16 subgraphs created from a
single event. Source: [9]

centralized 10 layers (volumns 8, 13 and 17 in Fig. 1). They even applied the following criteria to deduce
the amount of data and eliminate illogical edges in the graph, as the following table. Note that |pT | is the

|pT | > 1 GeV
∆ϕ < 0.0006
z0 < 100 mm
η [−5, 5]
ϕ [−π, π]

magnitude of momentum along the radius direction and z0 is the maximum cutoff of z-coordinate.
Following the criteria of the original QGNN paper [2], we intended to pre-process our data such that the

particle trajectories were sparse and distinguishable, but producing more fake paths than true paths. In this
way, we could generate datasets that would potentially be harder to train. The settings we use to generate
the graphs like Fig. 7 were:

Also, we only keep

Page 5/9

https://cern.ch
https://quantum-computing.ibm.com
https://quantumai.google/


QHack 2022 Project Submission

|pT | > 1 GeV
∆ϕ < 0.0006
z0 < 700 mm
η [−3, 3]
ϕ [−3π/4, 3π/4]

Figure 7: The information of the highlighted initial node propagates through the graph network with each
layer of message passing (propagation). Source: [8]

3 Solutions to the Vanishing Gradient Problem
3.1 Activation function improvements

Figure 8: The Quantum Graph Neural Network model used in this work. Source: [2]

Parsing through the existing QGNN architecture, our team noticed the prevalence of sigmoid activation
functions throughout all layers of the network. Naturally, we wondered why. After speaking with the lead
author of the original paper, we realized that it was simply used to meet the parameter constraints of
quantum gates, [−π, π]. Further, due to the 2π periodicity of these quantum gates, the quantum parameters
must be constrained within [0, π]. Such a constraint is effectively achieved by applying a π factor to the
output of each sigmoid. So we understood that the motivation behind the use of sigmoid activation functions
throughout the network was to adhere to the [0, 1] bounds.

However, it is well understood in the machine learning literature that sigmoid activations in between
layers can often lead to vanishing gradients.

Sigmoid(x) = 1
1+e−x

As you can see, the gradient for the sigmoid function will saturate and when using the chain rule, it will
shrink. By contrast, the derivative for ReLU is always 1 or 0. The argument for using ReLU activation
functions within the hidden layers is made even stronger when considering that ReLU remains the most
widely used activation function in classical graph neural networks.
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So motivated by the appeal of ReLU, our group probed the question of whether it is possible to adapt a
ReLU function to the QGNN such that one can both benefit from the rich gradients that ReLU provides while
conforming to the [0, 1] output bounds that are required for all classical layers that feed into a parameterized
quantum circuit. In this project, we proved the affirmative. We substituted all of the sigmoid activation
functions except for the edge network outputs with ReLU activations that are paired with a rescaling layer
which is used to re-scale all tensor values between [0, 1].

By employing this technique, the QGNN was immune to vanishing gradients for up to 50 more layers in
comparison to the original architecture based upon the sigmoid activation.

3.2 Circuit Ansätze Analysis
Our team consulted the lead author of the original QGNN paper [2] about resolving the vanishing/exploding
gradient problem. After confirming that this was an issue, we utilized some recent work from Google [10] to
diagnose the gradient variance in different circuit architectures. After running existing circuits through this
custom routine, we confirmed that less connected circuit architectures such as TTN and MPS are more
robust to the vanishing gradient problem.

Figure 9: Prevalence of the Vanishing Gradient in the Various Circuit Ansätze. Source: [10]

Figure 10: 102 Van Buren Ansatz on 8 qubits and 12 qubits before measurement.
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Figure 11: 102 Van Buren and 103 Coolidge vs 10PQC and 19PQC in terms of Vanishing Gradient Prevalence

Once confirming the existing ansätze it then allowed us to move on to evaluating variance of new ansätze
we chose to experiment with. While having higher variance in the circuit architecture seems to be a necessary
condition towards better training it is not a sufficient one. This was already known in the prior work re:
TTN and MPS – these have high variance, but also less expressibility. We found that the new circuits
outperform existing onese in terms of performance and have less vanishing gradients.

4 Results
In summary, the CERN Quantum Technology Initiative declared five quantum computing and algorithms
projects of interest to the HEP community, which can be of benefit to humanity. The ambitions of CERN
and the HEP community are large and it is reasonable that quantum computing has been folded into that
large ambition. We have chosen to focus our efforts on assisting one of these projects, namely particle
tracking reconstruction via QGNNs. Throughout the week we have performed a holistic diagnosis of the
problem and came up with promising results. Our new Quantum Graph Neural Network together with the
“qc102_pqc(VanBuren)” ansätze outperformed the best circuit in the repository “qc10_pqc” in the precision
metric by 6%, which in the context of the newly generated dataset gives a good indication that our process
would scale well to the larger dataset.
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