XcalableMP

(ex-scalable-em-p)
Language Specification

Version 1.1

XcalableMP Specification Working Group

November, 2012

Copyright (©2008-2012 XcalableMP Specification Working Group. Permission to copy with-
out fee all or part of this material is granted, provided the XcalableMP Specification Working
Group copyright notice and the title of this document appear. Notice is given that copying is
by permission of XcalableMP Specification Working Group.

Contents

1.2

YCOPE| v e e e e

3

Organization of this Document|

T4

Changes from Version 1.0]

[2 Overview of the XcalableMP Model and Language|

PR

Global-view Programming Model|

25

Local-view Programming Model. oo 0000,

R.7

Base Languages|

2.8

FOSSATY] e e e e e e
[2.8.1 Language Terminology|.,
[2.8.2 Node Terminology|
[2.8.3 Data Terminology| o oo
2.8.4 Work Terminology|
[2.8.5 Communication and Synchronization Terminology|
[2.8.6 Local-view Terminology| 000

[3.3

Template and Data Mapping Directives|

[3.3.1 template Directive|. L
13.3.2 Template Reterence] oo

.33 distribute Directivel o oo
[3.3.4 align Directive|.o

.35 shadow Directivelo
[3.3.6 template_fix Construct|. oL

B

Work Mapping Construct|

[3.4.3 loop Construct| L
[3.4.4 array Construct|

ii

NN =

N OO U W WwW

[T gy
_ o O O

B5.1 reflect Constructl 39
[3.5.2 gmove Construct| 41
8.5.3 barrier Constructl o 43
[3.5.4 reduction Constructl 0. 43
B55 bcast Construct] 46
[3.5.6 wait_async Construct| Lo L 47
[3.5.7 async Clause| 48

[4 Support for the Local-view Programming] 49
4.1 Rules Determining Image Index|, 49
4.1.1 Primary Image Index|{, 49
[4.1.2 Image Index Determined by a task Directive| 50
[4.1.3 Current Image Index|{ oo oo 50
4.1.4 Image Index Determined by a Non-primary Node Array| 50
4.1.5 Image Index Determined by an Equivalenced Node Array| 50
4.1.6 On-node Image Index| 51

4.2 Basic Concepts| L 51
4.2.1 Examples| 51

4.3 coarray Directive]o 52
[4.3.1 Purpose and Form of the coarray Directive| 52
[4.3.2 An Example of the coarray Directive| 53

4.4 image Directive|. oL 54
[4.4.1 Purpose and Form of the image Directive| 54
[4.4.2 An Example of the image Directivel. 54

4.5 Image Index Translation Intrinsic Procedures| 55
[4.5.1 Translation to the Primary Image Index| 55
[4.5.2 Translation to the Current Image Index| 56

4.6 Examples of Communication between Tasks| 56
4.7 [C] Coarrays in XcalableMP CJ|. 59
4.7.1 [C] Declaration of Coarrays|. 59
[4.7.2 [C] Reference of Coarrays| 60
|4.7.3 [C] Syncronization of Coarrays| 60

4.8 Directives for the Local-view Programming] 61
4.8.1 [F] local alias Directivel 61
[4.8.2 post Construct| L 64
483 wait Constructl L 65
[4.8.4 [C] lock/unlock Construct|. 66

[> Base Language Extensions in XcalableMP C| 69
[b.1 Array Section Notation| 69
5.2 Array Assignment Statement| oo 0oL 70
[5.3 Built-in Functions for Array Section| L. 71
b4 Pointer to Global Datal. oo oo 71
[5.4.1 Name of Global Array| 71
[5.4.2 The Address-of Operator] 71

5.5 Dynamic Allocation of Global Datal. 71
[5.6 The Descriptor-otf Operator| 72

iii

61 General Ruld 73
6.2 Argument Passing Mechanism in XcalableMP Fortran| 73
|6.2.1 Sequence Association of Global Datal 74
16.2.2 Descriptor Association of Global Datal 77

6.3 Argument Passing Mechanism in XcalableMP C| 80
[7 Intrinsic and Library Procedures| 85
7.1 [F] Intrinsic Functions|. L o 85
[(.1.1 xmp_desc_of| 85

7.2 System Inquiry Functions| oL 85
[(.2.1 xmp_all modenum| 86
[(.2.2 xmp_all numnodes|. 86
[(.2.3 xmpmodemnum|. 86
[(.24 xmpnummnodes| 86
[7.20 xmpwtime|l. L 87
[72.6 =xmpwtickl. 87

(7.3 Synchronization Functions|. 87
[(.3.1 xmp_test_async| 87

7.4 Memory Allocation Functions| 0oL 88
[7.4.1 [C] xmpmalloc| 88

(7.5 Mapping Inquiry Functions| 88
[(.0.1 xmpmnodesndims|. oo 88
[(.0.2 xmpnodes_index|. oo 89
[75.3 xmpmnodes_size| 89
[(.0.4 xmpnodes_attr] 90
[(.0.5 xmp_nodes_equivl. 90
[7.5.6 xmp_template fixed|. o 91
[(.0.7 xmp_templatendims|. 91
[7/.0.8 xmp_template_lbound| 92
[7.0.9 =zmp_template ubound|o 92
[75.10 xmp_dist format|. 93
[7.0.11 xmp_dist_blocksize|. 93
[7.0.12 xmp_dist_gblockmap|. 94
[7.5.153 xmp.distmodes| o o 94
[(.0.14 xmp_dist_axis| 95
[(.0.10 xmp_align axis| 95
[7.5.16 xmp_align offset| 96
[(.0.17 xmp_align replicated| 96
[7.0.18 xmp_align _template|. L 97
[7.0.19 xmp_array ndims|. L 97
[7.5.20 xmp_array_lshadow| 97
[(.0.2]1 xmp_array_ushadow| o 98
[(.0.22 xmp_array_lbound|o o 98
[7.5.23 xmp_array ubound| 99

(7.6 [F] Array Intrinsic Functions of the Base Languagel 99
[.7 TCT Built-in Elemental Functions] 100
[7.8 Intrinsic/Built-in Transformational Procedures| 101
[/.8.1 xmp_scatter| 101
[/.8.2 xmp_gather| 101

v

[/.8.6 =xmp_packl
[(.3.4 xmp_unpack|
[(.8.5 xmp_transpose|
[(.3.06 xmpmatmul|l
[(.8.7 xmp_sortup|
[(.8.8 =xmp_sort_down|

8 OpenMP in XcalableMP Programs|

[Bibliography|

[A Programming Interface for MPI|
|A.1 xmp_get mpi comm|
[A.2 xmp_initmpi|
[A.3 xmp_finalizempi|

B F N cal Tal o
IB.1 Design of the Interface|
IB.2 Extended Mapping Inquiry Functions|

IB.2.1 xmp_array gtol|
[B.2.2 xmp_array_lsize|.
[B.2.3 xmp_array_laddr|.
[B.2.4 xmp_array_lead. dim|

................

[C Memory-layout Model|

|D XcalableMP I70|

[D.1 Categorization of /O]
|D.1.1 Local I{Ol

[D.1.2 Master I/O[F].

D13 Globall/O]

[D.2.1 File Connection in Local 1/0|

[D.2.2 [F] File Connection in Master

7

[D.2.3 File Connection in Global 1/0|
D.3 Master [/O]
[D.4 [F] Global I/O|
[D.4.1 Global I/O File Operation]. .

[D.4.2 Collective Global I/O Statement]

[D.4.3 Atomic Global I/O Statement|

[D.4.4 Direct Global I/O Statement]|
[D.5 [C] Global I/O Library|

[D.5.1 Global I/O File Operation]. .

[D.5.2 Collective Global I/O Functions]

@.5.3 Atomic Global 1/O Functions|
[D.5.4 Direct Global I/O Functions|

(£ Sample Programs|

105

107

109
109
109
110

111
111
111
112
112
113
113
113

117

119
119
119
119
119
120
121
121
121
121
122
123
124
126
126
127
127
130
132
134
135

137

List of Figures

I Hardware Modell 3
[2.2 Parallelization by the Global-view Programming Model)
2.3 Local-view Programming Model|. 6
2.4 Global View and Local Viewl 7
3.1 Example of Shadow of a Two-dimensional Array| 26
[3.2 Example of Periodic Shadow Reflection| 41
6.1 Sequence Association with a Global Dummy Argument| 75
6.2 Sequence Association with a Local Dummy Argument| 76
6.3 Sequence Association of a Section of a Global Data as an Actual Argument withl

la Local Dummy Argument|. o 77
[6.4 Sequence Association of an Element of a Global Data as an Actual Argument|

[with a Local Dummy Argument|. 78
6.5 Sequence Association with a Global Dummy Argument that Has Full Shadow| . . 78
[6.6 Descriptor Association with a Global Dummy Argument|. 80
6.7 Descriptor Association with a Local Dummy Argument| 81
6.8 Passing to a Global Dummy Argument|. 82
6.9 Passing to a Local Dummy Argument| 83
[6.10 Passing an Element of a Global Data as an Actual Argument to a Local Dummy|

.. 83
IB.1 Invocation of a Library Routine through an Intertace Procedurel. 111
|C.1 Example of Memory Layout in the Omni XcalableMP compiler| 118

vi

List of Tables

(.1 Bult-in Flemental Functions i XcalableMP ¢o 000000000
D.1 Global I/O]
[D.2 Operations for T/O|

vii

Acknowledgment

The specification of XcalableMP is designed by the XcalableMP Specification Working Group,
which consists of the following members from academia, research laboratories, and industries.

@ L atSUya ADE .ot RIKEN
o Tokuro Anzaki Hitachi
e Taisuke Boku ... University of Tsukuba
e Toshio Endo ... TITECH
e Yoshinari Fukui JAMSTEC
e Yasuharu Hayashi NEC
o Atsushi Horl ... RIKEN
e Kohichiro Hottao Fujitsu
e Hidetoshi Iwashita Fujitsu
e Susumu Komae AXE
e Atsushi Kubota Hiroshima City University
o Jinpil Lee ... oo University of Tsukuba
o Toshiyuki Maedaoouiii RIKEN
e Motohiko Matsuda i RIKEN
e Yuichi Matsuo JAXA
e Kazuo MInamioo i RIKEN
® Shoji MOTTEA ..ttt e e e e e AXE
o Hitoshi Murain RIKEN
o Kengo Nakajima e University of Tokyo
e Takashi Nakamuraoiuiiiiiiii i e JAXA
e Tomotake Nakamuraoiiiiii i RIKEN
o Mamoru NaKanoo i e CRAY
e Masahiro Nakao i University of Tsukuba
o Takeshi Nanri i e Kyusyu University
o Kiyoshi Negishi ... e Hitachi
e Satoshi Ohshima University of Tokyo
e Yasuo Okabe ... Kyoto University
e Hitoshi Sakagami i e NIFS
o Tomoko Sakari i Fujitsu
e Shoich Sakon NEC
e Mitsuhisa Sato University of Tsukuba
e Taizo ShimizZuouiiii e PC Cluster Consortium
e Takenori Shimosakaot e RIKEN
e Yoshihisa Shizawa i RIST

Shozo TaKkeoKka e AXE

[}

o Hitoshi Ueharaoune i i JAMSTEC
e Masahiro Yasugi ... Kyoto University
o Mitsuo YOKOKAWA ..ot RIKEN

This work was supported by “Seamless and Highly-productive Parallel Programming Envi-
ronment for High-performance Computing” project funded by Ministry of Education, Culture,
Sports, Science and Technology, Japan, and is supported by PC Cluster Consortium.

X

Chapter 1

Introduction

This document defines the specification of XcalableMP, a directive-based language extension
of Fortran and C for scalable and performance-aware parallel programming. The specification
includes a collection of compiler directives and intrinsic and library procedures, and provides a
model of parallel programming for distributed memory multiprocessor systems.

1.1 Features of XcalableMP

The features of XcalableMP are summarized as follows:

e XcalableMP supports typical parallelization based on the data-parallel paradigm and work
mapping under “global-view” programming model, and enables parallelizing the original
sequential code using minimal modification with simple directives, like OpenMP [I]. Many
ideas on “global-view” programming are inherited from High Performance Fortran (HPF)
2].

e The important design principle of XcalableMP is “performance-awareness.” All actions of
communication and synchronization are taken by directives (and coarray features), which
is different from automatic parallelizing compilers. The user should be aware of what
happens by the XcalableMP directives in the execution model on the distributed memory
architecture.

e XcalableMP also includes features from Partitioned Global Address Space (PGAS) lan-
guages, such as coarray of the Fortran 2008 standard, for the “local-view” programming.

e Extention of existing base languages with directives is useful to reduce code-rewriting and
education costs. The XcalableMP language specification is defined on Fortran or C as a
base language.

e For flexibility and extensibility, the execution model allows to combine with explicit Mes-
sage Passing Interface (MPI) [3] coding for more complicated and tuned parallel codes and
libraries.

e For multi-core and SMP clusters, OpenMP directives can be combined into XcalableMP
for thread programming inside each node as a hybrid programming model.

XcalableMP is being designed based on experiences obtained in the development of HPF,
HPF/JA [4], Fujitsu XPF (VPP FORTRAN) [5, [6], and OpenMPD [7].

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

1.2

CHAPTER 1. INTRODUCTION

Scope

The XcalableMP specification covers only user-directed parallelization, wherein the user ex-
plicitly specifies the behavior of the compiler and the runtime system in order to execute the
program in parallel in a distributed-memory system. XcalableMP-compliant implementations
are not required to automatically lay out data, detect parallelism and parallelize loops, or gen-
erate communications and synchronizations.

1.3

Organization of this Document

The remainder of this document is structured as follows:

Chapter 2: Overview of the XcalableMP Model and Language
Chapter 3: Directives

Chapter 4: Support for the Local-view Programming

Chapter 5: Base Language Extensions in XcalableMP C
Chapter 6: Procedure Interface

Chapter 7: Intrinsic and Library Procedures

In addition, the following appendices are included in this document as proposals.

Appendix A: Programming Interface for MPI
Appendix B: Interface to Numerical Libraries
Appendix C: Memory-layout Model
Appendix D: XcalableMP 1/0

Changes from Version 1.0

The concept of the node array and the node set is reorganized.

Mapping inquiry procedures are expanded and moved from the appendix to the core spec-
ification.

The specification on coarrays is improved significantly and some image control directives
in XMP/C are defined.

The appendix on a directive for thread parallelism is deleted.
The proposal on XcalableMP 1/0 is changed slightly and adopted.

etc.

Chapter 2

Overview of the XcalableMP Model
and Language

2.1 Hardware Model

The target of XcalableMP is distributed-memory multicomputers (Figure [2.1)). Each computa-
tion node, which may contain several cores, has its own local memory (shared by the cores, if
any), and is connected with each other via an interconnection network. Each node can access
its local memory directly and remote memory, that is, the memory of another node indirectly
(i.e. via communication). However, it is assumed that accessing remote memory is much slower
than accessing local memory.

network

\

node node node

Figure 2.1: Hardware Model

2.2 Execution Model

An XcalableMP program execution is based on the Single Program Multiple Data (SPMD)
model, where each node starts execution from the same main routine and keeps executing the
same code independently (i.e. asynchronously), which is referred to as the replicated execution,
until it encounters an XcalableMP construct.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

4 CHAPTER 2. OVERVIEW OF THE XCALABLEMP MODEL AND LANGUAGE

A set of nodes that executes a procedure, a statement, a loop, a block, etc. is referred to as its
ezecuting node set and determined by the innermost task, loop or array directive surrounding
it dynamically, or at runtime. The current executing node set is an executing node set of the
current context, which is managed by the XcalableMP runtimes system on each node.

The current executing node set at the beginning of the program execution, or primary
node set, is a node set that contains all the available nodes, which can be specified in an
implementation-dependent way (e.g. through a command-line option).

When a node encounters at runtime either a loop, array, or task construct, and is contained
by the node set specified by the on clause of the directive, it updates the current executing node
set with the specified one and executes the body of the construct, after which it resumes the
last executing node set and proceeds to execute the following statements.

Particularly when a node in the current executing node set encounters a loop or an array
construct, it executes the loop or the array assignment in parallel with other nodes, so that each
iteration of the loop or element of the assignment is independently executed by the node where
a specified data element resides.

When a node encounters a synchronization or a communication directive, synchronization
or communication occurs between it and other nodes. That is, such global constructs are per-
formed collectively by the current executing nodes. Note that neither synchronizations nor
communications occur without these constructs specified.

2.3 Data Model

There are two classes of data in XcalableMP: global data and local data. Data declared in an
XcalableMP program are local by default.

Global data are ones that are distributed onto the executing node set by the align directive
(see section B.3.4]). Each fragment of a global data is allocated in the local memory of a node in
the executing node set.

Local data are all of the ones that are not global. They are replicated in the local memory
of each of the executing nodes.

A node can access directly only local data and sections of global data that are allocated in
its local memory. To access data in remote memory, explicit communication must be specified
in such ways as the global communication constructs and the coarray assignments.

Particularly in XcalableMP Fortran, for common blocks that include any global variables,
the ways how the storage sequence of them is defined and how the storage association of them
is resolved are implementation-dependent.

2.4 Global-view Programming Model

The global-view programming model is useful when, starting from a sequential version of a
program, the programmer parallelizes it in data-parallel style by adding directives with minimum
modification. In the global-view programming model, the programmer describes the distribution
of the data among nodes using the data distribution directives. The loop construct assigns
each iteration of a loop to the node where the computed data is located. The global-view
communication directives are used to synchronize nodes, to maintain the consistency of the
shadow area, and to move part of the distributed data globally. Note that the programmer
must specify explicitly communications to make all data reference in the program local by using
appropriate directives.

In many cases, the XcalableMP program according to the global-view programming model is
based on a sequential program and can produce the same results as it, regardless of the number

2.5. LOCAL-VIEW PROGRAMMING MODEL 5

of nodes (Figure 2.2)).

There are three groups of directives for the global-view programming model. Since these
directives are ignored as a comment by the compilers of base languages (Fortran and C), an
XcalableMP program can be compiled by them to run properly.

Data Mapping

Specifies the data distribution and mapping to nodes (partially inherited from HPF).

Work Mapping (Parallelization)

Assigns a work to a node set. The loop construct maps each iteration of a loop to nodes owning
a specified data elements. The task construct defines an amount of work as a task and assigns
it to a specified node set.

Communication and Synchronization

Specifies how to communicate and synchronize with the other compute nodes. In XcalableMP,
inter-node communication must be explicitly specified by the programmer. The compiler guar-
antees that no communication occurs unless it is explicitly specified by the programmer.

Data A(N1, N2, N3)

é‘)
N2 o]
distribution
onto different nodes
parallelization original program
original program with
parallelization directives
Serial Program Parallel Program

Figure 2.2: Parallelization by the Global-view Programming Model

2.5 Local-view Programming Model

The local-view programming model is suitable for programs that explicitly describe an algorithm
and remote data reference that are to be done by each node (Figure 2.3]).

For the local-view programming model, some language extensions and directives are provided.
The coarray notation imported from Fortran 2008 is one of such extensions and can be used to

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

6 CHAPTER 2. OVERVIEW OF THE XCALABLEMP MODEL AND LANGUAGE

specify which replica of a local data is to be accessed. For example, the expression of A(i) [N]
is used to access an array element of A(i) located on the node N. If the access is a reference,
then communication to obtain the value from remote memory (i.e. get operation) occurs. If the
access is a definition, then communication to set a value to remote memory (i.e. put operation)
occurs.

Data A(N1, N2, N3) Data A(N1, N2, N3) Data A(N1, N2, N3)
& & Q@
N2 N2 N2
)))
= = =
eoe
SPMD program SPMD program SPMD program
Node 0 Node 1 Node (N-1)

Figure 2.3: Local-view Programming Model

2.6 Interactions between the Global View and the Local View

In the global view, nodes are used to distribute data and computational load. In the local view,
nodes are used to address data in the coarray notation. In the application program, programmers
should choose an appropriate data model according to the structure of the program. Figure 2.4]
illustrates the global view and the local view of data.

Data may have both a global view and a local view, and can be accessed from either.
XcalableMP provides some directives to give the local name (alias) to the global data declared
in the global-view programming model so that they can be accessed also in the local-view
programming model. This feature is useful to optimize a certain part of the program by using
explicit remote data access in the local-view programming model.

2.7 Base Languages

The XcalableMP language specification is defined on Fortran or C as a base language. More
specifically, the base language of XcalableMP Fortran is Fortran 90 or later, and that of Xcal-
ableMP C is ISO C90 (ANSI C89) or later.

2.8. GLOSSARY

I$xmp nodes P(4)
1$xmp template T(100)
I$xmp distribute T(block) onto P

I$xmp align G(*, i) with T(i)

real G(80, 100) I global variable

real L(50, 40) I'local variable (default)

Global name space (virtual)

G(80, 100)

Data allocation

|

00 0

G(80, 1:25) G(80, 26:50) G(80, 51:75) G(80, 76:100)
L(50,40) L(50,40) L(50,40) L(50,40)
node P(1) node P(2) node P(3) node P(4)

2.8 Glossary

Figure 2.4: Global View and Local View

2.8.1 Language Terminology

base language

base program

XcalableMP
Fortran

XcalableMP C

structured block

procedure

directive

A programming language that serves as the foundation of the Xcal-
ableMP specification.

A program written in a base language.

The XcalableMP specification for a base language Fortran, abbreviated
as XMP/F.

The XcalableMP specification for a base language C, abbreviated as
XMP/C.

For C, an executable statement, possibly compound, with a single
entry at the top and a single exit at the bottom, or an XcalableMP
construct. For Fortran, a block of executable statements with a single
entry at the top and a single exit at the bottom, or an XcalableMP
construct.

A generic term used to refer to “procedure” (including subroutine and
function) in XcalableMP Fortran and “function” in XcalableMP C.

In XcalableMP Fortran, a comment, and in XcalableMP C, a #pragna,
that specifies XcalableMP program behavior.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

8 CHAPTER 2.

declarative
directive

executable
directive

construct

global construct

template

data mapping

work mapping

global

local

global-view
model

local-view model

OVERVIEW OF THE XCALABLEMP MODEL AND LANGUAGE

An XcalableMP directive that may only be placed in a declarative
context. A declarative directive has no associated executable user
code, but instead has one or more associated user declarations.

An XcalableMP directive that is not declarative; it may be placed in
an executable context.

An XcalableMP executable directive (and for Fortran, the paired end
directive, if any) and the associated statement, loop or structured
block, if any.

A construct that is executed collectively and synchronously by every
node in the current executing node set. Global constructs are further
classified into two groups of global communication constructs, such as
gmove, barrier, etc., which specify communication or synchroniza-
tion, and work mapping constructs, such as loop, array and tasks,
which specify parallelization of loops, array assignments or tasks.

A dummy array that represents an index space to be distributed onto
a node set, which serves as the “template” of parallelization in Xcal-
ableMP and can be considered to abstract, for example, a set of grid
points in the grid method or particles in the particle method. A tem-
plate is used in an XcalableMP program to specify the data and work
mapping. Note that the lower bound of each dimension of a template
is one in both XcalableMP Fortran and XcalableMP C.

Allocating elements of an array to nodes in a node set by specifying
with the align directive that the array is aligned with a distributed
template.

Assigning each of the iterations of a loop, the elements of an array
assignment, or the tasks to nodes in a node set. Such work mapping is
specified by aligning it with a template or distributing it onto a node
set.

A data or a work is global if and only if there is one or more replicated
instances of it each of which is shared by the executing nodes.

A data or a work is local if and only if there is a replicated instance of
it on each of the executing nodes.

A model of programming or parallelization, on which parallel programs
are written by specifying how to map global data and works onto nodes.

A model of programming or parallelization, on which parallel programs
are written by specifying how each node owns local data and does local
works.

2.8.2 Node Terminology

node

An execution entity managed by the XcalableMP runtime system,
which has its own memory and can communicate with other nodes.
A node can execute one or more threads concurrently.

2.8. GLOSSARY

node set

entire node set

primary node set

executing node
set

current
executing node
set

executing node

node array

non-primary
node array

primary node
array

executing node
array

parent node set

node number

A totally ordered set of nodes.

A node set that contains all of the nodes participating in the execution
of an XcalableMP program.

An entire node set that is specified explicitly or implicitly, and is the
current executing node set at the beginning of the program execution.

A node set that contains all of the nodes participating in the execu-
tion of a procedure, a statement, a construct, etc. of an XcalableMP
program is called its executing node set. This term is used in this
document to represent the current executing node set unless it is am-
biguous. Note that the executing node set of the main routine is the
primary node set.

An executing node set of the current context, which is managed by the
XcalableMP runtimes system. The current executing node set can be
modified by the task, array, or loop constructs.

A node in the executing node set.

An XcalableMP entity of the same form as a Fortran array that rep-
resents a node set in XcalableMP programs. Each element of a node
array represents a node in the corresponding node set. A node array
is declared by the nodes directive. Note that the lower bound of each
dimension of a node array is one in both XcalableMP Fortran and
XcalableMP C.

A node array declared without “=node-ref’, “=**", or “=*7 in a

NODES directive. A non-primary node array corresponds to all the
nodes at the invocation of a program, and also corresponds to all the
images at the invocation of a program.

A node array declared with the rhs of a node reference by “x*” rep-
resenting the primary node set. A primary node array corresponds to
all the nodes at the invocation of a program, and also corresponds to
all the images at the invocation of a program.

A node array declared with the rhs of a node reference by “*” repre-
senting the executing node set. An executing node array corresponds
to the executing node set, and also corresponds to the current set of
images at the evaluation of the declaration of the node array.

The parent node set of a node set is the last executing node set, which
encounterd the innermost task, loop, or array construct that is being
executed.

A unique number assigned to each node in a node set, which starts
from one and corresponds to its position within the node set which is
totally ordered.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

10 CHAPTER 2.

OVERVIEW OF THE XCALABLEMP MODEL AND LANGUAGE

2.8.3 Data Terminology

variable

global data

local data

replicated data

distribution

alignment

local section

shadow

A named data storage block, whose value can be defined and redefined
during the execution of a program. Note that variables include array
sections.

An array that is aligned with a template. Elements of a global data are
distributed onto nodes according to the distribution of the template.
As a result, each node owns a part of a global data (called a local
section), and can access directly it but cannot those on the other nodes.

Data that is not global. Each node owns a replica of a local data, and
can access directly it but cannot those on the other nodes. Note that
the replicas of a local data do not always have the same value.

A data whose storage is allocated on multiple nodes. A replicated data
is either a local data or a global data replicated by an align directive.

Assigning each element of a template to nodes in a node set in a
specified manner. In the broad sense, it means that of an array, a
loop, etc.

Associating each elemtent of an array, a loop, etc. with an element of
the specified template. An element of the aligned array, a loop, etc. is
necessarily mapped to the same node as its associated element of the
template.

A section of a global data that is allocated as an array on each node at
runtime. The local section of a global data includes its shadow objects.

An additional area of the local section of a distributed array, which is
used to keep elements to be moved in from neighboring nodes.

2.8.4 Work Terminology

task

A specific instance of executable codes that is defined by the task
construct and executed by a node set specified by its on clause.

2.8.5 Communication and Synchronization Terminology

communication

reduction

synchronization

A data movement among nodes. Communication in XcalableMP oc-
curs only when the programmer instruct it explicitly with a global
communication construct or a coarray reference.

A procedure of combining variables from each node in a specified man-
ner and returning the result value. A reduction always involves com-
munication. A reduction is specified by either the on clause of the
loop construct or the reduction construct.

Synchronization is a mechanism to ensure that multiple nodes do not
execute specific portions of a program at the same time. Synchroniza-
tion among any number of nodes is specified by the barrier construct
and that between two nodes by the post and wait constructs.

2.8. GLOSSARY

asynchronous
communication

11

Communication that does not block and returns before it is complete.
Thus statements that follow it can overtake it. An asynchronous com-
munication is specified by the async clause of global communication
constructs or the async directive for a coarray reference.

2.8.6 Local-view Terminology

local alias

current set of

images

image

image index

An alias to the local section of a global data, that is, a distributed
array. A local alias can be used in XcalableMP programs in the same
way as normal local data.

The current set of images is a set of images determined by the most
lately executed task-directive in the TASK directive constructs that
are not completed if any TASK directive constructs are being exe-
cuted. The current set of images is all the images at the invocation
of a program if there are no TASK directive constructs that are not
completed.

An instance of an XcalableMP program. Each image uniquely corre-
sponds to a node.

An integer value identifying an image in a set of images.

In XcalableMP C, the lower cobound in each axis is one by default and
taking account of the cobound, the cosubscript list in an image selector
determines the image index in the same way that a subscript list in an
array element determines the subscript order value in Fortran, taking
account of the bounds.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051

Chapter 3

Directives

This chapter describes the syntax and behavior of XcalableMP directives. In this document,
the following notation is used to describe XcalableMP directives.

XXX type-face characters are used to indicate literal type characters.

xxx... If the line is followed by “...”, then xxx can be repeated.
[zzx] xzz is optional.
| The syntax rule continues.

[F] The following lines are effective only in XcalableMP Fortran.
[C] The following lines are effective only in XcalableMP C.

3.1 Directive Format

3.1.1 General Rule

In XcalableMP Fortran, XcalableMP directives are specified using special comments that are
identified by unique sentinels !'$xmp. An XcalableMP directive follows the rules for comment
lines of either the Fortran free or fixed source form, depending on the source form of the sur-
rounding program unit®. XcalableMP Fortran directives are case-insensitive.

[F1 '$xmp directive-name clause

In XcalableMP C, XcalableMP directives are specified using the #pragma mechanism pro-
vided by the C standards. XcalableMP C directives are case-sensitive.

[C] #pragma xmp directive-name clause

Directives are classified as declarative directives and executable directives.

The declarative directive is a directive that may only be placed in a declarative context. A
declarative directive has no associated executable user code. The scope rule of declarative direc-
tives obeys that of the declaration statements in the base language. For example, in XcalableMP
Fortran, a node array declared by a nodes directive is visible only within either the program
unit, the derived-type declaration or the interface body that immediately surrounds the direc-
tives, unless overridden in the inner blocks or use or host associated, and, in XcalableMP C, a
node array declared by a nodes directive is visible only in the range from the declaring point to

!Consequently, the rules of comment lines that an XcalableMP directive follows is the same as the ones that
an OpenMP directive follows.

13

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

14 CHAPTER 3. DIRECTIVES

the end of the block when placed within a block, or of the file when placed outside any blocks,
unless overridden in the inner blocks.

Note that, in XcalableMP Fortran, node arrays and templates in other scoping unit are
accessible by use or host association.

The following directives are declarative directives.

e nodes

e template

e distribute
e align

e shadow

e coarray

The executable directives are placed in an executable context. A stand-alone directive is an
executable directive that has no associated user code, such as a barrier directive. An executable
directive and its associated user code make up an XcalableMP construct, as in the following
format:

[F1 '$xmp directive-name clause ...
structured-block

[C] #pragma xmp directive-name clause ...
structured-block

Note that, in XcalableMP Fortran, a corresponding end directive is required for some exe-
cutable directives such as task and tasks and, in XcalableMP C, the associated statement can
be compound.

The following directives are executable directives.

e template fix
e task

e tasks

e loop

e array

e reflect

e gmove

e barrier

e reduction

e bcast

e wait_async

3.2. NODES DIRECTIVE 15

3.1.2 Combined Directive

Synopsis

For XcalableMP Fortran, multiple attributes can be specified in one combined declarative direc-

tive, which is analogous to type declaration statements in Fortran using the

“::” punctuation.

Syntax

[F1 !$xmp combined-directive is combined-attribute [, combined-attribute |... : :
combined-decl [, combined-decl |...

combined-attribute is one of:

nodes
template
distribute (dist-format [, dist-format/...) onto nodes-name
align (align-source [, align-source]...) |
B with template-name Calign-subscript [, align-subscript]...)
shadow (shadow-width [, shadow-width]...)
dimension (explicit-shape-spec [, explicit-shape-spec]...)

and combined-decl is one of:

nodes-decl
template-decl
array-name

Description

A combined directive is interpreted as if an object corresponding to each combined-decl is de-
clared in a directive corresponding to each combined-attribute, where all restrictions of each
directive, in addition to the following ones, are applied.

Restrictions

3.2

The same kind of combined-attribute must not appear more than once in a given combined-
directive.

If the nodes attribute appears in a combined-directive, each combined-decl must be a
nodes-decl.

If the template or distribute attribute appears in a combined-directive, each combined-
decl must be a template-decl.

If the align or shadow attribute appears in a combined-directive, each combined-decl must
be an array-name.

If the dimension attribute appears in a combined-directive, any object to which it applies
must be declared with either the template or the nodes attribute.

nodes Directive

Synopsis

The nodes directive declares a named node array.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

16 CHAPTER 3. DIRECTIVES

Syntax

[F]1 !'$xmp nodes nodes-decl [, nodes-decl |...

[C] #pragma xmp nodes nodes-decl [, nodes-decl |...

where nodes-decl is one of:

nodes-name (nodes-spec [, nodes-spec J...)
nodes-name (nodes-spec [, nodes-spec |...) = nodes-ref

and nodes-spec must be one of:
nt-expr
*
Description

The nodes directive declares a node array that corresponds to a node set.

The first form of the nodes directive is used to declare a node array that corresponds to the
entire node set. The second form is used to declare a node array, each node of which is assigned
to a node of the node set specified by nodes-ref at the corresponding position in Fortran’s array
element order, as if the node set were a one-dimensional node array.

If node-size in the last dimension is “*”, then the size of the node array is automatically
adjusted according to the total size of the entire node set in the first form, the executing node
set in the second form, or the referenced node set in the third form.

Restrictions
e nodes-name must not conflict with any other local name in the same scoping unit.
e nodes-spec can be “x” only in the last dimension.
e nodes-ref must not reference nodes-name either directly or indirectly.

e If no nodes-spec is “x¥”, then the product of all nodes-spec must be equal to the total size
of the entire node set in the first form, the executing node set in the second form, or the
referenced node set in the third form.

e nodes-subscript in nodes-ref must not be “*”.

Examples

The following are examples of the first and the third forms appeared in the main program. Since
the node array p, which corresponds to the entire node set, is declared to be of size 16, this
program must be executed by 16 nodes.

XcalableMP Fortran XcalableMP C
program main int main() {
I$xmp nodes p(16) #pragma xmp nodes p(16)
'$xmp nodes q(4,*) #pragma xmp nodes q(4,*)
!$xmp nodes r(8)=p(3:10) #pragma xmp nodes r(8)=p(3:10)
5| !$xmp nodes z(2,3)=(1:6) #pragma xmp nodes z(2,3)=(1:6) 5
end program }

ot

3.2. NODES DIRECTIVE 17

The following is an example of a node declaration in a procedure. Since p is declared in the
second form to be of size 16 and corresponds to the executing node set, the invocation of the
foo function must be executed by 16 nodes. The node array q is declared in the first form and
corresponds to the entire node set. The node array r is declared as a subset of p, and x as a
subset of q.

XcalableMP Fortran

function foo()
I$xmp nodes p(16)=*
1$xmp nodes q(4,x*)
I$xmp nodes r(8)=p(3:10)
I$xmp nodes x(2,3)=q(1:2,1:3)

end function

3.2.1 Node Reference
Synopsis

The node reference is used to reference a node set.

Syntax

A node reference nodes-ref is specified by either the name of a node array, the “*” symbol or
Lﬂ* *77 .

nodes-ref is nodes-name [(nodes-subscript [, nodes-subscript J...)]
or
or xx

where nodes-subscript must be one of:

int-expr
triplet
*

Description

A node reference by nodes-name represents a node set corresponding to the node array specifid
by the name or its subarray, which is totally ordered in Fortran’s array element order. A node
reference by “*” represents the executing node set. A node reference by “**” represents the
primary node set.

Specifically, the “*” symbol appeared as nodes-subscript in a dimension of nodes-ref is inter-
preted by each node at runtime as its position (coordinate) in the dimension of the referenced
node array. Thus, a node reference p(s1, ..., Sk—1, *, Sk+1, -.-» Sp) is interpreted as
p(s1, «+-5 Sk—1, Jk»> Sk+1s ---> Sp) onthenode p(ji1, ..., Jk—1, Jks Jktls ---5 Jn)-

Note that “x” can be used only as the node reference in the on clause of some executable
directives.

Examples

Assume that p is the name of a node array and that m is an integer variable.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

18 CHAPTER 3. DIRECTIVES

e As a target node array in the distribute directive,
!$xmp distribute a(block) onto p
e To specify a node set to which the declared node array corresponds in the second form of
the nodes directive,

!$xmp nodes r(2,2,4)
'$xmp nodes r(2,2,4)

p(l:4,1:4)
(1:16)

e To specify a node array that corresponds to the executing node set of a task in the task
directive,

!$xmp task on p(1:4,1:4)
!$xmp task on (1:16)
I$xmp task on p(:,*)
1$xmp task on (m)

e To specify a node array with which iterations of a loop are aligned in the loop directive,

1$xmp loop (i) on p(1lb(i):1b(i+1)-1)

e To specify a node array that corresponds to the executing node set in the barrier and
the reduction directive,

!$xmp barrier on p(5:8)
'$xmp reduction (+:a) on p(Cx,:)

e To specify the source node and the node array that corresponds to the executing node set
in the bcast directive,

1$xmp bcast (b) from p(k) on p(:)

3.3 Template and Data Mapping Directives

3.3.1 template Directive
Synopsis

The template directive declares a template.

Syntax

[F1 '$xmp template template-decl [, template-decl]...

[C] #pragma xmp template template-decl [, template-decl |...
where template-decl is:
template-name (template-spec [, template-spec |...)
and template-spec must be one of:

[int-expr :] int-expr

3.3. TEMPLATE AND DATA MAPPING DIRECTIVES 19

Description

The template directive declares a template with the shape specified by the sequence of template-

spec’s. If every template-spec is “:”, then the shape of the template is initially undefined. This

template must not be referenced until the shape is defined by a template fix directive (see
section [3:3.60]) at runtime. If int-expr is specified as template-spec, then the default lower bound
is one.

Restrictions

e template-name must not conflict with any other local name in the same scoping unit.

@,

e Every template-spec must be either f[int-expr :] int-expr or

3.3.2 Template Reference
Synopsis

The template reference expression specified in the on or the from clause of some directives is
used to indirectly specify a node set.

Syntax

template-ref is template-name [(template-subscript [, template-subscript]...)]

where template-subscript must be one of:

nt-expr
triplet
*

Description

Being specified in the on or the from clause of some directives, the template reference refers to
a subset of a node set where the specified subset of the template resides.

Specifically, the “*” symbol appeared as template-subscript in a dimension of template-ref is
interpreted by each node at runtime as the indices of the elements in the dimension that reside
in the node. “*” in a template reference is similar to “*” in a node reference.

Examples

Assume that t is a template.

e In the task directive, the executing node set of the task can be indirectly specified with a
template reference in the on clause.

!$xmp task on t(1:m,1:n)
!$xmp task on t
e In the loop directive, the executing node set of each iteration of the following loop is

indirectly specified with a template reference in the on clause.

'$xmp loop (i) on t(i-1)

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

20 CHAPTER 3. DIRECTIVES

e In the array directive, the executing node set on which the following array assignment
statement is performed in parallel is indirectly specified with a template reference in the
on clause.

'$xmp array on t(1l:n)

e In the barrier, reduction, and bcast directives, the node set that is to perform the
operation collectively can be indirectly specified with a template reference in the on clause.

'$xmp barrier on t(1:n)
!$xmp reduction (+:a) on t(x,:)
!$xmp bcast b from p(k) on t(1l:n)

3.3.3 distribute Directive
Synopsis

The distribute directive specifies distribution of a template.

Syntax

[F]1 !'$xmp distribute template-name (dist-format [, dist-format/...) onto nodes-name

[C] #pragma xmp distribute template-name (dist-format [, dist-format]...) |
l onto nodes-name

where dist-format must be one of:
*

block [(int-expr) |
cyclic [(int-expr) |
gblock ({ * | int-array })

Description

According to the specified distribution format, a template is distributed onto a specified node
array. The dimension of the node array appearing in the onto clause corresponds, in left-to-right
order, with the dimension of the distributed template for which the corresponding dist-format
is not “*”.,

Let d be the size of the dimension of the template, p be the size of the corresponding
dimension of the node array, ceiling and mod be Fortran’s intrinsic functions, and each of the
arithmetic operators be that of Fortran. The interpretation of dist-format is as follows:

“x” The dimension is not distributed.

block Equivalent to block(ceiling(d/p)).

block(n) The dimension of the template is divided into contiguous blocks of size n, which are
distributed onto the corresponding dimension of the node array. The dimension of the
template is divided into d/n blocks of size n, and one block of size mod(d,n) if any, and
each block is assigned sequentially to an index along the corresponding dimension of the
node array. Note that if k = p-d/n-1 > 0, then there is no block assigned to the last k
indices.

cyclic Equivalent to cyclic(1).

3.3. TEMPLATE AND DATA MAPPING DIRECTIVES 21

cyclic(n) The dimension of the template is divided into contiguous blocks of size n, and these
blocks are distributed onto the corresponding dimension of the node array in a round-robin
manner.

gblock(m) m is referred to as a mapping array. The dimension of the template is divided into
contiguous blocks so that the i’th block is of size m(i), and these blocks are distributed
onto the corresponding dimension of the node array.

If at least one gblock(*) is specified in dist-format, then the template is initially undefined
and must not be referenced until the shape of the template is defined by template_fix directives
at runtime.

Restrictions

e [C] template-name must be declared by a template directive that lexically precedes the
directive.

e The number of dist-format that is not “*” must be equal to the rank of the node array
specified by nodes-name.

e The size of the dimension of the template specified by template-name that is distributed
by block(n) must be equal to or less than the product of the block size n and the size of
the corresponding dimension of the node array specified by nodes-name.

e The array int-array in parentheses following gblock must be an integer one-dimensional
array, and its size must be equal to the size of the corresponding dimension of the node
array specified by nodes-name.

e Every element of the array int-array in parentheses following gblock must have a value of
non-negative integer.

e The sum of the elements of the array int-array in parentheses following gblock must be
equal to the size of the corresponding dimension of the template specified by template-
name.

e [C] A distribute directive for a template must precede any its reference in the executable
code in the block.
Examples

Example 1
XcalableMP Fortran

I$xmp nodes p(4)
I$xmp template t(64)
'$xmp distribute t(block) onto p

The template t is distributed in block format, as shown in the following table.

p(1) [t(1:16)
p(2) | t(17:32)
p(3) | t(33:48)
p(4) | t(49:64)

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

22 CHAPTER 3. DIRECTIVES

Example 2
XcalableMP Fortran

I$xmp nodes p(4)
'$xmp template t(64)
I$xmp distribute t(cyclic(8)) onto p

The template t is distributed in cyclic format of size eight, as shown in the following

table.
p(1) | t(1:8) t(33:40)
p(2) | t(9,16) t(41:48)
p(3) | t(17,24) t(49:56)
p(4) | t(25,32) t(57:64)
Example 3

XcalableMP Fortran

!$xmp nodes p(8,5)
'$xmp template t(64,64,64)
!$xmp distribute t(*,cyclic,block) onto p

The first dimension of the template t is not distributed. The second dimension is dis-
tributed onto the first dimension of the node array p in cyclic format. The third dimen-
sion is distributed onto the second dimension of p in block format. The results are as
follows:

p(1,1) | t(1:64, 1:57:8, 1:13)
p(2,1) | t(1:64, 2:58:8, 1:13)

p(8,5) | t(1:64, 8:64:8, 53:64)

Note that the size of the third dimension of t, 64, is not divisible by the size of the second
dimension of p, 5. Thus, sizes of the blocks in the third dimension are different among
nodes.

3.3.4 align Directive

Synopsis

The align directive specifies that an array is to be mapped in the same way as a specified
template.

Syntax

[F1 !$xmp align array-name (align-source [, align-source/...) |
B with template-name Calign-subscript [, align-subscript]...)

[C] #pragma xmp align array-name [align-source] [Lalign-sourcel]... |
B with template-name Calign-subscript [, align-subscript]...)

where align-source must be one of:

3.3. TEMPLATE AND DATA MAPPING DIRECTIVES 23

scalar-int-variable
*

and align-subscript must be one of:

scalar-int-variable [{ + | = } int-expr |
*

Note that the variable scalar-int-variable appearing in align-source is referred to as an “align
dummy variable” and int-expr appearing in align-subscript as an “align offset.”

Description

The array specified by array-name is aligned with the template specified by template-name so
that each element of the array indexed by the sequence of align-source’s is aligned with the
element of the template indexed by the sequence of align-subscript’s, where align-source’s and
align-subscript’s are interpreted as follows:

1. The first form of align-source and align-subscript represents an align dummy variable and
an expression of it, respectively. The align dummy variable ranges over all valid index
values in the corresponding dimension of the array.

2. The second form “x” of align-source and align-subscript represents a dummy variable (not
an align dummy variable) that does not appear anywhere in the directive.

e The second form of align-source is said to “collapse” the corresponding dimension
of the array. As a result, the index along the corresponding dimension makes no
difference in determining the alignment.

e The second form of align-subscript is said to “replicate” the array. Each element of
the array is replicated, and aligned to all index values in the corresponding dimension
of the template.

3. The third form of align-source and the matching align-subscript represents a same align
dummy variable that ranges over all valid index values in the corresponding dimension
of the array. The matching of colons (“:”) in the sequence of align-source’s and align-
subscript’s is determined as follows:

e [F] Colons in the sequence of align-source’s and those in the sequence of align-
subscript’s are matched up in corresponding left-to-right order, where any align-source
and align-subscript that is not a colon is ignored.

e [C] Colons in the sequence of align-source’s in right-to-left order and those in the
sequence of align-subscript’s in left-to-right order are matched up, where any align-
source and align-subscript that is not a colon is ignored.

Restrictions

e [C] array-name must be declared by a declaration statement that lexically precedes the
directive.

e An align dummy variable may appear at most once in the sequence of align-subscript’s.

e An align-subscript may contain at most one occurrence of an align dummy variable.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

24

CHAPTER 3. DIRECTIVES

The int-expr in an align-subscript may not contain any occurrence of an align dummy
variable.

The sequence of align-sources’s must contain exactly as many colons as the sequence of
align-subscript’s contains.

[F] The array specified by array-name must not appear as an equivalence-object in an
equivalence statement.

[C] An align directive for an array must precede any its appearance in the executable
code in the block.

Examples

Example 1

XcalableMP Fortran

'$xmp align a(i) with t(i)

The array element a(i) is aligned with the template element t(i). This is equivalent to
the following code.

XcalableMP Fortran

'$xmp align a(:) with t(:)

Example 2

XcalableMP Fortran
'$xmp align a(*,j) with t(j)

The subarray a(:,j) is aligned with the template element t(j). Note that the first
dimension of a is collapsed.

Example 3

XcalableMP Fortran
'$xmp align a(j) with t(*,j)

The array element a(j) is replicated and aligned with each template element of t(:,j).

Example 4

XcalableMP Fortran

'$xmp template t(nl,n2)
real a(ml,m2)
'$xmp align a(*,j) with t(*,j)

The subarray a(:,j) is aligned with each template element of t(:,j).

By replacing “*” in the first dimension of the array a and “*” in the first dimension of the
template t with a dummy variable i and k, respectively, this alignment can be interpreted
as the following mapping.

a(i,j) = t(k,7) | (i,7,k) € (1:nl, 1:n2,1:ml)

3.3. TEMPLATE AND DATA MAPPING DIRECTIVES 25

3.3.5 shadow Directive
Synopsis

The shadow directive allocates the shadow area for a distributed array.

Syntax

[F1 !$xmp shadow array-name (shadow-width [, shadow-width]...)

[C] #pragma xmp shadow array-name [shadow-width] [[shadow-width]]...

where shadow-width must be one of:

int-expr
int-expr : int-expr
*

Description

The shadow directive specifies the width of the shadow area of an array specified by array-name,
which is used to communicate the neighbor element of the block of the array. When shadow-
width is of the form “int-expr : int-expr,” the shadow area of the width specified by the first
int-expr is added at the lower bound and that specified by the second one at the upper bound in
the dimension. When shadow-width is of the form int-expr, the shadow area of the same width
specified is added at both the upper and lower bounds in the dimension. When shadow-width is
of the form “*”, the entire area of the array is allocated on each node, and all of the area that
it does not own is regarded as shadow. This type of shadow is sometimes referred to as a “full
shadow.”

Note that the shadow area of a multi-dimensional array include “obliquely-neighboring”
elements, which are the ones owned by the node whose indices are different in more than one
dimension, and that the shadow area can be allocated also at the global lower and upper bound
of an array.

The data stored in the storage area declared by the shadow directive is referred to as a
shadow object. A shadow object represents an element of a distributed array and corresponds
to the data object that represents the same element as it. The corresponding data object is
referred to as the reflection source of the shadow object.

Restrictions

e [C] array-name must be declared by a declaration statement that lexically precedes the
directive.

e The value specified by shadow-width must be a non-negative integer.

e The number of shadow-width must be equal to the number of dimensions (or rank) of the
array specified by array-name.

e [C] A shadow directive for an array must precede any its appearance in the executable
code in the block.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

26 CHAPTER 3. DIRECTIVES

Example

a(16,17: 32)

XcalableMP Fortran — a(16,16) - a(16,33)

I$xmp nodes p(4,4) c v -

I$xmp template t(64,64) | | oo :

_ _ | |aa732, | | _
I$xmp distribute t(block,block) onto p a(17:32,16) LA a(17:32,33)

/' A
real a(64,64) a(33, 16) a(33, 33)

1$xmp align a(i,j) with t(i,]) a(33, 17: 32)
!$xmp shadow a(1,1)

Figure 3.1: Example of Shadow of a
Two-dimensional Array

The node p(2,2) has a(17:32,17:32) as a data object, and a(16,16), a(17:32,16),
a(33,16), a(16,17:32), a(33,17:32), a(16,33), a(17:32,33) and a(33,33) as shadow ob-
jects (Figure B]). Among them, a(16,16), a(33,16), a(16,33) and a(33,33) are “obliquely-
neigboring” elements of p(2,2).

3.3.6 template fix Construct
Synopsis

This construct fixes the shape and/or the distribution of an undefined template.

Syntax

[F]1 !'$xmp template fix [(dist-format [, dist-format]...)] i
B template-name [(template-spec [, template-spec]...)]

[C] #pragma xmp template fix [(dist-format [, dist-format]...)] i
B template-name [(template-spec [, template-spec)...)]

where template-spec is:
[int-expr :] int-expr
and dist-format is one of:

*
block [(int-expr)]
cyclic [C int-expr)]
gblock (int-array)

Description

The template_fix construct fixes the shape and/or the distribution of the template that is
initially undefined, by specifying the sizes and/or the distribution format of each dimension
at runtime. Arrays aligned with an initially undefined template must be an allocatable array,
in XcalableMP Fortran, or a pointer (see Section [5.5]), in XcalableMP C, which cannot be
allocated until the template is fixed by the template_fix construct. Any constructs that have
such a template in their on clause must not be encountered until the template is fixed by the

10

3.4. WORK MAPPING CONSTRUCT 27

template_fix construct. Any undefined template can be fixed only once by the template fix
construct in its scoping unit.
The meaning of the sequence of dist-format’s is the same as that in the distribute directive.

Restrictions

e When a node encounters a template fix construct at runtime, the template specified by
template-name must be undefined.

e If the sequence of dist-format’s exists in a template fix construct, it must be identical
with the sequence of dist-format’s in the distribute directive for the template specified

by template-name, except for int-array specified in the parenthesis following gblock.

e Either the sequence of dist-format’s or the sequence of template-spec’s must be given.

Example
XcalableMP Fortran

I$xmp template :: t(:)
I$xmp distribute (gblock(*)) :: t

real , allocatable :: a(:)
'$xmp align (i) with t(i) :: a

N=...; MC...) = ...
I$xmp template_fix(gblock(M)) t(N)

allocate (a(N))

Since the shape is (:) and the distribution format is gblock(*), the template t is initially
undefined. The allocatable array a is aligned with t. After the size N and the mapping array M
is defined, t is fixed by the template_fix construct and a is allocated.

3.4 Work Mapping Construct

3.4.1 task Construct
Synopsis

The task construct defines a task that is executed by a specified node set.

Syntax

[F1 !$xmp task on {nodes-ref | template-ref}
structured-block
I$xmp end task

[C] #pragma xmp task on {nodes-ref | template-ref}
structured-block

025

053

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

28 CHAPTER 3. DIRECTIVES

Description

When a node encounters a task construct at runtime, it executes the associated block (called
a task) if it is included by the node set specified by the on clause; otherwise it skips executing
the block.

Unless a task construct is surrounded by a tasks construct, nodes-ref or template-ref in the
on clause is evaluated by the executing node set at the entry of the task; otherwise nodes-ref
and template-ref of the task construct are evaluated by the executing node set at the entry of
the immediately surrounding tasks construct. The current executing node set is set to that
specified by the on clause at the entry of the task construct and rewound to the last one at the
exit.

Restrictions

e The node set specified by nodes-ref or template-ref in the on clause must be a subset of
the parent node set.

Example

Example 1 Copies of variables a and b are replicated on nodes nd(1) through nd(8). A task
defined by the task construct is executed only on nd (1) and defines the copies of a and b
on a node nd(1). The copies on nodes nd(2) through nd(8) are not defined.

XcalableMP C

XcalableMP Fortran
!$xmp nodes nd(8)
I$xmp template t(100)
'$xmp distribute t(block) onto nd

#pragma xmp nodes nd(8)
#pragma xmp template t(100)
#pragma xmp distribute t(block) onto nd

float a, b;
real a, b; oat &

ot

\$xmp task on nd(1) #pragma xmp task on nd(1)

{
read(*,*) a scanf ("Yf", &a);
b = axl.e-6 b = axl e—6f ’
10| !'$xmp end task)) ’

Example 2 According to the on clause with a template reference, an assignment statement in
the task construct is executed by the owner of the array element a(:,j) or a[jl[:].

3.4. WORK MAPPING CONSTRUCT 29

XcalableMP Fortran XcalableMP C
!$xmp nodes nd(8) #pragma xmp nodes nd(8) oot
I$xmp template t(100) #pragma xmp template t(100) 002
!$xmp distribute t(block) onto nd | #pragma xmp distribute t(block) onto nd 222
005
5 integer 1i,j int i,j; 5 006
real a(200,100) float a[100] [200]; 007
'$xmp align a(*,j) with t(j) #pragma align al[j][*] with t(j+1) 008
009
i = i = : 010
10 j= ... j= .. 10 ot
012
. . 013
'$xmp task on t(j) #pragma xmp task on t(j+1) 014
a(i,j) = 1.0 alj1[i]l = 1.0; 015
!$xmp end task } 016
017
018
3.4.2 tasks Construct 019
020
Synopsis 021
022
The tasks construct is used to instruct the executing nodes to execute the multiple tasks it 023
surrounds in arbitrary order. 024
025
026
Syntax 027

[F] !'$xmp tasks
task-construct 030

I$xmp end tasks 032

[C] #pragma xmp tasks
035

{ 036

task-construct

Description 042

task constructs surrounded by a tasks construct are executed in arbitrary order without implicit

synchronization at the entry of each task. As a result, if there is no overlap between the executing 045
node sets of the adjacent tasks, they can be executed in parallel. 046

nodes-ref or template-ref of each task immediately surrounded by a tasks construct is eval- 047
uated by the executing node set at the entry of the tasks construct. 048

No implicit synchronization is performed at the entry and exit of the tasks construct.

Example
053

Example 1 Three instances of subroutine task1 are concurrently executed by node sets p(1:500), 054
p(501:800) and p(801:1000), respectively. 0%5

056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

30 CHAPTER 3. DIRECTIVES

XcalableMP Fortran
subroutine caller

!$xmp nodes p(1000)
I$xmp template tp(100)
'$xmp distribute t(block) onto p

5 real a(100,100) __ XcalableMP Fortran
1$xmp align a(*,k) with t(k) subroutine taskl(a)
'$xmp tasks I$xmp nodes q(*)=x%

I$xmp task on p(1:500)

10 call taski(a) 1$xmp nodes p(1000) 5
'$xmp end task I$xmp distribute t(block) onto p
!$xmp task on p(501:800) real a(100,100)

call taski(a) I$xmp align a(*,k) with t(k)
!$xmp end task e
15| '$xmp task on p(801:1000) end subroutine 10

call taski(a)
'$xmp end task
!$xmp end tasks

20 end subroutine

Example 2 The first node p(1) executes the first and the second tasks, the final node p(8)
the second and the third tasks, and the other nodes p(2) through p(7) only the second
task.

XcalableMP Fortran

I$xmp nodes p(8)

I$xmp template t(100)

'$xmp distribute t(block) onto p
real a(100)

1$xmp align a(i) with t(i)

o

'$xmp tasks

'$xmp task on t(1)
10 a(1) = 0.0
'$xmp end task

I$xmp task on t(2:99)
'$xmp loop on t(i)
15 do i=2,99
a(i) = foo(i)
enddo
'$xmp end task

20| !'$xmp task on t(100)
a(100) = 0.0
'$xmp end task

3.4. WORK MAPPING CONSTRUCT 31

'$xmp end tasks

3.4.3 1loop Construct

Synopsis

The loop construct specifies that each iteration of the following loop is executed by a node set
specified by the on clause, so that the iterations are distributed among nodes and executed in
parallel.

Syntax

[F1 !$xmp loop [(loop-index [, loop-index/...) | i
B on {nodes-ref | template-ref} [reduction-clause |...
do-loops
[C] #pragma xmp loop [(loop-index [, loop-indez]...) | |

B on {nodes-ref | template-ref} [reduction-clause |...
for-loops

where reduction-clause is:

reduction (reduction-kind : reduction-spec [, reduction-spec |...)

reduction-kind is one of:

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

32 CHAPTER 3. DIRECTIVES

[F]
*
.and.
.or.
.eqv.
.neqv.
max
min
iand
ior
ieor
firstmax
firstmin
lastmax
lastmin

[c]

min
firstmax
firstmin
lastmax
lastmin

and reduction-spec is:

reduction-variable [/ location-variable [, location-variable |... / |

Description

A loop directive is associated with a loop nest consisting of one or more tightly-nested loops that
follow the directive and distribute the execution of their iterations onto the node set specified
by the on clause.

The sequence of loop-index’s in parenthesis denotes an index of an iteration of the loop nests.
If a control variable of a loop does not appear in the sequence, it is assumed that each possible
value of it is specified in the sequence. The sequence can be considered to denote a set of indices
of iterations. When the sequence is omitted, it is assumed that the control variables of all the
loops in the associated loop nests are specified.

When a template-ref is specified in the on clause, the associated loop is distributed so that
the iteration (set) indexed by the the sequence of loop-inder’s is executed by the node onto
which a template element specified by the template-ref is distributed.

When a nodes-ref is specified in the on clause, the associated loop is distributed so that the
iteration (set) indexed by the the sequence of loop-index’s is executed by a node specified by the

3.4. WORK MAPPING CONSTRUCT 33

nodes-ref.

In addition, the executing node set is updated to the node set specified by the on clause at
the beginning of every iteration and restored to the last one at the end of it.

When a reduction-clause is specified, a reduction operation of the kind specified by reduction-
kind for a variable specified by reduction-variable is executed just after the execution of the loop
nest.

The reduction operation executed, except in cases with reduction-kind of FIRSTMAX, FIRSTMIN,
LASTMAX, or LASTMIN, is equivalent to the reduction construct with the same reduction-kind
and reduction-variable, and an on clause obtained from that of the loop directive by replacing:

e “:” in the nodes-ref or the template-ref with “*” and

e [oop-index in the nodes-ref or the template-ref with a triplet representing the range of its
value.

Therefore, for example, the two codes below are equivalent.

XcalableMP Fortran
// Initialize s_tmp to the identity

// element of the op operator

s_tmp = ...
XcalableMP Fortran -
1$xmp loop (j) on t(:,j) 1$xmp loop (j) on t(:,j) 5
! $xmp+ reduction(op:s) do j = js, je
do j = js, je R
. doi=1, N
5 doi=1, N s_tmp = s_tmp op a(i,j)
s = s op a(i,j) end do 10
end do R
ce end do
end do

I$xmp reduction(op:s_tmp)
! $xmp+ on t(*,js:je)

[un
ot

S = s op s_tmp

Particularly for the reduction kinds of FIRSTMAX, FIRSTMIN, LASTMAX and LASTMIN, in ad-
dition to a corresponding MAX or MIN reduction operation, the location-variable’s are set after
executing the loop construct as follows:

e For FIRSTMAX and FIRSTMIN, they are set to their values at the end of the first iteration
in which the reduction-variable takes the value of the reduction result, where first means
first in the sequential order in which iterations of the associated loop nest were executed
without parallelization.

e For LASTMAX and LASTMIN, they are set to their values at the end of the last iteration
in which the reduction-variable takes the value of the reduction result, where last means
last in the sequential order in which iterations of the associated loop nest were executed
without parallelization.

Restrictions

e loop-index must be a control variable of a loop in the associated loop nest.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

34

CHAPTER 3. DIRECTIVES

A control variable of a loop can appear as loop-index at most once.

The node set specified by nodes-ref or template-ref in the on clause must be a subset of
the parent node set.

The template specified by template-ref must be fixed before the loop construct is executed.

The loop construct is global, which means that it must be executed by all of the executing
nodes, and each local variable referenced in the directive must have the same value among
all of them, and the lower bound, upper bound and step of the associated loop must have
the same value among all of them.

reduction-spec must have one or more location-variable’s if and only if reduction-kind is
either FIRSTMAX, FIRSTMIN, LASTMAX, or LASTMIN.

Examples

Example 1

o

XcalableMP Fortran
'$xmp distribute t(block) onto p

!$xmp align (i) with t(i) :: a, b

I$xmp loop (i) on t(i)
doi=1, N
a(i) = 1.0
b(i) = a(i)
end do

The loop construct determines the node that executes each of the iterations, according to
the distribution of template t, and distributes the execution. This example is syntactically
equivalent to the one shown below, but will be faster because iterations to be executed by
each node can be determined before executing the loop.
XcalableMP Fortran
'$xmp distribute t(block) onto p

'$xmp align (i) with t(i) :: a, b

doi=1, N
'$xmp task on t(i)
a(i) = 1.0
b(i) = a(i)
'$xmp end task
end do

Example 2

(<

XcalableMP Fortran
'$xmp distribute t(*,block) onto p

'$xmp align (i,j) with t(i,j) :: a, b

1$xmp loop (i,j) on t(i,j)
doj=1,M
doi=1, N
a(i,j) = 1.0

3.4. WORK MAPPING CONSTRUCT 35

b(i,j) = a(i,j) 001

end do 002

10 end do 003
004

005

Since the first dimension of template t is not distributed, only the j loop, which is aligned 006
with the second dimension of t, is distributed. This example is syntactically equivalent to 007
the task construct shown below. 008
XcalableMP Fortran 009

'$xmp distribute t(*,block) onto p 010
'$xmp align (*,j) with t(*,j) :: a, b 011
.. 012

do j=1, M 013

5| '$xmp task on t(*,j) 21:
doi=1, N 016

a(i,j) = 1.0 o017

b(i,j) = a(i,j) 018

end do 019

10| '$xmp end task 020
end do 021

022

023

Example 3 024
XcalableMP Fortran 025

'$xmp distribute t(block,block) onto p 026
I$xmp align (i,j) with t(i,j) :: a, b 027
e 028

I$xmp loop (i,j) omn t(i,j) 029

5 do j=1,M 030
doi=1,N o

0 032

a(i, _]) =1.0 033

b(i,j) = a(i,j) 034

end do 035

10 end do 036

037

The distribution of loops in the nested loop can be specified using the sequence of loop- 038

indez’s in one loop construct. This example is equivalent to the loop shown below, but will
run faster because the iterations to be executed by each node can be determined outside

039
040
041

of the nested loop. Note that the node set specified by the inner on clause is a subset of 042
that specified by the outer one. 043

XcalableMP Fortran 044
'$xmp distribute t(block,block) onto p 045
'$xmp align (i,j) with t(i,j) :: a, b 046

047
048

'$xmp loop (j) om t(:,j)

049

5 do j=1, M 050
'$xmp loop (i) om t(i,j) 051
doi=1, N 052

a(i,j) = 1.0 053

b(i,j) = a(i,j) 054

10 end do 0%

056

end do

36 CHAPTER 3. DIRECTIVES

001 Example 4

002

003 XcalableMP Fortran

004 I$xmp nodes p(10,3)

005 o .

006 '$xmp loop on p(:,i)

007 doi=1, 3

008 5 call subtask (i)

ZTZ end do

011

012

013 Three node sets p(:,1), p(:,2) and p(:,3) are created as the executing node sets, and
014 each of them executes iteration 1, 2 and 3 of the associated loop, respectively. This example
015 is equivalent to the loop containing task constructs (below left) or static tasks/task

oto constructs (below right).

017
018

XcalableMP Fortran

019

020 !$xmp nodes p(10,3)

021 e

022 _ XcalableMP Fortran - |'$xmp tasks

023 '$xmp nodes p(10,3) !$xmp task on p(:,1)

024 call subtask (1) 5
025 doi=1,3 !$xmp end task

026 1$xmp task on p(:,i) I$xmp task on p(:,2)

027 5 call subtask (i) call subtask (2)

Zzz '$xmp end task I$xmp end task

030 end do !$xmp task on p(:,3) 10
031 call subtask (3)

032 I$xmp end task

033 I$xmp end tasks

034

035

036

037

038 Example 5

Zzi XcalableMP Fortran

041 o

012 1b(1) =1

ois iub(1) = 10

044 1b(2) = 11

045 5 iub(2) = 25

046 1b(3) = 26

047 iub(3) = 50

04 I$xmp loop (i) on p(1b(i):iub(i))

- do i =1, 3

051 10 call subtask (i)

052 end do

053

054

055 The executing node sets of different sizes are created by p(1b(i) :iub(i)) with different
056 values of i for unbalanced workloads. This example is equivalent to the loop containing

057 task constructs (below left) or static tasks/task constructs (below right).

3.4. WORK MAPPING CONSTRUCT

XcalableMP Fortran
doi=1,3
1$xmp task on p(lb(i):iub(i))
call subtask (i)
'$xmp end task

! $xmp
I $xmp

I $xmp
! $xmp

! $xmp
! $xmp

! $xmp
I $xmp

XcalableMP Fortran
tasks

task on p(1:10)
call subtask (1)
end task

task on p(11:25)
call subtask (2)
end task

task on p(25:50)
call subtask (3)
end task

end tasks

XcalableMP Fortran

5 end do
Example 6
s = 0.0
'$xmp loop (i) on t(i) reduction(+:s)
doi=1, N
5 s =8 + a(i)
end do

37

10

This loop computes the sum of a(i) into the variable s on each node. Note that only the
partial sum is computed on s without the reduction clause. This example is equivalent to

the code given below.

s = 0.0
'$xmp loop (i) on t(i)
doi=1, N
5 s =8 + a(i)
end do

1$xmp reduction(+:s) on t(1:N)

XcalableMP Fortran

Example 7
XcalableMP Fortran

amax = -1.0e30

ip = -1

jp=-1

5| !$xmp loop (i,j) on t(i,j) reduction(firstmax:amax/ip,jp/)
doj=1,M
doi=1, N

10

if(1(4i,j) .gt. amx) then
amx = a(i,j)
ip=1
jp =1

end if

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

38 CHAPTER 3. DIRECTIVES

end do
end do

This loop computes the maximum value of a(i,j) and stores it into the variable amax in
each node. In addition, the first indices for the maximum element of a are obtained in
ip and jp after executing the loops. Note that this example cannot be written with the
reduction construct.

3.4.4 array Construct
Synopsis

The array construct divides the work of an array assignment among nodes.

Syntax

[F]1 !$xmp array on template-ref
array-assignment-statement

[C] #pragma xmp array on template-ref
array-assignment-statement

Description

The array assignment is an alternative to a loop that performs an assignment to each element
of an array. This directive specifies parallel execution of an array assignment, where each sub-
assignment and sub-operation of an element is executed by a node determined by the on clause.

Note that array assignments can be used also in XcalableMP C, which is one of the language
extensions introduced by XcalableMP (see Section [5.2)).

Restrictions

e The node set specified by template-ref in the on clause must be a subset of the parent node
set.

e The template section specified by template-ref must have the same shape with the associ-
ated array assignment.

e The array construct is global and must be executed by all of the executing nodes, and
each variable appearing in the construct must have the same value among all of them.

Examples

Example 1

XcalableMP Fortran
'$xmp distribute t(block) onto p

'$xmp align (i) with t(i) :: a

1$xmp array on t(1:N)
a(1:N) = 1.0

(<

This example is equivalent to the code shown below.

3.5. GLOBAL-VIEW COMMUNICATION AND SYNCHRONIZATION CONSTRUCTS 39

XcalableMP Fortran
!$xmp distribute t(block) onto p

'$xmp align (i) with t(i) :: a

1$xmp loop on t(1:N)
5 doi=1, N

a(i) = 1.0
end do

Example 2
XcalableMP Fortran

I$xmp template t(100,20)

'$xmp distribute t(block,block) onto p
dimension a(100,20), b(100,20)

'$xmp align (i,j) with t(i,j) :: a, b

'$xmp array on t
a=b+ 2.0

This example is equivalent to the code shown below.

XcalableMP Fortran

I$xmp template t(100,20)

'$xmp distribute t(block,block) onto p
dimension a(100,20), b(100,20)

'$xmp align (i,j) with t(i,j) :: a, b

'$xmp loop (i,j) on t(i,j)
do j =1, 20
do i =1, 100
a(i,j) = b(i,j) + 2.0
10 end do
end do

3.5 Global-view Communication and Synchronization Constructs

3.5.1 reflect Construct
Synopsis

The reflect construct assigns the value of a reflection source to the corresponding shadow
object.

Syntax

[F]1 !'$xmp reflect (array-name [, array-namel...) |

B [width (reflect-width [, reflect-width]...)] [async (async-id)]
[C] #pragma xmp reflect (array-name [, array-name]...) |

B [width (reflect-width [, reflect-width]...)] [async (async-id)]

where reflect-width must be one of:

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

10

40 CHAPTER 3. DIRECTIVES

[/periodic/] int-expr
[/periodic/] int-expr : int-expr

Description

The reflect construct updates each of the shadow object of the array specified by array-name
with the value of its corresponding reflection source. Note that the shadow objects corresponding
to “obliquely-neighboring” elements can be also updated with this construct.

When the width clause is specified and of the form “int-expr : int-expr” in a dimension, the
shadow area of the width specified by the first int-expr at the upper bound and that specified
by the second one at the lower bound in the dimension are updated. When the width clause
is specified and of the form int-expr, the shadow areas of the same width specified at both the
upper and lower bounds in the dimension are updated. When the width clause is omitted, whole
shadow area of the array is updated.

Particularly when the /periodic/ modifier is specified in reflect-width, the update of the
shadow object in the dimension is “periodic,” which means that the shadow object at the global
lower (upper) bound is treated as if corresponding to the data object of the global upper (lower)
bound and updated with that value by the reflect construct.

When the async clause is specified, the statements following this construct may be executed
before the operation is complete.

Restrictions

e The arrays specified by the sequence of array-name’s must be mapped onto the executing
node set.

e The reflect width of each dimension specified by reflect-width must not exceed the shadow
width of the arrays.

e The reflect construct is global, which means that it must be executed by all nodes in
the current executing node set, and each local variable referenced in the construct must
have the same value among all of them.

e async-id must be an expression of type default integer, in XcalableMP Fortran, or type

int, in XcalableMP C.

Example
XcalableMP Fortran

I$xmp nodes p(4)
I$xmp template t(100)
I$xmp distribute t(block) onto p:: t

real a(100)
'$xmp align a(i) with t(i)
1$xmp shdow a(1)

I$xmp reflect (a) width (/periodic/1)

The shadow directive allocates “periodic” shadow areas of the array a. The reflect con-
struct updates “periodically” the shadow area of a (Figure B.2]). A periodic shadow at the lower
bound on the node p(1) is updated with the value of a(100) and that at the upper bound on
p(4) with the value of a(1).

3.5. GLOBAL-VIEW COMMUNICATION AND SYNCHRONIZATION CONSTRUCTS 41

Figure 3.2: Example of Periodic Shadow Reflection

3.5.2 gmove Construct

Synopsis

The gmove construct allows an assignment statement, which may cause communication, to be
executed possibly in parallel by the executing nodes.

Syntax

[F1 !'$xmp gmove [in | out/ [async (async-id)/

[C] #pragma xmp gmove [in | out/ fasync (async-id)]
Description

This construct copies the value of the right-hand side (rhs) variable into the left-hand side (lhs) of
the associated assignment statement, which may require communication between the executing
nodes. Such communication is detected, scheduled, and performed by the XcalableMP runtime
system.

There are three operating modes of the gmove construct:

e collective mode

When neither the in nor the out clause is specified, the copy operation is performed
collectively and cause an implicit synchronization after it among the executing nodes.

If the async clause is not specified, then the construct is “synchronous” and it is guaranteed
that the lhs data can be read and overwritten, the rhs data can be overwritten, and all
of the operations of the construct on the executing nodes are completed when returning
from the construct; otherwise, the construct is “asynchronous” and it is not guaranteed
that until returning from the associating wait_async construct (Section B.5.6l).

in mode

When the in clause is specified, the rhs data of the assignment, whole or parts of which
may reside outside the executing node set, can be transferred from its owner nodes to the
executing nodes by this construct.

If the async clause is not specified, then the construct is “synchronous” and it is guaranteed
that the lhs data can be read and overwritten and all of the operations of the construct on
the owner nodes of the rhs and the executing nodes are completed when returning from
the construct; otherwise, the construct is “asynchronous” and it is not guaranteed that
until returning from the associating wait_async construct (Section B.5.6)).

out mode

When the out clause is specified, the lhs data of the assignment, whole or parts of which
may reside outside the executing node set, can be transferred from the executing nodes to
its owner nodes by this construct.

001
002
003
004
005
006
007
008
009
010
011
012
013

015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

42

CHAPTER 3. DIRECTIVES

If the async clause is not specified, then the construct is “synchronous” and it is guaranteed
that the rhs data can be overwritten and all of the operations of the construct on the owner
nodes of the lhs and the executing nodes are completed when returning from the construct;
otherwise, the construct is “asynchronous” and it is not guaranteed that until returning
from the associating wait_async construct (Section 3.5.0]).

When the async clause is specified, the statements following this construct may be executed
before the operation is complete.

Restrictions

The gmove construct must be followed by (i.e. associated with) a simple assignment
statement that contains neither arithmetic operations nor function calls.

The gmove construct is global, which means that it must be executed by all nodes inthe
current executing node set, and each local variable referenced in the construct must have
the same value among all of them.

If the gmove construct is in collective mode, then all elements of the distributed arrays
appearing in both the lhs and the rhs of the associated assignment statement must reside
in the executing node set.

If the gmove construct is in in mode, then all elements of the distributed array appearing
in the lhs of the associated assignment statement must reside in the executing node set.

If the gmove construct is in out mode, then all elements of the distributed array appearing
in the rhs of the associated assignment statement must reside in the executing node set.

async-id must be an expression of type default integer, in XcalableMP Fortran, or type
int, in XcalableMP C.

Examples

Example 1: Array assignment If both the lhs and the rhs are distributed arrays, then the

copy operation is performed by all-to-all communication. If the lhs is a replicated array,
this copy is performed by multi-cast communication. If the rhs is a replicated array, then
no communication is required.

XcalableMP Fortran XcalableMP C
'$xmp gmove #pragma xmp gmove
a(:,1:N) = b(:,3,0:N-1) al1:N][:] = b[0:N]I[3][:];

Example 2: Scalar assignment to an array When the rhs is an element of a distributed

array, the copy is performed by broadcast communication from the owner of the element.
If the rhs is a replicated array, then no communication is required.

XcalableMP Fortran XcalableMP C
'$xmp gmove #pragma xmp gmove

a(:,1:N) = c(k) al1:N][:] = clk]

3.5. GLOBAL-VIEW COMMUNICATION AND SYNCHRONIZATION CONSTRUCTS 43

Example 3: in mode assignment Since b(3) referenced in the rhs of the gmove construct
does not reside in the executing node set (p(1:2)), the construct is executed in in mode.
Thus, b(3) is transferred from its owner node p(3) to the executing node set.

It is not guaranteed until p(1:2) returns from the construct that any node can read and
overwrite a(1:2) and any relevant operations on p(1:2) and p(3) are completed.

XcalableMP Fortran

I$xmp nodes p(4)
1$xmp template t(4)
'$xmp distribute t(block) onto p

5 real a(4), b(4)
'$xmp align (i) with t(i) : a, b

I$xmp task on p(1:2)

10| !'$xmp gmove in
a(1:2) = b(2:3)

'$xmp end task

3.5.3 barrier Construct
Synopsis

The barrier construct specifies an explicit barrier at the point at which the construct appears.

Syntax

[F1 !$xmp barrier Jon nodes-ref |template-ref]

[C] #pragma xmp barrier Jon nodes-ref | template-ref]
Description

The barrier operation is performed among the node set specified by the on clause. If no on
clause is specified, then it is assumed that the current executing node set is specified in it.

Note that an on clause may represent multiple node sets. In such a case, a barrier operation
is performed in each node set.

Restriction

e The node set specified by the on clause must be a subset of the executing node set.

3.5.4 reduction Construct
Synopsis

The reduction construct performs a reduction operation among nodes.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

44 CHAPTER 3. DIRECTIVES

Syntax

[F1 !$xmp reduction (reduction-kind : variable [, variable |...) |
B /on node-ref | template-ref] [async (async-id)]

where reduction-kind is one of:
+

*
.and.
.or.
.eqv.
.neqv.
max
min
iand
ior
ieor

[C] #pragma xmp reduction (reduction-kind : variable [, variable /...) |
B /on node-ref | template-ref] [async (async-id)]

where reduction-kind is one of:
+

*

y — &

Il
max
min

Description

The reduction construct performs a type of reduction operation specified by reduction-kind
for the specified local variables among the node set specified by the on clause and sets the
reduction results to the variables on each of the nodes. Note that some of the reduction operation
(FIRSTMAX, FIRSTMIN, LASTMAX, and LASTMIN) that could be specified in the reduction clause
of the loop directive cannot be specified in the reduction construct, because their semantics
are not defined in it. The variable specified by wariable, which is the target of the reduction
operation, is referred to as the “reduction variable.” After the reduction operation, the value of
a reduction variable becomes the same in every node that performs the operation.

The reduction result is computed by combining the reduction variables on all of the nodes
using the reduction operator. The ordering of this reduction is implementation-dependent.

When the async clause is specified, the statements following this construct may be executed
before the operation is complete.

When template-ref is specified in the on clause, the operation is performed in a node set
that consists of nodes onto which the specified template section is distributed. Therefore, before
the reduction construct is executed, the referenced template must be fixed. When nodes-ref is

3.5. GLOBAL-VIEW COMMUNICATION AND SYNCHRONIZATION CONSTRUCTS 45

specified in the on clause, the operation is performed in the specified node set. When the on
clause is omitted, the operation is performed in the executing node set.

Note that an on clause may represent multiple node sets. In such a case, a reduction operation
is performed in each node set.

Restrictions

The variables specified by the sequence of variable’s must either not be aligned or be
replicated among nodes of the node set specified by the on clause.

The reduction construct is global, which means that it must be executed by all nodes in
the current executing node set, and each local variable referenced in the construct must
have the same value among all of them.

async-id must be an expression of type default integer, in XcalableMP Fortran, or type
int, in XcalableMP C.

The node set specified by the on clause must be a subset of the executing node set.

Examples

Example 1

XcalableMP Fortran

I$xmp reduction(+:s)
'$xmp reduction(max:aa) on t(*,:)
!$xmp reduction(min:bb) on p(10:30)

In the first line, the reduction operation calculates the sum of the scalar variable s in the
executing node set and the result is stored in the variable in each node.

The reduction operation in the second line computes the maximum value of the variable aa
in each node set onto which each of the template section specified by t (*, :) is distributed.

In the third line, the minimum value of the variable bb in the node set specified by p(10:30)
is calculated. This example is equivalent to the following code using the task construct.

XcalableMP Fortran

!$xmp task on p(10:30)
'$xmp reduction(min:bb)
'$xmp end task

Example 2

o

10

XcalableMP Fortran

dimension a(n,n), p(n), w(n)
I'$xmp align a(i,j) with t(i,j)
'$xmp align p(i) with t(i,*)

'$xmp align w(j) with t(*,j)

'$xmp loop (j) on t(:,j)
do j=1, n
sum = O
1$xmp loop (i) om t(i,j) reduction(+:sum)
doi=1,n

sum = sum + a(i,j) * p(i)

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

46 CHAPTER 3. DIRECTIVES

end do
w(j) = sum
end do

This code computes the matrix vector product, where a reduction clause is specified for
the loop construct of the inner loop. This is equivalent to the following code snippet.

XcalableMP Fortran

1$xmp loop (j) om t(:,j)
do j=1,n

sum = O
'$xmp loop (i) on t(i,j)
5 doi=1,n

sum - sum + a(i,j) * p(i)

end do
'$xmp reduction(+:sum) on t(l:n,j)

w(j) = sum
10 end do

In these cases, the reduction operation on the scalar variable sum is performed for every

iteration in the outer loop, which may cause a large overhead. The reduction clause

cannot be specified for the loop construct of the outer loop to reduce this overhead,

because the node set where the reduction operation specified by a reduction clause of a

loop construct is performed is determined from its on clause (see B.43]) and the on clause

of the outer loop construct is different from that of the inner one. However, this code can

be modified with the reduction construct as follows:

XcalableMP Fortran
dimension a(n,n), p(n), w(n)

I'$xmp align a(i,j) with t(i,j)

'$xmp align p(i) with t(i,*)

'$xmp align w(j) with t(*,3j)

'$xmp loop (j) om t(:,j)

do j=1, n

sum = O
'$xmp loop (i) om t(i,j)
10 doi=1,n
sum - sum + a(i,j) * p(i)

end do
w(j) = sum

end do

15| 1$xmp reduction(+:w) on t(l:n,*)

This code performs a reduction operation on the array w only once, which may result in
faster operation.

3.5.5 bcast Construct
Synopsis

The becast construct performs broadcast communication from a specified node.

3.5. GLOBAL-VIEW COMMUNICATION AND SYNCHRONIZATION CONSTRUCTS 47

Syntax

[F1 !'$xmp bcast (variable [, variable]...) [from nodes-ref | template-ref] il

B Jon nodes-ref] | template-ref] [async (async-id)]
[C] #pragma xmp bcast (wvariable [, variable/...) [from nodes-ref | template-ref] i

B /on nodes-ref | template-ref] [async (async-id)]

Description

The values of the variables specified by the sequence of variable’s (called broadcast variables)
are broadcasted from the node specified by the from clause (called the source node) to each of
the nodes in the node set specified by the on clause. After executing this construct, the values
of the broadcast variables become the same as those in the source node. If the from clause is
omitted, then the first node, that is, the leading one in Fortran’s array element order, of the
node set specified by the on clause is assumed to be a source node. If the on clause is omitted,
then it is assumed that the current executing node set is specified in it.

When the async clause is specified, the statements following this construct may be executed
before the operation is complete.

Restrictions

e The variables specified by the sequence of wvariable’s must either not be aligned or be
replicated among nodes of the node set specified by the on clause.

e The bcast construct is global, which means that it must be executed by all nodes in the
current executing node set, and each local variable referenced in the construct must have
the same value among all of them.

e async-id must be an expression of type default integer, in XcalableMP Fortran, or type
int, in XcalableMP C.

e The node set specified by the on clause must be a subset of the executing node set.

e The source node specified by the from clause must belong to the node set specified by the
on clause.

e The source node specified by the from clause must be one node.

3.5.6 wait_async Construct
Synopsis

The wait_async construct guarantees asynchronous communications specified by async-id are
complete.

Syntax

[F]1 !'$xmp wait_async (async-id [, async-id |...) [on nodes-ref | template-ref]

[C] #pragma xmp wait_async (async-id [, async-id [...) Jon nodes-ref | template-ref]
Description

The wait_async construct blocks and therefore statements following it are not executed until
all of the asynchronous communications that are specified by async-id’s and issued on the node
set specified by the on clause are complete.

025

053

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

48 CHAPTER 3. DIRECTIVES

Restrictions

e async-id must be an expression of type default integer, in XcalableMP Fortran, or type
int, in XcalableMP C.

e async-id must be associated with an asynchronous communication by the async clause of
a communication construct.

e The wait_async construct is global, which means that it must be executed by all nodes in
the current executing node set, and each local variable referenced in the construct must
have the same value among all of them.

e The node set specified by the on clause must be the same as those of the global constructs
that initiate the asynchronous communications specified by async-id.
3.5.7 async Clause
Synopsis
The async clause of the reflect, gmove, reduction and bcast constructs allows the corre-
sponding communication to be performed asynchronously.
Description

Communication corresponding to the construct with an async clause is performed asynchronously,
that is, initiated but not completed, and therefore statements following it may be executed before
the communication is complete.

Example
XcalableMP Fortran

1$xmp reflect (a) async(1l)
S1

I$xmp wait_async(1)
S2

The reflect construct on the first line matches the wait construct on the third line because
both of their async_id evaluate to 1. These constructs ensure that statements in S1 can be
executed before the reflect communication is complete and no statement in S2 is executed
until the reflect communication is complete.

Chapter 4

Support for the Local-view
Programming

In this chapter, the coarray features in XcalableMP, which are based on that of Fortran 2008,
are described. Note that they are available also in XcalableMP C. Additionally, some directives
for the local-view programming are also described.

The coarray features in Fortran 2008 are extended and integrated into XcalableMP. The
specifications in this chapter are designed to achieve the following purposes:

e Upward compatibility to the Fortran 2008 coarray features
If an XcalableMP Fortran program does not contain any XMP directives, any standard-
conforming Fortran 2008 program remains standard-conforming under XcalableMP. In this
sense, the interpretations and extensions defined in this chapter are upward compatible
with the Fortran International Standard, ISO/IEC 1539-1:2010 (Fortran 2008).

e Support for task parallelism
XcalableMP makes it possible to construct a task parallel program by combining multiple
Fortran 2008 codes, which might be developed independently, with minimum modifica-
tions.

e Integration of global-view style programming and local-view style programming
In XcalableMP, users can use global-view style programming of XcalableMP or local-view
style programming, which is typically used in MPI or Fortran 2008 programs, appropriately
according to the characteristics of code in a program.

e Possibility of the support for multiple topologies of a computing system
An XcalableMP processor may allow users to specify the correspondence between node ar-
rays and the topologies of a computing system and exploit the full potential of a particular
System.

4.1 Rules Determining Image Index

This section defines how the image index of an image in a set of images is determined in
association with a node array and a task construct.
4.1.1 Primary Image Index

Every image has a default image index in all the images at the invocation of a program. In
XcalableMP, the default image index is the primary image index and is an integer value in the
range one to the number of images at the invocation of a program.

49

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

50 CHAPTER 4. SUPPORT FOR THE LOCAL-VIEW PROGRAMMING

A primary node array corresponds to all the images at the invocation of a program, and also
corresponds to all the nodes at the invocation of a program. The primary image index of an
image is the (Fortran) subscript order value of the uniquely corresponding element of a primary
node array.

4.1.2 Image Index Determined by a task Directive

Execution of a task directive determines that a set of nodes (and the corresponding set of
images) forms an executing node set. If a name of a node array or a subobject of a node array
appears in the task directive, the nodes and the corresponding images in the executing node set
are ordered in (Fortran) array element order in the node array or the subobject of the node array.
If a name of a template array or a subobject of a template array appears in the task directive,
the nodes and the corresponding images in the executing node set are ordered in (Fortran) array
element order in the corresponding subobject of the node array. The image index of an image
in the determined set of images is the integer order value in the range one to the cardinality of
the set of images.

4.1.3 Current Image Index

The image index of an image in the current set of images is the current image index.

A current executing node array corresponds to the current set of images and also the current
executing node set at the evaluation of the declaration of the node array. Each image in the
current set of images corresponds to the element of an executing node array whose subscript order
value is the same as the current image index of the image at the evaluation of the declaration
of the executing node array. In particular, when there are no task directive constructs that are
not completed, the current image index of an image is the same as the primary image index.

4.1.4 Image Index Determined by a Non-primary Node Array

A non-primary node array corresponds to all the images at the invocation of a program, and
also corresponds to all the nodes at the invocation of a program. The correspondence between
each image and each element of a non-primary node array is processor-dependent. A processor
may support any means to specify the correspondence.

The image index of an image in all the images at the invocation of a program is the subscript
order value of the corresponding element of a non-primary node array if and only if the current set
of images corresponds to the non-primary node whole array in which the nodes in the executing
node set are ordered in (Fortran) array element order in the non-primary node whole array. The
image index is a non-primary image index.

The correspondence between the primary image index and a non-primary image index of
the same image is processor-dependent. Between any two distinct non-primary node arrays, the
correspondence between a non-primary image index and the other non-primary image index of
the same image is processor-dependent unless they have the same shape. If two non-primary
node arrays have the same shape, the corresponding elements of the node arrays correspond to
the same image.

4.1.5 Image Index Determined by an Equivalenced Node Array

E3M) [3

A nodes directive with “=node-ref’ that is not “=*” or specifies that each element of the
declared node array corresponds in (Fortran) array element order to that of the node-ref, which
is a name of a node array or a subobject of a node array. The nodes in the declared node array
and the corresponding images are ordered in (Fortran) array element order in the node-ref. The

4.2. BASIC CONCEPTS 51

image index of an image in the set of images corresponding to the declared node array is the
integer order value in the range one to the cardinality of the set of images.

4.1.6 On-node Image Index

XcalableMP supports the coarray directive and the image directive to specify that an image
index indicates the image corresponding to the element of a particular node array whose subscript
order value is the same as the image index. The image index is an on-node image index for the
specified node array. Since evaluation of the declaration of a node array determines a set of
images corresponding to the node array, the directives specify that the set of images is the “all
images” for the image indices the directives affect. In particular, the on-node image index for a
primary node array is the primary image index.

4.2 Basic Concepts

In XcalableMP, “all images” in Fortran 2008 changes coupled with the execution of task con-
structs and means the current set of images. In particular, when an allocate statement is
executed for which an allocate-object is a coarray, there is an implicit synchronization of all the
images in the current set of images. On each image in the current set of images, execution of the
segment following the statement is delayed until all other images in the set have executed the
same statement the same number of times. When a deallocate statement is executed for which
an allocate-object is a coarray, there is an implicit synchronization of all the images in the current
set of images. On each image in the current set of images, execution of the segment following
the statement is delayed until all other images in the set have executed the same statement the
same number of times.

e When an allocatable coarray is allocated during the execution of task constructs, the
coarray shall be subsequently deallocated before the completion of the task construct
whose task directive is the most lately executed one in the task constructs that are not
completed at the allocation.

The image index determined by an image selector indicates the current image index by
default. Coarrays are visible within the range of the “all images” and accessed with the current
image index by default. The image index that appears in an executable statement indicates the
current image index by default.

4.2.1 Examples

e In the following code fragment, the value of a coarray b on the images 1, 2, 3, and 4,
which constitute the executing node set and correspond to node(5), node(6), node(7),
and node (8) respectively, is defined with the value of the coarray a on node(5).

XcalableMP Fortran

program xmpcoarray

!$xmp nodes node(8)=** ! A primary node array.
'$xmp task on node(5:8) ! The executing node set
call sub ! corresponds to node(5:8).
5| !'$xmp end task
end

subroutine sub
real, save :: a[*], b[*] ! The images 1, 2, 3,

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

52 CHAPTER 4. SUPPORT FOR THE LOCAL-VIEW PROGRAMMING

! and 4 correspond to node(5:8),

10 .
b = al[1] ! respectively.

e In the following code fragment, an allocatable coarray a is allocated on the images 1, 2,
3, and 4, which constitute the executing node set and correspond to node(5), node(6),
node (7), and node (8) respectively.

XcalableMP Fortran

program xmpcoarray
I$xmp nodes node(8)=**

'$xmp task on node(5:8) ! The executing node set
call sub2 ! corresponds to node(5:8).
5| !$xmp end task
end

subroutine sub2
real, allocatable :: a(:)[:]

10

allocate(a(0:99) [*])

Note
e The result value of xmp_num nodes() is always the same as that of NUM_IMAGES ().
e The result value of xmp node num() is always the same as that of THIS_IMAGEQ).

e In a read statement, an io-unit that is an asterisk identifies an external unit that is
preconnected for sequential formatted input only on the image whose primary image index
is one.

4.3 coarray Directive

4.3.1 Purpose and Form of the coarray Directive

The coarray directive maps coarrays onto a node array and the set of images that corresponds
to the node array. An image index determined by an image selector for a coarray that appears
in a coarray directive always indicates the on-node image index for the node array; that is, the
specified image corresponds to the node whose subscript order value in the node array is the
same as the image index.

A coarray appearing in a coarray directive is an on-node coarray of the node array that is
specified in the coarray directive.

[F]1 '$xmp coarray on node-name :: object-name-list

[C] #pragma xmp coarray on node-name :: object-name-list

e An object-name shall be a name of a coarray declared in the same scoping unit.

e The same object-name shall not appear more than once in coarray directives in a scoping
unit.

10

4.3.

COARRAY DIRECTIVE 93

If an object-name is a name of an allocatable object, the current set of images at the
allocation and the deallocation of the object shall correspond to the node array specified
as the node-name and the current image index of each image shall be the same as the
subscript order value of the corresponding element of the node array.

If an object-name is a name of an allocated allocatable dummy argument, the set of images
onto which it is mapped shall be a subset of the set of images that has allocated most
lately the corresponding argument in the chain of argument associations.

If an object-name is a name of a nonallocatable dummy argument whose ultimate argument
has allocatable attribute, the set of images onto which the object-name is mapped shall be
a subset of the set of images that has allocated most lately the corresponding argument
in the chain of argument associations.

The image index determined by an image selector for an on-node coarray shall be in the
range of one to the size of the node array onto which the on-node coarray is mapped.

THIS_.IMAGE(COARRAY[,DIM]) shall be invoked by the image contained in the set of
images onto which the COARRAY argument is mapped, if the COARRAY argument
appears in a coarray directive.

Note

e The result value of THIS_.IMAGE(COARRAY) is the sequence of cosubscript values for the

COARRAY argument that would specify the current image index of the invoking image,
if the COARRAY argument does not appear in a coarray directive. The result value of
THIS_IMAGE(COARRAY) is the sequence of cosubscript values for the COARRAY argu-
ment that would specify the on-node image index of the invoking image for the node array
onto which the COARRAY argument is mapped, if the COARRAY argument appears in
a coarray directive.

The result value of THIS IMAGE(COARRAY,DIM) is the value of cosubscript DIM in
the sequence of cosubscript values for the COARRAY argument that would specify the
current image index of the invoking image, if the COARRAY argument does not appear in
a coarray directive. The result value of THISIMAGE(COARRAY ,DIM) is the value of
cosubscript DIM in the sequence of cosubscript values for the COARRAY argument that
would specify the on-node image index of the invoking image for the node array onto which
the COARRAY argument is mapped, if the COARRAY argument appears in a coarray
directive.

4.3.2 An Example of the coarray Directive

XcalableMP Fortran

I$xmp nodes node (8)=x*x

real s[*] ! The coarray s is always
I$xmp coarray on node :: s ! visible on node(1:8).
end global

I$xmp task on node(5:8) ! The executing node set

module global

program coarray
use global

call sub | consists of node(5:8).

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

15

20

10

54 CHAPTER 4. SUPPORT FOR THE LOCAL-VIEW PROGRAMMING
!$xmp end task
end
subroutine sub
use global
real, save :: al[x] ! The images 1, 2, 3, and 4
! correspond to node(5:8), respectively.
1f(thls image().eq.1)then ! The value of the coarray a on node(5)
s[1] = a ! defines that of the coarray s on node(1)
endif
4.4 image Directive
4.4.1 Purpose and Form of the image Directive

The image directive specifies that an image index in the following executable statement indicates
the on-node image index of the node array specified in the image directive unless the image index
is determined by an image selector.

The image directive also specifies that execution of a sync all statement performs a syn-
chronization of all the images corresponding to the node array specified in the image directive.

[F]1 !$xmp image (node-name)

[C] #pragma xmp image (node-name)

e An image directive shall be followed by a sync all statement, an image control statement
that contains image-set, or a reference to an intrinsic procedure that has IMAGES argument.

4.4.2

An Example of the image Directive

I $xmp

I $xmp

I $xmp
! $xmp

! $xmp
I $xmp

I $xmp
! $xmp

XcalableMP Fortran

module global

nodes node(8)=xx

real s[x*] ! The coarray s is always visible
coarray on node :: s ! on node(1:8).

end global

program image
use global
tasks
task on node(1:4)
call subA ! The executing node set consists of node(1:4).
end task
task on node(5:8)
call subB ! The executing node set consists of node(5:8).
end task
end tasks
end

subroutine subA

20

25

30

35

40

4.5. IMAGE INDEX TRANSLATION INTRINSIC PROCEDURES 55

use global

real, save :: al[x] The images 1, 2, 3, and 4

correspond to node(1:4), respectively.
Synchronization between node(1:4) and
node(5) .

a on node(1:4) is defined with

the value of s on node(1).

I$xmp image (node)
sync images(5)
a = s[1]

end subroutine

subroutine subB
use global
real, save :: b[x] ! The images 1, 2, 3, and 4
: ! correspond to node(5:8), respectively.
if (this_image() .eq. 1)then ! The image 1 indicates node(5).

s[1] = b | s on node(1) is defined with the value of
! b on node(5).
I$xmp image (node) I Synchronization between
sync images((/1,2,3,4/)) ! node(5) and node(1:4).
endif

end subroutine

4.5 Image Index Translation Intrinsic Procedures

XcalableMP supports intrinsic procedures to translate image indices between different sets of
images.

4.5.1 Translation to the Primary Image Index
xmp_get_primary_image_index(NUMBER,INDEX,PRI INDEX,NODE _DESC)
Description. Translate image indices to the primary image indices.

Class. Subroutine.

Arguments.

NUMBER shall be a scalar of type default integer. It is an INTENT(IN) argument.

INDEX shall be a rank-one array of type default integer. The size of INDEX shall be
greater than or equal to the value of NUMBER. It is an INTENT(IN) argument.
The value of each element of INDEX shall be in the range one to the size of the
node array specified in NODE_DESC if NODE_DESC appears. The value of each
element of INDEX shall be in the range one to the cardinality of the current set of
images if NODE_DESC does not appear.

PRI_INDEX shall be a rank-one array of type default integer. The size of PRI_INDEX
shall be greater than or equal to the value of NUMBER. It is an INTENT(OUT)
argument. If NODE_DESC appears, PRI_ INDEX(i) is assigned the primary im-
age index corresponding to the element of the node array specified in NODE_DESC
whose subscript order value is INDEX(i); otherwise, PRI_INDEX(i) is assigned
the primary image index corresponding to the image whose current image index is
INDEX(i).

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034

036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052

054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051

053
054
055
056

56 CHAPTER 4. SUPPORT FOR THE LOCAL-VIEW PROGRAMMING

NODE_DESC (optional) shall be a descriptor of a node array. It is an INTENT(IN)
argument. NODE_DESC shall appear in XcalableMP C.

Example. In the following code fragment, the value of index(1:4) is (/5,6,7,8/).
XcalableMP Fortran
'$xmp nodes node(1:8)=*x* ! A primary node array
'$xmp nodes subnode(4)=node(5:8)

integer index(4)

call xmp_get_primary_image_index&
5 &(4,(/1,2,3,4/) ,index,xmp_desc_of (subnode))

4.5.2 Translation to the Current Image Index
xmp_get_image_index(NUMBER,INDEX,CUR_INDEX,NODE_DESC)

Description. Translate image indices to the current image indices.
Class. Subroutine.
Arguments.

NUMBER shall be a scalar of type default integer. It is an INTENT(IN) argument.

INDEX shall be a rank-one array of type default integer. The size of INDEX shall be
greater than or equal to the value of NUMBER. It is an INTENT(IN) argument.
The value of each element of INDEX shall be in the range one to the size of the
node array specified in NODE_DESC.

CUR_INDEX shall be a rank-one array of type default integer. The size of CUR_INDEX
shall be greater than or equal to the value of NUMBER. It is an INTENT(OUT)
argument. If the current image index corresponding to the element of the node-
array specified in NODE_DESC whose subscript order value is INDEX(i) exists,
CUR_INDEX(i) is assigned the current image index; otherwise, CUR_INDEX(i)
is assigned zero.

NODE_DESC shall be a descriptor of a node array. It is an INTENT(IN) argument.

Example. In the following code fragment, the value of index(1:4) is (/1,2,3,4/).
XcalableMP Fortran

I$xmp nodes node(1:8)=xx*
integer index(4)
!$xmp task on node(5:8)
call xmp_get_image_index&
5 &(4,(/5,6,7,8/),index,xmp_desc_of (node))
'$xmp end task

4.6 Examples of Communication between Tasks

e In the following program fragment, two tasks communicate with each other with synchro-
nization.

XcalableMP Fortran
module nodes

!$xmp nodes node (8)=xx* ! A primary node array
integer, parameter :: n=2

4.6. EXAMPLES OF COMMUNICATION BETWEEN TASKS o7

!$xmp nodes subnodeA(n)=node(1:n) ! subnodeA is for taskA. 001
5| '$xmp nodes subnodeB(8-n)=node(n+1:8) ! subnodeB is for taskB. 002
endmodule 003

004

005
module intertask 006

use nodes 007

10 real,save :: dA[*],dB[x*] 008
endmodule 009

010

use nodes orl

'$xmp tasks 012

15| '$xmp task on subnodeA ! The taskA is invoked on subnodeA. ii
call taskA 015

'$xmp end task 016
'$xmp task on subnodeB ! The taskB is invoked on subnodeB. 017
call taskB 018

20| !'$xmp end task 019
I$xmp end tasks 020
end 021

022

023

subroutine taskA 024

25 use intertask 025
. 026

me = this_image() ! The value of me is i on subnodeA(i). 027

if (me.eq.1)then 028

call xmp_get_primary_image_index& ! The value of iyouabs ?9

30 &(1,(/1/) ,iyouabs,subnodeB) ! is n+1. Zi
'$xmp image (node) I Synchronization between 032
sync images (iyouabs) ! node(1) and node(n+1). 033

call exchange(dA,dB,iyouabs) 034

'$xmp image (node) ! Synchronization between 035

35 sync images(iyouabs) ! node(1) and node(n+1). 036
endif 037

sync all ! Synchronization within subnodeA. zz

if (me.ne.1)dA = dA[1] 010

sync all ! Synchronization within subnodeA. 041

40 . 042
end 043

044

subroutine taskB 045

. 046
use intertask

047
45
048

me = this_image() ! The value of me is i on subnodeB(i).

049

if (me.eq.1)then 050

call xmp_get_primary_image_index& ! The value of iyouabs 051

&(1,(/1/) ,iyouabs,subnodel) ! is 1. 052

50 !$xmp image (node) ! Synchronization between 053
sync images(iyouabs) ! node(n+1) and node(1). 054

055

call exchange(dB,dA,iyouabs)

056
'$xmp image (node) I Synchronization between

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

58

55

60

65

' $xmp

CHAPTER 4. SUPPORT FOR THE LOCAL-VIEW PROGRAMMING

sync images(iyouabs) ! node(n+1) and node(1).
endif
sync all ! Synchronization within subnodeB.
if (me.ne.1)dB = dB[1]
sync all ! Synchronization within subnodeB.

end

subroutine exchange(mine,yours,iput)

use nodes

real :: mine[*],yours[*] ! mine and yours are always
coarray on node :: mine,yours ! visible on node(1:8).

yours[iput] = mine ! node(l) puts mine to yours[n+1] and
! node(n+1) puts mine to yours[1].

end

e In the following program fragment, two tasks communicate with each other without one-

10

20

25

30

to-one synchronization.

XcalableMP Fortran

! $xmp

! $xmp
1 $xmp

1 $xmp
! $xmp

! $xmp
! $xmp

1 $xmp

! $xmp

nodes node (8)=x*x ! A primary node array

tasks
task on(node(1:n))
call taskA(n) ! The taskA is invoked on node(1:n)
end task
task on(node(n+1:8))
call taskB(8-n) ! The taskB is invoked on node(n+1:8)
end task
end tasks
end

subroutine taskA(n)
real,save :: yours[*],minel[*]
nodes subnode (n)=* ! An executing node array

me = this_image()
if (me.eq. NUM_IMAGES())then
call xmp_get_primary_image_index(l,me,meabs) ! meabs=n.
call exchange(yours,mine,meabs,meabs+1,NUM_IMAGES())
endif

sync all ! Synchronization within node(1l:n).
if (me.ne.NUM_IMAGES())mine = mine [NUM_IMAGES()]

sync all ! Synchronization within node(1l:n).
end

subroutine taskB(m)
real,save :: yours[*],mine[*]
nodes subnode (m)=x* | An executing node array

4.7. [C€] COARRAYS IN XCALABLEMP C.

35

40

45
! $xmp
! $xmp
! $xmp

50

55

me = this_image()
if (me.eq.1)then
call xmp_get_abs_image_index(1,me,meabs) ! meabs=n+1.
call exchange(yours,mine,meabs,meabs-1,NUM_IMAGES())
endif

sync all ! Synchronization within node(n+1:8).
if (me.ne.1)mine = mine[1]

sync all ! Synchronization within node(n+1:8).
end

subroutine exchange