XcalableMP

(ex-scalable-em-p)
Language Specification

Version 1.0

XcalableMP Specification Working Group

November, 2011

Copyright (©2008-2011 XcalableMP Specification Working Group. Permission to copy with-
out fee all or part of this material is granted, provided the XcalableMP Specification Working
Group copyright notice and the title of this document appear. Notice is given that copying is
by permission of XcalableMP Specification Working Group.

Contents

Introduction

1.1 Features of XcalableMP
1.2 Scope
1.3 Organization of this Document

Overview of the XcalableMP Model and Language

2.1 Hardware Model
2.2 Execution Model
2.3 DataModel
2.4 Global-view Programming Model
2.5 Local-view Programming Model L oL,
2.6 Interactions between the Global View and the Local View
2.7 Base Languages L
2.8 Glossary
2.8.1 Language Terminology oo
2.8.2 Node Terminology o i
2.8.3 Data Terminology
2.8.4 Work Terminology
2.8.5 Communication and Synchronization Terminology
2.8.6 Local-view Terminology
Directives
3.1 Directive Format
3.1.1 General Rule
3.1.2 Combined Directive
3.2 mnodes Directive L
3.2.1 Node Reference
3.2.2 Correspondence between Node Arrays
3.3 Template and Data Mapping Directives
3.3.1 template Directive
3.3.2 Template Reference oo o
3.3.3 distribute Directive
3.3.4 align Directiveo
3.3.5 shadow Directive
3.3.6 template_fix Construct
3.4 Work Mapping Construct
3.4.1 task Construct
3.4.2 tasks Construct
3.4.3 loop Construct
3.4.4 array Construct

ii

N DN =

01 1O O ULk W w W

3.5 Global-view Communication and Synchronization Constructs

3.5.1 reflect Construct
3.5.2 gmove Construct
3.5.3 Dbarrier Construct
3.5.4 reduction Construct
3.5.5 Dbcast Construct L
3.5.6 wait_async Construct
3.5.7 async Clause
4 Support for the Local-view Programming
4.1 Coarrays in XcalableMPo oo
4.1.1 [C] Declaration of Coarrays
4.1.2 [C] Reference of Coarrays
4.1.3 [C] syncmemory Directive
4.2 Directives for the Local-view Programming
4.2.1 [F] local_alias Directive,
4.2.2 post Construct
4.2.3 wait Construct

5 Base Language Extensions in XcalableMP C

5.1 Array Section Notation
5.2 Array Assignment Statement L
5.3 Pointer to Global Data
5.3.1 Name of Global Array
5.3.2 The Address-of Operator
5.4 Dynamic Allocation of Global Data
5.5 The Descriptor-of Operator
6 Procedure Interfaces
6.1 General Rule
6.2 Argument Passing Mechanism in XcalableMP Fortran
6.2.1 Sequence Association of Global Data
6.2.2 Descriptor Association of Global Data
6.3 Argument Passing Mechanism in XcalableMP C
7 Intrinsic and Library Procedures
7.1 System Inquiry Procedures
7.1.1 xmp.desc_of
7.1.2 xmp_allmode nUm e e
7.1.3 xmpallnmummodes
7.1.4 xmpmnodenum Lo e e e e e
7.1.5 xmpnumnodes oL e e e e

7.1.6 xmp_wtime
7.1.7 xmp_wtick

7.2 Synchronization Procedureso o

7.2.1 xmp_test_async

7.3 Miscellaneous Procedures Lo

7.3.1 =xmp_gtol

7.3.2 [C] xmpmalloC v v v vt
Bibliography

iii

49
49
49
50
50
51
51
54
95

57
57
o8
99
29
99
99
60

61
61
61
62
65
68

73
73
73
74
74
74
74
75
75
75
75
76
76
76

77

A Programming Interface for MPI 79

Al xmp_getmpi_comm 79
A2 xmpinitmpl e 79
A3 xmp finalizempi 80

B Directive for Thread Parallelism 81
B.1 threadsclause 81

C Interface to Numerical Libraries 83
C.1 Design of the Interface L 83
C.2 Query routines 83
C.2.1 zmpmode index 84

C.2.2 zmpmode_size 84

C.23 zxmp_gt.size 84

C.24 xmp lt_size 85

C.25 xmp_ga size 85

C.2.6 xmp_la_size 85

C.2.7 =xzmp_ga template unitsize 86

C.2.8 =xmp_ga first_ idxmode_index 86

C.29 =zmp_laleaddim 87

C.3 Example e 87

D XcalableMP I/0 91
D.1 Categorization of I/O 91
D.1.1 Local I/O o o o 91

D.1.2 Master I/O[F]. 91

D.1.3 Global I/O 91

D.2 File Connection L 92
D.2.1 File Connection in Local I/O 93

D.2.2 [F] File Connection in Master I/O 93

D.2.3 File Connection in Global I/O 93

D.3 Master I/O 93
D.3.1 master_io Comstruct 94

D4 [F] Global I/Oo 95
D.4.1 Global I/O File Operation 96

D.4.2 Collective Global I/O Statement 98

D.4.3 Atomic Global I/O Statement 98

D.4.4 Direct Global I/O Statement 99

D.5 [C] Global I/O Library 99
D.5.1 Global I/O File Operation 102

D.5.2 Collective Global I/O Functions 104

D.5.3 Atomic Global I/O Functions 106

D.5.4 Direct Global I/O Functions 107

E Sample Programs 109

v

List of Figures

2.1
2.2
2.3
2.4

3.1
3.2

6.1
6.2
6.3

6.4

6.5
6.6
6.7
6.8
6.9
6.10

C.1

Hardware Model
Parallelization by the Global-view Programming Model

Local-view Programming Model
Global View and Local View

Example of Shadow of a Two-dimensional Array
Example of Periodic Shadow Reflection

Sequence Association with a Global Dummy Argument
Sequence Association with a Local Dummy Argument
Sequence Association of a Section of a Global Data as an Actual Argument with
a Local Dummy Argument
Sequence Association of an Element of a Global Data as an Actual Argument
with a Local Dummy Argument
Sequence Association with a Global Dummy Argument that Has Full Shadow . .
Descriptor Association with a Global Dummy Argument
Descriptor Association with a Local Dummy Argument
Passing to a Global Dummy Argument
Passing to a Local Dummy Argument
Passing an Element of a Global Data as an Actual Argument to a Local Dummy
Argument L

Invocation of a Library Routine through an Interface Procedure

N O Ot Ww

26
41

63
64

65

Acknowledgment

The specification of XcalableMP is designed by the XcalableMP Specification Working Group,
which consists of the following members from academia, research laboratories, and industries.

Tatsuya ADe ... RIKEN
Tokuro Anzakit e Hitachi
Taisuke Boku University of Tsukuba
Toshio Endo TITECH
Yasuharu Hayashi e NEC
Atsushi Horl ..o RIKEN
Kohichiro Hottao Fujitsu
Hidetoshi Iwashita e Fujitsu
Jinpil Lee ... University of Tsukuba
Yuichi Matsuo e JAXA
Kazuo Minamioooi i RIKEN
Hitoshi Muraioon e e RIKEN
Kengo Nakajima ... i University of Tokyo
Takashi Nakamuracooo o e e JAXA
Tomotake Nakamurao i RIKEN
Masahiro Nakao ... University of Tsukuba
Takeshi Nanri e Kyusyu University
Kiyoshi Negishi e e Hitachi
Yasuo Okabe Kyoto University
Hitoshi Sakagami ... NIFS
Shoich Sakomno e NEC
Mitsuhisa Satoii University of Tsukuba
Takenori Shimosaka RIKEN
Yoshihisa Shizawa RIST
Hitoshi Uehara ... e JAMSTEC
Masahiro Yasugloouriiniii i Kyoto University
Mitsuo Yokokawa RIKEN

This work is supported by “Seamless and Highly-productive Parallel Programming FEnvi-
ronment for High-performance Computing” project funded by Ministry of Education, Culture,
Sports, Science and Technology, Japan.

vi

vii

Chapter 1

Introduction

This document defines the specification of XcalableMP, a directive-based language extension
of Fortran and C for scalable and performance-aware parallel programming. The specification
includes a collection of compiler directives and intrinsic and library procedures, and provides a
model of parallel programming for distributed memory multiprocessor systems.

1.1 Features of XcalableMP

The features of XcalableMP are summarized as follows:

e XcalableMP supports typical parallelization based on the data-parallel paradigm and work
mapping under “global-view” programming model, and enables parallelizing the original
sequential code using minimal modification with simple directives, like OpenMP [1]. Many
ideas on “global-view” programming are inherited from High Performance Fortran (HPF)
[2].

e The important design principle of XcalableMP is “performance-awareness.” All actions of
communication and synchronization are taken by directives (and coarray features), which
is different from automatic parallelizing compilers. The user should be aware of what
happens by the XcalableMP directives in the execution model on the distributed memory
architecture.

e XcalableMP also includes features from Partitioned Global Address Space (PGAS) lan-
guages, such as coarray of the Fortran 2008 standard, for the “local-view” programming.

e Extention of existing base languages with directives is useful to reduce code-rewriting and
education costs. The XcalableMP language specification is defined on Fortran or C as a
base language.

e For flexibility and extensibility, the execution model allows to combine with explicit Mes-
sage Passing Interface (MPI) [3] coding for more complicated and tuned parallel codes and
libraries.

e For multi-core and SMP clusters, OpenMP directives can be combined into XcalableMP
for thread programming inside each node as a hybrid programming model.

XcalableMP is being designed based on experiences obtained in the development of HPF,
HPF/JA [4], Fujitsu XPF (VPP FORTRAN) [5, 6], and OpenMPD [7].

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

2 CHAPTER 1. INTRODUCTION

1.2 Scope

The XcalableMP specification covers only user-directed parallelization, wherein the user ex-
plicitly specifies the behavior of the compiler and the runtime system in order to execute the
program in parallel in a distributed-memory system. XcalableMP-compliant implementations
are not required to automatically lay out data, detect parallelism and parallelize loops, or gen-
erate communications and synchronizations.

1.3 Organization of this Document
The remainder of this document is structured as follows:

e Chapter 2: Overview of the XcalableMP Model and Language

Chapter 3: Directives

Chapter 4: Support for the Local-view Programming

Chapter 5: Base Language Extensions in XcalableMP C

Chapter 6: Procedure Interface

e Chapter 7: Intrinsic and Library Procedures

In addition, the following appendices are included in this document as proposals.
e Appendix A: Programming Interface for MPI
e Appendix B: Directive for Thread Parallelism
e Appendix C: Interface to Numerical Libraries

e Appendix D: XcalableMP 1/0

Chapter 2

Overview of the XcalableMP Model
and Language

2.1 Hardware Model

The target of XcalableMP is distributed-memory multicomputers (Figure 2.1). Each computa-
tion node, which may contain several cores, has its own local memory (shared by the cores, if
any), and is connected with each other via an interconnection network. Each node can access
its local memory directly and remote memory, that is, the memory of another node indirectly
(i.e. via communication). However, it is assumed that accessing remote memory is much slower
than accessing local memory.

network

\

node node node

Figure 2.1: Hardware Model

2.2 Execution Model

An XcalableMP program execution is based on the Single Program Multiple Data (SPMD)
model, where each node starts execution from the same main routine and keep executing the
same code independently (i.e. asynchronously), which is referred to as the replicated execution,
until it encounters an XcalableMP construct.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

4 CHAPTER 2. OVERVIEW OF THE XCALABLEMP MODEL AND LANGUAGE

A set of nodes that executes a procedure, a statement, a loop, a block, etc. is referred to as its
ezecuting node set and determined by the innermost task, loop or array directive surrounding
it dynamically, or at runtime. The current executing node set is an executing node set of the
current context, which is managed by the XcalableMP runtimes system on each node.

The initial “current executing node set” (or the entire node set) at the beginning of the
program execution is the set of all available nodes, which can be specified in an implementation-
dependent way (e.g. through a command-line option).

When a node encounters at runtime either a loop, array, or task construct, and is contained
by the node set specified by the on clause of the directive, it updates the current executing node
set with the specified one and executes the body of the construct, after which it resumes the
last executing node set and proceeds to execute the following statements.

Particularly when a node in the current executing node set encounters a loop or an array
construct, it executes the loop or the array assignment in parallel with other nodes, so that each
iteration of the loop or element of the assignment is independently executed by the node where
a specified data element resides.

When a node encounters a synchronization or a communication directive, synchronization
or communication occurs between it and other nodes. That is, such global constructs are per-
formed collectively by the current executing nodes. Note that neither synchronizations nor
communications occur without these constructs specified.

2.3 Data Model

There are two classes of data in XcalableMP: global data and local data. Data declared in an
XcalableMP program are local by default.

Global data are ones that are distributed onto the executing node set by the align directive
(see section 3.3.4). Each fragment of a global data is allocated in the local memory of a node in
the executing node set.

Local data are all of the ones that are not global. They are replicated in the local memory
of each of the executing nodes.

A node can access directly only local data and sections of global data that are allocated in
its local memory. To access data in remote memory, explicit communication must be specified
in such ways as the global communication constructs and the coarray assignments.

Particularly in XcalableMP Fortran, for common blocks that include any global variables,
the ways how the storage sequence of them is defined and how the storage association of them
is resolved are implementation-dependent.

2.4 Global-view Programming Model

The global-view programming model is useful when, starting from a sequential version of a
program, the programmer parallelizes it in data-parallel style by adding directives with minimum
modification. In the global-view programming model, the programmer describes the distribution
of the data among nodes using the data distribution directives. The loop construct assigns
each iteration of a loop to the node where the computed data is located. The global-view
communication directives are used to synchronize nodes, to maintain the consistency of the
shadow area, and to move part of the distributed data globally. Note that the programmer
must specify explicitly communications to make all data reference in the program local by using
appropriate directives.

In many cases, the XcalableMP program according to the global-view programming model is
based on a sequential program and can produce the same results as it, regardless of the number

2.5. LOCAL-VIEW PROGRAMMING MODEL 5

of nodes (Figure 2.2).

There are three groups of directives for the global-view programming model. Since these
directives are ignored as a comment by the compilers of base languages (Fortran and C), an
XcalableMP program can be compiled by them to run properly.

Data Mapping

Specifies the data distribution and mapping to nodes (partially inherited from HPF).

Work Mapping (Parallelization)

Assigns a work to a node set. The loop construct maps each iteration of a loop to nodes owning
a specified data elements. The task construct defines an amount of work as a task and assigns
it to a specified node set.

Communication and Synchronization

Specifies how to communicate and synchronize with the other compute nodes. In XcalableMP,
inter-node communication must be explicitly specified by the programmer. The compiler guar-
antees that no communication occurs unless it is explicitly specified by the programmer.

Data A(N1, N2, N3)

&

N2

distribution

onto different nodes

parallelization original program
original program e e with
parallelization directives

Serial Program Parallel Program

Figure 2.2: Parallelization by the Global-view Programming Model

2.5 Local-view Programming Model

The local-view programming model is suitable for programs that explicitly describe an algorithm
and remote data reference that are to be done by each node (Figure 2.3).

For the local-view programming model, some language extensions and directives are provided.
The coarray notation imported from Fortran 2008 is one of such extensions and can be used to

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

6 CHAPTER 2. OVERVIEW OF THE XCALABLEMP MODEL AND LANGUAGE

specify which replica of a local data is to be accessed. For example, the expression of A(i) [N]
is used to access an array element of A(i) located on the node N. If the access is a reference,
then communication to obtain the value from remote memory (i.e. get operation) occurs. If the
access is a definition, then communication to set a value to remote memory (i.e. put operation)
occurs.

Data A(N1, N2, N3) Data A(N1, N2, N3) Data A(N1, N2, N3)
® L ®
N2 N2 N2
- - i
= = =
(X)
SPMD program SPMD program SPMD program
Node 0 Node 1 Node (N-1)

Figure 2.3: Local-view Programming Model

2.6 Interactions between the Global View and the Local View

In the global view, nodes are used to distribute data and computational load. In the local view,
nodes are used to address data in the coarray notation. In the application program, programmers
should choose an appropriate data model according to the structure of the program. Figure 2.4
illustrates the global view and the local view of data.

Data may have both a global view and a local view, and can be accessed from either.
XcalableMP provides some directives to give the local name (alias) to the global data declared
in the global-view programming model so that they can be accessed also in the local-view
programming model. This feature is useful to optimize a certain part of the program by using
explicit remote data access in the local-view programming model.

2.7 Base Languages

The XcalableMP language specification is defined on Fortran or C as a base language. More
specifically, the base language of XcalableMP Fortran is Fortran 90 or later, and that of Xcal-
ableMP C is ISO C90 (ANSI C89) or later.

2.8. GLOSSARY

1$xmp nodes P(4)
1$xmp template T(100)
1$xmp distribute T(block) onto P

1$xmp align G(*, i) with T(i)

real G(80, 100) I global variable

real L(50, 40) !'local variable (default)

Global name space (virtual)

G(80, 100)

Data allocation

|

g0

G(80, 1:25) G(80, 26:50) G(80, 51:75) G(80, 76:100)
L(50,40) L(50,40) L(50,40) L(50,40)
node P(1) node P(2) node P(3) node P(4)

2.8 Glossary

Figure 2.4: Global View and Local View

2.8.1 Language Terminology

base language

base program

XcalableMP
Fortran

XcalableMP C

structured block

procedure

directive

A programming language that serves as the foundation of the Xcal-
ableMP specification.

A program written in a base language.

The XcalableMP specification for a base language Fortran, abbreviated
as XMP/F.

The XcalableMP specification for a base language C, abbreviated as
XMP/C.

For C, an executable statement, possibly compound, with a single
entry at the top and a single exit at the bottom, or an XcalableMP
construct. For Fortran, a block of executable statements with a single
entry at the top and a single exit at the bottom, or an XcalableMP
construct.

A generic term used to refer to “procedure” (including subroutine and
function) in XcalableMP Fortran and “function” in XcalableMP C.

In XcalableMP Fortran, a comment, and in XcalableMP C, a #pragna,
that specifies XcalableMP program behavior.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

8 CHAPTER 2.

declarative
directive

executable
directive

construct

global construct

template

data mapping

work mapping

global

local

global-view
model

local-view model

OVERVIEW OF THE XCALABLEMP MODEL AND LANGUAGE

An XcalableMP directive that may only be placed in a declarative
context. A declarative directive has no associated executable user
code, but instead has one or more associated user declarations.

An XcalableMP directive that is not declarative; it may be placed in
an executable context.

An XcalableMP executable directive (and for Fortran, the paired end
directive, if any) and the associated statement, loop or structured
block, if any.

A construct that is executed collectively and synchronously by every
node in the current executing node set. Global constructs are further
classified into two groups of global communication constructs, such as
gmove, barrier, etc., which specify communication or synchroniza-
tion, and work mapping constructs, such as loop, array and tasks,
which specify parallelization of loops, array assignments or tasks.

A dummy array that represents an index space to be distributed onto
a node set, which serves as the “template” of parallelization in Xcal-
ableMP and can be considered to abstract, for example, a set of grid
points in the grid method or particles in the particle method. A tem-
plate is used in an XcalableMP program to specify the data and work
mapping. Note that the lower bound of each dimension of a template
is one in both XcalableMP Fortran and XcalableMP C.

Allocating elements of an array to nodes in a node set by specifying
with the align directive that the array is aligned with a distributed
template.

Assigning each of the iterations of a loop, the elements of an array
assignment, or the tasks to nodes in a node set. Such work mapping is
specified by aligning it with a template or distributing it onto a node
set.

A data or a work is global if and only if there is one or more replicated
instances of it each of which is shared by the executing nodes.

A data or a work is local if and only if there is a replicated instance of
it on each of the executing nodes.

A model of programming or parallelization, on which parallel programs
are written by specifying how to map global data and works onto nodes.

A model of programming or parallelization, on which parallel programs
are written by specifying how each node owns local data and does local
works.

2.8.2 Node Terminology

node

An execution entity managed by the XcalableMP runtime system,
which has its own memory and can communicate with other nodes.
A node can execute one or more threads concurrently.

2.8. GLOSSARY

node set

entire node set

executing node
set

current
executing node
set

executing node

node array

parent node set

node number

A set of nodes.

A node set that contains all of the nodes participating in the execution
of an XcalbleMP program. Nodes in the entire node set are linearly
ordered.

A node set that contains all of the nodes participating in the execu-
tion of a procedure, a statement, a construct, etc. of an XcalableMP
program is called its executing node set. This term is used in this
document to represent the current executing node set unless it is am-
biguous. Note that the executing node set of the main routine is the
entire node set.

An executing node set of the current context, which is managed by the
XcalableMP runtimes system. The current executing node set can be
modified by the task, array, or loop constructs.

A node in the executing node set.

An XcalableMP entity of the same form as a Fortran array that rep-
resents a node set in XcalableMP programs. Each element of a node
array represents a node in the corresponding node set. A node array
is declared by the nodes directive. Note that the lower bound of each
dimension of a node array is one in both XcalableMP Fortran and
XcalableMP C.

The parent node set of a node set is the last executing node set, which
encounterd the innermost task, loop, or array construct that is being
executed.

A unique number assigned to each node in a node set, which starts
from one and corresponds to its position within the node set which is
linearly-ordered.

2.8.3 Data Terminology

variable

global data

local data

replicated data

A named data storage block, whose value can be defined and redefined
during the execution of a program. Note that variables include array
sections.

An array that is aligned with a template. Elements of a global data are
distributed onto nodes according to the distribution of the template.
As a result, each node owns a part of a global data (called a local
section), and can access directly it but cannot those on the other nodes.

Data that is not global. Each node owns a replica of a local data, and
can access directly it but cannot those on the other nodes. Note that
the replicas of a local data do not always have the same value.

A data whose storage is allocated on multiple nodes. A replicated data
is either a local data or a global data replicated by an align directive.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

10 CHAPTER 2.

distribution

alignment

local section

shadow

OVERVIEW OF THE XCALABLEMP MODEL AND LANGUAGE

Assigning each element of a template to nodes in a node set in a
specified manner. In the broad sense, it means that of an array, a
loop, etc.

Associating each elemtent of an array, a loop, etc. with an element of
the specified template. An element of the aligned array, a loop, etc. is
necessarily mapped to the same node as its associated element of the
template.

A section of a global data that is allocated as an array on each node at
runtime. The local section of a global data includes its shadow objects.

An additional area of the local section of a distributed array, which is
used to keep elements to be moved in from neighboring nodes.

2.8.4 Work Terminology

task

A specific instance of executable codes that is defined by the task
construct and executed by a node set specified by its on clause.

2.8.5 Communication and Synchronization Terminology

communication

reduction

synchronization

asynchronous
communication

A data movement among nodes. Communication in XcalableMP oc-
curs only when the programmer instruct it explicitly with a global
communication construct or a coarray reference.

A procedure of combining variables from each node in a specified man-
ner and returning the result value. A reduction always involves com-
munication. A reduction is specified by either the on clause of the
loop construct or the reduction construct.

Synchronization is a mechanism to ensure that multiple nodes do not
execute specific portions of a program at the same time. Synchroniza-
tion among any number of nodes is specified by the barrier construct
and that between two nodes by the post and wait constructs.

Communication that does not block and returns before it is complete.
Thus statements that follow it can overtake it. An asynchronous com-
munication is specified by the async clause of global communication
constructs or the async directive for a coarray reference.

2.8.6 Local-view Terminology

local alias

coarray

An alias to the local section of a global data, that is, a distributed
array. A local alias can be used in XcalableMP programs in the same
way as normal local data.

A special local data that can be accessed directly by other nodes with
a specific notation (i.e. the image index corresponding to the target
node in the square brackets) added to the end of the array reference
syntax. Every coarray is associated explicitly or implicitly with a node
array and allocated on each node of the node array.

2.8. GLOSSARY

image index

11

The coarray feature of XcalableMP is based on that of the Fortran
2008 standard.

A special identifier, in the style of an integer sequence, which is used
in a coarray reference to specify a target node. An image index in the
square brackets of a coarray reference refers to a corresponding node
in the node array with which the coarray is associated. The corre-
spondence is determined according to Fortran’s array element order
(i.e. row-major). Note that the lower bound of each integer (called
cosubscript) in an image index is one in both XcalableMP Fortran and
XcalableMP C.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051

Chapter 3

Directives

This chapter describes the syntax and behavior of XcalableMP directives. In this document,
the following notation is used to describe XcalableMP directives.

XXX type-face characters are used to indicate literal type characters.

zzz... If the line is followed by “...”, then xxx can be repeated.
[zzx] xzz is optional.
| The syntax rule continues.

[F] The following lines are effective only in XcalableMP Fortran.
[C] The following lines are effective only in XcalableMP C.

3.1 Directive Format

3.1.1 General Rule

In XcalableMP Fortran, XcalableMP directives are specified using special comments that are
identified by unique sentinels !'$xmp. An XcalableMP directive follows the rules for comment
lines of either the Fortran free or fixed source form, depending on the source form of the sur-
rounding program unit!. XcalableMP Fortran directives are case-insensitive.

[F1 '$xmp directive-name clause

In XcalableMP C, XcalableMP directives are specified using the #pragma mechanism pro-
vided by the C standards. XcalableMP C directives are case-sensitive.

[C] #pragma xmp directive-name clause

Directives are classified as declarative directives and executable directives.

The declarative directive is a directive that may only be placed in a declarative context. A
declarative directive has no associated executable user code. The scope rule of declarative direc-
tives obeys that of the declaration statements in the base language. For example, in XcalableMP
Fortran, a node array declared by a nodes directive is visible only within either the program
unit, the derived-type declaration or the interface body that immediately surrounds the direc-
tives, unless overridden in the inner blocks or use or host associated, and, in XcalableMP C, a
node array declared by a nodes directive is visible only in the range from the declaring point to

!Consequently, the rules of comment lines that an XcalableMP directive follows is the same as the ones that
an OpenMP directive follows.

13

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

14 CHAPTER 3. DIRECTIVES

001 the end of the block when placed within a block, or of the file when placed outside any blocks,

002 unless overridden in the inner blocks.

003 The following directives are declarative directives.

004
005

006 e nodes

007

008 e template
009

010 e distribute
011

012 e align
013

014 e shadow
015

016 e coarray

017

18 The executable directives are placed in an executable context. A stand-alone directive is an

executable directive that has no associated user code, such as a barrier directive. An executable

021 directive and its associated user code make up an XcalableMP construct, as in the following
format:

022

019
020

023

024 [F1 '$xmp directive-name clause ...

025 structured-block

026

027 [C] #pragma xmp directive-name clause ...
028 structured-block

029

030 Note that, in XcalableMP Fortran, a corresponding end directive is required for some exe-

cutable directives such as task and tasks and, in XcalableMP C, the associated statement can
033 be compound.
034 The following directives are executable directives.

031
032

035

036 e template fix
037

038 e task

039

040 e tasks

041
042

e loop

043

044 ®a a
rr
045 y

046

o reflect
047

048

[]
049 gmove

050 .

051 ® barrier
052

053 e reduction
054

055 e bcast

056
057 e wait_async

3.2. NODES DIRECTIVE 15

3.1.2 Combined Directive

Synopsis

For XcalableMP Fortran, multiple attributes can be specified in one combined declarative direc-

tive, which is analogous to type declaration statements in Fortran using the

“::” punctuation.

Syntax

[F1 !$xmp combined-directive is combined-attribute [, combined-attribute |... : :
combined-decl [, combined-decl |...

combined-attribute is one of:

nodes
template
distribute (dist-format [, dist-format/...) onto nodes-name
align (align-source [, align-source]...) |
B with template-name Calign-subscript [, align-subscript]...)
shadow (shadow-width [, shadow-width]...)
dimension (explicit-shape-spec [, explicit-shape-spec]...)

and combined-decl is one of:

nodes-decl
template-decl
array-name

Description

A combined directive is interpreted as if an object corresponding to each combined-decl is de-
clared in a directive corresponding to each combined-attribute, where all restrictions of each
directive, in addition to the following ones, are applied.

Restrictions

3.2

The same kind of combined-attribute must not appear more than once in a given combined-
directive.

If the nodes attribute appears in a combined-directive, each combined-decl must be a
nodes-decl.

If the template or distribute attribute appears in a combined-directive, each combined-
decl must be a template-decl.

If the align or shadow attribute appears in a combined-directive, each combined-decl must
be an array-name.

If the dimension attribute appears in a combined-directive, any object to which it applies
must be declared with either the template or the nodes attribute.

nodes Directive

Synopsis

The nodes directive declares a named node array.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

16 CHAPTER 3. DIRECTIVES

Syntax
[F1 !$xmp nodes nodes-decl [, nodes-decl |...

[C] #pragma xmp nodes nodes-decl [, nodes-decl |...

where nodes-decl is one of:

nodes-name (nodes-spec [, nodes-spec |...)
nodes-name (nodes-spec [, nodes-spec |...)
nodes-name (nodes-spec [, nodes-spec |...)

*

nodes-ref
and nodes-spec must be one of:
int-expr
*
Description

The nodes directive declares a node array that corresponds to a node set.

The first form of the nodes directive is used to declare a node array that corresponds to
the entire node set. The second form is used to declare a node array that corresponds to the
executing node set. The third form is used to declare a node array that corresponds to the node
set specified by nodes-ref.

If node-size in the last dimension is “*”, then the size of the node array is automatically
adjusted according to the total size of the entire node set in the first form, the executing node
set in the second form, or the referenced node set in the third form.

Restrictions
e nodes-name must not conflict with any other local name in the same scoping unit.
e nodes-spec can be “*” only in the last dimension.
e nodes-ref must not reference nodes-name either directly or indirectly.

e If no nodes-spec is “x”, then the product of all nodes-spec must be equal to the total size
of the entire node set in the first form, the executing node set in the second form, or the
referenced node set in the third form.

e nodes-subscript in nodes-ref must not be “*”.

Examples

The following are examples of the first and the third forms appeared in the main program. Since
the node array p, which corresponds to the entire node set, is declared to be of size 16, this
program must be executed by 16 nodes.

XcalableMP Fortran XcalableMP C
program main int main() {
I$xmp nodes p(16) #pragma xmp nodes p(16)
'$xmp nodes q(4,*) #pragma xmp nodes q(4,*)
!$xmp nodes r(8)=p(3:10) #pragma xmp nodes r(8)=p(3:10)
5| !$xmp nodes z(2,3)=(1:6) #pragma xmp nodes z(2,3)=(1:6) 5
end program }

3.2. NODES DIRECTIVE 17

The following is an example of a node declaration in a procedure. Since p is declared in the
second form to be of size 16 and corresponds to the executing node set, the invocation of the
foo function must be executed by 16 nodes. The node array q is declared in the first form and
corresponds to the entire node set. The node array r is declared as a subset of p, and x as a
subset of q.

XcalableMP Fortran

function foo()
I$xmp nodes p(16)=x
'$xmp nodes q(4,*)
I$xmp nodes r(8)=p(3:10)
I$xmp nodes x(2,3)=q(1:2,1:3)

end function

3.2.1 Node Reference
Synopsis

The node reference expression is used to reference a subset of a node set.

Syntax

A node reference nodes-ref is specified by either node number or the name of a node array.

nodes-ref is (nodes-subscript)
or nodes-name [(nodes-subscript [, nodes-subscript |...)]

where nodes-subscript must be one of:

nt-expr
triplet
*

Description

Node reference by node number represents a node set specified by a node number of the entire
node set or a triplet describing a set of node numbers of the entire node set.

Node reference by name represents a node set specified by the name of a node array or its
subarray.

Specifically, the “*” symbol appeared as nodes-subscript in a dimension of nodes-ref is inter-
preted by each node at runtime as its position (coordinate) in the dimension of the referenced
node array. Thus, a node reference p(sy, ..., Sk—1, *, Skt1, ---» Sp) is interpreted as
P(S1s o5 Sk—1s Jks Sktls> ---» Sp) onthenode p(j1, ..., Jr—1s Jks Jhktls -5 Jn).

Note that “x” can be used only as the node reference in the on clause of some executable
directives.

Examples
Assume that p is the name of a node array and that m is an integer variable.

e As a target node array in the distribute directive,

!$xmp distribute a(block) onto p

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

18 CHAPTER 3. DIRECTIVES

e To specify a node set to which the declared node array corresponds in the second form of
the nodes directive,

!$xmp nodes r(2,2,4)
'$xmp nodes r(2,2,4)

p(1:4,1:4)
(1:16)

e To specify a node array that corresponds to the executing node set of a task in the task
directive,

!$xmp task on p(l:4,1:4)
I$xmp task on (1:16)
I$xmp task on p(:,*)
I$xmp task on (m)

e To specify a node array with which iterations of a loop are aligned in the loop directive,

1$xmp loop (i) on p(1b(i):1b(i+1)-1)

e To specify a node array that corresponds to the executing node set in the barrier and
the reduction directive,

!$xmp barrier on p(5:8)
'$xmp reduction (+:a) on p(x,:)

e To specify the source node and the node array that corresponds to the executing node set
in the bcast directive,

I$xmp bcast (b) from p(k) on p(:)

3.2.2 Correspondence between Node Arrays

If one node array and the other have the same shape and correspond to the same node set,
an element of the one and an element of the other are assigned to the same node; otherwise,
correspondence between any two node arrays is not specified.

3.3 Template and Data Mapping Directives

3.3.1 template Directive
Synopsis

The template directive declares a template.

Syntax
[F1 !$xmp template template-decl [, template-decl |...

[C] #pragma xmp template template-decl [, template-decl J...
where template-decl is:
template-name (template-spec [, template-spec |...)
and template-spec must be one of:

[int-expr :] int-expr

3.3. TEMPLATE AND DATA MAPPING DIRECTIVES 19

Description

The template directive declares a template with the shape specified by the sequence of template-

spec’s. If every template-spec is “:”, then the shape of the template is initially undefined. This

template must not be referenced until the shape is defined by a template fix directive (see
section 3.3.6) at runtime. If int-expr is specified as template-spec, then the default lower bound
is one.

Restrictions

e template-name must not conflict with any other local name in the same scoping unit.

@,

e Every template-spec must be either f[int-expr :] int-expr or

3.3.2 Template Reference
Synopsis

The template reference expression specified in the on or the from clause of some directives is
used to indirectly specify a node set.

Syntax

template-ref is template-name [(template-subscript [, template-subscript]...)]

where template-subscript must be one of:

nt-expr
triplet
*

Description

Being specified in the on or the from clause of some directives, the template reference refers to
a subset of a node set where the specified subset of the template resides.

Specifically, the “*” symbol appeared as template-subscript in a dimension of template-ref is
interpreted by each node at runtime as the indices of the elements in the dimension that reside
in the node. “*” in a template reference is similar to “*” in a node reference.

Examples

Assume that t is a template.

e In the task directive, the executing node set of the task can be indirectly specified with a
template reference in the on clause.

!'$xmp task on t(1:m,1:n)
!$xmp task on t
e In the loop directive, the executing node set of each iteration of the following loop is

indirectly specified with a template reference in the on clause.

'$xmp loop (i) on t(i-1)

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

20 CHAPTER 3. DIRECTIVES

e In the array directive, the executing node set on which the following array assignment
statement is performed in parallel is indirectly specified with a template reference in the
on clause.

'$xmp array on t(1l:n)

e In the barrier, reduction, and bcast directives, the node set that is to perform the
operation collectively can be indirectly specified with a template reference in the on clause.

!$xmp barrier on t(1:n)
1$xmp reduction (+:a) on t(x,:)
!$xmp bcast b from p(k) on t(1l:n)

3.3.3 distribute Directive
Synopsis

The distribute directive specifies distribution of a template.

Syntax

[F]1 !'$xmp distribute template-name (dist-format [, dist-format/...) onto nodes-name

[C] #pragma xmp distribute template-name (dist-format [, dist-format]...) |
l onto nodes-name

where dist-format must be one of:
*

block [(int-expr) |
cyclic [(int-expr) |
gblock ({ * | int-array })

Description

According to the specified distribution format, a template is distributed onto a specified node
array. The dimension of the node array appearing in the onto clause corresponds, in left-to-right
order, with the dimension of the distributed template for which the corresponding dist-format
is not “*”,

Let d be the size of the dimension of the template, p be the size of the corresponding
dimension of the node array, ceiling and mod be Fortran’s intrinsic functions, and each of the
arithmetic operators be that of Fortran. The interpretation of dist-format is as follows:

“x” The dimension is not distributed.

block Equivalent to block(ceiling(d/p)).

block(n) The dimension of the template is divided into contiguous blocks of size n, which are
distributed onto the corresponding dimension of the node array. The dimension of the
template is divided into d/n blocks of size n, and one block of size mod(d,n) if any, and
each block is assigned sequentially to an index along the corresponding dimension of the
node array. Note that if k = p-d/n-1 > 0, then there is no block assigned to the last k
indices.

cyclic Equivalent to cyclic(1).

3.3. TEMPLATE AND DATA MAPPING DIRECTIVES 21

cyclic(n) The dimension of the template is divided into contiguous blocks of size n, and these
blocks are distributed onto the corresponding dimension of the node array in a round-robin
manner.

gblock(m) m is referred to as a mapping array. The dimension of the template is divided into
contiguous blocks so that the i’th block is of size m(i), and these blocks are distributed
onto the corresponding dimension of the node array.

If at least one gblock(*) is specified in dist-format, then the template is initially undefined
and must not be referenced until the shape of the template is defined by template_fix directives
at runtime.

Restrictions

e [C] template-name must be declared by a template directive that lexically precedes the
directive.

e The number of dist-format that is not “*” must be equal to the rank of the node array
specified by nodes-name.

e The size of the dimension of the template specified by template-name that is distributed
by block(n) must be equal to or less than the product of the block size n and the size of
the corresponding dimension of the node array specified by nodes-name.

e The array int-array in parentheses following gblock must be an integer one-dimensional
array, and its size must be equal to the size of the corresponding dimension of the node
array specified by nodes-name.

e Every element of the array int-array in parentheses following gblock must have a value of
non-negative integer.

e The sum of the elements of the array int-array in parentheses following gblock must be
equal to the size of the corresponding dimension of the template specified by template-
name.

e [C] A distribute directive for a template must precede any its reference in the executable
code in the block.
Examples

Example 1
XcalableMP Fortran

I$xmp nodes p(4)
I$xmp template t(64)
'$xmp distribute t(block) onto p

The template t is distributed in block format, as shown in the following table.

p(1) [t(1:16)
p(2) | t(17:32)
p(3) | t(33:48)
p(4) | t(49:64)

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

22 CHAPTER 3. DIRECTIVES

Example 2
XcalableMP Fortran

I$xmp nodes p(4)
'$xmp template t(64)
I$xmp distribute t(cyclic(8)) onto p

The template t is distributed in cyclic format of size eight, as shown in the following

table.
p(1) | t(1:8) t(33:40)
p(2) | t(9,16) t(41:48)
p(3) | t(17,24) t(49:56)
p(4) | t(25,32) t(57:64)
Example 3

XcalableMP Fortran

!$xmp nodes p(8,5)
'$xmp template t(64,64,64)
!$xmp distribute t(*,cyclic,block) onto p

The first dimension of the template t is not distributed. The second dimension is dis-
tributed onto the first dimension of the node array p in cyclic format. The third dimen-
sion is distributed onto the second dimension of p in block format. The results are as
follows:

p(1,1) | t(1:64, 1:57:8, 1:13)
p(2,1) | t(1:64, 2:58:8, 1:13)

p(8,5) | t(1:64, 8:64:8, 53:64)

Note that the size of the third dimension of t, 64, is not divisible by the size of the second
dimension of p, 5. Thus, sizes of the blocks in the third dimension are different among
nodes.

3.3.4 align Directive

Synopsis

The align directive specifies that an array is to be mapped in the same way as a specified
template.

Syntax

[F1 !$xmp align array-name (align-source [, align-source/...) |
B with template-name Calign-subscript [, align-subscript]...)

[C] #pragma xmp align array-name [align-source] [Lalign-sourcel]... |
B with template-name Calign-subscript [, align-subscript]...)

where align-source must be one of:

3.3. TEMPLATE AND DATA MAPPING DIRECTIVES 23

scalar-int-variable
*

and align-subscript must be one of:

scalar-int-variable [{ + | = } int-expr |
*

Note that the variable scalar-int-variable appearing in align-source is referred to as an “align
dummy variable.”

Description

The array specified by array-name is aligned with the template specified by template-name so
that each element of the array indexed by the sequence of align-source’s is aligned with the
element of the template indexed by the sequence of align-subscript’s, where align-source’s and
align-subscript’s are interpreted as follows:

1. The first form of align-source and align-subscript represents an align dummy variable and
an expression of it, respectively. The align dummy variable ranges over all valid index
values in the corresponding dimension of the array.

2. The second form “x” of align-source and align-subscript represents a dummy variable (not
an align dummy variable) that does not appear anywhere in the directive.

e The second form of align-source is said to “collapse” the corresponding dimension
of the array. As a result, the index along the corresponding dimension makes no
difference in determining the alignment.

e The second form of align-subscript is said to “replicate” the array. Each element of
the array is replicated, and aligned to all index values in the corresponding dimension
of the template.

3. The third form of align-source and the matching align-subscript represents a same align
dummy variable that ranges over all valid index values in the corresponding dimension
of the array. The matching of colons (“:”) in the sequence of align-source’s and align-
subscript’s is determined as follows:

e [F] Colons in the sequence of align-source’s and those in the sequence of align-
subscript’s are matched up in corresponding left-to-right order, where any align-source
and align-subscript that is not a colon is ignored.

e [C] Colons in the sequence of align-source’s in right-to-left order and those in the
sequence of align-subscript’s in left-to-right order are matched up, where any align-
source and align-subscript that is not a colon is ignored.

Restrictions

e [C] array-name must be declared by a declaration statement that lexically precedes the
directive.

e An align dummy variable may appear at most once in the sequence of align-subscript’s.

e An align-subscript may contain at most one occurrence of an align dummy variable.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

24

CHAPTER 3. DIRECTIVES

The int-expr in an align-subscript may not contain any occurrence of an align dummy
variable.

The sequence of align-sources’s must contain exactly as many colons as the sequence of
align-subscript’s contains.

[F] The array specified by array-name must not appear as an equivalence-object in an
equivalence statement.

[C] An align directive for an array must precede any its appearance in the executable
code in the block.

Examples

Example 1

XcalableMP Fortran

'$xmp align a(i) with t(i)

The array element a(i) is aligned with the template element t(i). This is equivalent to
the following code.

XcalableMP Fortran

'$xmp align a(:) with t(:)

Example 2

XcalableMP Fortran
'$xmp align a(*,j) with t(j)

The subarray a(:,j) is aligned with the template element t(j). Note that the first
dimension of a is collapsed.

Example 3

XcalableMP Fortran
'$xmp align a(j) with t(*,j)

The array element a(j) is replicated and aligned with each template element of t(:,j).

Example 4

XcalableMP Fortran

'$xmp template t(nl,n2)
real a(ml,m2)
'$xmp align a(*,j) with t(*,j)

The subarray a(:,j) is aligned with each template element of t(:,j).

By replacing “*” in the first dimension of the array a and “*” in the first dimension of the
template t with a dummy variable i and k, respectively, this alignment can be interpreted
as the following mapping.

a(i,j) — t(k,7) | (i,7,k) € (1:nl, 1:n2,1:ml)

3.3. TEMPLATE AND DATA MAPPING DIRECTIVES 25

3.3.5 shadow Directive
Synopsis

The shadow directive allocates the shadow area for a distributed array.

Syntax

[F1 !$xmp shadow array-name (shadow-width [, shadow-width]...)

[C] #pragma xmp shadow array-name [shadow-width] [[shadow-width]]...

where shadow-width must be one of:

int-expr
int-expr : int-expr
*

Description

The shadow directive specifies the width of the shadow area of an array specified by array-name,
which is used to communicate the neighbor element of the block of the array. When shadow-
width is of the form “int-expr : int-expr,” the shadow area of the width specified by the first
int-expr is added at the lower bound and that specified by the second one at the upper bound in
the dimension. When shadow-width is of the form int-expr, the shadow area of the same width
specified is added at both the upper and lower bounds in the dimension. When shadow-width is
of the form “*”, the entire area of the array is allocated on each node, and all of the area that
it does not own is regarded as shadow. This type of shadow is sometimes referred to as a “full
shadow.”

Note that the shadow area of a multi-dimensional array include “obliquely-neighboring”
elements, which are the ones owned by the node whose indices are different in more than one
dimension, and that the shadow area can be allocated also at the global lower and upper bound
of an array.

The data stored in the storage area declared by the shadow directive is referred to as a
shadow object. A shadow object represents an element of a distributed array and corresponds
to the data object that represents the same element as it. The corresponding data object is
referred to as the reflection source of the shadow object.

Restrictions

e [C] array-name must be declared by a declaration statement that lexically precedes the
directive.

e The value specified by shadow-width must be a non-negative integer.

e The number of shadow-width must be equal to the number of dimensions (or rank) of the
array specified by array-name.

e [C] A shadow directive for an array must precede any its appearance in the executable
code in the block.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

26 CHAPTER 3. DIRECTIVES

Example

a(16, 17: 32)
XcalableMP Fortran — a(16, 16) a(16, 33)
\ /
I$xmp nodes p(4,4) ol I
I$xmp template t(64,64) '
!$xmp distribute t(block,block) onto p

14— a(17:32,33)

a(17:32,16) T | 17:32) -

/' 4
real a(64,64) a(33, 16) a(33, 33)

1$xmp align a(i,j) with t(i,]) a(33, 17: 32)
!$xmp shadow a(1,1)

Figure 3.1: Example of Shadow of a
Two-dimensional Array

The node p(2,2) has a(17:32,17:32) as a data object, and a(16,16), a(17:32,16),
a(33,16), a(16,17:32), a(33,17:32), a(16,33), a(17:32,33) and a(33,33) as shadow ob-
jects (Figure 3.1). Among them, a(16,16), a(33,16), a(16,33) and a(33,33) are “obliquely-
neigboring” elements of p(2,2).

3.3.6 template _fix Construct
Synopsis

This construct fixes the shape and/or the distribution of an undefined template.

Syntax

[F]1 !'$xmp template fix [(dist-format [, dist-format]...)] i
B template-name [(template-spec [, template-spec]...)]

[C] #pragma xmp template fix [(dist-format [, dist-format]...)] i
B template-name [(template-spec [, template-spec)...)]

where template-spec is:
[int-expr :] int-expr
and dist-format is one of:

*
block [(int-expr)]
cyclic [C int-expr)]
gblock (int-array)

Description

The template_fix construct fixes the shape and/or the distribution of the template that is
initially undefined, by specifying the sizes and/or the distribution format of each dimension
at runtime. Arrays aligned with an initially undefined template must be an allocatable array,
in XcalableMP Fortran, or a pointer (see Section 5.4), in XcalableMP C, which cannot be
allocated until the template is fixed by the template_fix construct. Any constructs that have
such a template in their on clause must not be encountered until the template is fixed by the

10

3.4. WORK MAPPING CONSTRUCT 27

template_fix construct. Any undefined template can be fixed only once by the template fix
construct in its scoping unit.
The meaning of the sequence of dist-format’s is the same as that in the distribute directive.

Restrictions

e When a node encounters a template fix construct at runtime, the template specified by
template-name must be undefined.

e If the sequence of dist-format’s exists in a template fix construct, it must be identical
with the sequence of dist-format’s in the distribute directive for the template specified

by template-name, except for int-array specified in the parenthesis following gblock.

e Either the sequence of dist-format’s or the sequence of template-spec’s must be given.

Example
XcalableMP Fortran

I$xmp template :: t(:)
I$xmp distribute (gblock(*)) :: t

real , allocatable :: a(:)
'$xmp align (i) with t(i) :: a

N=...; MC...) = ...
I$xmp template_fix(gblock(M)) t(N)

allocate (a(N))

Since the shape is (:) and the distribution format is gblock (*), the template t is initially
undefined. The allocatable array a is aligned with t. After the size N and the mapping array M
is defined, t is fixed by the template_fix construct and a is allocated.

3.4 Work Mapping Construct

3.4.1 task Construct
Synopsis

The task construct defines a task that is executed by a specified node set.

Syntax

[F1 !$xmp task on {nodes-ref | template-ref}
structured-block
I$xmp end task

[C] #pragma xmp task on {nodes-ref | template-ref}
structured-block

025

053

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

28 CHAPTER 3. DIRECTIVES

Description

When a node encounters a task construct at runtime, it executes the associated block (called
a task) if it is included by the node set specified by the on clause; otherwise it skips executing
the block.

Unless a task construct is surrounded by a tasks construct, nodes-ref or template-ref in the
on clause is evaluated by the executing node set at the entry of the task; otherwise nodes-ref
and template-ref of the task construct are evaluated by the executing node set at the entry of
the immediately surrounding tasks construct. The current executing node set is set to that
specified by the on clause at the entry of the task construct and rewound to the last one at the
exit.

Restrictions

e The node set specified by nodes-ref or template-ref in the on clause must be a subset of
the parent node set.

Example

Example 1 Copies of variables a and b are replicated on nodes nd(1) through nd(8). A task
defined by the task construct is executed only on nd (1) and defines the copies of a and b
on a node nd(1). The copies on nodes nd(2) through nd(8) are not defined.

XcalableMP C

XcalableMP Fortran
!$xmp nodes nd(8)
I$xmp template t(100)
'$xmp distribute t(block) onto nd

#pragma xmp nodes nd(8)
#pragma xmp template t(100)
#pragma xmp distribute t(block) onto nd

float a, b;
real a, b; oat &

ot

\$xmp task on nd(1) #pragma xmp task on nd(1)

{
read(*,*) a scanf ("Yf", &a);
b = axl.e-6 b = axl e—6f ’
10| !'$xmp end task)) ’

Example 2 According to the on clause with a template reference, an assignment statement in
the task construct is executed by the owner of the array element a(:,j) or a[jl[:].

3.4. WORK MAPPING CONSTRUCT 29

XcalableMP Fortran XcalableMP C
!$xmp nodes nd(8) #pragma xmp nodes nd(8) 0ot
I$xmp template t(100) #pragma xmp template t(100) 002
!$xmp distribute t(block) onto nd | #pragma xmp distribute t(block) onto nd 222
005
5 integer 1i,j int i,j; 5 006
real a(200,100) float a[100] [200]; 007
'$xmp align a(*,j) with t(j) #pragma align al[j][*] with t(j+1) 008
009
i = i = : 010
10 j= ... j= .. 10 ot
012
. . 013
'$xmp task on t(j) #pragma xmp task on t(j+1) 014
a(i,j) = 1.0 alj1[i]l = 1.0; 015
!$xmp end task } 016
017
018
3.4.2 tasks Construct 019
020
Synopsis 021
022
The tasks construct is used to instruct the executing nodes to execute the multiple tasks it 023
surrounds in arbitrary order. 024
025
026
Syntax 027

[F] !'$xmp tasks
task-construct 030

I$xmp end tasks 032

[C] #pragma xmp tasks
035

{ 036

task-construct

Description 042

task constructs surrounded by a tasks construct are executed in arbitrary order without implicit

synchronization at the entry of each task. As a result, if there is no overlap between the executing 045
node sets of the adjacent tasks, they can be executed in parallel. 046

nodes-ref or template-ref of each task immediately surrounded by a tasks construct is eval- 047
uated by the executing node set at the entry of the tasks construct. 048

No implicit synchronization is performed at the entry and exit of the tasks construct.

Example
053

Example 1 Three instances of subroutine task1 are concurrently executed by node sets p(1:500), 054
p(501:800) and p(801:1000), respectively. 0%5

056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

30 CHAPTER 3. DIRECTIVES

XcalableMP Fortran
subroutine caller

!$xmp nodes p(1000)
I$xmp template tp(100)
'$xmp distribute t(block) onto p

5 real a(100,100) __ XcalableMP Fortran
1$xmp align a(*,k) with t(k) subroutine taskl(a)
'$xmp tasks I$xmp nodes q(*)=x%

I$xmp task on p(1:500)

10 call taski(a) 1$xmp nodes p(1000) 5
'$xmp end task I$xmp distribute t(block) onto p
!$xmp task on p(501:800) real a(100,100)

call taski(a) I$xmp align a(*,k) with t(k)
!$xmp end task e
15| '$xmp task on p(801:1000) end subroutine 10

call taski(a)
'$xmp end task
!$xmp end tasks

20 end subroutine

Example 2 The first node p(1) executes the first and the second tasks, the final node p(8)
the second and the third tasks, and the other nodes p(2) through p(7) only the second
task.

XcalableMP Fortran

I$xmp nodes p(8)

I$xmp template t(100)

'$xmp distribute t(block) onto p
real a(100)

1$xmp align a(i) with t(i)

o

'$xmp tasks

'$xmp task on t(1)
10 a(1) = 0.0
'$xmp end task

I$xmp task on t(2:99)
'$xmp loop on t(i)
15 do i=2,99
a(i) = foo(i)
enddo
'$xmp end task

20| !'$xmp task on t(100)
a(100) = 0.0
'$xmp end task

3.4. WORK MAPPING CONSTRUCT 31

'$xmp end tasks

3.4.3 1loop Construct

Synopsis

The loop construct specifies that each iteration of the following loop is executed by a node set
specified by the on clause, so that the iterations are distributed among nodes and executed in
parallel.

Syntax

[F1 !$xmp loop [(loop-index [, loop-index/...) | i
B on {nodes-ref | template-ref} [reduction-clause |...
do-loops
[C] #pragma xmp loop [(loop-index [, loop-indez]...) | |

B on {nodes-ref | template-ref} [reduction-clause |...
for-loops

where reduction-clause is:

reduction (reduction-kind : reduction-spec [, reduction-spec |...)

reduction-kind is one of:

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

32 CHAPTER 3. DIRECTIVES

[F]
*
.and.
.or.
.eqv.
.neqv.
max
min
iand
ior
ieor
firstmax
firstmin
lastmax
lastmin

[c]

min
firstmax
firstmin
lastmax
lastmin

and reduction-spec is:

reduction-variable [/ location-variable [, location-variable |... / |

Description

A loop directive is associated with a loop nest consisting of one or more tightly-nested loops that
follow the directive and distribute the execution of their iterations onto the node set specified
by the on clause.

The sequence of loop-index’s in parenthesis denotes an index of an iteration of the loop nests.
If a control variable of a loop does not appear in the sequence, it is assumed that each possible
value of it is specified in the sequence. The sequence can be considered to denote a set of indices
of iterations. When the sequence is omitted, it is assumed that the control variables of all the
loops in the associated loop nests are specified.

When a template-ref is specified in the on clause, the associated loop is distributed so that
the iteration (set) indexed by the the sequence of loop-inder’s is executed by the node onto
which a template element specified by the template-ref is distributed.

When a nodes-ref is specified in the on clause, the associated loop is distributed so that the
iteration (set) indexed by the the sequence of loop-index’s is executed by a node specified by the

3.4. WORK MAPPING CONSTRUCT 33

nodes-ref.

In addition, the executing node set is updated to the node set specified by the on clause at
the beginning of every iteration and restored to the last one at the end of it.

When a reduction-clause is specified, a reduction operation of the kind specified by reduction-
kind for a variable specified by reduction-variable is executed just after the execution of the loop
nest.

The reduction operation executed, except in cases with reduction-kind of FIRSTMAX, FIRSTMIN,
LASTMAX, or LASTMIN, is equivalent to the reduction construct with the same reduction-kind
and reduction-variable, and an on clause obtained from that of the loop directive by replacing:

e “:” in the nodes-ref or the template-ref with “*” and

e [oop-index in the nodes-ref or the template-ref with a triplet representing the range of its
value.

Therefore, for example, the two codes below are equivalent.

XcalableMP Fortran
// Initialize s_tmp to the identity

// element of the op operator

s_tmp = ...
XcalableMP Fortran -
1$xmp loop (j) on t(:,j) 1$xmp loop (j) on t(:,j) 5
! $xmp+ reduction(op:s) do j = js, je
do j = js, je R
. doi=1, N
5 doi=1, N s_tmp = s_tmp op a(i,j)
s = s op a(i,j) end do 10
end do R
ce end do
end do

I$xmp reduction(op:s_tmp)
! $xmp+ on t(*,js:je)

[un
ot

S = s op s_tmp

Particularly for the reduction kinds of FIRSTMAX, FIRSTMIN, LASTMAX and LASTMIN, in ad-
dition to a corresponding MAX or MIN reduction operation, the location-variable’s are set after
executing the loop construct as follows:

e For FIRSTMAX and FIRSTMIN, they are set to their values at the end of the first iteration
in which the reduction-variable takes the value of the reduction result, where first means
first in the sequential order in which iterations of the associated loop nest were executed
without parallelization.

e For LASTMAX and LASTMIN, they are set to their values at the end of the last iteration
in which the reduction-variable takes the value of the reduction result, where last means
last in the sequential order in which iterations of the associated loop nest were executed
without parallelization.

Restrictions

e loop-index must be a control variable of a loop in the associated loop nest.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

34

CHAPTER 3. DIRECTIVES

A control variable of a loop can appear as loop-index at most once.

The node set specified by nodes-ref or template-ref in the on clause must be a subset of
the parent node set.

The template specified by template-ref must be fixed before the loop construct is executed.

The loop construct is global, which means that it must be executed by all of the executing
nodes, and each local variable referenced in the directive must have the same value among
all of them, and the lower bound, upper bound and step of the associated loop must have
the same value among all of them.

reduction-spec must have one or more location-variable’s if and only if reduction-kind is
either FIRSTMAX, FIRSTMIN, LASTMAX, or LASTMIN.

Examples

Example 1

o

XcalableMP Fortran
'$xmp distribute t(block) onto p

!$xmp align (i) with t(i) :: a, b

I$xmp loop (i) on t(i)
doi=1, N
a(i) = 1.0
b(i) = a(i)
end do

The loop construct determines the node that executes each of the iterations, according to
the distribution of template t, and distributes the execution. This example is syntactically
equivalent to the one shown below, but will be faster because iterations to be executed by
each node can be determined before executing the loop.
XcalableMP Fortran
'$xmp distribute t(block) onto p

'$xmp align (i) with t(i) :: a, b

doi=1, N
'$xmp task on t(i)
a(i) = 1.0
b(i) = a(i)
'$xmp end task
end do

Example 2

(<

XcalableMP Fortran
'$xmp distribute t(*,block) onto p

'$xmp align (i,j) with t(i,j) :: a, b

1$xmp loop (i,j) on t(i,j)
doj=1,M
doi=1, N
a(i,j) = 1.0

3.4. WORK MAPPING CONSTRUCT 35

b(i,j) = a(i,j) 001

end do 002

10 end do 003
004

005

Since the first dimension of template t is not distributed, only the j loop, which is aligned 006
with the second dimension of t, is distributed. This example is syntactically equivalent to 007
the task construct shown below. 008
XcalableMP Fortran 009

'$xmp distribute t(*,block) onto p 010
'$xmp align (*,j) with t(*,j) :: a, b 011
.. 012

do j=1, M 013

5| '$xmp task on t(*,j) 21:
doi=1, N 016

a(i,j) = 1.0 o017

b(i,j) = a(i,j) 018

end do 019

10| '$xmp end task 020
end do 021

022

023

Example 3 024
XcalableMP Fortran 025

'$xmp distribute t(block,block) onto p 026
I$xmp align (i,j) with t(i,j) :: a, b 027
e 028

I$xmp loop (i,j) omn t(i,j) 029

5 do j=1,M 030
doi=1,N o

0 032

a(i, _]) =1.0 033

b(i,j) = a(i,j) 034

end do 035

10 end do 036

037

The distribution of loops in the nested loop can be specified using the sequence of loop- 038

indez’s in one loop construct. This example is equivalent to the loop shown below, but will
run faster because the iterations to be executed by each node can be determined outside

039
040
041

of the nested loop. Note that the node set specified by the inner on clause is a subset of 042
that specified by the outer one. 043

XcalableMP Fortran 044
'$xmp distribute t(block,block) onto p 045
'$xmp align (i,j) with t(i,j) :: a, b 046

047
048

'$xmp loop (j) om t(:,j)

049

5 do j=1, M 050
'$xmp loop (i) om t(i,j) 051
doi=1, N 052

a(i,j) = 1.0 053

b(i,j) = a(i,j) 054

10 end do 0%

056

end do

36 CHAPTER 3. DIRECTIVES

001 Example 4

002

003 XcalableMP Fortran

004 I$xmp nodes p(10,3)

005 o .

006 '$xmp loop on p(:,i)

007 doi=1, 3

008 5 call subtask (i)

ZTZ end do

011

012

013 Three node sets p(:,1), p(:,2) and p(:,3) are created as the executing node sets, and
014 each of them executes iteration 1, 2 and 3 of the associated loop, respectively. This example
015 is equivalent to the loop containing task constructs (below left) or static tasks/task

016 constructs (below right).

017
018

XcalableMP Fortran

019

020 !$xmp nodes p(10,3)

021 e

022 _ XcalableMP Fortran - |'$xmp tasks

023 '$xmp nodes p(10,3) !$xmp task on p(:,1)

024 call subtask (1) 5
025 doi=1,3 !$xmp end task

026 1$xmp task on p(:,i) I$xmp task on p(:,2)

027 5 call subtask (i) call subtask (2)

Zzz '$xmp end task I$xmp end task

030 end do !$xmp task on p(:,3) 10
031 call subtask (3)

032 I$xmp end task

033 I$xmp end tasks

034

035

036

037

038 Example 5

Zzi XcalableMP Fortran

041 o

012 1b(1) =1

s iub(1) = 10

044 1b(2) = 11

045 5 iub(2) = 25

046 1b(3) = 26

047 iub(3) = 50

04 I$xmp loop (i) on p(1b(i):iub(i))

- do i =1, 3

051 10 call subtask (i)

052 end do

053

054

055 The executing node sets of different sizes are created by p(1b(i) :iub(i)) with different
056 values of i for unbalanced workloads. This example is equivalent to the loop containing

057 task constructs (below left) or static tasks/task constructs (below right).

3.4. WORK MAPPING CONSTRUCT

XcalableMP Fortran
doi=1,3
1$xmp task on p(lb(i):iub(i))
call subtask (i)
'$xmp end task

! $xmp
I $xmp

I $xmp
! $xmp

! $xmp
! $xmp

! $xmp
I $xmp

XcalableMP Fortran
tasks

task on p(1:10)
call subtask (1)
end task

task on p(11:25)
call subtask (2)
end task

task on p(25:50)
call subtask (3)
end task

end tasks

XcalableMP Fortran

5 end do
Example 6
s = 0.0
'$xmp loop (i) on t(i) reduction(+:s)
doi=1, N
5 s =8 + a(i)
end do

37

10

This loop computes the sum of a(i) into the variable s on each node. Note that only the
partial sum is computed on s without the reduction clause. This example is equivalent to

the code given below.

s = 0.0
'$xmp loop (i) on t(i)
doi=1, N
5 s =8 + a(i)
end do

1$xmp reduction(+:s) on t(1:N)

XcalableMP Fortran

Example 7
XcalableMP Fortran

amax = -1.0e30

ip = -1

jp=-1

5| !$xmp loop (i,j) on t(i,j) reduction(firstmax:amax/ip,jp/)
doj=1,M
doi=1, N

10

if(1(4i,j) .gt. amx) then
amx = a(i,j)
ip=1
jp =1

end if

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

38 CHAPTER 3. DIRECTIVES

end do
end do

This loop computes the maximum value of a(i,j) and stores it into the variable amax in
each node. In addition, the first indices for the maximum element of a are obtained in
ip and jp after executing the loops. Note that this example cannot be written with the
reduction construct.

3.4.4 array Construct
Synopsis

The array construct divides the work of an array assignment among nodes.

Syntax

[F]1 !$xmp array on template-ref
array-assignment-statement

[C] #pragma xmp array on template-ref
array-assignment-statement

Description

The array assignment is an alternative to a loop that performs an assignment to each element
of an array. This directive specifies parallel execution of an array assignment, where each sub-
assignment and sub-operation of an element is executed by a node determined by the on clause.

Note that array assignments can be used also in XcalableMP C, which is one of the language
extensions introduced by XcalableMP (see Section 5.2).

Restrictions

e The node set specified by template-ref in the on clause must be a subset of the parent node
set.

e The template section specified by template-ref must have the same shape with the associ-
ated array assignment.

e The array construct is global and must be executed by all of the executing nodes, and
each variable appearing in the construct must have the same value among all of them.

Examples

Example 1

XcalableMP Fortran
'$xmp distribute t(block) onto p

'$xmp align (i) with t(i) :: a

1$xmp array on t(1:N)
a(1:N) = 1.0

(<

This example is equivalent to the code shown below.

3.5. GLOBAL-VIEW COMMUNICATION AND SYNCHRONIZATION CONSTRUCTS 39

XcalableMP Fortran
!$xmp distribute t(block) onto p

'$xmp align (i) with t(i) :: a

1$xmp loop on t(1:N)
5 doi=1, N

a(i) = 1.0
end do

Example 2
XcalableMP Fortran

I$xmp template t(100,20)

'$xmp distribute t(block,block) onto p
dimension a(100,20), b(100,20)

'$xmp align (i,j) with t(i,j) :: a, b

'$xmp array on t
a=b+ 2.0

This example is equivalent to the code shown below.

XcalableMP Fortran

I$xmp template t(100,20)

'$xmp distribute t(block,block) onto p
dimension a(100,20), b(100,20)

'$xmp align (i,j) with t(i,j) :: a, b

'$xmp loop (i,j) on t(i,j)
do j =1, 20
do i =1, 100
a(i,j) = b(i,j) + 2.0
10 end do
end do

3.5 Global-view Communication and Synchronization Constructs

3.5.1 reflect Construct
Synopsis

The reflect construct assigns the value of a reflection source to the corresponding shadow
object.

Syntax

[F]1 !'$xmp reflect (array-name [, array-namel...) |

B [width (reflect-width [, reflect-width]...)] [async (async-id)]
[C] #pragma xmp reflect (array-name [, array-name]...) |

B [width (reflect-width [, reflect-width]...)] [async (async-id)]

where reflect-width must be one of:

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

10

40 CHAPTER 3. DIRECTIVES

[/periodic/] int-expr
[/periodic/] int-expr : int-expr

Description

The reflect construct updates each of the shadow object of the array specified by array-name
with the value of its corresponding reflection source. Note that the shadow objects corresponding
to “obliquely-neighboring” elements can be also updated with this construct.

When the width clause is specified and of the form “int-expr : int-expr” in a dimension, the
shadow area of the width specified by the first int-ezpr at the upper bound and that specified
by the second one at the lower bound in the dimension are updated. When the width clause
is specified and of the form int-expr, the shadow areas of the same width specified at both the
upper and lower bounds in the dimension are updated. When the width clause is omitted, whole
shadow area of the array is updated.

Particularly when the /periodic/ modifier is specified in reflect-width, the update of the
shadow object in the dimension is “periodic,” which means that the shadow object at the global
lower (upper) bound is treated as if corresponding to the data object of the global upper (lower)
bound and updated with that value by the reflect construct.

When the async clause is specified, the statements following this construct may be executed
before the operation is complete.

Restrictions

e The arrays specified by the sequence of array-name’s must be mapped onto the executing
node set.

e The reflect width of each dimension specified by reflect-width must not exceed the shadow
width of the arrays.

e The reflect construct is global, which means that it must be executed by all nodes in
the current executing node set, and each local variable referenced in the construct must
have the same value among all of them.

e async-id must be an expression of type default integer, in XcalableMP Fortran, or type

int, in XcalableMP C.

Example
XcalableMP Fortran

I$xmp nodes p(4)
I$xmp template t(100)
I$xmp distribute t(block) onto p:: t

real a(100)
'$xmp align a(i) with t(i)
1$xmp shdow a(1)

I$xmp reflect (a) width (/periodic/1)

The shadow directive allocates “periodic” shadow areas of the array a. The reflect con-
struct updates “periodically” the shadow area of a (Figure 3.2). A periodic shadow at the lower
bound on the node p(1) is updated with the value of a(100) and that at the upper bound on
p(4) with the value of a(1).

3.5. GLOBAL-VIEW COMMUNICATION AND SYNCHRONIZATION CONSTRUCTS 41

Figure 3.2: Example of Periodic Shadow Reflection

3.5.2 gmove Construct

Synopsis

The gmove construct allows an assignment statement, which may cause communication, to be
executed possibly in parallel by the executing nodes.

Syntax

[F1 !$xmp gmove [in | out/ [async (async-id)/

[C] #pragma xmp gmove [in | out/ fasync (async-id)]
Description

This construct copies the value of the right-hand side (rhs) variable into the left-hand side (lhs) of
the associated assignment statement, which may require communication between the executing
nodes. Such communication is detected, scheduled, and performed by the XcalableMP runtime
system.

There are three operating modes of the gmove construct:

e collective mode

When neither the in nor the out clause is specified, the copy operation is performed
collectively and cause an implicit synchronization after it among the executing nodes.

If the async clause is not specified, then the construct is “synchronous” and it is guaranteed
that the lhs data can be read and overwritten, the rhs data can be overwritten, and all
of the operations of the construct on the executing nodes are completed when returning
from the construct; otherwise, the construct is “asynchronous” and it is not guaranteed
that until returning from the associating wait_async construct (Section 3.5.6).

in mode

When the in clause is specified, the rhs data of the assignment, whole or parts of which
may reside outside the executing node set, can be transferred from its owner nodes to the
executing nodes by this construct.

If the async clause is not specified, then the construct is “synchronous” and it is guaranteed
that the lhs data can be read and overwritten and all of the operations of the construct on
the owner nodes of the rhs and the executing nodes are completed when returning from
the construct; otherwise, the construct is “asynchronous” and it is not guaranteed that
until returning from the associating wait_async construct (Section 3.5.6).

out mode

When the out clause is specified, the lhs data of the assignment, whole or parts of which
may reside outside the executing node set, can be transferred from the executing nodes to
its owner nodes by this construct.

001
002
003
004
005
006
007
008
009
010
011
012
013

015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

42

CHAPTER 3. DIRECTIVES

If the async clause is not specified, then the construct is “synchronous” and it is guaranteed
that the rhs data can be overwritten and all of the operations of the construct on the owner
nodes of the lhs and the executing nodes are completed when returning from the construct;
otherwise, the construct is “asynchronous” and it is not guaranteed that until returning
from the associating wait_async construct (Section 3.5.6).

When the async clause is specified, the statements following this construct may be executed
before the operation is complete.

Restrictions

The gmove construct must be followed by (i.e. associated with) a simple assignment
statement that contains neither arithmetic operations nor function calls.

The gmove construct is global, which means that it must be executed by all nodes inthe
current executing node set, and each local variable referenced in the construct must have
the same value among all of them.

If the gmove construct is in collective mode, then all elements of the distributed arrays
appearing in both the lhs and the rhs of the associated assignment statement must reside
in the executing node set.

If the gmove construct is in in mode, then all elements of the distributed array appearing
in the lhs of the associated assignment statement must reside in the executing node set.

If the gmove construct is in out mode, then all elements of the distributed array appearing
in the rhs of the associated assignment statement must reside in the executing node set.

async-id must be an expression of type default integer, in XcalableMP Fortran, or type
int, in XcalableMP C.

Examples

Example 1: Array assignment If both the lhs and the rhs are distributed arrays, then the

copy operation is performed by all-to-all communication. If the lhs is a replicated array,
this copy is performed by multi-cast communication. If the rhs is a replicated array, then
no communication is required.

XcalableMP Fortran XcalableMP C
'$xmp gmove #pragma xmp gmove
a(:,1:N) = b(:,3,0:N-1) al1:N][:] = b[0:N]I[3][:];

Example 2: Scalar assignment to an array When the rhs is an element of a distributed

array, the copy is performed by broadcast communication from the owner of the element.
If the rhs is a replicated array, then no communication is required.

XcalableMP Fortran XcalableMP C
'$xmp gmove #pragma xmp gmove

a(:,1:N) = c(k) al1:N][:] = clk]

3.5. GLOBAL-VIEW COMMUNICATION AND SYNCHRONIZATION CONSTRUCTS 43

Example 3: in mode assignment Since b(3) referenced in the rhs of the gmove construct
does not reside in the executing node set (p(1:2)), the construct is executed in in mode.
Thus, b(3) is transferred from its owner node p(3) to the executing node set.

It is not guaranteed until p(1:2) returns from the construct that any node can read and
overwrite a(1:2) and any relevant operations on p(1:2) and p(3) are completed.

XcalableMP Fortran

I$xmp nodes p(4)
1$xmp template t(4)
'$xmp distribute t(block) onto p

5 real a(4), b(4)
'$xmp align (i) with t(i) : a, b

I$xmp task on p(1:2)

10| !'$xmp gmove in
a(1:2) = b(2:3)

'$xmp end task

3.5.3 barrier Construct
Synopsis

The barrier construct specifies an explicit barrier at the point at which the construct appears.

Syntax

[F1 !$xmp barrier Jon nodes-ref |template-ref]

[C] #pragma xmp barrier Jon nodes-ref | template-ref]
Description

The barrier operation is performed among the node set specified by the on clause. If no on
clause is specified, then it is assumed that the current executing node set is specified in it.

Note that an on clause may represent multiple node sets. In such a case, a barrier operation
is performed in each node set.

Restriction

e The node set specified by the on clause must be a subset of the executing node set.

3.5.4 reduction Construct
Synopsis

The reduction construct performs a reduction operation among nodes.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

44 CHAPTER 3. DIRECTIVES

Syntax

[F1 !$xmp reduction (reduction-kind : variable [, variable |...) |
B /on node-ref | template-ref] [async (async-id)]

where reduction-kind is one of:
+

*
.and.
.or.
.eqv.
.neqv.
max
min
iand
ior
ieor

[C] #pragma xmp reduction (reduction-kind : variable [, variable /...) |
B /on node-ref | template-ref] [async (async-id)]

where reduction-kind is one of:
+

*

y — &

Il
max
min

Description

The reduction construct performs a type of reduction operation specified by reduction-kind
for the specified local variables among the node set specified by the on clause and sets the
reduction results to the variables on each of the nodes. Note that some of the reduction operation
(FIRSTMAX, FIRSTMIN, LASTMAX, and LASTMIN) that could be specified in the reduction clause
of the loop directive cannot be specified in the reduction construct, because their semantics
are not defined in it. The variable specified by wariable, which is the target of the reduction
operation, is referred to as the “reduction variable.” After the reduction operation, the value of
a reduction variable becomes the same in every node that performs the operation.

The reduction result is computed by combining the reduction variables on all of the nodes
using the reduction operator. The ordering of this reduction is implementation-dependent.

When the async clause is specified, the statements following this construct may be executed
before the operation is complete.

When template-ref is specified in the on clause, the operation is performed in a node set
that consists of nodes onto which the specified template section is distributed. Therefore, before
the reduction construct is executed, the referenced template must be fixed. When nodes-ref is

3.5. GLOBAL-VIEW COMMUNICATION AND SYNCHRONIZATION CONSTRUCTS 45

specified in the on clause, the operation is performed in the specified node set. When the on
clause is omitted, the operation is performed in the executing node set.

Note that an on clause may represent multiple node sets. In such a case, a reduction operation
is performed in each node set.

Restrictions

The variables specified by the sequence of variable’s must either not be aligned or be
replicated among nodes of the node set specified by the on clause.

The reduction construct is global, which means that it must be executed by all nodes in
the current executing node set, and each local variable referenced in the construct must
have the same value among all of them.

async-id must be an expression of type default integer, in XcalableMP Fortran, or type
int, in XcalableMP C.

The node set specified by the on clause must be a subset of the executing node set.

Examples

Example 1

XcalableMP Fortran

I$xmp reduction(+:s)
'$xmp reduction(max:aa) on t(*,:)
!$xmp reduction(min:bb) on p(10:30)

In the first line, the reduction operation calculates the sum of the scalar variable s in the
executing node set and the result is stored in the variable in each node.

The reduction operation in the second line computes the maximum value of the variable aa
in each node set onto which each of the template section specified by t (*, :) is distributed.

In the third line, the minimum value of the variable bb in the node set specified by p(10:30)
is calculated. This example is equivalent to the following code using the task construct.

XcalableMP Fortran

!$xmp task on p(10:30)
'$xmp reduction(min:bb)
'$xmp end task

Example 2

o

10

XcalableMP Fortran

dimension a(n,n), p(n), w(n)
I'$xmp align a(i,j) with t(i,j)
'$xmp align p(i) with t(i,*)

'$xmp align w(j) with t(*,j)

'$xmp loop (j) on t(:,j)
do j=1, n
sum = O
1$xmp loop (i) om t(i,j) reduction(+:sum)
doi=1,n

sum = sum + a(i,j) * p(i)

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

46 CHAPTER 3. DIRECTIVES

end do
w(j) = sum
end do

This code computes the matrix vector product, where a reduction clause is specified for
the loop construct of the inner loop. This is equivalent to the following code snippet.

XcalableMP Fortran

1$xmp loop (j) om t(:,j)
do j=1,n

sum = O
'$xmp loop (i) on t(i,j)
5 doi=1,n

sum - sum + a(i,j) * p(i)

end do
'$xmp reduction(+:sum) on t(l:n,j)

w(j) = sum
10 end do

In these cases, the reduction operation on the scalar variable sum is performed for every

iteration in the outer loop, which may cause a large overhead. The reduction clause

cannot be specified for the loop construct of the outer loop to reduce this overhead,

because the node set where the reduction operation specified by a reduction clause of a

loop construct is performed is determined from its on clause (see 3.4.3) and the on clause

of the outer loop construct is different from that of the inner one. However, this code can

be modified with the reduction construct as follows:

XcalableMP Fortran
dimension a(n,n), p(n), w(n)

I'$xmp align a(i,j) with t(i,j)

'$xmp align p(i) with t(i,*)

'$xmp align w(j) with t(*,3j)

'$xmp loop (j) om t(:,j)

do j=1, n

sum = O
'$xmp loop (i) om t(i,j)
10 doi=1,n
sum - sum + a(i,j) * p(i)

end do
w(j) = sum

end do

15| 1$xmp reduction(+:w) on t(l:n,*)

This code performs a reduction operation on the array w only once, which may result in
faster operation.

3.5.5 bcast Construct
Synopsis

The becast construct performs broadcast communication from a specified node.

3.5. GLOBAL-VIEW COMMUNICATION AND SYNCHRONIZATION CONSTRUCTS 47

Syntax

[F1 !'$xmp bcast (variable [, variable]...) [from nodes-ref | template-ref] il

B Jon nodes-ref] | template-ref] [async (async-id)]
[C] #pragma xmp bcast (wvariable [, variable/...) [from nodes-ref | template-ref] i

B /on nodes-ref | template-ref] [async (async-id)]

Description

The values of the variables specified by the sequence of variable’s (called broadcast variables)
are broadcasted from the node specified by the from clause (called the source node) to each of
the nodes in the node set specified by the on clause. After executing this construct, the values
of the broadcast variables become the same as those in the source node. If the from clause is
omitted, then the first node, that is, the leading one in Fortran’s array element order, of the
node set specified by the on clause is assumed to be a source node. If the on clause is omitted,
then it is assumed that the current executing node set is specified in it.

When the async clause is specified, the statements following this construct may be executed
before the operation is complete.

Restrictions

e The variables specified by the sequence of wvariable’s must either not be aligned or be
replicated among nodes of the node set specified by the on clause.

e The bcast construct is global, which means that it must be executed by all nodes in the
current executing node set, and each local variable referenced in the construct must have
the same value among all of them.

e async-id must be an expression of type default integer, in XcalableMP Fortran, or type
int, in XcalableMP C.

e The node set specified by the on clause must be a subset of the executing node set.

e The source node specified by the from clause must belong to the node set specified by the
on clause.

e The source node specified by the from clause must be one node.

3.5.6 wait_async Construct
Synopsis

The wait_async construct guarantees asynchronous communications specified by async-id are
complete.

Syntax

[F1 !'$xmp wait_async (async-id [, async-id |...) [on nodes-ref | template-ref]

[C] #pragma xmp wait_async (async-id [, async-id [...) Jon nodes-ref | template-ref]
Description

The wait_async construct blocks and therefore statements following it are not executed until
all of the asynchronous communications that are specified by async-id’s and issued on the node
set specified by the on clause are complete.

025

053

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

48 CHAPTER 3. DIRECTIVES

Restrictions

e async-id must be an expression of type default integer, in XcalableMP Fortran, or type
int, in XcalableMP C.

e async-id must be associated with an asynchronous communication by the async clause of
a communication construct.

e The wait_async construct is global, which means that it must be executed by all nodes in
the current executing node set, and each local variable referenced in the construct must
have the same value among all of them.

e The node set specified by the on clause must be the same as those of the global constructs
that initiate the asynchronous communications specified by async-id.
3.5.7 async Clause
Synopsis
The async clause of the reflect, gmove, reduction and bcast constructs allows the corre-
sponding communication to be performed asynchronously.
Description

Communication corresponding to the construct with an async clause is performed asynchronously,
that is, initiated but not completed, and therefore statements following it may be executed before
the communication is complete.

Example
XcalableMP Fortran

1$xmp reflect (a) async(1l)
S1

I$xmp wait_async(1)
S2

The reflect construct on the first line matches the wait construct on the third line because
both of their async_id evaluate to 1. These constructs ensure that statements in S1 can be
executed before the reflect communication is complete and no statement in S2 is executed
until the reflect communication is complete.

Chapter 4

Support for the Local-view
Programming

XcalableMP adopts coarray features for the local-view programming. Particularly in Xcal-
ableMP Fortran, the features are compatible with that of Fortran 2008.

4.1 Coarrays in XcalableMP

The specification of the coarray features in XcalableMP conforms to that of Fortran 2008 unless
otherwise provided. Each node in the entire node set is considered to correspond to each image
of a program. Therefore the number of images is always equal to the size of the entire node set.
The image index of a node is its node number of the entire node set.

Declaring coarrays on an arbitrary node array, which may not correspond to the entire node
set, is an open issue of XcalableMP and under discussion. Note that even if the coarray features
of XcalableMP would be extended in the future version so that they could be declared on a
subset of the entire node set, they are compatible with those of Fortran 2008 as long as declared
on the entire node set.

Terms related to coarrays in XcalableMP (e.g. coshape, coindex, cobound, cosubscript,
image, image index, etc.) are derived from that in Fortran 2008.

Described in the rest of this section is the coarray features for XcalableMP C.

4.1.1 [C] Declaration of Coarrays
Synopsis

Coarrays are declared with the coarray directive in XcalableMP C.

Syntax

[C] #pragma xmp coarray variable-name [, variable-name |... : codimensions

where codimensions is:

[Lint-expr] ... [[*]

Description

For XcalableMP C, coarrays are declared with the coarray directive where codimensions specify
the coshape of a variable.

49

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

50 CHAPTER 4. SUPPORT FOR THE LOCAL-VIEW PROGRAMMING

Restrictions

e A coarray specified by variable-name must have a global scope.

Examples
XcalableMP C

#pragma xmp nodes p(16)
float x;
#pragma xmp coarray x :[x]

A variable x that has a global scope is declared as a coarray by the coarray directive.

4.1.2 [C] Reference of Coarrays
Synopsis

A coarray can be directly referenced or defined by any node. The target node is specified using
an extended notation in XcalableMP C.

Syntax

[C] wariable : Lint-expr]...

Description

A sequence of [int-expr]’s preceded by a colon in XcalableMP C determine the image index for
a coarray to be accessed.

An reference of coarrays can appear in the same place as an reference of normal variables in
the base languages.

Examples

In the following code, each executing node gets whole of B from the image 10 (that is, the tenth
node of the entire node set) and copies it into the local storage for A.

XcalableMP C

int A[10], B[10];
#pragma xmp coarray A, B : [*]

A[:1 = B[:1:[10];

4.1.3 [C] sync._memory Directive
Synopsis

In XcalableMP C, the sync_memory directive is used to complete all memory operations on
coarrays.

Syntax

[C] #pragma xmp sync_memory

4.2. DIRECTIVES FOR THE LOCAL-VIEW PROGRAMMING 51

Description

The sync_memory directive ensures that any changes of coarrays on the image (or the executing
node) done by itself are visible to any images (or nodes) and any coarrays on the image can be
referenced or defined by any images. Note that no other XcalableMP directive ensures that.

The sync_memory directive in XcalableMP C has a function equivalent to that of the sync
memory statement in XcalableMP Fortran.

Examples
XcalableMP C

#pragma xmp coarray a, b, c, d : [x]

#pragma xmp sync_memory

When a node finishes executing the sync_memory directive in this code snippet at runtime,
the following are ensured that:

e the local definition of a coarray a is complete and it can be referenced and defined by any
other nodes;

e the local reference of a coarray b is complete and it can be defined by any other nodes;

e the remote definition of a coarray c from the node is complete and it can be referenced
and defined by any nodes; and

e the remote reference of a coarray d from the nodes is complete and it can be defined by
any nodes.

4.2 Directives for the Local-view Programming

4.2.1 [F] local alias Directive

Synopsis

In XcalableMP Fortran, the local_alias directive declares a local data object as an alias to
the local section of a distributed array.

Syntax

[F]1 !$xmp local_alias local-array-name => global-array-name

Description

This directive declares that a local array specified by local-array-name is a “local alias” to the
global array specified by global-array-name.

The shape of a local alias is the same as that of the local section of the global array that is
owned by each node.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

52 CHAPTER 4. SUPPORT FOR THE LOCAL-VIEW PROGRAMMING

001 A local alias is defined when the corresponding global array is defined. If the corresponding
002 global array is statically allocated, then the local alias is always defined in its scoping unit; if
008 not, the local alias is not defined until the corresponding global array is allocated.

An array specified by local-array-name may be a coarray.

Note that the base language Fortran is extended so that a deferred-shape array that is not

004
005
006

007 either an allocatable array or an array pointer can be declared if it is specified as a “local alias”
008 by the local_alias directive.

009 In XcalableMP C, the address-of operator applied to global data substitutes for the local_alias
010 directive (see 5.3).

011

o Restriction

013

014 e The array specified by local-array-name must not be aligned by an align directive.

015

016 e The array specified by global-array-name must be aligned by an align directive.

017

018 e The data type and rank of the array specified by local-array-name must be the same as
019 those of the array specified by global-array-name.

020

021 e The array specified by local-array-name must be a deferred-shape array, which means that
022 it must be declared with a deferred-shape-spec-list in a type declaration statement or a
023 DIMENSION statement.

024

025

026 Examples

027 Example 1

028

XcalableMP Fortran

029

030 '$xmp nodes n(4)

031 '$xmp template :: t(100)

032 !$xmp distribute (block) onton :: t
033

034 5 real :: a(100)

035 '$xmp align (i) with t(i) :: a

036 !$xmp shadow (1) :: a

037

038
039 real :: b(:)

040 10| '$xmp local_alias b => a

041

o The array a is distributed by block onto four nodes. The node n(2) has its local section of

twenty-five elements (a(25:50)) with shadow areas of size one on both of the upper and

043
044

045 lower bounds. The local alias b is an array of 27 elements (b(1:27)) on n(2). The table
046 below shows the correspondence of each element of a to that of b on n(2).
047

048 a ‘ b ‘

049

050 lower shadow | 1

051 26 2

052 27 3

053 28 4

054

o 50 26

056

057 upper shadow | 27

4.2. DIRECTIVES FOR THE LOCAL-VIEW PROGRAMMING 93

Example 2 001
XcalableMP Fortran 002
1$xmp nodes n(4) 003

004

'$xmp template :: t(100)

005
!$xmp distribute (cyclic) onto n :: t

006
007

5 real :: a(100) 008
'$xmp align (i) with t(i) :: a 009
010

real :: b(0:) 011

012

1$xmp local_alias b => a
013

014
An array a is distributed cyclically onto four nodes. Node n(2) has its local section of 015
twenty-five elements (a(2:100:4)). The lower bound of local alias b is declared to be zero. 016
As a result, b is an array of size 25 whose lower bound is zero (b(0:24)) on n(2). The
table below shows the correspondence of each element of a to that of b on n(2).

017
018
019
020

022

2 0 023
6 1 024
10 2 025
) « e 026
98 | 24 027

028
029
Example 3 030

XcalableMP Fortran 031

032

'$xmp nodes n(4)
I$xmp template :: t(:)

033
034

'$xmp distribute (block) onto n :: t 035
036

5 real, allocatable :: a(:) 037
'$xmp align (i) with t(i) :: a 038

039
040

real :: b(:)[*]

041
'$xmp local_alias b => a

042

10 043
c 044
045
'$xmp template_fix :: t(128) 046
047
048

15 allocate (a(128))

049
050

if (me < 4) b(4) = b(4) [me +1]

051

052

Since the global array a is an allocatable array, its local alias b is not defined when the 058

subroutine starts execution. b is defined when a is allocated at the allocate statement. 055
Note that b is declared as a coarray and therefore can be accessed in the same manner as 056
a normal coarray. 057

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

54 CHAPTER 4. SUPPORT FOR THE LOCAL-VIEW PROGRAMMING

4.2.2 post Construct
Synopsis

The post construct, in combination with the wait construct, specifies a point-to-point synchro-
nization.

Syntax

[F]1 !'$xmp post (nodes-ref, tag)
[C] #pragma xmp post (nodes-ref, tag)

Description

This construct ensures that the execution of statements that precede it is completed before
statements that follow the matching wait construct start to be executed.

A post construct issued with the arguments of nodes-ref and tag on a node (called a posting
node) dynamically matches at most one wait construct issued with the arguments of the posting
node (unless omitted) and the same value as tag (unless omitted) by the node specified by nodes-

ref.

Restriction

e nodes-ref must represent one node.

e tag must be an expression of type default integer, in XcalableMP Fortran, or type int, in
XcalableMP C.

Example
Example 1
XcalableMP Fortran XcalableMP Fortran
S1 I$xmp wait (p(1), 1)
1$xmp post (p(2), 1) S2

It is assumed that the code of the left is executed by the node p(1) while that on the right
is executed by node p(2).

The post construct on the left matches the wait construct on the right because their nodes-
ref's represent each other and both tags’s have the same value of 1. These constructs ensure
that no statement in S2 is executed by p(2) until the execution of all statements in S1 is
completed by p(1).

Example 2

XcalableMP Fortran

'$xmp wait
S3

It is assumed that this code is executed by node p(2).

The post construct in the left code in Example 1 may matches this wait construct because
both nodes-ref and tag are omitted in this wait construct.

4.2. DIRECTIVES FOR THE LOCAL-VIEW PROGRAMMING 95

4.2.3 wait Construct
Synopsis

The wait construct, in combination with the post construct, specifies a point-to-point synchro-
nization.

Syntax

[F1 !'$xmp wait [(nodes-ref [, tag])]
[C] #pragma xmp wait [(nodes-ref [, tag])]

Description

This construct prohibits statements that follow this construct from being executed until the
execution of all statements preceding a matching post construct is completed on the node
specified by node-ref.

A wait construct issued with the arguments of nodes-ref and tag on a node (called a waiting
node) dynamically matches a post construct issued with the arguments of the waiting node and
the same value as tag by the node specified by nodes-ref.

If tag is omitted, then the wait construct can match a post construct issued with the
arguments of the waiting node and any tag by the node specified by nodes-ref. If both tag
and nodes-ref are omitted, then the wait construct can match a post construct issued with the
arguments of the waiting node and any tag on any node.

Restriction

e nodes-ref must represent one node.

e tag must be an expression of type default integer, in XcalableMP Fortran, or type int, in
XcalableMP C.

001
002
003

005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051

Chapter 5

Base Language Extensions in
XcalableMP C

This chapter describes base language extensions in XcalableMP C that is not described in any
other chapters.

5.1 Array Section Notation

Synopsis

The array section notation is a notation to describe a part of an array, which is adapted in
Fortran.

Syntax

[C] array-section is array-namel { triplet | int-expr } 1...

where triplet must be one of:

base : length : step
base : length

Description

In XcalableMP C, the base language C is extended so that a part of an array, that is, an
array section can be put in an array assignment statement, which is described in 5.2, and some
XcalableMP constructs. An array section is built from a subset of the elements of an array,
which is specified by this notation including at least one triplet.

When step is positive, the triplet specifies a set of subscripts that is a regularly spaced integer
sequence of length length beginning with base and proceeding in increments of step up to the
largest. When step is negative, the triplet specifies a set of subscripts that is a regularly spaced
integer sequence of length length beginning with base and proceeding in increments of step down
to the smallest.

When step is omitted, it is assumed to be “1”. When all of base, length and step is omitted,
it is assumed that base is “0”, length is the size of the dimension of the array, and step is “1”.

An array section can be considered as a virtual array containing the set of elements from
the original array determined by all possible subscript lists specified by the sequence of triplet’s
or int-expr’s in square brackets.

57

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

58 CHAPTER 5. BASE LANGUAGE EXTENSIONS IN XCALABLEMP C

Restrictions

e [C] Each of base, length and step must be an integer expression.
e [C] length must be greater than zero.

e [C] step must not be zero.

Example

Assuming that an array A is declared by the following statement,
int A[100];

some array sections can be specified as follows:

A[10:10] array section of 10 elements from A[10] to A[19]

A[10:] array section of 90 elements from A[10] to A[99]

A[:10] array section of 10 elements from A[0] to A[9]

A[10:5:2] array section of 5 elements from A[10] to A[18] by step 2
Al:] the whole of A

5.2 Array Assignment Statement

Synopsis

An array assignment statement copies a value into each element of an array section.

Syntax

[C] array-section [: Lint-expr]...] = { variable [: lint-expr]...] | int-expr };

Description

When the rhs is an array section, the value of each element of it is assigned to the corresponding
element of the lhs array section. When the rhs is an integer expression, its value is assigned to
each element of the lhs array section.

The rhs and/or the lhs data can have cosubscripts.

Note that an array assignment is a statement and therefore cannot appear as an expression
in any other statements.

Restrictions

e [C] When the rhs is an array section, the lhs and the rhs must have the same shape, i.e.,
the same number of dimensions and size of each dimension.

e [C] If array-section on the lhs is followed by “: [int-expr]...”, it must be a coarray.

e [C] If wariable on the rhs is followed by “: [int-expr]...”, it must be a coarray.

5.3. POINTER TO GLOBAL DATA 29

Examples

An array assignment statement in the fourth line copies the elements B[0] through B[4] into
the elements A[5] through A[9].

XcalableMP C

int A[10];
int B[5];

A[5:é]“= B[0:5];

5.3 Pointer to Global Data

5.3.1 Name of Global Array

The name of a global array is considered to represent an abstract entity in the XcalableMP
language. It is not interpreted as the pointer to the array, while the name of a local array is.

However, the name of a global array appeared in an expression is evaluated to the pointer
to the base address of its local section on each node. The pointer, as a normal (local) pointer,
can be operated on each node.

5.3.2 The Address-of Operator

The result of the address-of operator (“&”) applied to an element of a global array is the pointer
to the corresponding element of its local section. Note that the value of the result pointer is
defined only on the node that owns the element. The pointer, as a normal (local) pointer, can
be operated on the node.

As a result, for a global array a, a and &a[0] are not always evaluated to the same value.

5.4 Dynamic Allocation of Global Data

In XcalableMP C, it is possible to allocate global arrays at runtime only when they are one-
dimensional. Such allocation is done through the following steps.

1. Declare a pointer to an object of the type of the global array to be allocated.
2. Align the pointer with a template as if it were a one-dimensional array.

3. Allocate a storage of the global size with the xmp malloc library procedure and assign the
result value to the pointer on each node.

The specification of xmp malloc is described in section 7.3.2.

Example

A pointer pa to a float is declared in line 5 and aligned with a template t in line 6. t is initially
undefined and fixed by the template_fix directive in line 10. The storage for a global data,
that is, each of its local section is allocated with xmp malloc and pa is set to point it on each
node in line 12. For details of the operator xmp_desc_of, refer to the next section.

XcalableMP C

#pragma nodes p(NP)
#pragma xmp template t(:)

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

ot

10

60 CHAPTER 5. BASE LANGUAGE EXTENSIONS IN XCALABLEMP C

#pragma xmp distribute t(block) onto p

float *pa;
#pragma xmp align pali] with t(i)

#pragma xmp template_fix t(N)

pa = (float *)xmp_malloc(xmp_desc_of(pa), N);

5.5 The Descriptor-of Operator

The descriptor-of operator (“xmp_desc_of”) is introduced as a built-in operator in XcalableMP
C.

The result of the descriptor-of operator applied to XcalableMP entities such as node arrays,
templates and global arrays is their descriptor, which can be used, for example, as an argument
of some inquiry procedures. The type of the result, xmp_desc_t, is implementation-dependent,
and defined in the xmp.h header file in XcalableMP C.

For the xmp_desc_of intrinsic function in XcalableMP Fortran, refer to section 7.1.1.

Chapter 6

Procedure Interfaces

This chapter describes the procedure interfaces, that is, how procedures are invoked and argu-
ments are passed, in XcalableMP.

In order to achieve high composability of XcalableMP programs, it is one of the most im-
portant requirement that XcalableMP procedures can invoke procedures written in the base
language with as a few restrictions as possible.

6.1 General Rule

In XcalableMP, a procedure invocation itself is a local operation and does not cause any commu-
nication or synchronization at runtime. Thus, a node can invoke any procedure, whether written
in XcalableMP or in the base language, at any point of the execution. There is no restriction
on the characteristics of procedures invoked by an XcalableMP procedure, except for a few ones
on its argument, which is explained below.

A local data in the actual or dummy argument list (referred to as a local actual argument
and a local dummy argument, respectively) are treated by the XcalableMP compiler in the same
manner as by the compiler of the base language. This rule makes it possible that a local actual
argument in a procedure written in XcalableMP can be associated with a dummy argument of
a procedure written in the base language.

If both of an actual and its associating dummy arguments are coarrays, they must be declared
on the same node set.

6.1.0.0.1 Implementation. The XcalableMP compiler does not transform either local ac-
tual or dummy arguments, so that the backend compiler of the base language can treat them in
its usual way.

The rest of this chapter specifies how global data appearing as an actual and a dummy argument
list (referred to as a global actual argument and a global dummy argument, respectively) are
processed by the XcalableMP compiler.

6.2 Argument Passing Mechanism in XcalableMP Fortran

Either of the following global data can be put in the actual argument list:

® an array name;

e an array element; or

61

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

62 CHAPTER 6. PROCEDURE INTERFACES

e an array section that satisfies both of the following two conditions:

— its subscript list is a list of zero or more colons (“:”) followed by zero or more
int-expr’s;

— a subscript of the dimension having shadow is int-expr unless it is the last dimension.

There are two kinds of argument association for global data in XcalableMP Fortran: one
is sequence association, which is for a global dummy that is an explicit-shape or assumed-size
array, and the other is descriptor association, which is for all other global dummy.

6.2.1 Sequence Association of Global Data

The concept of sequence association in Fortran is extended for global actual and dummy argu-
ments in XcalableMP as follows.

If the actual argument is an array name or an array section that satisfies the above conditions,
it represents an element sequence consisting of the elements of its local section in Fortran’s array
element order on each node. Also, if the actual argument is an element of a global data, it
represents an element sequence consisting of the corresponding element in the local section and
each element that follows it in array element order on each node.

An global actual argument that represents an element sequence and corresponds to a global
dummy argument is sequence associated with the the dummy argument if the dummy argument
is an explicit-shape or assumed-size array. According to this (extended) sequence association
rule, each element of the element sequence represented by the global actual argument is asso-
ciated with the element of the local section of the global dummy argument that has the same
position in array element order.

Sequence association is the default rule of association for global actual arguments and there-
fore is applied unless it is obvious from the interface of the invoked procedure that the corre-
sponding dummy argument is neither an explicit-shape nor assumed-size array.

6.2.1.0.2 Implementation. In order to implement sequence association, the name, a sec-
tion, or an element of a global data appearing as an actual argument is treated by the Xcal-
ableMP compiler as the base address of its local section on each node, and the global data
appearing as the corresponding dummy argument is initialized at runtime so as to be composed
of the local sections each of which starts from the address received as the argument. On a node
that does not have the local section corresponding to the actual argument, an unspecified value
(e.g. null) is received.

Such implementation implies that in many cases, in order to associate properly a global
actual argument with the global dummy argument, their mappings (including their shadow
attributes) must be identical.

Examples

Example 1 Both the actual argument a and the dummy argument x are global explicit-shape
arrays, and therefore a is sequence associated with x.

It is the base address of the local section of a that passed between these subroutines on
each node. Each the local section of x starts from the received address (Figure 6.1).
XcalableMP Fortran

subroutine xmp_subl
I$xmp nodes p(4)
I$xmp template t(100)
!$xmp distribute t(block) onto p

6.2. ARGUMENT PASSING MECHANISM IN XCALABLEMP FORTRAN 63

5 real a(100)
1$xmp align a(i) with t(i)
I$xmp shadow a(1:1)
call xmp_sub2(a)
end subroutine
10
subroutine xmp_sub2(x)
I$xmp nodes p(4)
I$xmp template t(100)
'$xmp distribute t(block) onto p
15 real x(100)
1$xmp align x(i) with t(i)
'$xmp shadow x(1:1)

Figure 6.1: Sequence Association with a Global Dummy Argument

Example 2 The actual argument a is a global explicit-shape array, and the dummy argument
x is a local explicit-shape. Sequence association is applied also in this case.

The caller subroutine xmp_subl passes the base address of the local section of a on each
node, and the callee f_sub2 receives it and initializes x with the storage starting from it
(Figure 6.2).

XcalableMP Fortran

subroutine xmp_subl

!$xmp nodes p(4)

'$xmp template t(100)

'$xmp distribute t(block) onto p
real a(100)

'$xmp align a(i) with t(i)

I$xmp shadow a(1:1)
n=1+100/4 + 1
call f_sub2(a,n)

10 end subroutine

<

Fortran

subroutine f_sub2(x,n)
real x(n)

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

64 CHAPTER 6. PROCEDURE INTERFACES

xnp_subl sequence associ ation

Figure 6.2: Sequence Association with a Local Dummy Argument

Example 3 The actual argument a(:,1) is a contiguous section of the global data, and the
dummy argument x is a local explicit-shape array. Sequence association is applied in this
case, but only the node p(1) owns the section. Hence, f_sub2 is invoked only by p(1)
(Figure 6.3).

XcalableMP Fortran

subroutine xmp_subl
I$xmp nodes p(4)
!$xmp template t(100,100)
'$xmp distribute t(*,block) onto p
5 real a(100,100)
'$xmp align a(i,j) with t(i,j)
!$xmp shadow a(0,1:1)

n = 100
I$xmp task on p(1)
10 call f_sub2(a(:,1),n)
'$xmp end task

end subroutine

Fortran

subroutine f_sub2(x,n)
real x(n)

6.2. ARGUMENT PASSING MECHANISM IN XCALABLEMP FORTRAN 65

an;?%?}fifsequence 777777777777777777777777777777
f sub? associ ation
,,,,,, goooeeem
X '
p(1)

Figure 6.3: Sequence Association of a Section of a Global Data as an Actual Argument with a
Local Dummy Argument

Example 4 The actual argument a(1) is an element of the global data, and the dummy ar-
gument x is a local explicit-shape array. Sequence association is applied in this case, but
only the node p(1) owns the element. Hence, f_sub2 is invoked only by p(1) (Figure 6.4).
XcalableMP Fortran

subroutine xmp_subl
I$xmp nodes p(4)
I$xmp template t(100)
'$xmp distribute t(block) onto p
5 real a(100)
I$xmp align a(i) with t(i)
!$xmp shadow a(1:1)

n = 100/4
'$xmp task on p(1)
10 call f_sub2(a(1),n)
'$xmp end task

end subroutine

Fortran

subroutine f_sub2(x,n)
real x(n)

Example 5 Even if either the global actual or dummy argument has a full shadow, the sequence
association rule is the same in principle. Hence, the base address of the local section of a
is passed between these subroutines on each node, and each the local section of x starts
from the received address (Figure 6.5).

6.2.2 Descriptor Association of Global Data

When the actual argument is a global data and it is obvious from the interface of the invoked
procedure that the corresponding dummy argument is neither an explicit-shape nor assumed-
size array, the actual argument is descriptor associated with the dummy argument. According
to the descriptor association rule, the dummy argument inherits its shape and storage from the
actual argument.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

66 CHAPTER 6. PROCEDURE INTERFACES

sequence
f sub2 associ ation

Figure 6.4: Sequence Association of an Element of a Global Data as an Actual Argument with
a Local Dummy Argument

Figure 6.5: Sequence Association with a Global Dummy Argument that Has Full Shadow

6.2.2.0.3 Implementation. In order to implement the descriptor association, a global ac-
tual argument is treated by the XcalableMP compiler:

e asif it were the global-data descriptor of the actual array, which is an internal data structure
managed by the XcalableMP runtime system to hold information on a global data (see
7.1.1), if the dummy is a global data; or

e as it is an array representing the local section of the actual array, which is to be processed
by the backend Fortran compiler in the same manner as usual data, if the dummy is a
local data.

For the first case, a global dummy is initialized at runtime with a copy of the global-data
descriptor received.

When an actual argument is descriptor associated with the dummy argument and their
mappings are not identical, the XcalableMP runtime system may detect and report the error.

6.2. ARGUMENT PASSING MECHANISM IN XCALABLEMP FORTRAN 67

Examples

Example 1 There is the explicit interface of the subroutine xmp_sub2 specified by an interface

10

15

20

25

30

block in the subroutine xmp_subl, from which it is found that the dummy argument x
is a global assumed-shape array. Therefore the global actual argument a is descriptor
associated with the global dummy argument x.

It is the global-data descriptor of a that passed between these subroutines. The dummy
argument x is initialized by the XcalableMP runtime system on the basis of the information
extracted from the descriptor received (Figure 6.6).

XcalableMP Fortran
subroutine xmp_subl

I$xmp nodes p(4)

I$xmp template t(100)

'$xmp distribute t(block) onto p
real a(100)

'$xmp align a(i) with t(i)

I$xmp shadow a(1:1)

interface
subroutine xmp_sub2(x)
I$xmp nodes p(4)
I$xmp template t(100)
1$xmp distribute t(block) onto p
real x(:)
'$xmp align x(i) with t(i)
I$xmp shadow a(1:1)
end subroutine xmp_sub2
end interface

call xmp_sub2(a)
end subroutine

subroutine xmp_sub2(x)
I$xmp nodes p(4)
'$xmp template t(100)
!$xmp distribute t(block) onto p
real x(:)
I$xmp align x(i) with t(i)
1$xmp shadow a(1:1)

Example 2 There is the explicit interface of the subroutine £ _sub2, which is written in Fortran,

specified by an interface block in the subroutine xmp_sub1, and the dummy argument x is
a local (i.e. non-mapped) assumed-shape array. Therefore the global actual argument a is
descriptor associated with the local dummy argument x.

The global actual argument is replaced with its local section by the XcalableMP compiler
and the association of the local section with the dummy argument is to be processed by
the backend Fortran compiler in the same manner as usual data (Figure 6.7).

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

68 CHAPTER 6. PROCEDURE INTERFACES

Figure 6.6: Descriptor Association with a Global Dummy Argument

XcalableMP Fortran

subroutine xmp_subl

I$xmp nodes p(4)

I$xmp template t(100)

'$xmp distribute t(block) onto p
real a(100)

'$xmp align a(i) with t(i)

'$xmp shadow a(1:1)

ot

10 interface

subroutine f_sub2(x)
real x(:)

end subroutine f_sub2
end interface

15

call f_sub2(a)

end subroutine

Fortran
subroutine f_sub2(x)

real x(:)

6.3 Argument Passing Mechanism in XcalableMP C

When an actual argument is a global data, it is passed by the address of its local section. When
a dummy argument is a global data, an address is received and used as the base address of each
of its local section.

6.3.0.0.4 Implementation. The name of a global data appearing as an actual argument is
treated by the XcalableMP compiler as the pointer to the first element of its local section on

6.3. ARGUMENT PASSING MECHANISM IN XCALABLEMP C 69

Figure 6.7: Descriptor Association with a Local Dummy Argument

each node. On a node onto which no part of the global data is mapped, the pointer is set to an
unspecified value (e.g. null). Note that an element of a global data in the actual argument list
is treated in the same manner as those in other usual statements because an array element is
passed by value as in C.

The name of a global data appearing as a dummy argument is treated by the XcalableMP
compiler as the pointer to the first element of its local section on each node. As a result, it is
initialized at runtime so as to be composed of the local sections on the executing nodes.

Such implementation implies that in many cases, in order to pass properly a global actual
argument to the corresponding global dummy argument, their mappings (including their shadow
attributes) must be identical.

Examples

Example 1 The global actual argument a is treated by the XcalableMP compiler as the pointer
to the first element of its local section, which is passed to the callee, on each node.

The global dummy argument x is initialized so that each of its local section starts from
the address held by the received pointer (Figure 6.8).

XcalableMP C

void xmp_func1()

{

#pragma xmp nodes p(4)

#pragma xmp template t(0:99)

5 |#pragma xmp distribute t(block) onto p
float a[100];

#pragma xmp align ali] with t(i)

#pragma xmp shadow a[1:1]

10| xmp_func2(a);

}

void xmp_func2(float x[100])
{
15 | #pragma xmp nodes p(4)

#pragma xmp template t(0:99)

#pragma xmp distribute t(block) onto p

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

70 CHAPTER 6. PROCEDURE INTERFACES

#pragma xmp align x[i] with t(i)
#pragma xmp shadow a[1:1]

20

Figure 6.8: Passing to a Global Dummy Argument

Example 2 The global actual argument a is treated by the XcalableMP compiler as the pointer
to the first element of its local section, which is passed to the callee, on each node.

The local dummy argument x on each node starts from the address held by the received
pointer (Figure 6.9).

XcalableMP C

void xmp_funcl()

{

#pragma xmp nodes p(4)

#pragma xmp template t(0:99)

5 |#pragma xmp distribute t(block) onto p
float a[100];

#pragma xmp align ali] with t(i)

#pragma xmp shadow al[1:1]

10| c_func2(a);

}

void c_func2(float x[27])
{

Example 3 The actual argument a[0] is an element of the global data and the dummy ar-
gument x is a scalar, in which case the normal argument-passing rule of C for variables
of a basic type (i.e. “pass-by-value”) is applied. However, only the node p(1) owns the
element. Hence, c_func?2 is invoked only by p(1) (Figure 6.10).

XcalableMP C

void xmp_funcl()
{
#pragma xmp nodes p(4)
#pragma xmp template t(0:99)
5 | #pragma xmp distribute t(block) onto p

6.3. ARGUMENT PASSING MECHANISM IN XCALABLEMP C 71

001

002

003

004
xnp_funcl pass by address

005
006

007

008

009

010
011
Figure 6.9: Passing to a Local Dummy Argument 012
013
014
015

float a[100];
#pragma xmp align ali] with t(i) o7
#pragma xmp shadow a[1:1] 018

016

019
10| #pragma xmp task on p(1) 020

c_func2(al0]); 021
} 022

023

void c_func2(float x) 025

{ 026

027

028

029
030
031

032

033

xmp_funcl pass by 034

c_f uncgzi "] value 035
i B . 036
‘ 037
038
039

040
Figure 6.10: Passing an Element of a Global Data as an Actual Argument to a Local Dummy 041

Argument 042
043

044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051

Chapter 7

Intrinsic and Library Procedures

This specification defines various procedures for system inquiry, synchronization, computations,
etc. The procedures are provided as intrinsic procedures in XcalableMP Fortran and library
procedures in XcalableMP C.

7.1 System Inquiry Procedures

e xmp_desc_of

e xmp_all node_num
e xmp_all num nodes
e xmp_node_num

e xmp_num nodes

e xmp_wtime

e xmp_wtick

7.1.1 xmp_desc_of

Format

[F] integer(kind=xmp_desc kind) xmp_desc_of (xmp_entity)
[C] =xmp_desc_t xmp_desc_of (xmp_entity)

Note that xmp_desc_of is an intrinsic function in XcalableMP Fortran or a built-in operator
in XcalableMP C.

Synopsis

xmp_desc_of returns, in XcalableMP Fortran, or is evaluated to, in XcalableMP C, a descriptor
to retrieve informations of the specified global array, template, or node array. The resulting
descriptor can be used as an input argument of the inquiry procedures which is described in
appendix C.

The kind type parameter of the type of the descriptor, xmp_desc _kind, in XcalableMP For-
tran is implementation-dependent, and defined in a Fortran module named xmp_1ib or a Fortran
include file named xmp_1ib.h.

The type of the descriptor, xmp_desc_t, in XcalableMP C is implementation-dependent, and
defined in a header file named xmp.h in XcalableMP C.

73

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

74 CHAPTER 7. INTRINSIC AND LIBRARY PROCEDURES

Arguments

The argument or operand xmp_entity is the name of either a global array, a template or a node
array.

7.1.2 xmp_-all node_num

Format

[F] integer function xmp_all node num()
[C] int xmp_all node num(void)
Synopsis
The xmp_node_num routine returns the node number, within the entire node set, of the node that
calls xmp_all node_num.
Arguments

none.

7.1.3 xmp_all num nodes

Format

[F] integer function xmp_all num nodes()
[C] int xmp_all num nodes(void)
Synopsis

The xmp_all num nodes routine returns the number of nodes in the entire node set.

Arguments

none.

7.1.4 xmp_node_num

Format

[F] integer function xmp_node num()
[C] int xmp_node_num(void)
Synopsis
The xmp_node_num routine returns the node number, within the current executing node set, of
the node that calls xmp_node_num.
Arguments

none.

7.1.5 xmp_num nodes

Format

[F] integer function xmp_num nodes()
[C] int xmp_num_nodes (void)

7.2. SYNCHRONIZATION PROCEDURES 75

Synopsis

The xmp_num nodes routine returns the number of the executing nodes.

Arguments

none.

7.1.6 xmp wtime

Format

[F] double precision function xmp_wtime()

[C] double xmp_wtime (void)
Synopsis
The xmp_wtime routine returns elapsed wall clock time in seconds since some time in the past.
The “time in the past” is guaranteed not to change during the life of the process. There is no
requirement that different nodes return “the same time.”

Arguments

none.

7.1.7 xmp.wtick

Format

[F] double precision function xmp wtick()
[C] double xmp_wtick(void)

Synopsis

The xmp_wtick routine returns the resolution of the timer used by xmp_wtime. It returns a
double precision value equal to the number of seconds between successive clock ticks.

Arguments

none.

7.2 Synchronization Procedures

7.2.1 xmp_test_async

[F] 1logical function =xmp test_async(async_id)

integer async_id
[C] int xmp_test_async(int async_id)
Synopsis

The xmp_test_async routine returns .true., in XcalableMP Fortran, or 1, in XcalableMP C,
if an asynchronous communication specified by the argument async_id is complete; otherwise,
it returns .false. or O.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

76 CHAPTER 7. INTRINSIC AND LIBRARY PROCEDURES

001 Arguments

002

003 The argument async_id is an integer expression that specifies an asynchronous communication
004 initiated by a global communication construct with the async clause.

005

006 .

007 7.3 Miscellaneous Procedures

008

009 7.3.1 =xmp_gtol

Zi? [F] subroutine xmp_gtol(d, g-idx, 1l_idx)

012 integer (kind=xmp_desc_kind) d

013 integer g-idx (NDIMS)

014 integer 1_idx(NDIMS)

015

016 [C] void xmp_gtol (xmp_desc_ t d, int g idx[], int 1_idx[])
017

018 .

o1 Synopsis

020 The xmp_gtol routine translates an index (specified by g_idx) of a global array (specified by d)

021 into the corresponding index of its local section and sets to an array specified by 1_idx. If the

element of the specified index does not reside in the caller of the routine, the resulting array is
set to an unspecified value.

022
023
024
025

026 Arguments

027

028 e d is adescriptor, that is, an object of type integer (kind=xmp_desc_kind), in XcalableMP,
029 or xmp_desc_t, in XcalableMP C, that is associated with the target global array.

030
031 e [F] g idx is a rank-one integer array of the size equal to the rank of the target global

032 array specified by d.

033

. e [F] 1.idx is a rank-one integer array of the size equal to the rank of the target global
035 array specified by d.

036
. e [C] g_idx is a one-dimensional integer array.
Zzz e [C] 1_idx is a one-dimensional integer array.
040

041 7.3.2 [C] xmpmalloc

042

void* xmp_malloc(xmp_desc_t d, size_t size)
043

044

045 Synopsis

046

047 The xmp_malloc routine allocates a storage for the local section of a one-dimensional global
048 array of size size that is associated with a descriptor specified by d, and returns the pointer to
049 it on each node.

050

051 Arguments

052

053 e d is a descriptor, that is, an object of type xmp_desc_t that is associated with a pointer to
054 the one-dimensional global array to be allocated.

055

056 e size is the size of the global array to be allocated.
057

Bibliography

[1]

2]

OpenMP Architecture Review Board, “OpenMP Application Program Interface Version
3.1”, http://www.openmp.org/mp-documents/0OpenMP3.1.pdf (2011).

High Performance Fortran Forum, “High Performance Fortran Language Specification Ver-
sion 2.0”, http://hpff.rice.edu/versions/hpf2/hpf-v20.pdf (1997).

Message Passing Interface Forum, “MPI: A Message-Passing Interface Standard Version
2.2” http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf (2009).

Japan Association of High Performance Fortran, “HPF /JA Language Specification”, http:
//www.hpfpc.org/jahpf/spec/hpfja-vi0-eng.pdf (1999).

Yuanyuan Zhang, Hidetoshi Iwashita, Kuninori Ishii, Masanori Kaneko, Tomotake Naka-
mura, and Kohichiro Hotta, “Hybrid Parallel Programming on SMP Clusters Using XP-
Fortran and OpenMP”, Proceedings of the International Workshop on OpenMP (IWOMP
2010), Vol. 6132 of Lecture Notes in Computer Science, pp. 133-148, Springer (2010).

Hidetoshi Iwashita, Naoki Sueyasu, Sachio Kamiya, and Matthijs van Waveren, “VPP
Fortran and the design of HPF/JA extensions”, Concurrency and Computation — Practice
& Experience, Vol. 14, No. 8-9, pp. 575-588, Wiley (2002).

Jinpil Lee, Mitsuhisa Sato, and Taisuke Boku, “OpenMPD: A Directive-Based Data Parallel
Language Extension for Distributed Memory Systems”, Proceedings of the 2008 Interna-
tional Conference on Parallel Processing, pp. 121-128 (2008).

7

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052

054
055
056

http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://hpff.rice.edu/versions/hpf2/hpf-v20.pdf
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
http://www.hpfpc.org/jahpf/spec/hpfja-v10-eng.pdf
http://www.hpfpc.org/jahpf/spec/hpfja-v10-eng.pdf

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051

Appendix A

Programming Interface for MPI

This chapter describes the programming interface for MPI, which are widely used for parallel 016
programming for cluster computing. Users can introduce MPI functions to XcalableMP using 017
the interface.

XcalableMP provides the following user API functions to mix MPI functions with Xcal-
ableMP.

e xmp_get_mpi_comm 023

024

e xmp_init mpi 025

026

e xmp_finalize mpi 027

028

029

A.1 xmp get mpi comm 030
031

Format 032
033

[F] integer function xmp_get mpi_comm() 034
[C] MPI_Comm xmp_get mpi_comm(void) 035
036

. 037
Synopsis 1o
xmp_get mpi_comm returns the handle of the communicator associated with the executing node 039
set. 040
041

042

Arguments 043
044

none. 045
046

047

A.2 xmp init mpi 048
049

Format 050
[F] xmp_init mpi() !

[C] void =xmp_init mpi(int *argc, char *x*argv) 053

Synopsis 055

xmp_init_mpi initializes the MPI execution environment. 057

79

80 APPENDIX A. PROGRAMMING INTERFACE FOR MPI

001 Arguments
002
003 In XcalableMP C, the command-line arguments argc and argv should be given to xmp_init mpi.
004
005 . . .
o0 A.3 =xmp_finalize mpi
007
008 Format
009 (F] xmp_finalize mpi()
010 [C] void xmp finalize mpi(void)
011
012
Synopsis

013
ot xmp_finalize mpi terminates the MPI execution environment.
015

016

o017 Arguments
018
none.
019
020
021 Example

022

XcalableMP C

023
024 #include <stdio.h>

025 #include "mpi.h"
026 #include "xmp.h"
027
028 5| #pragma xmp nodes p(4)
029

030 int main(int argc, char *argv[]) {

ot xmp_init_mpi(&argc, &argv)

032
033

034 10 int rank, size;
035 MPI_Comm_rank (MPI_COMM_WORLD, &rank);
036 MPI_Comm_size(MPI_COMM_WORLD, &size);

037
038

#pragma xmp task on p(2:3)

039
15 {
040 . .
a1 MPI_Comm comm = xmp_get_mpi_comm(); // get the MPI communicator of p(2:3)
042
043 int rank, size;
044 MPI_Comm_rank(comm, &rank);
045 20 MPI_Comm_size(comm, &size);
046 }
047
oes xmp_finalize_mpi();
049
050
051 25 return O;

052 }

053

054
055
056

Appendix B

Directive for Thread Parallelism

Thread-level parallelism is needed to program multi-core cluster system. Users can use some
features introduced from OpenMP to parallelize loops in thread level with the threads clause
of the loop directive. No direct use of OpenMP directives in XcalableMP code is allowed.

B.1 threads clause

Syntax

[F1 !$xmp loop [(loop-index [, loop-index]...)]|
on {nodes-ref | template-ref} [reduction-clause |... [threads-clause |
do-loops

[C] #pragma xmp loop [(loop-index [, loop-indez]...) |
on {nodes-ref | template-ref} [reduction-clause |... [threads-clause |
for-loops

where threads-clause is:
threads [omp-clause |
and omp-clause is one of:

num_threads (num-thread)
private(list)
firstprivate(list)
lastprivate(list)

Description

OpenMP clauses such as num_threads can be specified in threads clause. The XcalableMP
compiler generates internally OpenMP directives from the loop directive and the threads clause.
Note that no reduction need to be specified in the threads clause because it is inherited from
the reduction clause in the loop directive.

Example

This example calculates the total sum of an array. A threads clause is given to the loop
directive to parallelize the loop statement in both process and thread level. The reduction

81

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

82 APPENDIX B. DIRECTIVE FOR THREAD PARALLELISM

001 clause in the loop directive is also applied to the OpenMP directive which is generated by the
002 XcalableMP compiler.
003

XcalableMP C

004 #include <stdio.h>

#include "xmp.h"
#define N 1024

005
006
007
008

009 5 |#pragma xmp nodes p(*)
010 #pragma xmp template t(0:N-1)
011 #pragma xmp distribute t(block) onto p

012 #pragma xmp align ali] with t(i)
013
014

015 10| int main(void) {

016 . . . // initialize al[]

017

018 int sum = 0;

019 #pragma xmp loop on t(i) reduction(+:sum) threads num_threads(4)

020 15| for (int i = 0; i < N; i++) {

sum += alil;

}

021
022
023
024
025 return O;
026 20 }
027

028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

Appendix C

Interface to Numerical Libraries

This chapter describes the XcalableMP interfaces to existing MPI parallel libraries, which is
effective to achieve high productivity and performance of XcalableMP programs.

C.1 Design of the Interface

A recommended design of the interface is as follows:

e Numerical library routines can be invoked by an XcalableMP procedure through an inter-
face procedure (Figure C.1).

XcalableMP program XcalableMP interface Numerical library routine
Programfoo /)subroutine ixmp_xxx(...) | _+—>subroutine sub(...)
1Sxmp... /
1Sxmp... call sub(...) return
end
call ixmp_xxx(...) return
end
stop
end

Figure C.1: Invocation of a Library Routine through an Interface Procedure

e When the numerical library routine needs information on an global array, the interface
extracts it from the descriptor using some query routines provided by XcalableMP and
passes it to the numerical library routine as arguments.

e The interface does not affect the behavior of numerical library routines except for restric-
tions concerning the XcalableMP specification.

C.2 Query routines
Specifications of some query routines are shown below.

83

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

84 APPENDIX C. INTERFACE TO NUMERICAL LIBRARIES

C.2.1 xmp-node_index

Format
[F] subroutine xmp_node_index(d, idx)
integer (kind=xmp_desc_kind) d
integer idx(dim)
[C] void xmp_node_index (xmp_desc_t d, int idx[])
Synopsis

The xmp_node_index routine provides the indices of the executing node in the target node array.

Arguments

e dis a descriptor, that is, an object of type integer (kind=xmp_desc_kind), in XcalableMP,
or xmp_desc_t, in XcalableMP C, that is associated with the node array.

e idx is a one-dimensional integer array. dim is the rank of the node array.

C.2.2 xmp node_size

Format
[F] subroutine xmp_node_size(d, size)
integer (kind=xmp_desc_kind) d
integer size(dim)
[C] void xmp_node_size(xmp_desc_t d, int sizel[])
Synopsis

The xmp_node_size routine provides the size of each dimension of the target node array.

Arguments

e dis adescriptor, that is, an object of type integer (kind=xmp_desc_kind), in XcalableMP,
or xmp_desc_t, in XcalableMP C, that is associated with the node array.

e size is a one-dimensional integer array. dim is the rank of the node array.

C.2.3 xmp_gt_size

Format
[F] subroutine xmp_gt_size(d, size)
integer (kind=xmp_desc kind) d
integer size(dim)
[C] void xmp_gt_size(xmp_desc_t d, int sizel[])
Synopsis

The xmp_gt_size routine provides the global size of each dimension of the target template.

C.2. QUERY ROUTINES 85

Arguments

e dis a descriptor, that is, an object of type integer (kind=xmp_desc_kind), in XcalableMP,
or xmp_desc_t, in XcalableMP C, that is associated with the target template.

e size is a one-dimensional integer array. dim is the rank of the template.

C.2.4 xmp_lt size

Format
[F] subroutine xmp_1t_size(d, size)
integer (kind=xmp_desc_kind) d
integer size(dim)
[C] wvoid xmp_lt_size(xmp_desc_t d, int sizel[])
Synopsis

The xmp_1t_size routine provides the local size of each dimension of the target template.

Arguments

e dis a descriptor, that is, an object of type integer (kind=xmp_desc_kind), in XcalableMP,
or xmp_desc_t, in XcalableMP C, that is associated with the template.

e size is a one-dimensional integer array. dim is the rank of the template.

C.2.5 xmp_ga size

Format
[F] subroutine xmp_ga_size(d, size)
integer (kind=xmp_desc_kind) d
integer size(dim)
[C] wvoid xmp_ga size(xmp_desc_t d, int sizel[])
Synopsis

The xmp_ga_size routine provides the global size of each dimension of the target global array.

Arguments

e d is adescriptor, that is, an object of type integer (kind=xmp_desc_kind), in XcalableMP,
or xmp_desc_t, in XcalableMP C, that is associated with the global array.

e size is to be set to a one-dimensional integer array. dim is the rank of the global array.

C.2.6 =xmp_la_size

Format
[F] subroutine xmp_la_size(d, size)
integer (kind=xmp_desc_kind) d
integer size(dim)

[C] void xmp_la_size(xmp_desc_t d, int sizel[])

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

86 APPENDIX C. INTERFACE TO NUMERICAL LIBRARIES

001 Synopsis

002

003 The xmp_la_size routine provides the local size of each dimension of the global array.
004

008 Arguments

006
007

e dis a descriptor, that is, an object of type integer (kind=xmp_desc_kind), in XcalableMP,
or xmp_desc_t, in XcalableMP C, that is associated with the global array.

008
009
010 L.
o e size is a one-dimensional integer array. dim is the rank of the global array.

012

013 C.2.7 =xmp_ga template unitsize

014

015 Format

Zii [F] subroutine xmp_ga_template unitsize(d, unitsize)

018 integer (kind=xmp_desc_kind) d

019 integer unitsize(dim)

020 [C] void xmp_ga_template unitsize(xmp_desc_t d, int unitsizel[])
021

o Synopsis

023

024 The xmp_ga_template_unitsize routine provides the blocking factor of each dimension of the

target template.

025
026
027

028 Arguments

029

030 e d is adescriptor, that is, an object of type integer (kind=xmp_desc_kind), in XcalableMP,
031 or xmp_desc_t, in XcalableMP C, that is associated with the template.

032

033 e unitsize is a one-dimensional integer array. dim is the rank of the template.

034

035

036 C.2.8 =xmp ga first_ idx node_index

037

038 Format

039 [F] subroutine xmp_ga_first_idx node_index(d, idx)

040 integer (kind=xmp_desc_kind) d

Zi; integer idx(dim)

013 [C] void xmp_ga_first_idx node_index(xmp_desc_t d, int idx[])
044

045 Synopsis

046

047 The xmp_ga first_idx node_index routine provides the indices of the node onto which the first
048 element of the global array is distributed.

049

050

051 Arguments

052

e dis a descriptor, that is, an object of type integer (kind=xmp_desc_kind), in XcalableMP,
or xmp_desc_t, in XcalableMP C, that is associated with the global array.

053
054

055
056 e idx is a one-dimensional integer array. dim is the rank of node array associated with the

057 global array.

C.3. EXAMPLE 87

C.2.9 xmp_la lead dim

Format
[F] subroutine xmp_la lead dim(d, lead _dim)
integer (kind=xmp_desc_kind) d
integer lead dim
[C] void xmp_la_lead dim(xmp_desc_t d, int lead_dim)
Synopsis

The xmp_la_lead dim routine provides the leading dimension of each local section of the target
global array.

Arguments

e dis a descriptor, that is, an object of type integer (kind=xmp_desc_kind), in XcalableMP,
or xmp_desc_t, in XcalableMP C, that is associated with the global array.

e lead dim is an integer scalar.

C.3 Example

This section shows the interface to ScaLAPACK as an example of the XcalableMP interface to
numerical libraries.

ScaLAPACK is a linear algebra library for distributed-memory. Communication processes
in the ScaLAPACK routines depends on BLACS (Basic Linear Algebraic Communication Sub-
programs). ScaLAPACK library routines invoked from XcalableMP procedures also depend on
BLACS.

Example 1 This example shows an implementation of the interface for the ScaLAPACK driver
routine pdgesv.

XcalableMP Fortran
subroutine ixmp_pdgesv(n,nrhs,a,ia,ja,da,ipiv,b,ib,jb,db,ictxt,info)

use xmp_lib

5 integer n,nrhs,ia, ja,ib,jb,ictxt,info

double precision a,b

integer (kind=xmp_desc_kind) da,db

integer size_a(2),unitsize_a(2),rank_a(2),lead_dim_a,desca(9)
integer size_b(2),unitsize_b(2),rank_b(2),lead_dim_b,descb(9)
10
call xmp_ga_size(da,size_a)

call xmp_ga_template_unitsize(da,unitsize_a)
call xmp_ga_first_idx_nodes_rank(da,rank_a)
call xmp_la_lead_dim(da,lead_dim_a)

call xmp_ga_size(db,size_b)

call xmp_ga_template_unitsize(db,unitsize_b)
call xmp_ga_first_idx_nodes_rank(db,rank_b)
call xmp_la_lead_dim(db,lead_dim_b)

001
002
003
004
005
006
007

009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

88 APPENDIX C. INTERFACE TO NUMERICAL LIBRARIES

001 20

002 desca(1)=1

008 desca(2)=ictxt

i: desca(3)=size_a(1l)

006 desca(4)=size_a(2)

007 25 desca(5)=unitsize_a(1)

008 desca(6)=unitsize_b(2)

009 desca(7)=rank_a(1)

010 desca(8)=rank_a(2)

o1t desca(9)=lead_dim_a

012 30

o descb(1)=1

015 descb(2)=ictxt

016 descb(3)=size_b(1)

017 descb(4)=size_b(2)

018 35 descb(5)=unitsize_b(1)

019 descb(6)=unitsize_b(2)

020 descb(7)=rank_b(1)

Z; descb(8)=rank_b(2)

023 descb(9)=lead_dim_b

024 40

025 call pdgesv(n,nhrs,a,ia,ja,desca,ipiv,b,ib,jb,descb,info)
026

027 return

028 end

029 45

030

031

032 Example 2 This example shows an XcalableMP procedure using the interface of Example 1.
033 XcalableMP Fortran
zi program xmptdgesv

036

037 use xmp_lib

038

039 5 double precision a(1000,1000)
040 double precision b(1000)

041 integer ipiv(2%1000,2)

042

'$xmp nodes p(2,2)
1$xmp template t(1000,1000)
10| '$xmp template t1(2*1000,2)

043
044
045

046 !$xmp distribute t(block,block) onto p
047 '$xmp distribute t1(block,block) onto p
048 '$xmp align a(i,j) with t(i,j)

049 '$xmp align ipiv(i,j) with t1(i,j)

050 15| !$xmp align b(i) with t(i,*)

051

052 . Cos
integer i,j,ictxt

054 integer m=1000,n=1000,nprow=2,npcol=2
055 integer icontxt=-1,iwhat=0

056 20 integer nrhs=1,ia=1, ja=1,ib=1, jb=1,info
057 character*l order

053

C.3. EXAMPLE

25

30

35

40

45

! $xmp

! $xmp

order="C"

call blacs_get(icontxt,iwhat,ictxt)
call blacs_gridinit(ictxt,order,nprow,npcol)

loop (i,j) omn t(i,j)
do j=1,n
do i=1,m
a(i,j)
end do
end do

loop on t(i,*)
do i=1,m

b(i)= ...
end do

call ixmp_pdgesv(n,nrhs,a,ia,ja,xmp_desc_of(a),ipiv,
* b,ib, jb,xmp_desc_of(b),ictxt,info)

call blacs_gridexit(ictxt)
stop
end

89

025

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051

Appendix D

XcalableMP 1/0

D.1 Categorization of 1/0O

XcalableMP has three kinds of I/O.

D.1.1 Local I/O

Local I/0 is the way to use I/O statements and standard I/O functions in the base languages,
in which I/O statements and functions are used without any directives.

I/0O statements (in XcalableMP Fortran) and I/O functions (in XcalableMP C) are executed
in local similar to other execution statements. It depends on the system which nodes can handle
the I/O statements and functions.

Local I/O can read a file written by the base language and, vice versa.

[F] A name of a global array in the I/O list describes the entire area of the array located in
each node.

An array element of a global array can be referred to as an I1/0O item only in the node where
it is located.

[F] Any array section of a global array cannot be referred to as an I/O item.

D.1.2 Master I/OJ[F]

Master 1/0 is input and output for the file that corresponds to an executing node set. Master
I/0 is collective execution.

In master 1/0, a global data is input and output as if it was executed only by a master node,
which represents the executing node set, through its local copy of the data.

The master node is chosen among the executing node set arbitrarily by the system, and is
unique to the executing node set during execution of the program.

Master I/0 is provided in the form of directives of XcalableMP Fortran.

A global array as an I/O item is accessed in the sequential order of array elements. When
a local variable is read from a file, the value is copied to all nodes of the executing node set.
When a local variable or an expression is written to a file, only the value of the data on the
master node is written.

Master 1/O can read a file written by the base language, and vice versa.

D.1.3 Global I/O

Global I/0 is input and output for the file that corresponds to an executing node set. Some
executions of global I/O are collective and the others are local. In a large system with many

91

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051

053
054
055
056

92 APPENDIX D. XCALABLEMP I/0

Table D.1: Global I/0O
independent /collective ‘ access method

| |

Collective I/O | collective sequential access
Atomic I/0 independent sequential access
Direct I/O independent direct access

nodes, global I/O can be expected higher speed and less memory consumption execution than
master 1/0.

[F] Tt is provided in the form of directives for a part of I/O statements, such as OPEN,
CLOSE, READ and WRITE statements.

[C] Tt is provided in the form of service functions and include the file.

Global I/O can handle only unformatted (binary) files. In XcalableMP Fortran, implied DO
loops and some specifiers cannot be used. In XcalableMP C, formatted I/O libraries, including
fprintf() and fscanf(), are not provided.

Global I/O can read a file written in MPI-10, and vice versa.

[F] File formats are not compatible between XcalableMP Fortran and the base language
because global I/O does not generate or access the file header and footer particular to the base
language.

There are three kinds of global I/0O, as shown in Table D.1. Collective global I/0O is global
(collective) execution and sequential file access. It handles global data in the sequential order,
similar to master I/O. Atomic global I/O is local execution and sequential file access. Executing
nodes share file positioning of the global I/0 file and execute each 1/O statement and library
call mutually. Direct global I/0O is local execution and direct file access. Each executing node
has its own file positioning and accesses a shared file independently.

Restriction

e The name of a global array may not be declared in a namelist group. That is, NAMELIST
I/0 is not allowed for global arrays.

Advice to programmers

Local 1/0 is useful for debugging focusing on a node since local I/0 is executed on each node
individually.

Master 1/0O is a directive extension, in which the execution result matches the one of the
base language ignoring directive lines.

Global I/O aims for highly-parallel I/O using thousands of nodes. It is limited to binary
files. It avoids extreme concentration of computational load and memory consumption to specific
nodes using MPI-IO or other parallel I/O techniques.

D.2 File Connection

A file is connected to a unit in XcalableMP Fortran and to a file handler in XcalableMP C.
This operation is called file connection. Local I/O connects a file to each node independently.
Master I/O and global I/O connect a file to an executing node set collectively.

There are two ways of file connections, dynamic connection and preconnection. Dynamic
connection connects a file during execution of the program. Preconnection connects a file at the

D.3. MASTER I/O 93

beginning of execution of the program and therefore it can execute I/O statements and functions
without the prior execution of an OPEN statement or a function call to open the file.

D.2.1 File Connection in Local I/O

The language processor of the base language connects the file to each node. File system visible
to each node is implementation dependent.

It is implementation dependent which nodes can access the standard input, output and error
files. It is also implementation dependent how the accesses to the same file by multiple nodes
behave; e.g. , data in the standard input file may be read only by one node or may be replicated
to all nodes. It is implementation dependent how data from the multiple nodes are merged into
the standard output/error file.

D.2.2 [F] File Connection in Master I/0O

An OPEN statement specified with a master I/O directive connects a file to the executing node
set. When a master I/O file is connected by a READ statement or a WRITE statement without
encountering any OPEN statement, the name and attributes of the file depend on the language
system of the base language. Disconnection from a master I/O file is executed by a CLOSE
statement or termination of the program.

Dynamic connection must be executed collectively by all nodes sharing the file with the same
unit number. Two executing node sets may employ the same unit number only if they have no
common node.

The standard input, output and error files are preconnected to the entire node set. Therefore,
master I/O executed on the entire node set is always allowed without OPEN and CLOSE
statements.

D.2.3 File Connection in Global I/0O

Dynamic connection of global I/0 is global (collective) execution and is valid for the executing
node set. Global I/0 files cannot be preconnected.

(F]

An OPEN statement specified with a global I/O directive connects a file to the executing node
set. Disconnection from a global I/0O file is executed by a CLOSE statement or termination of
the program.

Dynamic connection must be executed collectively by all nodes sharing the file with the same
unit number. Two executing node sets may employ the same unit number only if they have no
common node.

[c]

A library function to open a global I/O file connects the file to the executing node set. Discon-
nection from a global 1/0 file is executed by a library function to close the file or termination
of the program.

D.3 Master I/0

A master I/O construct executes data transfer between a file and an executing node set via a
master node of the executing node set. For a global array, the virtual sequential order of the
array elements is visible.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

94 APPENDIX D. XCALABLEMP I/0

D.3.1 master_io Construct
Syntax
[F] !'$xmp master_io

10-statement

[F1 !$xmp master_io begin
10-statement

$xmp master_io end
where j0-statement is one of:

e OPEN statement

e CLOSE statement

e READ statement

e WRITE statement

e PRINT statement

e BACKSPACE statement
e ENDFILE statement

e REWIND statement

o INQUIRE statement

Restriction

e The following items including a global array or a subobject of a global array must not
appear in an input item or output item.
— A substring-range
— A section-subscript
— An expression including operators
— An do-implied-do-control

e An I/O statement specified with a master I/O directive must be executed collectively on
the node set that is connected to the file.

e Internal file I/O is not allowed as master 1/0.

Description

An I/0O statement specified with master I/O directive accesses a file whose format is the same
as the one of the base language. The access, including connection, disconnection, input and
output, file positioning, and inquiry, is global (collective) and must be executed on the same
node set as the one where the file was connected.

A master node, a unique node to an executing node set, is chosen by the language system.
Master I/O works as if all file accesses were executed only on the master node.

The operations for I/O items are summarized in Table D.2.

D.4. [F] GLOBAL I/O

Table D.2:

Operations for I/0

95

I/0 item

operation

input item

name of global array

The data that is read from the file in the se-
quential order of array elements is distributed
onto the global array on the node set. The file
positioning increases by the size of data.

array element of global
array

The data that is read from the file is copied
to the element of the global array on the node
to which it is mapped. The file positioning in-
creases by the size of data.

local variable

The data that is read from the file is replicated
to the local variables on all nodes of the execut-
ing node set. The file positioning increases by
the size of data.

implied DO loop

For each input item, repeat the above operation.

output item

name of global array

The value of the global array is collected and
is written to the file in the sequential order of
array elements. The file positioning increases by
the size of data.

array element of global
array

The value of the element of the global array is
written to the file. A file position increases by
the size of data.

local variable and ex-
pression

The value evaluated on the master node is writ-
ten to the file. The file positioning increases by
the size of data.

implied DO loop

For each output item, repeat the above opera-
tion.

Namelist input and output statements cannot treat global arrays. A namelist output state-

ment writes the values on the master node to the file. In the namelist input, each item of the
namelist is read from the file to the master node if it is recorded in the file. And then all items
of the namelist are replicated onto all nodes of the executing node set from the master node
even if some items are not read from the file.

IOSTAT and SIZE specifiers and specifiers of the INQUIRE statement that can return values
always return the same value among the executing node set.

When a condition specified with ERR, END or EOR specifier is satisfied, all nodes of exe-
cuting node set are branched together to the same statement.

Advice to implementers

It is recommended to provide such a compiler option that local I/O statements (specified without
directives) are regarded as master I/O statements (specified with master_io directives).

D.4 [F] Global I/O

Global I/0O performs unformatted data transfer and can be expected to be higher performance
and lower memory consumption than master I/O. The file format is compatible with the one in
MPI-IO.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051

053
054
055
056

96 APPENDIX D. XCALABLEMP I/0

Global I/O consists of three kinds, collective I/0, atomic I/O, and direct 1/0.

D.4.1 Global I/0O File Operation

global_io construct is defined as follows.

Syntax
[F1 !$xmp global_io [atomic / direct]

10-statement

[F]1 !$xmp global_io [atomic / direct| begin
10-statement

I$xmp end global_io
The first syntax is just a shorthand of the second syntax.

Restriction

I/O statements and specifiers available for an io-statement are shown in the following table.
Definition of each specifier is described in the specification of the base language.
Case of global_io construct without a direct clause:

’ I/O statement H available specifiers ‘

OPEN UNIT, IOSTAT, FILE, STATUS, POSITION, ACTION, FORM
CLOSE UNIT, IOSTAT, STATUS

READ UNIT, IOSTAT

WRITE UNIT, IOSTAT

Case of global_io construct with a direct clause:

’ I/0O statement H available specifiers ‘

OPEN UNIT, IOSTAT, FILE, STATUS, RECL, ACTION, FORM
CLOSE UNIT, IOSTAT, STATUS

READ UNIT, REC, IOSTAT

WRITE UNIT, REC, IOSTAT

An input item and an output item of a data transfer statement with global_io directive
must be the name of a variable.

Description

Global I/O construct connects, disconnects, inputs and outputs the global 1/0 file, which is
compatible with MPI-10.

The standard input, output and error files cannot be a Global I/0O file. A Global I/0 file
cannot preconnect to any unit or any file handler, and must explicitly be connected by the
OPEN statement specified with global_io directive.

The OPEN statement specified with a global_io directive is global (collective) execution,
and the file is shared among the executing node set. A file that has already been opened by

D.4. [F] GLOBAL I/O

another OPEN statement with a global_io directive cannot be reopen by an OPEN statement

97

with or without a global_io directive before closing it.

A global I/0 file must be disconnected explicitly by a CLOSE statement specified with a
global_io directive, otherwise the result of I/O is not guaranteed. The CLOSE statement
specified with a global_io directive is a global (collective) execution and must be executed by

the same executing node set as the one where the OPEN statement is executed.

Utilizable values of the specifiers in I/O statements are shown in the following table. Defi-

nitions of the specifiers are described in the specification of the base language.

e OPEN statement

specifiers H value default
UNIT external file unit (scalar constant | not omissible
expression)
FILE file name (scalar CHARACTER | not omissible
expression)
STATUS 'OLD’, '"NEW’, 'REPLACE’ or | 'UNKNOWN’
"UNKNOWN’
POSITION || ASIS’, "REWIND’ or ’AP- | ASIS’
PEND’
ACTION 'READ’, "WRITE’ or 'READ- | processor dependent
WRITE’
RECL the value of the record length | not omissible
(scalar constant expression)
FORM 'FORMATTED’ or ’'UNFOR- | The default value is FORMATTED if the
MATTED’ file is begin connected with a direct clause,
and the default value is UNFORMATTED
if the file is begin connected without a di-
rect clause.

POSITION is available only if the directive has no direct clause. RECL is available only

if the directive has a direct clause.

e CLOSE statement

’ specifiers H value default ‘
UNIT external file unit (scalar constant expression) not omissible.
STATUS || ’JKEEP’ or 'DELETE’ "KEEP’
e READ/WRITE statement
’ specifiers H value ‘ default

UNIT

external file unit (scalar constant expression)

not omissible

REC

pression)

the value of the number of record (scalar constant ex-

not omissible

REC is available only if the directive has a direct clause.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036

038
039
040
041
042
043
044
045
046
047
048
049
050
051
052

054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

98 APPENDIX D. XCALABLEMP I/0

e When a scalar variable of default INTEGER is specified to IOSTAT, an error code is set
to the specifiers.

OPEN, CLOSE, READ and WRITE statements specified with global_io directives with-
out atomic and direct clauses are called collective OPEN, collective CLOSE, collective READ,
and collective WRITE statements respectively. These all statements are called collective 1/0O
statements.

OPEN, CLOSE, READ and WRITE statements specified with global_io directives with
atomic clauses are called atomic OPEN, atomic CLOSE, atomic READ, and atomic WRITE
statements respectively. These all statements are called atomic I/O statements.

OPEN, CLOSE, READ and WRITE statements specified with global_io directives with
direct clauses are called direct OPEN, direct CLOSE, direct READ, and direct WRITE state-
ments respectively. These all statements are called direct I/O statements.

The file connected by a collective, atomic or direct OPEN statement can be read/be written
only by the same type of READ/WRITE statements. The file can be disconnected by the same
type of a CLOSE statement. Different types of global I/O cannot be executed together for the
same file or the same unit. For example, atomic 1/O statements cannot be executed for the unit
connected by a collective OPEN statement.

D.4.1.1 file_sync_all Directive

Two data accesses conflict if they access the same absolute byte displacements of the same file
and at least one is a write access. When two accesses to the same file conflict in direct or
collective I/O, the following file_sync_all directive to the file must be executed.

Syntax
I$xmp file_sync_all([UNIT=]file-unit-number)

The file_sync_all directive is an execution directive and collective to the nodes connected to
the specified file-unit-number. The execution of a file_sync_all directive first synchronizes all the
nodes connected to the specified file-unit-number, and then causes all previous writes to the file
by the nodes to be transferred to the storage device. If some nodes have made updates to the
file, then all such updates become visible to subsequent reads of the file by the nodes.

D.4.2 Collective Global I/O Statement

Collective I/O statements read/write shared files and can handle global arrays.

All collective I/O statements execute in global (collective). In collective I/0O, all accesses
to a file, such as connection, disconnection, input and output, must be executed on the same
executing node set.

The operations for I/O items are summarized in the following table.

D.4.3 Atomic Global I/O Statement

Atomic I/O statements read/write shared files exclusively among executing nodes in arbitrary
order. Because it is a nondeterministic parallel execution, the results can differ every execution
time even for the same program.

Atomic OPEN and CLOSE statements are executed collectively (in global), while atomic
READ and WRITE statements are executed in local. A file connected by an atomic OPEN
statement can be disconnected only by an atomic CLOSE statement executed on the same

D.5. [c] GLOBAL I/O LIBRARY 99

I/0 item operation
input | name of global array The values read from a file are assigned to the elements of
item the global array. The file positioning seeks by the size of the
data.
local variable The values read from the file are replicated into the local

array on all executing nodes. The file positioning seeks by
the length of the data.

output| name of global array The values of a global array are written to the file in the
item sequential order of the array elements. The file positioning
seeks by the size of the data.

local variable, expression | The values evaluated on a node of the executing nodes are

the data.

written to the file. The file positioning seeks by the size of

executing node set. Atomic READ and WRITE statements can be executed on any single node
of the same executing node set.

Atomic READ and WRITE statements are exclusively executed. The unit of exclusive
operation is a single READ statement or a single WRITE statement.

The initial file positioning is determined by the POSITION specifier of the atomic OPEN
statement. And then, the file positioning seeks in every READ and WRITE statement by the
length of the input/output data.

D.4.4 Direct Global I/O Statement

Direct I/O statements read/write shared files with specification of the file positioning for each
node.

Direct OPEN and CLOSE statements are executed collectively (in global), while direct
READ and WRITE statements are executed in local. A file connected by a direct OPEN state-
ment can be disconnected only by a direct CLOSE statement executed on the same executing
node set. Direct READ and WRITE statements can be executed on any single node of the same
executing node set.

Direct READ and WRITE statements read/write local data at the file positioning specified
by the REC specifier independently in local. The file positioning is shifted from the top of
the file by the product of the specifiers RECL (of OPEN statement) and REC (of READ and
WRITE statement).

In order to guarantee the order of direct I/O statements to the same file position, the file
should be closed or the file_sync_all directive should be executed between these statements.
Otherwise, the outcome of multiple accesses to the same file position, in which at least one is a
write access, is implementation dependent.

D.5 [C] Global I/O Library

XcalableMP C provides some data types defined in the include file “xmp.h”, a set of library
functions with arguments of the data types, and built-in operators to get values of the data
types from names of a variable, a template, etc..

The following types are provided.

e xmp_file_t : file handle

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

100

APPENDIX D. XCALABLEMP I/0

e xmp_rang_t : descriptor of array section

The following library functions are provided. Collective function names end with _all.

e global I/O file operation

xmp_fopen_all : file open

xmp_fclose_all : file close

xmp_fseek : setting (individual) file pointer
xmp_fseek_shared_all : setting shared file pointer
xmp_ftell : displacement of (individual) file pointer
xmp_ftell_shared : displacement of shared file pointer

xmp_file_sync_all : file synchronization

e collective I/O

xmp_file_set_view _all : setting file view
xmp_file_clear_view_all : initializing file view
xmp_fread_all : collective read of local data
xmp_fwrite_all : collective write of local data
xmp_fread_darray_all : collective read of global data

xmp_fwrite_darray_all : collective write of global data

e atomic I/O

xmp_fread_shared : atomic read

xmp_fwrite_shared : atomic write

e direct I/0O

xmp_fread : direct read

xmp_fwrite : direct write

Data type

The following data types are defined in include file xmp_io.h.

xmp_file_t A file handler. It is connected to a file when the file is opened. It has a shared file
pointer and an individual file pointer to point where to read/write data in the file.

A shared file pointer is a shared resource among all nodes of the node set that has opened
the file. Atomic I/O uses a shared file pointer. An (individual) file pointer is an individual
resource on each node. Collective I/O and direct I/O use individual file pointers.

These two file pointers are managed in the structure xmp_file_t, . and can be controlled
and referenced only through the provided library functions.

xmp_range_t Descriptor of array section, including lower bound, upper bound and stride for
each dimension. Functions for operating the descriptor are shown in following table. The
xmp _allocate_range() function is used to allocate memory. The xmp_set_range() function
is used to set ranges of a array section. The xmp_free_range() function releases the memory
for the descriptor.

D.5. [c] GLOBAL I/O LIBRARY

101

function name

xmp_range_t xxmp_allocate_range(n_dim)

argument

int n_.dim

the number of dimensions

return value

xmp._range_t*

descriptor of array section. NULL is returned when a
program abend.

function name

void xmp_set_range(rp, i_dim, lb, length, step)

argument

xmp_range_t *rp

descriptor

int i_dim | target dimension
int 1b | lower bound of array section in the dimension i_dim
int length | length of array section in the dimension i_dim
int step | stride of array section in the dimension i_dim

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035

102 APPENDIX D. XCALABLEMP I/0

001 ’ function name ‘ void xmp_free_range(rp) ‘
002 ’ argument ‘ xmp_range_t *xrp | descriptor of array section. ‘
003

004

005

006

007 D.5.1 Global I/0O File Operation

Zzz D.5.1.1 xmp_fopen_all
010 xmp_fopen_all opens a global I/0 file. Collective (global) execution.

011

o1z function name xmp_file_t *xmp_fopen_all(fname, amode)

Ziz argument const char xfname | file name

015 const char xamode | equivalent to fopen of POSIX. combination of “rwa+”
016 return value xmp_file_tx | file structure. NULL is returned when a program
017 abend.

018

019

020 File view is initialized, where file view is based on the MPI-IO vile view mechanism. The

021 value of shared and individual file pointers depend on the value of amode.

022

023 amode ‘ intended purpose

22:1 r Open for reading only. File pointer points the beginning of the file.

026 r+ Open an existing file for update (reading and writing). File pointer
027 points the beginning of the file.

028 w Create for writing. If a file by that name already exists, it will be
029 overwritten. File pointer points the beginning of th file.

030 w+ | Create a new file for update (reading and writing). If a file by that name
031 already exists, it will be overwritten. File pointer points the beginning
Zzz of the file.

034 a Append; open for writing at end-of-file or create for writing if the file
035 does not exist. File pointer points the end of the file.

036 a+ Open for append; open (or create if the file does not exist) for update
087 at the end of the file. File pointer points the beginning of the file.

038
039
040
041

D.5.1.2 xmp_fclose_all

042

043 xmp_fclose_all closes a global I/0O file. Collective (global) execution.

044

045 function name ‘ int xxmp_fclose_all(fh)

Zii argument xmp_file_t *fh | file structure

048 return value int 0: normal termination

049 1: abnormal termination. fh is NULL.
050 2: abnormal termination. error in
051 MPI_File_close.

052

053

054

055 D.5.1.3 xmp_fseek

056
057 xmp_fseek sets the individual file pointer in the file structure. Local execution.

D.5. [c] GLOBAL I/O LIBRARY 103

’ function name ‘ int xmp_fseek(fh, offset, whence)

argument xmp_file_t xfh | file structure

long long offset | displacement of current file view from po-
sition of whence

int whence | choose file position

SEEK_SET: the beginning of the file
SEEK_CUR: current position
SEEK_END: the end of the file

return value int | 0: normal termination

an integer other than 0: abnormal termi-
nation

D.5.1.4 xmp_fseek_shared

xmp_fseek_shared sets the shared file pointer in the file structure. Local execution.

function name int xmp_fseek_shared(fh, offset, whence)
argument xmp_file_t xfh | file structure
long long offset | displacement of current file view from position
of whence

int whence | choose file position

SEEK_SET: the beginning of the file
SEEK_CUR: current position

SEEK_END: the end of the file

return value int | 0: normal termination

an integer other than 0: abnormal termination

D.5.1.5 xmp_ftell

xmp_ftell inquires the position of the individual file pointer in the file structure. Local execution.

function name long long xmp_ftell(fh)
argument xmp_file_t xfh | file structure
return value long long | Upon successful completion, the function shall

open the file and return a non-negative integer
representing the lowest numbered unused file de-
scriptor. Otherwise, negative number shall be
returned.

D.5.1.6 xmp_ftell shared

xmp_ftell_shared inquires the position of shared file pointer in the file structure. Local execution.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

104 APPENDIX D. XCALABLEMP I/0

function name long long xmp_ftell shared(fh) ‘
argument xmp_file_t xfh | file structure
return value long long | Upon successful completion, the function shall

open the file and return a non-negative integer
representing the lowest numbered unused file de-
scriptor. Otherwise, negative number shall be
returned.

D.5.1.7 xmp_file_ sync_all

xmp_file_sync_all guarantees completion of access to the file from nodes sharing the file. Two
data accesses conflict if they access the same absolute byte displacements of the same file and
at least one is a write access. When two accesses Al and A2 to the same file conflict in direct
or collective I/O, an xmp_file_sync_all to the file must be invoked between A1l and A2, otherwise
the outcome of the accesses is undefined. Collective (global) execution.

’ function name ‘ int xmp_file sync_all(fh)
argument xmp_file_t xfh | file structure
return value int | 0: normal termination

an integer other than 0: abnormal termination

D.5.2 Collective Global I/O Functions

Collective I/0 is executed collectively (in global) but using the individual pointer. It reads/writes
data from the position of the individual file pointer and moves the position by the length of the
data.

Before the file access, a file view is often specified. A file view, like a window to the file,
spans the positions corresponding to the array elements that each node owns. For more details
of file view, refer to the MPI 2.0 specification.

D.5.2.1 xmp_file_set_view_all

xmp_file_set_view_all sets a file view to the file. Collective (global) execution.

function name int xmp_file_set_view_all(fh, disp, desc, rp) ‘
argument xmp-_file_t xfth | file structure
long long disp | displacement from the beginning of the
file.

xmp_desc_t desc | descriptor

xmp_range_t *rp | range descriptor

return value int | 0: normal termination

an integer other than 0: abnormal termi-
nation

The file view of distributed desc limited to range rp is set into file structure fh.

D.5. [c] GLOBAL I/O LIBRARY 105

D.5.2.2 xmp_file_clear_view_all

xmp-_file_clear_view_all clears the file view. Collective (global) execution.
The positions of the shared and individual file pointers are set to disp and the elemental
data type and the file type are set to MPI_BYTE.

function name int xmp_file_clear_view_all(fh, disp)

argument xmp_file_t xfh | file structure
long long disp | displacement from the beginning of the file.

return value int | 0: normal termination
an integer other than 0: abnormal termination

D.5.2.3 xmp_fread_all

xmp_fread_all reads the same data from the position of the shared file pointer onto the all
executing nodes. Collective (global) execution.

function name ‘ size_t xmp_fread_all(fh, buffer, size, count)

argument xmp_file_t xfth | file structure
void sbuffer | beginning address of loading variables

size_t size | the size of a loading element of data
size_t count | the number of loading data element
return value size_t | Upon successful completion, return the size of
loading data. Otherwise, negative number shall
be returned.

D.5.2.4 xmp_fwrite_all

xmp_fwrite_all writes individual data on the all executing nodes to the position of the shared
file pointer. Collective (global) execution.

It is assumed that the file view is set previously. Each node writes its data into its own file
view.

’ function name ‘ size_t xmp_fwrite_all(fh, buffer, size, count) ‘

argument xmp_file_t xfth | file structure
void sbuffer | beginning address of storing variables

size_t size | the size of a storing element of data
size_t count | the number of storing data element
return value size_t | Upon successful completion, return the size of
storing data. Otherwise, negative number shall
be returned.

D.5.2.5 xmp_fread_darray_all

xmp_fread_darray_all reads data cooperatively to the global array from the position of the shared
file pointer.
Data is read from the file to distributed desc limited to range rp.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

106 APPENDIX D. XCALABLEMP I/0

function name size_t xmp_fread_darray_all(fh, desc, rp) ‘

argument xmp-file_t «fth | file structure
xmp_desc_t desc | descriptor
xmp_range_t *rp | range descriptor

return value size_t | Upon successful completion, return the size of
loading data. Otherwise, negative number shall
be returned.

D.5.2.6 xmp_fwrite_darray_all

xmp_fwrite_darray_all writes data cooperatively from the global array to the position of the
shared file pointer.

function name size_t xmp_fwrite_darray_all(fh, desc, rp)

argument xmp-file_t xfh | file structure
xmp_desc_t desc | descriptor
xmp_range_t *rp | range descriptor

return value size_t | Upon successful completion, return the size of
loading data. Otherwise, negative number shall
be returned.

Data is written from distributed desc limited to range rp to the file.

D.5.3 Atomic Global I/O Functions

Atomic I/0 is executed in local but using the shared pointer. It exclusively reads/writes local
data from the position of the shared file pointer and moves the position by the length of the
data.

Before atomic I/O is executed, the file view must be cleared.

[Rationale]

Though the file views must be the same on all processes in order to use the shared file pointer,
xmp_file_set_view_all function may set different file views for all nodes. Thus, before atomic I/O
is used, the file view must be cleared.

D.5.3.1 xmp_fread_shared

xmp_fread_shared exclusively reads local data form the position of the shared file pointer and
moves the position by the length of the data. Local execution.

function name size_t xmp_fread_shared(fh, buffer, size, count) ‘

argument xmp_file_t xfh | file structure
void sbuffer | beginning address of loading variables

size_t size | the size of a loading element of data
size_t count | the number of loading data element
return value size_t | Upon successful completion, return the size of
loading data. Otherwise, negative number shall
be returned.

D.5. [c] GLOBAL I/O LIBRARY 107

D.5.3.2 xmp_fwrite_shared

xmp_fwrite_shared exclusively writes local data to the position of the shared file pointer and
moves the position by the length of the data. Local execution.

function name size_t xmp_write_shared(fh, desc, rp)

argument xmp-file_t xfh | file structure
xmp_desc_t desc | descriptor
xmp_range_t *rp | range descriptor

return value size_t | Upon successful completion, return the size of
storing data. Otherwise, negative number shall
be returned.

D.5.4 Direct Global I/O Functions

Direct I/O is executed in local and using the individual pointer. It individually reads/writes
local data from the position of the individual file pointer and moves the position by the length
of the data taking account of the file view.

In order to guarantee the order by xmp_fread and xmp_fwrite functions to the same file
position, the file should be closed or the xmp_file_sync_all function should be executed between
these functions. Otherwise, the outcome of multiple accesses to the same file position, in which
at least one is a xmp_fwrite function, is implementation dependent.

Advice to programmers

Function xmp_fseek is useful to set the individual file pointer. It is not recommended using the
file view together because of complexity.

D.5.4.1 xmp_fread

xmp_fread reads data from the position of the individual file pointer and moves the position by
the length of the data. Local execution.

function name size_t xmp_fread(fh, buffer, size, count)

argument xmp_file_t *fh | file structure
void xbuffer | beginning address of loading variables

size_t size | the size of a loading element of data
size_t count | the number of loading data element
return value size_t | Upon successful completion, return the size of
loading data. Otherwise, negative number shall
be returned.

D.5.4.2 xmp_fread

xmp_fread writes data to the position of the individual file pointer and moves the position by
the length of the data. Local execution.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003

108

APPENDIX D. XCALABLEMP I/0

function name

size_t xmp_fwrite(fh, buffer, size, count)

argument

xmp_file_t xfh | file structure
void xbuffer | beginning address of storing variables
size_t size | the size of a storing element of data

size_t count

the number of storing data element

return value

size_t

Upon successful completion, return the size of
storing data. Otherwise, negative number shall
be returned.

Appendix E

Sample Programs

Example 1
XcalableMP C
/*
* A parallel explicit solver of Laplace equation in \XMP
*/

#pragma xmp nodes p(NPROCS)
#pragma xmp template t(1:N)
#pragma xmp distribute t(block) onto p

ot

double u[XSIZE+2] [YSIZE+2],

uu [XSIZE+2] [YSIZE+2] ;
10 |#pragma xmp align uli] [*] to t(i)
#pragma xmp align uuli] [*] to t(i)
#pragma xmp shadow uu[1:1][0:0]

lap_main()
15 {
int x,y,k;
double sum;
for(k = 0; k < NITER; k++){
/* o0ld <- new */
20 | #pragma xmp loop on t(x)
for(x = 1; x <= XSIZE; x++)
for(y = 1; y <= YSIZE; y++)
uulx] [yl = ulx][y];
#pragma xmp reflect (uu)
25 | #fpragma xmp loop on t(x)
for(x = 1; x <= XSIZE; x++)
for(y = 1; y <= YSIZE; y++)
ulx] [yl = (uulx-1][y] + uwulx+1][y] +
uul[x] [y-1] + uulx] [y+1]1)/4.0;
30 }

sum = 0.0;

#pragma xmp loop on t[x] reduction(+:sum)
for(x = 1; x <= XSIZE; x++)

35 for(y = 1; y <= YSIZE; y++)

109

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

110 APPENDIX E. SAMPLE PROGRAMS
sum += (uulx] [yl-ulx][y]l);
#pragma xmp task on p(1)
printf("sum = %g\n",sum);

b

Example 2
XcalableMP C
/*

ut

10

20

25

30

35

40

* Linpack in XcalableMP (Gaussian elimination with partial pivoting)
* 1D distribution version
*/

#pragma xmp nodes p(*)

#pragma xmp template t(0:LDA-1)

#pragma xmp distribute t(cyclic) onto p

double pvt_v[N]; // local

/* gaussian elimination with partial pivoting x/
dgefa(double aln] [LDA],int 1lda, int n,int ipvt,int *info)
#pragma xmp align al:][i] with t(i)
{

REAL t;

int idamax(),j,k,kpl,1l,nml,i;

REAL x_pvt;

nml =n - 1;
for (k = 0; k < nml; k++) {

kpl = k + 1;

/* find 1 = pivot index x/
1 = A_idamax(k,n-k,alk]);

ipvt[k] = 1;

/* if (alk][1] !'= ZERD) */
#ifdef XMP
#pragma xmp gmove
pvt_vlk:n-k] = a[l] [k:n-k];
#else
for(i = k; i < n; i++) pvt_v[i] = al[i] [1];
#endif

/* interchange if necessary */
if (1 != k{
#ifdef XMP
#pragm xmp gmove
al11[:] = alk][:];
#pramga xmp gmove
alkl[:]1 = pvt_v[:];
#else

for(i = k; i< n; i++) ali][1]
for(i = k; i< n; i++) al[i] [k]

alil [k];
pvt_v[il;

45

50

55

60

65

70

80

85

90

#endif
}
/* compute multipliers */
t = -ONE/pvt_v[k];
A_dscal(k+1l, n-(k+1),t,alk]);

/* row elimination with column indexing */
for (j = kpl; j < n; j++) {
t = pvt_v[jl;
A_daxpy(k+1,n-(k+1),t,alk],aljl);
}

}
ipvt[n-1] = n-1;

dgesl(double a[n] [LDA],int lda,int n,int pvt[n],double b,int job)
#pragma xmp align al:][i] with t(i)
#pragma xmp align b[i] with t(i)
{
REAL t;
int k,kb,1,nmil;

nml =n - 1;
/* job = 0 , solve a * x = b, first solve 1xy =b */
for (k = 0; k < nml; k++) {
1 = ipvt[k];
#pragma xmp gmove
t = b[l];
if (1 '= k){
#pragma xmp gmove
b[1] = blk];
#pragma xmp gmove
blk] = t;
}
A_daxpy(k+1,n-(k+1),t,alk],b);

/* now solve u*x = y */
for (kb = 0; kb < n; kb++) {
k=n- (kb + 1);
#pragma xmp task on t(k)
{
b[k] = blk]/alk] [k];
t = -blk];
}
#pragma xmp bcast (t) from t(k)
A_daxpy(0,k,t,alk],b);
}

111

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

112

95

100

105

110

115

120

125

140

APPENDIX E. SAMPLE PROGRAMS

/*
* distributed array based routine
*/
A_daxpy(int b,int n,double da,double dx[n],double dy[nl)
#pragma xmp align dx[i] with t(i)
#pragma xmp align dy[i] with t(i)
{

int i,ix,iy,m,mpl;

if(n <= 0) return;

if (da == ZERO) return;

/* code for both increments equal to 1 */
#pragma xmp loop on t(b+i)

for (i = 0;i < n; i++) {

dy[b+i] = dy[b+i] + daxdx[b+i];

int A_idamax(int b,int n,double dx[n])
#pragma xmp align dx[i] with t(i)
{
double dmax, g_dmax;
int i, ix, itemp;
if(n == 1) return(0);

/* code for increment equal to 1 */
itemp = O;
dmax = 0.0;
#pragma xmp loop on t(i) reduction(lastmax:dmax/itemp/)
for (i = b; i < n; i++) {
if (fabs((double)dx[i]) > dmax) {
itemp = i;
dmax = fabs((double)dx[i]);
}
}

return (itemp);

A_dscal(int b,int n,double da,double dx[n])
#pragma xmp align dx[i] with t(i)
#pragma xmp align dy[i] with t(i)
{
int i;
if(n <= 0)return;

/* code for increment equal to 1 */
#pragma xmp loop on t(i)
for (i = b; i < n; i++)
dx[i] = daxdx[i];

