
Chapter 1

Coarrays in XcalableMP

1.1 Purposes

The coarray features in Fortran 2008 are extended and integrated into Xcal-
ableMP. The specifications in this chapter are designed to achieve the following
purposes:

• Upward compatibility to the Fortran 2008 coarray features
If an XcalableMP program does not contain any XMP directives, any
standard-conforming Fortran 2008 program remains standard-conforming
under XcalableMP. In this sense, the interpretations and extensions de-
fined in this chapter are upward compatible with the Fortran International
Standard, ISO/IEC 1539-1:2010 (Fortran 2008).

• Support for task parallelism
XcalableMP makes it possible to construct a task parallel program by
combining multiple Fortran 2008 codes, which might be developed inde-
pendently, with minimum modifications.

• Integration of global-view style programming and local-view style pro-
gramming
In XcalableMP, users can use global-view style programming of Xcal-
ableMP or local-view style programming, which is typically used in MPI
or Fortran 2008 programs, appropriately according to the characteristics
of code in a program.

• Possibility of the support for multiple topologies of a computing system
An XcalableMP processor may allow users to specify the correspondence
between node arrays and the topologies of a computing system and exploit
the full potential of a particular system.

1

2 CHAPTER 1. COARRAYS IN XCALABLEMP

1.2 Terms and definitions

An image is an instance of an XcalableMP program. A node array is a set of
nodes, whose individual elements are arranged in a rectangular pattern. Each
node or each element of an instance of a node array uniquely corresponds to an
image. This section defines how the image index of an image in a set of images
is determined in association with a node array and a TASK directive construct.

1.2.1 Primary image index

Every image has a default image index in all the images at the invocation of a
program. In XcalableMP, the default image index is the primary image index
and is an integer value in the range one to the number of images at the invocation
of a program.

1.2.2 Primary node array

A primary node array is a node array declared with “=**” in a NODES directive.
A primary node array corresponds to all the images at the invocation of a
program, and also corresponds to all the nodes at the invocation of a program.

The primary image index of an image is the (Fortran) subscript order value
of the uniquely corresponding element of a primary node array. The primary
node number of a node is also the (Fortran) subscript order value of the uniquely
corresponding element of a primary node array.

1.2.3 Image index determined by a task-directive

Execution of a task-directive determines that a set of nodes (and the correspond-
ing set of images) forms an executing node set. If a name of a node array or
a subobject of a node array appears in the task-directive, the nodes and the
corresponding images in the executing node set are ordered in (Fortran) array
element order in the node array or the subobject of the node array. If a name of
a template array or a subobject of a template array appears in the task-directive,
the nodes and the corresponding images in the executing node set are ordered in
(Fortran) array element order in the corresponding subobject of the node array.
The image index of an image in the determined set of images is the integer order
value in the range one to the cardinality of the set of images. The node number
of a node in the determined set of nodes is the integer order value in the range
one to the cardinality of the set of nodes.

1.2.4 Current image index

The current set of images is a set of images determined by the most lately
executed task-directive in the TASK directive constructs that are not completed
if any TASK directive constructs are being executed. The image index of an
image in the current set of images is the current image index.

1.2. TERMS AND DEFINITIONS 3

The current set of images corresponds to primary node arrays and all the
nodes at the invocation of a program if there are no TASK directive constructs
that are not completed. In this case, the current image index of an image is the
same as the primary image index.

1.2.5 Non-primary node array

A non-primary node array is a node array declared without “=node-ref”, “=**”,
or “=*” in a NODES directive. A non-primary node array corresponds to all
the images at the invocation of a program, and also corresponds to all the nodes
at the invocation of a program.

The correspondence between each image and each element of a non-primary
node array is processor-dependent. A processor may support any means to
specify the correspondence.

The image index of an image in all the images at the invocation of a program
is the subscript order value of the corresponding element of a non-primary node
array if and only if the current set of images corresponds to the non-primary
node whole array in which the nodes in the executing node set are ordered in
(Fortran) array element order in the non-primary node whole array. The image
index is a non-primary image index.

The correspondence between the primary image index and a non-primary
image index of the same image is processor-dependent. Between any two distinct
non-primary node arrays, the correspondence between a non-primary image
index and another non-primary image index of the same image is processor-
dependent unless they have the same shape. If two non-primary node arrays
have the same shape, the corresponding elements of the node arrays correspond
to the same image.

1.2.6 Executing node array

An executing node array is a node array declared with “=*” in a NODES
directive. An executing node array corresponds to the executing node set and
also the current set of images at the evaluation of the declaration of the node
array.

Each image in the current set of images corresponds to the element of an
executing node array whose subscript order value is the same as the current
image index of the image at the evaluation of the declaration of the executing
node array.

1.2.7 Image index determined by an equivalenced node

array

A NODES directive with “=node-ref” that is not “=*” or “=**” specifies that
each element of the declared node array corresponds in (Fortran) array element
order to that of the node-ref, which is a name of a node array or a subobject
of a node array. The nodes in the declared node array and the corresponding

4 CHAPTER 1. COARRAYS IN XCALABLEMP

images are ordered in (Fortran) array element order in the node-ref. The image
index of an image in the set of images corresponding to the declared node array
is the integer order value in the range one to the cardinality of the set of images.
The node number of a node in the set of nodes corresponding to the declared
node array is the integer order value in the range one to the cardinality of the
set of nodes.

1.2.8 On-node image index

XcalableMP supports COARRAY directive and IMAGE directive to specify
that an image index indicates the image corresponding to the element of a
particular node array whose subscript order value is the same as the image
index. The image index is an on-node image index for the specified node array.
Since evaluation of the declaration of a node array determines a set of images
corresponding to the node array, the directives specify that the set of images is
the “all images” for the image indices the directives affect. In particular, the
on-node image index for a primary node array is the primary image index.

XcalableMP also supports intrinsic procedures to translate image indices
between different sets of images.

1.3 Basic concepts

In XcalableMP, “all images” in Fortran 2008 changes coupled with the execution
of TASK directive constructs and means the current set of images. In particu-
lar, when an ALLOCATE statement is executed for which an allocate-object is a
coarray, there is an implicit synchronization of all the images in the current set
of images. On each image in the current set of images, execution of the segment
following the statement is delayed until all other images in the set have executed
the same statement the same number of times. When a DEALLOCATE state-
ment is executed for which an allocate-object is a coarray, there is an implicit
synchronization of all the images in the current set of images. On each image
in the current set of images, execution of the segment following the statement
is delayed until all other images in the set have executed the same statement
the same number of times.

The image index determined by an image selector indicates the current image
index by default. Coarrays are visible within the range of the “all images” and
accessed with the current image index by default. The image index that appears
in an executable statement indicates the current image index by default.

• In the following code fragment, the value of a coarray b on the images
1, 2, 3, and 4, which constitute the executing node set and correspond
to node(5), node(6), node(7), and node(8) respectively, is defined with
the value of the coarray a on node(5).

program xmpcoarray

1.3. BASIC CONCEPTS 5

!$xmp nodes node(8)=** ! A primary node array.

!$xmp task on node(5:8) ! The executing node set

call sub ! corresponds to node(5:8).

!$xmp end task

end

subroutine sub

real, save :: a[*], b[*] ! The images 1, 2, 3,

: ! and 4 correspond to node(5:8),

b = a[1] ! respectively.

• In the following code fragment, an allocatable coarray a is allocated on
the images 1, 2, 3, and 4, which constitute the executing node set and
correspond to node(5), node(6), node(7), and node(8) respectively.

program xmpcoarray

!$xmp nodes node(8)=**

!$xmp task on node(5:8) ! The executing node set

call sub2 ! corresponds to node(5:8).

!$xmp end task

end

subroutine sub2

real, allocatable :: a(:)[:]

:

allocate(a(0:99)[*])

Note

• The result value of xmp num nodes() is always the same as that of NUM IMAGES().

• The result value of xmp node num() is always the same as that of THIS IMAGE().

• In a READ statement, an io-unit that is an asterisk identifies an external
unit that is preconnected for sequential formatted input only on the image
whose primary image index is 1.

1.3.1 A restriction on allocatable coarrays

When an allocatable coarray is allocated during the execution of TASK directive
constructs, the coarray shall be subsequently deallocated before the completion
of the TASK directive construct whose task-directive is the most lately executed
one in the TASK directive constructs that are not completed at the allocation.

6 CHAPTER 1. COARRAYS IN XCALABLEMP

1.4 COARRAY directive

1.4.1 Purpose and form of the COARRAY directive

The COARRAY directive maps coarrays onto a node array and the set of images
that corresponds to the node array. An image index determined by an image
selector for a coarray that appears in a COARRAY directive always indicates the
on-node image index for the node array; that is, the specified image corresponds
to the node whose subscript order value in the node array is the same as the
image index.

A coarray appearing in a COARRAY directive is an on-node coarray of the
node array that is specified in the CORRAY directive.

coarray-directive is coarray on node-name :: object-name-list

• An object-name shall be a name of a coarray declared in the same scoping
unit.

• The same object-name shall not appear more than once in COARRAY
directives in a scoping unit.

• If an object-name is a name of an allocatable object, the current set of
images at the allocation and the deallocation of the object shall corre-
spond to the node array specified as the node-name and the current image
index of each image shall be the same as the subscript order value of the
corresponding element of the node array.

• If an object-name is a name of an allocated allocatable dummy argument,
the set of images onto which it is mapped shall be a subset of the set of
images that has allocated most lately the corresponding argument in the
chain of argument associations.

• If an object-name is a name of a nonallocatable dummy argument whose
ultimate argument has allocatable attribute, the set of images onto which
the object-name is mapped shall be a subset of the set of images that has
allocated most lately the corresponding argument in the chain of argument
associations.

• The image index determined by an image selector for an on-node coarray
shall be in the range of one to the size of the node array onto which the
on-node coarray is mapped.

• THIS IMAGE(COARRAY[,DIM]) shall be invoked by the image contained
in the set of images onto which the COARRAY argument is mapped, if
the COARRAY argument appears in a COARRAY directive.

1.4. COARRAY DIRECTIVE 7

Note

• The result value of THIS IMAGE(COARRAY) is the sequence of cosub-
script values for the COARRAY argument that would specify the current
image index of the invoking image, if the COARRAY argument does not
appear in a COARRAY directive. The result value of THIS IMAGE(COARRAY)
is the sequence of cosubscript values for the COARRAY argument that
would specify the on-node image index of the invoking image for the node
array onto which the COARRAY argument is mapped, if the COARRAY
argument appears in a COARRAY directive.

• The result value of THIS IMAGE(COARRAY,DIM) is the value of co-
subscript DIM in the sequence of cosubscript values for the COARRAY
argument that would specify the current image index of the invoking im-
age, if the COARRAY argument does not appear in a COARRAY direc-
tive. The result value of THIS IMAGE(COARRAY,DIM) is the value of
cosubscript DIM in the sequence of cosubscript values for the COARRAY
argument that would specify the on-node image index of the invoking im-
age for the node array onto which the COARRAY argument is mapped,
if the COARRAY argument appears in a COARRAY directive.

1.4.2 An example of the COARRAY directive

module global

!$xmp nodes node(8)=**

real s[*] ! The coarray s is always

!$xmp coarray on node :: s ! visible on node(1:8).

end global

program coarray

use global

!$xmp task on node(5:8) ! The executing node set

call sub ! consists of node(5:8).

!$xmp end task

end

subroutine sub

use global

real, save :: a[*] ! The images 1, 2, 3, and 4

: ! correspond to node(5:8), respectively.

if(this_image().eq.1)then ! The value of the coarray a on node(5)

s[1] = a ! defines that of the coarray s on node(1)

endif

8 CHAPTER 1. COARRAYS IN XCALABLEMP

1.5 IMAGE directive

1.5.1 Purpose and form of the IMAGE directive

The IMAGE directive specifies that an image index in the following executable
statement indicates the on-node image index of the node array specified in the
IMAGE directive unless the image index is determined by an image selector.

The IMAGE directive also specifies that execution of a SYNC ALL statement
performs a synchronization of all the images corresponding to the node array
specified in the IMAGE directive.

image-directive is image (node-name)

• An image-directive shall be followed by a sync all statement, an image
control statement that contains image-set, or a reference to an intrinsic
procedure that has IMAGES argument.

1.5.2 An example of the IMAGE directive

module global

!$xmp nodes node(8)=**

real s[*] ! The coarray s is always visible

!$xmp coarray on node :: s ! on node(1:8).

end global

program image

use global

!$xmp tasks

!$xmp task on node(1:4)

call subA ! The executing node set consists of node(1:4).

!$xmp end task

!$xmp task on node(5:8)

call subB ! The executing node set consists of node(5:8).

!$xmp end task

!$xmp end tasks

end

subroutine subA

use global

real, save :: a[*] ! The images 1, 2, 3, and 4

: ! correspond to node(1:4), respectively.

!$xmp image(node) ! Synchronization between node(1:4) and

sync images(5) ! node(5).

a = s[1] ! a on node(1:4) is defined with

: ! the value of s on node(1).

end subroutine

1.6. IMAGE INDEX TRANSLATION INTRINSIC PROCEDURES 9

subroutine subB

use global

real, save :: b[*] ! The images 1, 2, 3, and 4

: ! correspond to node(5:8), respectively.

if(this_image() .eq. 1)then ! The image 1 indicates node(5).

s[1] = b ! s on node(1) is defined with the value of

! b on node(5).

!$xmp image(node) ! Synchronization between

sync images((/1,2,3,4/)) ! node(5) and node(1:4).

endif

:

end subroutine

1.6 Image index translation intrinsic procedures

1.6.1 Translation to the primary image index

xmp get primary image index(NUMBER,INDEX,PRI INDEX,NODE DESC)

Description. Translate image indices to the primary image indices.

Class. Subroutine.

Arguments. NUMBER shall be a scalar of type default integer. It is an
INTENT(IN) argument.

INDEX shall be a rank-one array of type default integer. The size of
INDEX shall be greater than or equal to the value of NUMBER.
It is an INTENT(IN) argument. The value of each element of IN-
DEX shall be in the range one to the size of the node array specified
in NODE DESC if NODE DESC appears. The value of each el-
ement of INDEX shall be in the range one to the cardinality of the
current set of images if NODE DESC does not appear.

PRI INDEX shall be a rank-one array of type default integer. The
size of PRI INDEX shall be greater than or equal to the value of
NUMBER. It is an INTENT(OUT) argument. If NODE DESC
appears, PRI INDEX(i) is assigned the primary image index corre-
sponding to the element of the node array specified in NODE DESC
whose subscript order value is INDEX(i); otherwise, PRI INDEX(i)
is assigned the primary image index corresponding to the image
whose current image index is INDEX(i).

NODE DESC (optional) shall be a descriptor of a node array. It is
an INTENT(IN) argument. NODE DESC shall appear in Xcal-
ableMP C.

Example. In the following code fragment, the value of index(1:4) is (/5,6,7,8/).

10 CHAPTER 1. COARRAYS IN XCALABLEMP

!$xmp nodes node(1:8)=** ! A primary node array

!$xmp nodes subnode(4)=node(5:8)

integer index(4)

call xmp_get_primary_image_index&

&(4,(/1,2,3,4/),index,xmp_desc_of(subnode))

1.6.2 Translation to the current image index

xmp get image index(NUMBER,INDEX,CUR INDEX,NODE DESC)

Description. Translate image indices to the current image indices.

Class. Subroutine.

Arguments. NUMBER shall be a scalar of type default integer. It is an
INTENT(IN) argument.

INDEX shall be a rank-one array of type default integer. The size of
INDEX shall be greater than or equal to the value of NUMBER. It
is an INTENT(IN) argument. The value of each element of INDEX
shall be in the range one to the size of the node array specified in
NODE DESC.

CUR INDEX shall be a rank-one array of type default integer. The
size of CUR INDEX shall be greater than or equal to the value
of NUMBER. It is an INTENT(OUT) argument. If the current
image index corresponding to the element of the node-array specified
in NODE DESC whose subscript order value is INDEX(i) exists,
CUR INDEX(i) is assigned the current image index; otherwise,
CUR INDEX(i) is assigned zero.

NODE DESC shall be a descriptor of a node array. It is an INTENT(IN)
argument.

Example. In the following code fragment, the value of index(1:4) is (/1,2,3,4/).

!$xmp nodes node(1:8)=**

integer index(4)

!$xmp task on node(5:8)

call xmp_get_image_index&

&(4,(/5,6,7,8/),index,xmp_desc_of(node))

!$xmp end task

1.7 Examples of communication between tasks

• In the following program fragment, two tasks communicate with each other
with synchronization.

1.7. EXAMPLES OF COMMUNICATION BETWEEN TASKS 11

module nodes

!$xmp nodes node(8)=** ! A primary node array

integer, parameter :: n=2

!$xmp nodes subnodeA(n)=node(1:n) ! subnodeA is for taskA.

!$xmp nodes subnodeB(8-n)=node(n+1:8) ! subnodeB is for taskB.

endmodule

module intertask

use nodes

real,save :: dA[*],dB[*]

endmodule

use nodes

!$xmp tasks

!$xmp task on subnodeA ! The taskA is invoked on subnodeA.

call taskA

!$xmp end task

!$xmp task on subnodeB ! The taskB is invoked on subnodeB.

call taskB

!$xmp end task

!$xmp end tasks

end

subroutine taskA

use intertask

:

me = this_image() ! The value of me is i on subnodeA(i).

if(me.eq.1)then

call xmp_get_primary_image_index& ! The value of iyouabs

&(1,(/1/),iyouabs,subnodeB) ! is n+1.

!$xmp image(node) ! Synchronization between

sync images(iyouabs) ! node(1) and node(n+1).

call exchange(dA,dB,iyouabs)

!$xmp image(node) ! Synchronization between

sync images(iyouabs) ! node(1) and node(n+1).

endif

sync all ! Synchronization within subnodeA.

if(me.ne.1)dA = dA[1]

sync all ! Synchronization within subnodeA.

:

end

subroutine taskB

use intertask

:

me = this_image() ! The value of me is i on subnodeB(i).

12 CHAPTER 1. COARRAYS IN XCALABLEMP

if(me.eq.1)then

call xmp_get_primary_image_index& ! The value of iyouabs

&(1,(/1/),iyouabs,subnodeA) ! is 1.

!$xmp image(node) ! Synchronization between

sync images(iyouabs) ! node(n+1) and node(1).

call exchange(dB,dA,iyouabs)

!$xmp image(node) ! Synchronization between

sync images(iyouabs) ! node(n+1) and node(1).

endif

sync all ! Synchronization within subnodeB.

if(me.ne.1)dB = dB[1]

sync all ! Synchronization within subnodeB.

end

subroutine exchange(mine,yours,iput)

use nodes

real :: mine[*],yours[*] ! mine and yours are always

!$xmp coarray on node :: mine,yours ! visible on node(1:8).

yours[iput] = mine ! node(1) puts mine to yours[n+1] and

! node(n+1) puts mine to yours[1].

end

• In the following program fragment, two tasks communicate with each other
without one-to-one synchronization.

!$xmp nodes node(8)=** ! A primary node array

:

!$xmp tasks

!$xmp task on(node(1:n))

call taskA(n) ! The taskA is invoked on node(1:n)

!$xmp end task

!$xmp task on(node(n+1:8))

call taskB(8-n) ! The taskB is invoked on node(n+1:8)

!$xmp end task

!$xmp end tasks

end

subroutine taskA(n)

real,save :: yours[*],mine[*]

!$xmp nodes subnode(n)=* ! An executing node array

me = this_image()

if(me.eq. NUM_IMAGES())then

call xmp_get_primary_image_index(1,me,meabs) ! meabs=n.

1.8. LOCAL ALIAS DIRECTIVE 13

call exchange(yours,mine,meabs,meabs+1,NUM_IMAGES())

endif

sync all ! Synchronization within node(1:n).

if(me.ne.NUM_IMAGES())mine = mine[NUM_IMAGES()]

sync all ! Synchronization within node(1:n).

end

subroutine taskB(m)

real,save :: yours[*],mine[*]

!$xmp nodes subnode(m)=* ! An executing node array

me = this_image()

if(me.eq.1)then

call xmp_get_abs_image_index(1,me,meabs) ! meabs=n+1.

call exchange(yours,mine,meabs,meabs-1,NUM_IMAGES())

endif

sync all ! Synchronization within node(n+1:8).

if(me.ne.1)mine = mine[1]

sync all ! Synchronization within node(n+1:8).

end

subroutine exchange(yours,mine,meabs,iyouabs,nnodes)

USE, INTRINSIC :: ISO_FORTRAN_ENV

real :: yours[*],mine[*]

real, save :: s[*] ! only for exchage.

TYPE(LOCK_TYPE),save :: lock[*] ! for lock.

!$xmp nodes subnode(nnodes)=* ! An executing node array.

!$xmp nodes node(8)=** ! The coarrays s and lock are

!$xmp coarray on node :: s,lock ! always visible on node(1:8).

LOCK(lock[meabs]) ! node(n) puts yours[n] to s[n] and

s[meabs] = yours ! node(n+1) puts yours[n+1] to s[n+1].

UNLOCK(lock[meabs])

LOCK(lock[iyouabs]) ! node(n) gets s[n+1] into mine[n] and

mine = s[iyouabs] ! node(n+1) gets s[n] into mine[n+1].

UNLOCK(lock[iyouabs])

end

1.8 LOCAL ALIAS directive

1.8.1 Purpose and form of the LOCAL ALIAS directive

The LOCAL ALIAS directive is defined only in XcalableMP Fortran.

The LOCAL ALIAS directive associates a non-mapped array with an ex-

14 CHAPTER 1. COARRAYS IN XCALABLEMP

plicitly mapped array. The non-mapped array is an associating local array and
the explicitly mapped array is an associated global array. The rank of the asso-
ciating local array is the same as that of the associated global array. The shape
of the associating local array is the same as that of the node-local portion of
the associated global array including shadow area. Each element of the associ-
ating local array corresponds in array element order to that of the node-local
portion of the associated global array. An associating local array always has the
dynamic type and type parameter values of the corresponding associated global
array.

An associating local array may be a coarray. An associating local array that
is a coarray is an on-node coarray of the node array onto which the correspond-
ing associated global array is mapped. Every specification and restriction on
coarrays is also applied to an associating local array that is a coarray except
that an associating local array is always declared with deferred-shape-spec-list

of the same rank as the associated global array. In particular, a processor shall
ensure that an associating local array that is a coarray has the same bounds on
all the images corresponding to the node array onto which the corresponding
associated global array is mapped. The mapping attributes that an associated
global array may have are processor-dependent.

image-directive is LOCAL ALIAS local-rename-list

local-rename is local-array-name => global-array-name

• A global-array-name shall be a name of an explicitly mapped array de-
clared in the same scoping unit.

• A local-array-name shall be a name of a non-mapped array declared in the
same scoping unit.

• A local-array-name shall not be a dummy argument.

• An associating local array shall have the declared type and type parame-
ters of the corresponding associated global array.

• An associating local array shall be declared with deferred-shape-spec-list

of the same rank as the corresponding associated global array.

• A local-array-name shall appear in a COARRAY directive in the same
scoping unit and the node-name in the COARRAY directive shall be the
name of the node array onto which the associated global array is mapped.

• If an associated global array is a dummy argument and corresponds to an
associating local array that is a coarray, the corresponding effective argu-
ment shall be an explicitly mapped array or a subobject of an explicitly
mapped array whose name appears in a LOCAL ALIAS directive and the
corresponding associating local array shall be a coarray.

• If a dummy argument is a coarray and the corresponding ultimate argu-
ment is a coarray appearing in a LOCAL ALIAS directive, the dummy

1.8. LOCAL ALIAS DIRECTIVE 15

argument shall appear in a COARRAY directive with a node array cor-
responding to a subset of the set of images that corresponds to the node
array onto which the ultimate argument is mapped.

1.8.2 An example of the LOCAL ALIAS directive

In the following code fragment, the associating local array la corresponds to
the associated global array ga(1:5) on node(1) and the associating local array
la corresponds to the associated global array ga(6:10) on node(2).

!$xmp nodes node(1:2)=**

real, save :: ga(10)

real, save :: la(:)[*]

!$xmp distribute ga(block) onto node

!$xmp local_alias la=>ga

!$xmp coarray on node :: la

