
26 CHAPTER 4. DIRECTIVES

Description 1

Being specified in the on or the from clause of some directives, the template reference refers to 2

a subset of a node set in which the specified subset of the template resides. 3

Specifically, the “*” symbol that appears as template-subscript in a dimension of template-ref 4

is interpreted by each node at runtime as the indices of the elements in the dimension that reside 5

in the node. “*” in a template reference is similar to “*” in a node reference. 6

Examples 7

Assume that t is a template. 8

• In the task directive, the executing node set of the task can be indirectly specified using 9

a template reference in the on clause. 10

XcalableMP Fortran
!$xmp task on t(1:m,1:n)

!$xmp task on t

XcalableMP C
#pragma xmp task on t[0:n][0:m]

#pragma xmp task on t
11

• In the loop directive, the executing node set of each iteration of the following loop is 12

indirectly specified using a template reference in the on clause. 13

XcalableMP Fortran
!$xmp loop (i) on t(i-1)

XcalableMP C
#pragma xmp loop (i) on t[i-1] 14

• In the array directive, the executing node set on which the associated array-assignment 15

statement is performed in parallel is indirectly specified using a template reference in the 16

on clause. 17

XcalableMP Fortran
!$xmp array on t(1:n)

XcalableMP C
#pragma xmp array on t[0:n] 18

• In the barrier, reduction, and bcast directives, the node set that is to perform the 19

operation collectively can be indirectly specified using a template reference in the on clause. 20

XcalableMP Fortran
!$xmp barrier on t(1:n)

!$xmp reduction (+:a) on t(*,:)

!$xmp bcast (b) on t(1:n)

XcalableMP C
#pragma xmp barrier on t[0:n]

#pragma xmp reduction (+:a) on t[:][*]

#pragma xmp bcast (b) on t[0:n]

21

4.3.3 distribute Directive 22

Synopsis 23

The distribute directive specifies the distribution of a template. 24

Syntax 25

[F] !$xmp distribute template-name (dist-format [, dist-format]...) onto nodes-name

[C] #pragma xmp distribute template-name (dist-format [, dist-format]...)
onto nodes-name

[C] #pragma xmp distribute template-name [dist-format] [[dist-format] ...]
onto nodes-name

26

4.3. TEMPLATE AND DATA MAPPING DIRECTIVES 27

where dist-format must be one of:1

*

block [(int-expr)]
cyclic [(int-expr)]
gblock ({ * | int-array })

2

Description3

According to the specified distribution format, a template is distributed onto a specified node4

array. The dimension of the node array that appears in the onto clause corresponds, in order5

of left-to-right, to the dimension of the distributed template for which the corresponding dist-6

format is not “*”.7

Let d be the size of the dimension of the template, p be the size of the corresponding8

dimension of the node array, ceiling and mod be Fortran’s intrinsic functions, and each of the9

arithmetic operators be that of Fortran. The interpretation of dist-format is as follows:10

“*” The dimension is not distributed.11

block Equivalent to block(ceiling(d/p)).12

block(n) The dimension of the template is divided into contiguous blocks of size n, which are13

distributed onto the corresponding dimension of the node array. The dimension of the14

template is divided into d/n blocks of size n, and one block of size mod(d,n) if any, and15

each block is assigned sequentially to an index along the corresponding dimension of the16

node array. Note that if k = p-d/n-1 > 0, then there is no block assigned to the last k17

indices.18

cyclic Equivalent to cyclic(1).19

cyclic(n) The dimension of the template is divided into contiguous blocks of size n, and these20

blocks are distributed onto the corresponding dimension of the node array in a round-robin21

manner.22

gblock(m) m is referred to as a mapping array. The dimension of the template is divided into23

contiguous blocks so that the i’th block is of size m(i), and these blocks are distributed24

onto the corresponding dimension of the node array.25

If at least one gblock(*) is specified in dist-format, then the template is initially undefined26

and must not be referenced until the shape of the template is defined by template fix directives27

at runtime.28

Restrictions29

• [C] template-name must be declared by a template directive that lexically precedes the30

directive.31

• The number of dist-format that is not “*” must be equal to the rank of the node array32

specified by nodes-name.33

• The size of the dimension of the template specified by template-name that is distributed34

by block(n) must be equal to or less than the product of the block size n and the size of35

the corresponding dimension of the node array specified by nodes-name.36

28 CHAPTER 4. DIRECTIVES

• The array int-array in parentheses following gblock must be an integer one-dimensional 1

array, and its size must be equal to the size of the corresponding dimension of the node 2

array specified by nodes-name. 3

• Every element of the array int-array in parentheses following gblock must have a value of 4

a nonnegative integer. 5

• The sum of the elements of the array int-array in parentheses following gblock must be 6

equal to the size of the corresponding dimension of the template specified by template- 7

name. 8

• [C] A distribute directive for a template must precede any of its references in the 9

executable code in the block. 10

• A template can be distributed only once by a distribute directive. 11

Examples 12

Example 1 13

XcalableMP Fortran
!$xmp nodes p(4)

!$xmp template t(64)

!$xmp distribute t(block) onto p

XcalableMP C
#pragma xmp nodes p[4]

#pragma xmp template t[64]

#pragma xmp distribute t[block] onto p

14

The template t is distributed in block format, as shown in the following table. 15

p(1) t(1:16)

p(2) t(17:32)

p(3) t(33:48)

p(4) t(49:64)

p[0] t[0:16]

p[1] t[16:16]

p[2] t[32:16]

p[3] t[48:16]

16

Example 2 17

XcalableMP Fortran
!$xmp nodes p(4)
!$xmp template t(64)
!$xmp distribute t(cyclic(8)) onto p

XcalableMP C
#pragma xmp nodes p[4]
#pragma xmp template t[64]
#pragma xmp distribute t[cyclic(8)] onto p

18

The template t is distributed in cyclic format of size eight, as shown in the following 19

table. 20

p(1) t(1:8) t(33:40)

p(2) t(9,16) t(41:48)

p(3) t(17,24) t(49:56)

p(4) t(25,32) t(57:64)

p[0] t[0:8] t[32:8]

p[1] t[8:8] t[40:8]

p[2] t[16:8] t[48:8]

p[3] t[24:8] t[56:8]

21

Example 3 22

XcalableMP Fortran
!$xmp nodes p(8,5)
!$xmp template t(64,64,64)
!$xmp distribute t(*,cyclic,block) onto p

XcalableMP C
#pragma xmp nodes p[5][8]
#pragma xmp template t[64][64][64]
#pragma xmp distribute t[block][cyclic][*] onto p

23

The first dimension of the template t is not distributed. The second dimension is dis- 24

tributed onto the first dimension of the node array p in cyclic format. The third dimen- 25

sion is distributed onto the second dimension of p in block format. The results are as 26

follows: 27

4.3. TEMPLATE AND DATA MAPPING DIRECTIVES 29

p(1,1) t(1:64, 1:57:8, 1:13)

p(2,1) t(1:64, 2:58:8, 1:13)

... ...
p(8,5) t(1:64, 8:64:8, 53:64)

p[0][0] t[0:13][0:8:8][0:64]

p[0][1] t[0:13][1:8:8][0:64]

... ...
p[4][7] t[52:12][7:8:8][0:64]

1

Note that the “64” in template t is not divisible by “5” in node p. Thus, the sizes of the2

blocks are different among nodes.3

4.3.4 align Directive4

Synopsis5

The align directive specifies that an array is to be mapped in the same way as a specified6

template.7

Syntax8

[F] !$xmp align array-name (align-source [, align-source]...)
with template-name (align-subscript [, align-subscript]...)

[C] #pragma xmp align array-name [align-source] [[align-source]]...
with template-name (align-subscript [, align-subscript]...)

or
with template-name [align-subscript] [[align-subscript]...]

9

where align-source must be one of:10

scalar-int-variable
*

:

11

and align-subscript must be one of:12

scalar-int-variable [{ + | - } int-expr]
*

:

13

Note that the variable scalar-int-variable that appears in align-source is referred to as an14

“align dummy variable” and int-expr appearing in align-subscript as an “align offset.”15

Description16

The array specified by array-name is aligned with the template that is specified by template-17

name so that each element of the array indexed by the sequence of align-sources is aligned with18

the element of the template indexed by the sequence of align-subscripts, where align-sources and19

align-subscripts are interpreted as follows:20

1. The first form of align-source and align-subscript represents an align dummy variable and21

an expression of it, respectively. The align dummy variable is considered to range over all22

valid index values in the corresponding dimension of the array.23

2. The second form “*” of align-source and align-subscript represents a dummy variable (not24

an align dummy variable) that does not appear anywhere in the directive.25

30 CHAPTER 4. DIRECTIVES

• The second form of align-source is said to “collapse” the corresponding dimension of 1

the array. As a result, the index along the corresponding dimension does not affect 2

the determination of the alignment. 3

• The second form of align-subscript is said to “replicate” the array. Each element of the 4

array is replicated, and is aligned to all index values in the corresponding dimension 5

of the template. 6

3. The third form of align-source and the matching align-subscript represents the same align 7

dummy variable whose range spans all valid index values in the corresponding dimension 8

of the array. The matching of colons (“:”) in the sequence of align-sources and align- 9

subscripts is determined as follows: 10

• [F] Colons in the sequence of align-sources and those in the sequence of align- 11

subscripts are matched in corresponding left-to-right order, where any align-source 12

and align-subscript that is not a colon is ignored. 13

• [C] Colons in the sequence of align-sources in right-to-left order, and those in the 14

sequence of (align-subscript)’s in left-to-right order are matched, or those in the 15

sequence of [align-subscript]’s in right-to-left order are matched, where any align- 16

source and align-subscript that is not a colon is ignored. 17

In XcalableMP C, an align directive for a dummy argument can be placed either outside 18

the function body (as in the old style of C) or in it (as in the ANSI style). 19

Restrictions 20

• [C] array-name must be declared by a declaration statement that lexically precedes the 21

directive. 22

• An align dummy variable may appear at most once in the sequence of align-sources. 23

• An align dummy variable may appear at most once in the sequence of align-subscripts. 24

• An align-subscript may contain at most one occurrence of an align dummy variable. 25

• The int-expr in an align-subscript may not contain any occurrence of an align dummy 26

variable. 27

• The sequence of align-sources must contain exactly as many colons as contained by the 28

sequence of align-subscripts. 29

• [F] The array specified by array-name must not appear as an equivalence-object in an 30

equivalence statement. 31

• [C] An align directive for an array must precede any of its appearances in the executable 32

code in the block. 33

• [F] The array specified by array-name shall not be initially defined. 34

• [C] The array specified by array-name shall not be initialized through an initializer. 35

• An array can be aligned only once by an align directive. 36

4.3. TEMPLATE AND DATA MAPPING DIRECTIVES 31

Examples1

Example 12

XcalableMP Fortran
!$xmp align a(i) with t(i)

XcalableMP C
#pragma xmp align a[i] with t[i]3

In XcalableMP Fortran, the array element a(i) is aligned with the template element4

t(i). In XcalableMP C, the array element a[i] is aligned with the template element5

t[i]. These are equivalent to the following codes.6

XcalableMP Fortran
!$xmp align a(:) with t(:)

XcalableMP C
#pragma xmp align a[:] with t[:]7

Example 28

XcalableMP Fortran
!$xmp align a(*,j) with t(j)

XcalableMP C
#pragma xmp align a[j][*] with t[j]9

In XcalableMP Fortran, the subarray a(:,j) is aligned with the template element t(j).10

Note that the first dimension of a is collapsed. In XcalableMP C, the subarray a[j][:] is11

aligned with the template element t[j]. Note that the second dimension of a is collapsed.12

Example 313

XcalableMP Fortran
!$xmp align a(j) with t(*,j)

XcalableMP C
#pragma xmp align a[j] with t[j][*]14

In XcalableMP Fortran, the array element a(j) is replicated and aligned with each tem-15

plate element of t(:,j). In XcalableMP C, the array element a[j] is replicated and16

aligned with each template element of t[j][:].17

Example 418

XcalableMP Fortran
!$xmp template t(n1,n2)

real a(m1,m2)

!$xmp align a(*,j) with t(*,j)

XcalableMP C
#pragma xmp template t[n2][n1]

double a[m2][m1]

#pragma xmp align a[j][*] with t[j][*]

19

In XcalableMP Fortran, the subarray a(:,j) is aligned with each template element of20

t(:,j). In XcalableMP C, the subarray a[j][:] is aligned with each template element21

of t[j][:].22

By replacing “*” of the array a and “*” of the template t with a dummy variable i and23

k, respectively, this alignment can be interpreted as the following mapping.24

[F] a(i, j) → t(k, j) | (i, j, k) ∈ (1 : n1, 1 : n2, 1 : m1)25

[C] a[j][i] → t[j][k] | (i, j, k) ∈ (0 : n1, 0 : n2, 0 : m1)26

4.3.5 shadow Directive27

Synopsis28

The shadow directive allocates the shadow area for a distributed array.29

Syntax30

[F] !$xmp shadow array-name (shadow-width [, shadow-width]...)

[C] #pragma xmp shadow array-name [shadow-width][[shadow-width]]...
31

32 CHAPTER 4. DIRECTIVES

where shadow-width must be one of: 1

int-expr
int-expr : int-expr
*

2

Description 3

The shadow directive specifies the width of the shadow area of an array specified by array-name, 4

which is used to communicate the neighbor element of the block of the array. When shadow- 5

width is of the form “int-expr : int-expr,” the shadow area of the width specified by the first 6

int-expr is added at the lower bound, and that specified by the second one is added at the upper 7

bound in the dimension. When shadow-width is of the form int-expr, the shadow area of the 8

same width specified is added at both the upper and lower bounds in the dimension. When 9

shadow-width is of the form “*”, the entire area of the array is allocated on each node, and the 10

area that it does not own is regarded as a shadow. This type of shadow is sometimes referred 11

to as a “full shadow.” 12

Note that the shadow area of a multi-dimensional array includes “obliquely-neighboring” 13

elements, which are owned by the node whose indices are different in more than one dimension, 14

and that the shadow area can also be allocated at the global lower and upper bounds of an 15

array. 16

The data stored in the storage area declared by the shadow directive is referred to as a 17

shadow object. A shadow object represents an element of a distributed array, and corresponds 18

to the data object that represents the same element as itself. The corresponding data object is 19

referred to as the reflection source of the shadow object. 20

Restrictions 21

• [C] array-name must be declared by a declaration statement that lexically precedes the 22

directive. 23

• The value specified by shadow-width must be a nonnegative integer. 24

• The number of shadow-width must be equal to the number of dimensions (or rank) of the 25

array specified by array-name. 26

• [C] A shadow directive for an array must precede any of its appearances in the executable 27

code in the block. 28

• A shadow area for a distributed array can be allocated only once by a shadow directive. 29

