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ABSTRACT

While modern deep learning-based models have significantly
outperformed traditional methods in the area of speech en-
hancement, they often necessitate a lot of parameters and ex-
tensive computational power, making them impractical to be
deployed on edge devices in real-world applications. In this
paper, we introduce Grouped Temporal Convolutional Recur-
rent Network (GTCRN), which incorporates grouped strate-
gies to efficiently simplify a competitive model, DPCRN. Ad-
ditionally, it leverages subband feature extraction modules
and temporal recurrent attention modules to enhance its per-
formance. Remarkably, the resulting model demands ultralow
computational resources, featuring only 23.7 K parameters
and 39.6 MMACs per second. Experimental results show
that our proposed model not only surpasses RNNoise, a typi-
cal lightweight model with similar computational burden, but
also achieves competitive performance when compared to re-
cent baseline models with significantly higher computational
resources requirements.

Index Terms— speech enhancement, lightweight model,
convolutional recurrent network

1. INTRODUCTION

There has been a significant breakthrough in the field of
speech enhancement (SE), primarily driven by the fast evolu-
tion of deep neural networks (DNN). In general, DNN-based
SE algorithms can be categorized into time-frequency (T-F)
domain [1, 2, 3, 4] and time domain [5, 6, 7] methods. The
overwhelming performance of DNN-based approaches over
traditional SE algorithms is often accompanied with large
model overhead. Most state-of-the-art (SOTA) SE models
call for substantial computational resources ranging from
several GMACs to tens of GMACs, making them infeasible
to be deployed on edge devices for practical applications.

Some recent works have focused on exploring lightweight
SE approaches that achieve performance competitive with the
SOTA models while reducing computational requirements.

One straightforward solution is to compress well-performed
models using techniques like pruning and quantization [8, 9].
Another category of approaches is efficient model design,
such as TRU-Net [10], which utilizes one-dimensional con-
volution to decouple the computation along the frequency
and time axes and replaces the standard convolutional op-
eration with depth-wise convolution. Parallel GRUs and
optimized skip connections [11] can also be used to design
tiny SE models. The third category is the combination of a
lightweight model with a proper post-processing. In RNNoise
[12] and PercepNet [13], coarse enhancement is performed
on a low-resolution spectral envelope, and a finer suppression
is executed to attenuate noise between pitch harmonics using
a pitch comb filter. DeepFilterNet [14], based on PercepNet,
first adopts a more powerful UNet-like DNN to enhance the
spectral envelope and further enhances the periodic compo-
nents utilizing deep filtering. DPCRN-CF [15] employs a
DNN-based pitch estimator and a learnable comb filter to
achieve superior harmonic enhancement. However, despite
the impressive reduction in computational overhead achieved
by these approaches, they are still too large for practical
deployment in end devices with low power consumption re-
quirements, e.g., earphones and hearing aids, with the excep-
tion of RNNoise, which is compact enough whereas suffers
from limited performance.

In this paper, we propose Grouped Temporal Convolu-
tional Recurrent Network (GTCRN), a speech enhancement
model that requires ultralow computational resources. Using
DPCRN [3, 16] as the backbone, various strategies are uti-
lized to significantly shrink the model. An equivalent rect-
angular bandwidth (ERB) filter bank is used to reduce the re-
dundancy of the input features. Grouped convolution [17] and
grouped RNN [18] are employed to decrease the model com-
plexity. To boost the performance without incurring too much
computational overhead, we further apply subband feature
extraction (SFE) modules and temporal recurrent attention
(TRA) modules. The resulting model performs significantly
better than RNNoise on both DNS3 and VCTK-DEMAND
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Fig. 1: Overall architecture of the proposed GTCRN model.

datasets.

2. GROUPED TEMPORAL CONVOLUTIONAL
RECURRENT NETWORK

The GTCRN architecture consists of band merging (BM) and
band splitting (BS) modules, an optional SFE module, an en-
coder, a grouped dual-path RNN (G-DPRNN) module, and
a decoder, as shown in Fig. 1. The details of each module
will be presented in Secs. 2.1 - 2.5. The encoder consists
of two convolution (Conv) and three grouped temporal con-
volution (GT-Conv) blocks, which will be discussed in Sec.
2.3. Each Conv block is a sequence of a convolution layer, a
batch normalization, and a PReLU activation, which maps the
input spectrum to a high-dimensional embedding and down-
samples the frequency-axis size. Skip connection is utilized to
alleviate the information loss during the encoding phase. The
decoder is the mirror version of the encoder, where each Conv
block is replaced by a deconvolution (DeConv) block, which
has the same components as the Conv block with the excep-
tion of substituting the convolution layer with a transposed
convolution layer to recover the original size. Moreover, the
last DeConv block uses tanh instead of PReLU activation to
constrain output values between -1 and 1. These values are
interpreted as the real and imaginary parts of the estimated
complex ratio mask (CRM) [19].

2.1. Band Merging and Splitting
We can down-sample the spectral features by a BM operation,
and restore the original resolution using a BS operation. How-
ever, it is important to note that harmonics are more likely to
be present in low-frequency bands and rarely occur in high-
frequency bands. Therefore, the merging of features is only
performed in the high-frequency bands above 2 kHz accord-
ing to the ERB scale.

2.2. Grouped Dual-path RNN
We combine grouped RNN (GRNN) [18] with dual-path
RNN (DPRNN) [7] to construct G-DPRNN. GRNN utilizes a
group of smaller recurrent layers to approximate a large stan-
dard recurrent layer. Specifically, both the input features and
hidden states are split into 2 disjoint groups, each of which
is fed into a recurrent layer with 2 times fewer parameters
than the original, before a representation rearrangement layer
is applied to obtain the final output. DPRNN was originally
proposed to model 1D long sequences, whereas it is also
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Fig. 4: Temporal recurrent attention module.

well-suited for time-frequency domain features, as presented
in [3]. The intra-frame RNNs can model the spectral patterns
in a single frame, while the inter-frame RNNs model the
time dependence of a certain frequency bin. We use grouped
bidirectional GRU for intra-frame modeling, and grouped
unidirectional GRU for inter-frame modeling, so that the
causality of the model can be guaranteed.

2.3. Grouped Temporal Convolution
Leveraging the ShuffleNetV2 [17] unit as a basis, the GT-
Conv block introduces a temporal dilation into the depth-wise
convolution, improving its capacity for long-range temporal
dependency modeling. The overview of the GT-Conv block
is depicted in Fig. 2. The input features are split in half along
the channel axis into two branches. While one branch remains
unaltered, the other undergoes an efficient pattern-capturing
and processing procedure, which is accomplished by a se-
quence of convolutional layers made up of two 2D point-
wise convolution (P-Conv2D) layers and a 2D dilated depth-
wise convolution (DD-Conv2D) layer. The outputs from both
branches are ultimately concatenated to restore the original
size. A channel shuffle operation is performed to facilitate in-
formation exchange between the two branches. To further en-
hance the model performance, the optional SFE module and
TRA module can be applied in the second branch.

2.4. Subband Feature Extraction
The SFE module, as illustrated in Fig. 3, is designed to en-
hance the capability of a convolution layer in capturing and
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utilizing frequency information. It achieves this by first per-
forming an unfold operation on the input features with a ker-
nel size of k in the frequency dimension, which combines
each frequency band with its adjacent k − 1 bands to form
subband units. Subsequently, a reshape operation is applied to
stack each subband unit along the channel dimension, leading
to subband interweaved features. Throughout this process, the
SFE module integrates the subband relationship, originally
existing solely in the frequency dimension, into the channel
dimension, empowering the following convolution layer to
leverage frequency information more efficiently.

2.5. Temporal Recurrent Attention

The TRA module aims to perform temporal feature re-
calibration utilizing a multiplicative attention mask by ef-
fectively modeling the energy distribution along the time
axis. The attention mask is generated in two steps: global
information aggregation and attention generation, as de-
picted in Fig. 4. Given V ∈ RC×T×F as the input fea-
tures, the temporal energy representation Z ∈ RC×T is
first computed via global average pooling, formulated as
Z(c, t) = 1

F

∑F
f=1 V

2(c, t, f), where C, T, F denote chan-
nel, time and frequency axis lengths respectively. Then the
temporal energy representation is processed by a GRU fol-
lowed by a fully connected (FC) layer, where the GRU dou-
bles the input channels and the FC layer restores the original
channel number. Subsequently, a sigmoid activation function
is applied to generate a 1D attention mask, which is then
replicated along the frequency axis to produce a 2D T-F mask
A ∈ RC×T×F . The final output is given as Ṽ = V ⊗ A,
where ⊗ denotes the element-wise multiplication operation.

2.6. Loss Function

Our loss function is applied on both the waveform domain
and spectrogram domain:

L = αLSISNR(s̃, s) + (1− β)Lmag(S̃, S)

+β
(
Lreal(S̃, S) + Limag(S̃, S)

) (1)

where s̃ and s are enhanced and clean waveform. S̃ and S are
enhanced and clean spectrogram, respectively. α and β are set
to 0.01 and 0.3 respectively. Each term in the aforementioned
formula is calculated as follows:

LSISNR = − log10

(
∥st∥2

∥s̃− st∥2

)
; st =

⟨s̃, s⟩s
∥s∥2

(2)

Lmag(S̃, S) = MSE(|S̃|0.3, |S|0.3) (3)

Lreal(S̃, S) = MSE(S̃r/|S̃|0.7, Sr/|S|0.7) (4)

Limag(S̃, S) = MSE(S̃i/|S̃|0.7, Si/|S|0.7) (5)

3. EXPERIMENT
3.1. Datasets
We use two datasets to evaluate our proposed model. The
first one is the VCTK-DEMAND dataset [20] which contains
paired clean and pre-mixed noisy speech. The training and
test set consists of 11,572 utterances from 28 speakers and
824 utterances from two speakers, respectively. 1,572 utter-
ances in the training set are selected for validation. The utter-
ances are resampled to 16 kHz.

The second dataset is the large-scale DNS3 dataset [21],
which contains a wide range of clean sets, noise sets, and
RIRs. Besides, we also include the Mandarin corpus from
DiDiSpeech [22]. During mixing, the clean speech is con-
volved with a randomly selected RIR, and then mixed with
randomly selected noise clips under the SNR range from -5
to 15 dB. The training target is obtained by preserving the
first 100 ms reflections. A total of 720,000 pairs of 10-second
noisy-clean data are generated for training, while 840 and 800
pairs are generated for validation and testing, respectively.
The evaluation is also done on the blind test set provided by
DNS challenge 3. All the utterances are sampled at 16 kHz.

3.2. Implementation Details
STFT is computed using a square root Hanning window of a
length of 32 ms, a hop length of 16 ms, and an FFT length
of 512. Input features are used as a channel-wise concate-
nation of the real and imaginary parts of the noisy spectro-
gram, along with its magnitude. For BM, we map the 192
high-frequency bands to 64 ERB bands, while keeping the 65
low-frequency bands unaltered, leading to a 129-dimensional
compressed feature map. For all the optional SFE modules,
we uniformly use a kernel size of 3. The two Conv blocks
have a common output channel number of 16, a kernel size of
(1, 5) and a stride of (1, 2). The group size of the second con-
volution layer is set to 2 to reduce parameters and computa-
tion. The DD-Conv2D layers in three GT-Conv blocks share
a common channel number of 16, a common kernel size of
(3, 3), and have time dilations of 1, 2 and 5, respectively. For
the whole model, the number of parameters is 23.7 K and the
computational cost is 39.6 MMACs per second.

The models are trained by Adam Optimizer [23] with an
initial learning rate of 0.001. The learning rate will be halved
if the validation loss does not decrease for 5 consecutive
epochs. We use a batch size of 4 for the VCTK-DEMAND
dataset and a batch size of 16 for the DNS3 dataset. During
training on the DNS3 dataset, the utterances are chunked to 8
seconds and 40,000 noisy-clean pairs are randomly selected
for each epoch.

3.3. Results
3.3.1. Ablation Study
We validate the efficacy of SFE and compare our TRA against
time-dimension attention (TA) proposed in [24] on a rela-
tively small training set (around 100 hours) sampled from the
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Fig. 5: Typical spectrograms from DNS3 test set. (a, e) Noisy Speech, (b, f) enhanced speech by RNNoise, (c, g) enhanced
speech by GTCRN, (d, h) clean reference speech.

Table 1: Ablation study results on DNS3 test set.

SFE TA TRA Para. (K) MACs (M/s) SISNR PESQ STOI
- - - - - 3.92 1.30 0.789
✗ ✗ ✗ 13.35 33.91 9.87 1.87 0.834
✗ ✓ ✗ 14.84 34.00 10.00 1.89 0.838
✗ ✗ ✓ 21.65 34.47 10.25 1.91 0.840
✓ ✗ ✗ 15.37 39.07 10.10 1.90 0.838
✓ ✓ ✗ 16.86 39.16 10.29 1.92 0.841
✓ ✗ ✓ 23.67 39.63 10.39 1.94 0.844

Table 2: Performance on VCTK-DEMAND test set.

Para. (M) MACs (G/s) SISNR PESQ STOI
Noisy - - 8.45 1.97 0.921

RNNoise (2018) 0.06 0.04 - 2.29 -
PercepNet (2020) 8.00 0.80 - 2.73 -

DeepFilterNet (2022) 1.80 0.35 16.63 2.81 0.942
S-DCCRN (2022) 2.34 - - 2.84 0.940

GTCRN (proposed) 0.02 0.04 18.83 2.87 0.940

DNS3 dataset. The evaluation is conducted on the test set us-
ing objective evaluation metrics including SISNR [25], PESQ
[26] and STOI [27]. The ablation test results are presented in
Table 1. It can be seen that our proposed TRA outperforms
TA with a very limited increment in computational resources.
The advantages of SFE are also evident in Table 1, and the
optimal performance metrics are achieved through the inte-
gration of SFE with TRA.

3.3.2. Comparison with the baseline models
We compare our model with RNNoise [12], PercepNet [13],
DeepFilterNet [14], and S-DCCRN [28]. Table 2 presents the
objective results on the VCTK-DEMAND test set. It is evi-
dent that GTCRN not only outperforms RNNoise by a sub-
stantial margin with a comparable computational load and
fewer parameters, but also surpasses other baseline models
with significantly more parameters and MACs in terms of
SISNR and PESQ.

In Table 3, we present a comparison of our model with

Table 3: Performance on DNS3 blind test set.

Para. (M) MACs (G/s) DNSMOS-P.808 DNSMOS-P.835
BAK SIG OVRL

Noisy - - 2.96 2.65 3.20 2.33
RNNoise1 (2018) 0.06 0.04 3.15 3.45 3.00 2.53
S-DCCRN (2022) 2.34 - 3.43 - - -

GTCRN (proposed) 0.02 0.04 3.44 3.90 3.00 2.70

RNNoise and S-DCCRN on the DNS3 blind test set. The
evaluation is performed using DNSMOS P.808 [29] and DNS-
MOS P.835 [30]. The results consistently demonstrate that
our model outperforms RNNoise by a wide margin and also
surpasses the large-scale S-DCCRN model. Two typical ex-
amples from our test set are illustrated in Fig. 5, which clearly
show that GTCRN exhibits superior noise suppression than
RNNoise. The source code and audio examples are available
at https://github.com/Xiaobin-Rong/gtcrn.

4. CONCLUSION

In this paper, we present GTCRN, a speech enhancement
model that requires only 23.7 K parameters and 39.6 MMACs
per second. Multiple strategies are applied to DPCRN to
effectively reduce the model while maintaining speech en-
hancement performance. Experiments show that our model
not only outperforms RNNoise by a substantial margin on the
VCTK-DEMAND and DNS3 dataset, but also achieves com-
petitive performance compared to several baseline models
with significantly higher computational overhead.
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