
Choset-79066 book February 23, 2005 13:40

Principles

of

Robot

Motion

Choset-79066 book February 23, 2005 13:40

Intelligent Robotics and Autonomous Agents

Ronald C. Arkin, editor

Behavior-Based Robotics, Ronald C. Arkin, 1998

Robot Shaping: An Experiment in Behavior Engineering, Marco Dorigo and Marco
Colombetti, 1998

Layered Learning in Multiagent Systems: A Winning Approach to Robotic Soccer, Peter
Stone, 2000

Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing
Machines, Stefano Nolfi and Dario Floreano, 2000

Reasoning about Rational Agents, Michael Wooldridge, 2000

Introduction to AI Robotics, Robin R. Murphy, 2000

Strategic Negotiation in Multiagent Environments, Sarit Kraus, 2001

Mechanics of Robotic Manipulation, Matthew T. Mason, 2001

Designing Sociable Robots, Cynthia L. Breazeal, 2001

Introduction to Autonomous Mobile Robots, Roland Siegwart and Illah R. Nourbakhsh, 2004

Principles of Robot Motion: Theory, Algorithms, and Implementations, Howie Choset, Kevin
Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia Kavraki and Sebastian
Thrun, 2005

Choset-79066 book February 23, 2005 13:40

Principles

of

Robot Motion

Theory, Algorithms,

and Implementation

Howie Choset, Kevin Lynch, Seth Hutchinson,

George Kantor, Wolfram Burgard, Lydia Kavraki,

and Sebastian Thrun

A Bradford Book

The MIT Press

Cambridge, Massachusetts

London, England

Choset-79066 book February 23, 2005 13:40

©2005 Massachusetts Institute of Technology
All rights reserved. No part of this book may be reproduced in any form by any electronic or
mechanical means (including photocopying, recording, or information storage and retrieval)
without permission in writing from the publisher.

MIT Press books may be purchased at special quantity discounts for business or sales
promotional use. For information, please email special sales@mitpress.mit.edu or write to
Special Sales Department, The MIT Press, 5 Cambridge Center, Cambridge, MA 02142.

This book was set in LATEX2e by Interactive Composition Corporation and was printed and
bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Principles of robot motion : theory, algorithms, and implementation/Howie Choset [et al.].
p. cm. (Intelligent robotics and autonomous agents)

“A Bradford book.”
Includes bibliographical references and index.
ISN 0-262-03327-5 (alk. paper)
1. Robots—Motion. I. Choset, Howie M. II. Series.

TJ211.4.P75 2004
629.8′92—dc22 2004044906

10 9 8 7 6 5 4 3 2 1

Choset-79066 book February 23, 2005 13:40

To our families

Choset-79066 book February 23, 2005 13:40

Contents

Foreword xv

Preface xvii

Acknowledgments xxi

1 Introduction 1

1.1 Overview of Concepts in Motion Planning 9

1.2 Overview of the Book 12

1.3 Mathematical Style 13

2 Bug Algorithms 17

2.1 Bug1 and Bug2 17

2.2 Tangent Bug 23

2.3 Implementation 30

2.3.1 What Information: The Tangent Line 31
2.3.2 How to Infer Information with Sensors: Distance

and Gradient 32
2.3.3 How to Process Sensor Information:

Continuation Methods 35

3 Configuration Space 39

3.1 Specifying a Robot’s Configuration 40

3.2 Obstacles and the Configuration Space 43

3.2.1 Circular Mobile Robot 43
3.2.2 Two-Joint Planar Arm 45

3.3 The Dimension of the Configuration Space 47

Choset-79066 book February 23, 2005 13:40

viii Contents

3.4 The Topology of the Configuration Space 50

3.4.1 Homeomorphisms and Diffeomorphisms 51
3.4.2 Differentiable Manifolds 55
3.4.3 Connectedness and Compactness 58
3.4.4 Not All Configuration Spaces Are Manifolds 59

3.5 Embeddings of Manifolds in R
n 59

3.5.1 Matrix Representations of Rigid-Body Configuration 60

3.6 Parameterizations of SO(3) 66

3.7 Example Configuration Spaces 68

3.8 Transforming Configuration and Velocity
Representations 69

4 Potential Functions 77

4.1 Additive Attractive/Repulsive Potential 80

4.2 Gradient Descent 84

4.3 Computing Distance for Implementation in the Plane 85

4.3.1 Mobile Robot Implementation 86
4.3.2 Brushfire Algorithm: A Method to Compute Distance

on a Grid 86

4.4 Local Minima Problem 89

4.5 Wave-Front Planner 90

4.6 Navigation Potential Functions 93

4.6.1 Sphere-Space 93
4.6.2 Star-Space 96

4.7 Potential Functions in Non-Euclidean Spaces 99

4.7.1 Relationship between Forces in the Workspace and
Configuration Space 100

4.7.2 Potential Functions for Rigid-Body Robots 101
4.7.3 Path Planning for Articulated Bodies 104

5 Roadmaps 107

5.1 Visibility Maps: The Visibility Graph 110

5.1.1 Visibility Graph Definition 110
5.1.2 Visibility Graph Construction 113

5.2 Deformation Retracts: Generalized Voronoi Diagram 117

5.2.1 GVD Definition 118

Choset-79066 book February 23, 2005 13:40

Contents ix

5.2.2 GVD Roadmap Properties 119
5.2.3 Deformation Retract Definition 121
5.2.4 GVD Dimension: The Preimage Theorem

and Critical Points 123
5.2.5 Construction of the GVD 126

5.3 Retract-like Structures: The Generalized
Voronoi Graph 129

5.3.1 GVG Dimension: Transversality 130
5.3.2 Retract-like Structure Connectivity 133
5.3.3 Lyapunov Control: Sensor-Based Construction

of the HGVG 136

5.4 Piecewise Retracts: The Rod-Hierarchical Generalized
Voronoi Graph 138

5.5 Silhouette Methods 141

5.5.1 Canny’s Roadmap Algorithm 142
5.5.2 Opportunistic Path Planner 151

6 Cell Decompositions 161

6.1 Trapezoidal Decomposition 162

6.2 Morse Cell Decompositions 168

6.2.1 Boustrophedon Decomposition 169
6.2.2 Morse Decomposition Definition 170
6.2.3 Examples of Morse Decomposition: Variable

Slice 172
6.2.4 Sensor-Based Coverage 178
6.2.5 Complexity of Coverage 182

6.3 Visibility-Based Decompositions for Pursuit/Evasion 187

7 Sampling-Based Algorithms 197

7.1 Probabilistic Roadmaps 202

7.1.1 Basic PRM 203
7.1.2 A Practical Implementation of Basic PRM 208
7.1.3 PRM Sampling Strategies 216
7.1.4 PRM Connection Strategies 225

7.2 Single-Query Sampling-Based Planners 227

7.2.1 Expansive-Spaces Trees 230

Choset-79066 book February 23, 2005 13:40

x Contents

7.2.2 Rapidly-Exploring Random Trees 233
7.2.3 Connection Strategies and the SBL Planner 238

7.3 Integration of Planners: Sampling-Based Roadmap
of Trees 238

7.4 Analysis of PRM 242

7.4.1 PRM Operating in R
d 243

7.4.2 (ε, α, β)-Expansiveness 246
7.4.3 Abstract Path Tiling 250

7.5 Beyond Basic Path Planning 253

7.5.1 Control-Based Planning 253
7.5.2 Multiple Robots 254
7.5.3 Manipulation Planning 257
7.5.4 Assembly Planning 259
7.5.5 Flexible Objects 260
7.5.6 Biological Applications 262

8 Kalman Filtering 269

8.1 Probabilistic Estimation 270

8.2 Linear Kalman Filtering 272

8.2.1 Overview 273
8.2.2 A Simple Observer 274
8.2.3 Observing with Probability Distributions 277
8.2.4 The Kalman Filter 282
8.2.5 Kalman Filter Summary 284
8.2.6 Example: Kalman Filter for Dead Reckoning 285
8.2.7 Observability in Linear Systems 287

8.3 Extended Kalman Filter 289

8.3.1 EKF for Range and Bearing Localization 290
8.3.2 Data Association 292
8.3.3 EKF for Range-Only Localization 294

8.4 Kalman Filter for SLAM 294

8.4.1 Simple SLAM 294
8.4.2 Range and Bearing SLAM 296

9 Bayesian Methods 301

9.1 Localization 301

9.1.1 The Basic Idea of Probabilistic Localization 302

Choset-79066 book February 23, 2005 13:40

Contents xi

9.1.2 Probabilistic Localization as Recursive Bayesian
Filtering 304

9.1.3 Derivation of Probabilistic Localization 308
9.1.4 Representations of the Posterior 310
9.1.5 Sensor Models 322

9.2 Mapping 328

9.2.1 Mapping with Known Locations
of the Robot 328

9.2.2 Bayesian Simultaneous Localization and
Mapping 337

10 Robot Dynamics 349

10.1 Lagrangian Dynamics 349

10.2 Standard Forms for Dynamics 353

10.3 Velocity Constraints 357

10.4 Dynamics of a Rigid Body 361

10.4.1 Planar Rotation 362
10.4.2 Spatial Rotation 363

11 Trajectory Planning 373

11.1 Preliminaries 374

11.2 Decoupled Trajectory Planning 374

11.2.1 Zero Inertia Points 378
11.2.2 Global Time-Optimal Trajectory Planning 384

11.3 Direct Trajectory Planning 384

11.3.1 Optimal Control 385
11.3.2 Nonlinear Optimization 389
11.3.3 Grid-Based Search 392

12 Nonholonomic and Underactuated Systems 401

12.1 Preliminaries 402

12.1.1 Tangent Spaces and Vector Fields 405
12.1.2 Distributions and Constraints 407
12.1.3 Lie Brackets 409

12.2 Control Systems 414

Choset-79066 book February 23, 2005 13:40

xii Contents

12.3 Controllability 416

12.3.1 Local Accessibility and Controllability 419
12.3.2 Global Controllability 422

12.4 Simple Mechanical Control Systems 424

12.4.1 Simplified Controllability Tests 425
12.4.2 Kinematic Reductions for Motion Planning 434
12.4.3 Simple Mechanical Systems with Nonholonomic

Constraints 438

12.5 Motion Planning 440

12.5.1 Optimal Control 440
12.5.2 Steering Chained-Form Systems Using

Sinusoids 444
12.5.3 Nonlinear Optimization 445
12.5.4 Gradient Methods for Driftless Systems 446
12.5.5 Differentially Flat Systems 447
12.5.6 Cars and Cars Pulling Trailers 450
12.5.7 Kinematic Reductions of Mechanical Systems 462
12.5.8 Other Approaches 465

A Mathematical Notation 473

B Basic Set Definitions 475

C Topology and Metric Spaces 478

C.1 Topology 478

C.2 Metric Spaces 479

C.3 Normed and Inner Product Spaces 480

C.4 Continuous Functions 481

C.5 Jacobians and Gradients 483

D Curve Tracing 487

D.1 Implicit Function Theorem 487

D.2 Newton-Raphson Convergence Theorem 488

E Representations of Orientation 489

E.1 Euler Angles 489

E.2 Roll, Pitch, and Yaw Angles 491

Choset-79066 book February 23, 2005 13:40

Contents xiii

E.3 Axis-Angle Parameterization 492

E.4 Quaternions 494

F Polyhedral Robots in Polyhedral Worlds 499

F.1 Representing Polygons in Two Dimensions 499

F.2 Intersection Tests for Polygons 502

F.3 Configuration Space Obstacles in Q = R
2:

The Star Algorithm 507

F.4 Configuration Space Obstacles in Q = SE(2) 508

F.5 Computing Distances between Polytopes in R
2 and R

3 509

G Analysis of Algorithms and Complexity Classes 513

G.1 Running Time 513

G.2 Complexity Theory 515

G.3 Completeness 520

H Graph Representation and Basic Search 521

H.1 Graphs 521

H.2 A∗ Algorithm 527

H.2.1 Basic Notation and Assumptions 530
H.2.2 Discussion: Completeness, Efficiency,

and Optimality 531
H.2.3 Greedy-Search and Dijkstra’s Algorithm 532
H.2.4 Example of A∗ on a Grid 533
H.2.5 Nonoptimistic Example 535

H.3 D∗ Algorithm 536

H.4 Optimal Plans 546

I Statistics Primer 547

I.1 Distributions and Densities 548

I.2 Expected Values and Covariances 550

I.3 Multivariate Gaussian Distributions 551

J Linear Systems and Control 552

J.1 State Space Representation 552

J.2 Stability 554

Choset-79066 book February 23, 2005 13:40

xiv Contents

J.3 LTI Control Systems 557

J.4 Observing LTI Systems 559

J.5 Discrete Time Systems 562

J.5.1 Stability 562
J.5.2 Controllability and Observability 563

Bibliography 565

Index 597

Choset-79066 book February 23, 2005 13:40

Foreword

THIS IMPRESSIVE book is the result of a serious undertaking of distinguished motion
planning researchers led by Howie Choset. Over the years, motion planning has
become a major research theme in robotics. The goal is to enable robots to auto-
matically compute their motions from high-level descriptions of tasks and models
acquired through sensing. This goal has recently become even more crucial. On the
one hand, robotics has expanded from a largely dominant focus on industrial manu-
facturing into areas where tasks are less repetitive and environments less structured,
for instance, medical surgery, ocean and space exploration, assistance to the elderly,
and search-and-rescue. In these areas, it is impractical to explicitly program the robots
for each new goal. On the other hand, the need for automatic motion-planning capa-
bilities has expanded outside the realm of robotics, into domains such as computer
animation (e.g., to generate motions of avatars), computer-aided design (e.g., to test
that a product can be assembled or serviced), verification of building codes (e.g., to
check access of key facilities to the disabled), exploration of virtual environments (to
help the user navigate in geometric models made of tens of millions of triangles),
or even computational biology (to help analyze important molecular motions, like
folding and binding). Today, progress in motion planning is increasingly motivated
by these new applications.

By confronting novel and difficult problems, researchers have made consider-
able progress in recent years. Not only have faster and more robust algorithms been
developed and tested, but the range of motion-planning problems has continuously
expanded. In the ’80s and part of the ’90s, finding collision-free paths was the main
or only goal. Today, while obstacle avoidance remains a key issue, other important
constraints are considered as well, for instance, visibility, coverage, kinodynamic,
optimality, equilibrium, and uncertainty constraints. These constraints make problems
more interesting and lead to more useful algorithms. In addition, while research in
motion planning used to be neatly divided between theory and practice, this distinction
has now largely disappeared. Most recent contributions to the field combine effective

Choset-79066 book February 23, 2005 13:40

xvi Foreword

algorithms tested on significant problems, along with some formal guarantees of
performance.

Although journal and conference papers in motion planning have proliferated, there
has not been any comprehensive reference text in more than a decade. This book fills
this gap in outstanding fashion. It covers both the early foundations of the field
and the recent theoretical and practical progress that has been made. It beautifully
demonstrates how the enduring contributions of early researchers in the field, like
Lozano-Perez (configuration space) and Reif (complexity of motion planning), have
led to a rich and vibrant research area, with ramifications that were unsuspected only
a decade ago.

I am usually suspicious of books in which chapters have been written by different
authors. But, to my good surprise, this book is more than a standard textbook. The
fact that seven authors collaborated on this book attests to the diversity of the research
going on in motion planning and the excitement associated with each research topic.
Simultaneously, the authors have done excellent work in providing a unified presen-
tation of the core concepts and methodologies, and thus the book can be used as a
textbook. This book will serve well the growing community of students, researchers,
and engineers interested in motion planning.

Jean-Claude Latombe
Stanford, California

Choset-79066 book February 23, 2005 13:40

Preface

PEOPLE HAVE always dreamed of building intelligent machines to perform tasks.
Today, these machines are called robots, derived from the Czech word robota meaning
servitude or drudgery. Robots have inspired the imagination of many, appearing in
mythology, literature, and popular movies. Some popular robotic characters include
Robby the Robot, R2D2 and C3P0, Golem, Pushpack, Wanky and Fanny, Gundam
and Lt. Cmdr. Data. Just like their literary counterparts, robots can take on many
forms and constructing them involves addressing many challenges in engineering,
computer science, cognitive science, language, and so on. Regardless of the form
of the robot or the task it must perform, robots must maneuver through our world.
This book is about automatic planning of robot motions. However, the approaches
developed in this book are not limited to robots: recently, they have been used for
“designing” pharmaceutical drugs, planning routes on circuit boards, and directing
digital actors in the graphics world.

The robot motion field and its applications have become incredibly broad, and this
is why the book has seven co-authors. This type of book requires a broad spectrum
of expertise. However, it should be stressed that this is indeed a textbook and not
a collection of independent chapters put together in an edited volume. Each author
participated in writing each of the chapters and all of the chapters are integrated with
each other.

This book is aimed at the advanced undergraduate or new graduate student inter-
ested in robot motion, and it may be read in a variety of ways. Our goal in writing in this
book is threefold: to create an updated textbook and reference for robot motion, to
make the fundamental mathematics behind robot motion accessible to the novice,
and to stress implementation relating low-level details to high-level algorithmic
concepts.

Since the robot motion field is indeed broad, this book cannot cover all the topics,
nor do we believe that any book can contain exhaustive coverage on robot motion. We
do, however, point the reader to Jean-Claude Latombe’s Robot Motion Planning [262].

Choset-79066 book February 23, 2005 13:40

xviii Preface

Latombe’s book was one of the first text and reference books aimed at the motion-
planning community and it certainly was a guide for us when writing this book. In the
decade since Latombe’s book was published, there have been great advances in the
motion-planning field, particularly in probabilistic methods, mechanical systems, and
sensor-based planning, so we intended to create a text with these new advances. How-
ever, there are many topics not included in our text that are included in his, including
assembly planning, geometric methods in dealing with uncertainty, multiple moving
obstacles, approximate cell decompositions, and obstacle representations.

We also believe that concepts from control theory and statistical reasoning have
gained greater relevance to robot motion. Therefore, we have included an appendix
briefly reviewing linear control systems which serves as background for our presen-
tation on Kalman filtering. Our description of Kalman filtering differs from others
in that it relies on a rich geometric foundation. We present a comprehensive descrip-
tion of Bayesian-based approaches. Concepts from mechanics and dynamics have
also had great impact on robot motion. We have included a chapter on dynamics
which serves as a basis for our description of trajectory planning and planning for
underactuated robots.

This book can be read from cover to cover. In doing so, there are four logical com-
ponents to the book: geometric motion planning approaches (chapters 2 through 6),
probabilistic methods (chapters 7, 8, and 9), mechanical control systems (chapters 10,
11, and 12), and the appendices. Covering the entire book could require a full year
course. However, not all of the topics in this book need be covered for a course on
robot motion. For semester-long courses, the following themes are suggested:

Theme Chapter and Appendix Sequence

Path Planning 3, 4, G, 5, 7, and 6

Mobile Robotics 2, H, 3, 4, 5, D, and 6

Mechanical Control Systems 3, 10, 11, and 12

Position Estimation I, J, 8, and 9

The algorithms and approaches presented in this book are based on geometry and
thus rest on a solid mathematical basis. Beyond anything superficial, in order to
understand the many motion-planning algorithms, one must understand these mathe-
matical underpinnings. One of the goals of this book is to make mathematical concepts
more accessible to students of computer science and engineering. In this book, we
introduce the intuition behind new mathematical concepts on an “as needed” basis to
understand both how and why certain motion planning algorithms work. Some salient

Choset-79066 book February 23, 2005 13:40

Preface xix

concepts are formally defined in each chapter and the appendices contain overviews
of some basic topics in more detail. The idea here is that the reader can develop
an understanding of motion planning algorithms without getting bogged down by
mathematical details, but can turn to them in the appendices when necessary. It is
our hope that the reader will gain enough new knowledge in algebra, graph theory,
geometry, topology, probability, filtering, and so on, to be able to read the state of the
art literature in robot motion.

We discuss implementation issues and it is important to note that such issues are
not mere details, but pose deep theoretical problems as well. In chapters 2, 4, 5,
and 6, we discuss specific issues on how to integrate range sensor information into a
planner. The Kalman Filtering (chapter 8) and Bayesian-based (chapter 9) approaches
have been widely used in the robot motion field to deal with positioning and sensor
uncertainty. Finally, we discuss in chapters 11 and 12 issues involving kinematic and
dynamic contraints that real robots experience.

We have also included pseudocode for many of the algorithms presented throughout
the book. In appendix H, we have included a discussion of graph search with detailed
examples to enable the novice to implement some standard graph search approaches,
with applicability well beyond robot motion. Finally, at the end of each chapter, we
present problems that stress implementation.

Choset-79066 book February 23, 2005 13:40

Acknowledgments

WE FIRST and foremost want to thank our students, who were incredibly supportive
of us when writing this book. We would like to thank the members of the Biorobotics/
Sensor Based Planning Lab at Carnegie Mellon, especially Ji Yeong Lee; the Lab-
oratory for Intelligent Mechanical Systems at Northwestern; the robotics group in
the Beckman Institute at the University of Illinois, Urbana Champaign; the Physical
and Biological Computing Group at Rice, especially Andrew Ladd and Erion Plaku;
the Lab for Autonomous Intelligent Systems at the University of Freiburg, especially
Dirk Hähnel and Cyrill Stachniss; and the Stanford and Carnegie Mellon Learning
Labs, for their contributions and efforts for this book.

We thank Alfred Anthony Rizzi and Matt Mason for their inspiration and support,
and Ken Goldberg and Jean-Claude Latombe for their input and advice. For input in
the form of figures or feedback on drafts, we thank Ercan Acar, Srinivas Akella, Nancy
Amato, Serkan Apaydin, Prasad Atkar, Denise Bafman, Devin Balkcom, Francesco
Bullo, Joel Burdick, Prasun Choudhury, Cynthia Cobb, Dave Conner, Al Costa, Frank
Dellaert, Bruce Donald, Dieter Fox, Bob Grabowski, Aaron Greenfield, David Hsu,
Pekka Isto, James Kuffner, Christian Laugier, Jean-Paul Laumond, Steve LaValle,
Brad Lisien, Julie Nord, Jim Ostrowski, Nancy Pollard, Cedric Pradalier, Ionnis
Rekleitis, Elie Shammas, Thierry Simeon, Sarjun Skaff, and M. Dick Tsuyuki.

We are also indebted to the many students who helped debug this text for us. Portions
of this text were used in Carnegie Mellon’s Sensor Based Motion Planning Course,
Carnegie Mellon’s Mechanical Control Systems reading group, Northwestern’s
ME 450 Geometry in Robotics, University of Illinois’ ECE 450 Advanced Robotic
Planning, and University of Freiburg’s Autonomous Systems course.

Choset-79066 book February 22, 2005 17:31

1 Introduction

SOME OF the most significant challenges confronting autonomous robotics lie in the
area of automatic motion planning. The goal is to be able to specify a task in a high-
level language and have the robot automatically compile this specification into a set of
low-level motion primitives, or feedback controllers, to accomplish the task. The pro-
totypical task is to find a path for a robot, whether it is a robot arm, a mobile robot, or a
magically free-flying piano, from one configuration to another while avoiding obsta-
cles. From this early piano mover’s problem, motion planning has evolved to address
a huge number of variations on the problem, allowing applications in areas such as
animation of digital characters, surgical planning, automatic verification of factory
layouts, mapping of unexplored environments, navigation of changing environments,
assembly sequencing, and drug design. New applications bring new considerations
that must be addressed in the design of motion planning algorithms.

Since actions in the physical world are subject to physical laws, uncertainty, and
geometric constraints, the design and analysis of motion planning algorithms raises a
unique combination of questions in mechanics, control theory, computational and dif-
ferential geometry, and computer science. The impact of automatic motion planning,
therefore, goes beyond its obvious utility in applications. The possibility of building
computer-controlled mechanical systems that can sense, plan their own motions, and
execute them has contributed to the development of our math and science base by
asking fundamental theoretical questions that otherwise might never have been posed.

This book addresses the theory and practice of robot motion planning, with an eye
toward applications. To focus the discussion, and to point out some of the important
concepts in motion planning, let’s first look at a few motivating examples.

Choset-79066 book February 22, 2005 17:31

2 1 Introduction

Piano Mover’s Problem

The classic path planning problem is the piano mover’s problem [373]. Given a three-
dimensional rigid body, for example a polyhedron, and a known set of obstacles, the
problem is to find a collision-free path for the omnidirectional free-flying body from a
start configuration to a goal configuration. The obstacles are assumed to be stationary
and perfectly known, and execution of the planned path is exact. This is called offline
planning, because planning is finished in advance of execution. Variations on this
problem are the sofa mover’s problem, where the body moves in a plane among
planar obstacles, and the generalized mover’s problem, where the robot may consist
of a set of rigid bodies linked at joints, e.g., a robot arm.

The key problem is to make sure no point on the robot hits an obstacle, so we need
a way to represent the location of all the points on the robot. This representation is
the configuration of the robot, and the configuration space is the space of all con-
figurations the robot can achieve. An example of a configuration is the set of joint
angles for a robot arm or the one orientation and two position variables for a sofa in
the plane. The configuration space is generally non-Euclidean, meaning that it does
not look like an n-dimensional Euclidean space R

n . The dimension of the configu-
ration space is equal to the number of independent variables in the representation of
the configuration, also known as the degrees of freedom (DOF). The piano has six
degrees of freedom: three to represent the position (x-y-z) and three to represent the
orientation (roll-pitch-yaw). The problem is to find a curve in the configuration space
that connects the start and goal points and avoids all configuration space obstacles
that arise due to obstacles in the space.

The Mini AERCam

NASA’s Johnson Space Center is developing the Mini AERCam, or Autonomous
Extravehicular Robotic Camera, for visual inspection tasks in space (figure 1.1). It
is a free-flying robot equipped with twelve cold gas thrusters, allowing it to generate
a force and torque in any direction. When operating in autonomous mode, it must
be able to navigate in a potentially complex three-dimensional environment. In this
respect the problem is similar to the piano mover’s problem. Since we have to apply
thrusts to cause motion, however, we need to plan not only the path the robot is to
follow, but also the speed along the path. This is called a trajectory, and the thruster
inputs are determined by the dynamics of the robot. In the piano mover’s problem,
we only worried about geometric or kinematic issues.

Choset-79066 book February 22, 2005 17:31

1 Introduction 3

Figure 1.1 NASA’s Mini AERCam free-flying video inspection robot.

(a) (b)

Figure 1.2 (a) The CyCab. (b) The Segway Human Transporter.

Personal Transport Vehicles

Small personal transport vehicles may become a primary means of transportation in
pedestrian-filled urban environments where the size, speed, noise, and pollution of
automobiles is undesirable. One concept is the CyCab [355], a small vehicle designed
by a consortium of institutions in France to transport up to two people at speeds up to
30 km/h (figure 1.2a). Another concept is the Segway HT, designed to carry a single
rider at speeds up to 20 km/h (figure 1.2b).

Choset-79066 book February 22, 2005 17:31

4 1 Introduction

To simplify control of vehicles in crowded environments, one capability under
study is automatic parallel parking. The rider would initiate the parallel-parking pro-
cedure, and the onboard computer would take over from there. Such systems will
soon be commercially available in automobiles. On the surface, this problem sounds
like the sofa mover’s problem, since both involve a body moving in the plane among
obstacles. The difference is that cars and the vehicles in figure 1.2 cannot instanta-
neously slide sideways like the sofa. The velocity constraint preventing instantaneous
sideways motion is called a nonholonomic constraint, and the motion planner must
take this constraint into account. Systems without velocity constraints, such as the
sofa, are omnidirectional in the configuration space.

Museum Tour Guides

In 1997, a mobile robot named RHINO served as a fully autonomous tour-guide at the
Deutsches Museum Bonn (figure 1.3). RHINO was able to lead museum visitors from
one exhibit to the next by calculating a path using a stored map of the museum. Because
the perfect execution model of the piano mover’s problem is unrealistic in this setting,
RHINO had to be able to localize itself by comparing its sensor readings to its stored

Figure 1.3 RHINO, the interactive mobile tour-guide robot.

Choset-79066 book February 22, 2005 17:31

1 Introduction 5

Figure 1.4 The Mars rover Sojourner. http://mars.jpl.nasa.gov/MPF/rover/sojourner.html.

map. To deal with uncertainty and changes in the environment, RHINO employed a
sensor-based planning approach, interleaving sensing, planning, and action.

Planetary Exploration

One of the most exciting successes in robot deployment was a mobile robot, called
Sojourner (figure 1.4), which landed on Mars on July 4, 1997. Sojourner provided up-
close images of Martian terrain surrounding the lander. Sojourner did not move very
far from the lander and was able to rely on motion plans generated offline on Earth
and uploaded. Sojourner was followed by its fantastically successful cousins, Spirit
and Opportunity, rovers that landed on Mars in January 2004 and have provided a
treasure trove of scientific data. In the future, robots will explore larger areas and thus
will require significantly more autonomy. Beyond navigation capability, such robots
will have to be able to generate a map of the environment using sensor information.
Mapping an unknown space with a robot that experiences positioning error is an
especially challenging “chicken and egg” problem—without a map the robot cannot
determine its own position, and without knowledge about its own position the robot
cannot compute the map. This problem is often called simultaneous localization and
mapping or simply SLAM.

Demining

Mine fields stifle economic development and result in tragic injuries and deaths each
year. As recently as 1994, 2.5 million mines were placed worldwide while only
100,000 were removed.

Choset-79066 book February 22, 2005 17:31

6 1 Introduction

Robots can play a key role in quickly and safely demining an area. The crucial first
step is finding the mines. In demining, a robot must pass a mine-detecting sensor over
all points in the region that might conceal a mine. To do this, the robot must traverse a
carefully planned path through the target region. The robot requires a coverage path
planner to find a motion that passes the sensor over every point in the field. If the
planner is guaranteed to find a path that covers every point in the field when such
a path exists, then we call the planner complete. Completeness is obviously a crucial
requirement for this task.

Coverage has other applications including floor cleaning [116], lawn mowing [198],
unexploded ordnance hunting [260], and harvesting [341]. In all of these applications,
the robot must simultaneously localize itself to ensure complete coverage.

Fixed-base Robot Arms in Industry

In highly structured spaces, fixed-base robot arms perform a variety of tasks, including
assembly, welding, and painting. In painting, for example, the robot must deposit a
uniform coating over all points on a target surface (figure 1.5). This coverage problem
presents new challenges because (1) ensuring equal paint deposition is a more severe
requirement than mere coverage, (2) the surface is not usually flat, and (3) the robot
must properly coordinate its internal degrees of freedom to drive the paint atomizer
over the surface.

Industrial robot installations are clearly driven by economic factors, so there is a
high priority on minimizing task execution time. This motivates motion planners that
return time-optimal motion plans. Other kinds of tasks may benefit from other kinds
of optimality, such as energy- or fuel-optimality for mobile robots.

Figure 1.5 ABB painting robot named Tobe.

Choset-79066 book February 22, 2005 17:31

1 Introduction 7

Figure 1.6 The Hirose active cord.

Figure 1.7 The Carnegie Mellon snake robot Holt mounted on a mobile base.

Snake Robots for Urban Search and Rescue

When a robot has more degrees of freedom than required to complete its task, the
robot is called redundant. When a robot has many extra degrees of freedom, then it is
called hyper-redundant. These robots have multidimensional non-Euclidean configu-
ration spaces. Hyper-redundant serial mechanisms look like elephant trunks or snakes
(figures 1.6 and 1.7), and they can use their extra degrees of freedom to thread through
tightly packed volumes to reach locations inaccessible to humans and conventional
machines. These robots may be particularly well-suited to urban search and rescue,
where it is of paramount importance to locate survivors in densely packed rubble as
quickly and safely as possible.

Robots in Surgery

Robots are increasingly used in surgery applications. In noninvasive stereotactic radio-
surgery, high-energy radiation beams are cross-fired at brain tumors. In certain cases,

Choset-79066 book February 22, 2005 17:31

8 1 Introduction

Figure 1.8 The motions of a digital actor are computed automatically. (Courtesy of J.C.
Latombe)

these beams are delivered with high accuracy, using six degrees of freedom robotic
arms (e.g., the CyberKnife system [1]). Robots are also used in invasive procedures.
They often enhance the surgeon’s ability to perform technically precise maneuvers.
For example, the da Vinci Surgical System [2] can assist in advanced surgical tech-
niques such as cutting and suturing. The ZEUS System [3] can assist in the control
of blunt retractors, graspers, and stabilizers. Clearly, as robotics advances, more and
more of these systems will be developed to improve our healthcare.

Digital Actors

Algorithms developed for motion planning or sensor interpretation are not just for
robots anymore. In the entertainment industry, motion planning has found a wide
variety of applications in the generation of motion for digital actors, opening the way
to exciting scenarios in video games, animation, and virtual environments (figure 1.8).

Drug Design

An important problem in drug design and the study of disease is understanding how a
protein folds to its native or most stable configuration. By considering the protein as
an articulated linkage (figure 1.9), researchers are using motion planning to identify
likely folding pathways from a long straight chain to a tightly folded configuration. In
pharmaceutical drug design, proteins are combined with smaller molecules to form
complexes that are vital for the prevention and cure of disease. Motion planning

Choset-79066 book March 15, 2005 10:36

1.1 Overview of Concepts in Motion Planning 9

Figure 1.9 A molecule represented as an articulated linkage.

methods are used to analyze molecular binding motions, allowing the automated
testing of drugs before they are synthesized in the laboratory.

1.1 Overview of Concepts in Motion Planning

The previous examples touched on a number of ways to characterize the motion
planning problem and the algorithm used to address it. Here we summarize some
of the important concepts. Our characterization of a motion planner is according to
the task it addresses, properties of the robot solving the task, and properties of the
algorithm.1 We focus on topics that are covered in this book (table 1.1).

Task

The most important characterization of a motion planner is according to the problem
it solves. This book considers four tasks: navigation, coverage, localization, and
mapping. Navigation is the problem of finding a collision-free motion for the robot
system from one configuration (or state) to another. The robot could be a robot arm,
a mobile robot, or something else. Coverage is the problem of passing a sensor or
tool over all points in a space, such as in demining or painting. Localization is the
problem of using a map to interpret sensor data to determine the configuration of the
robot. Mapping is the problem of exploring and sensing an unknown environment

1. This classification into three categories is somewhat arbitrary but will be convenient for introduction.

Choset-79066 book February 22, 2005 17:31

10 1 Introduction

Task Robot Algorithm

Navigate Configuration space, degree of freedom Optimal/nonoptimal motions

Map Kinematic/dynamic Computational complexity

Cover Omnidirectional or Completeness

Localize motion constraints (resolution, probabilistic)

Online/offline

Sensor-based/world model

Table 1.1 Some of the concepts covered in this book.

to construct a representation that is useful for navigation, coverage, or localization.
Localization and mapping can be combined, as in SLAM.

There are a number of interesting motion planning tasks not covered in detail in this
book, such as navigation among moving obstacles, manipulation and grasp planning,
assembly planning, and coordination of multiple robots. Nonetheless, algorithms in
this book can be adapted to those problems.

Properties of the Robot

The form of an effective motion planner depends heavily on properties of the robot
solving the task. For example, the robot and the environment determine the number
of degrees of freedom of the system and the shape of the configuration space. Once
we understand the robot’s configuration space, we can ask if the robot is free to
move instantaneously in any direction in its configuration space (in the absence of
obstacles). If so, we call the robot omnidirectional. If the robot is subject to velocity
constraints, such as a car that cannot translate sideways, both the constraint and the
robot are called nonholonomic. Finally, the robot could be modeled using kinematic
equations, with velocities as controls, or using dynamic equations of motion, with
forces as controls.

Properties of the Algorithm

Once the task and the robot system is defined, we can choose between algorithms
based on how they solve the problem. For example, does the planner find motions that
are optimal in some way, such as in length, execution time, or energy consumption?
Or does it simply find a solution satisfying the constraints? In addition to the quality of
the output of the planner, we can ask questions about the computational complexity of

Choset-79066 book February 22, 2005 17:31

1.1 Overview of Concepts in Motion Planning 11

the planner. Are the memory requirements and running time of the algorithm constant,
polynomial, or exponential in the “size” of the problem description? The size of the
input could be the number of degrees of freedom of the robot system, the amount of
memory needed to describe the robot and the obstacles in the environment, etc., and
the complexity can be defined in terms of the worst case or the average case. If we
expect to scale up the size of the inputs, a planner is often only considered practical if
it runs in time polynomial or better in the inputs. When a polynomial time algorithm
has been found for a problem that previously could only be solved in exponential
time, some key insight into the problem has typically been gained.

Some planners are complete, meaning that they will always find a solution to the
motion planning problem when one exists or indicate failure in finite time. This is a
very powerful and desirable property. For the motion planning problem, as the number
of degrees of freedom increases, complete solutions may become computationally
intractable. Therefore, we can seek weaker forms of completeness. One such form
is resolution completeness. It means that if a solution exists at a given resolution
of discretization, the planner will find it. Another weaker form of completeness is
probabilistic completeness. It means that the probability of finding a solution (if one
exists) converges to 1 as time goes to infinity.

Optimality, completeness, and computational complexity naturally trade off with
each other. We must be willing to accept increased computational complexity if we
demand optimal motion plans or completeness from our planner.

We say a planner is offline if it constructs the plan in advance, based on a known
model of the environment, and then hands the plan off to an executor. The planner is
online if it incrementally constructs the plan while the robot is executing. In this case,
the planner can be sensor-based, meaning that it interleaves sensing, computation, and
action. The distinction between offline algorithms and online sensor-based algorithms
can be somewhat murky; if an offline planner runs quickly enough, for example,
then it can be used in a feedback loop to continually replan when new sensor data
updates the environment model. The primary distinction is computation time, and
practically speaking, algorithms are often designed and discussed with this distinction
in mind. A similar issue arises in control theory when attempting to distinguish
between feedforward control (commands based on a reference trajectory and dynamic
model) and feedback control (commands based on error from the desired trajectory),
as techniques like model predictive control essentially use fast feedforward control
generation in a closed loop. In this book we will not discuss the low-level feedback
controllers needed to actually implement robot motions, but we will assume they are
available.

Choset-79066 book February 22, 2005 17:31

12 1 Introduction

1.2 Overview of the Book

Chapter 2 dives right into a class of simple and intuitive “Bug” algorithms requiring
a minimum of mathematical background to implement and analyze. The task is to
navigate a point mobile robot to a known goal location in a plane filled with unknown
static obstacles. The Bug algorithms are sensor-based—the robot uses a contact sensor
or a range sensor to determine when it is touching or approaching an obstacle, as well
as odometry or other sensing to know its current position in the plane. It has two basic
motion primitives, moving in a straight line and following a boundary, and it switches
between these based on sensor data. These simple algorithms guarantee that the robot
will arrive at the goal if it is reachable.

To move beyond simple point robots, in chapter 3 we study the configuration space
of more general robot systems, including rigid bodies and robot arms. The mathe-
matical foundations in this chapter allow us to view general path planning problems
as finding paths through configuration space. We study the dimension (degrees of
freedom), topology, and parameterizations of non-Euclidean configuration spaces, as
well as representations of these configuration spaces as surfaces embedded in higher-
dimensional Euclidean spaces. The forward kinematic map is introduced to relate one
choice of configuration variables to another. The differential of this map, often called
the Jacobian, is used to relate the velocites in the two coordinate systems. Material in
this chapter is referenced throughout the remainder of the book.

Chapter 4 describes a class of navigation algorithms based on artificial potential
functions. In this approach we set up a virtual potential field in the configuration
space to make obstacles repulsive and the goal configuration attractive to the robot.
The robot then simply follows the downhill gradient of the artificial potential. For
some navigation problems, it is possible to design the potential field to ensure that
following the gradient will always take the robot to the goal. If calculating such
a potential field is difficult or impossible, we can instead use one that is easy to
caclulate but may have the undesirable property of local minima, locations where
the robot gets “stuck.” In this case, we can simply use the potential field to guide a
search-based planner. Potential fields can be generated offline, using a model of the
environment, or calculated in real-time using current sensor readings. Purely reactive
gradient-following potential field approaches always run the risk of getting stuck in
local minima, however.

In chapter 5, we introduce more concise representations of the robot’s free space
that a planner can use to plan paths between two configurations. These structures are
called roadmaps. A planner can also use a roadmap to explore an unknown space. By
using sensors to incrementally construct the roadmap, the robot can then use the
roadmap for future navigation problems. This chapter describes several roadmaps

Choset-79066 book February 22, 2005 17:31

1.3 Mathematical Style 13

including the visibility graph, the generalized Voronoi diagram, and Canny’s original
roadmap. Chapter 6 describes an alternative representation of the free space called
a cell decomposition which consists of a set of cells of the free space and a graph
of cells with connections between adjacent cells. A cell decomposition is useful for
coverage tasks, and it can be computed offline or incrementally using sensor data.

Constructing complete and exact roadmaps of an environment is generally quite
computationally complex. Therefore, chapter 7 develops sampling-based algorithms
that trade completeness guarantees for a reduction of the running time of the planner.
This chapter highlights recent work in probabilistic roadmaps, expansive-spaces trees,
and rapidly-exploring random trees and the broad range of motion planning problems
to which they are applicable.

Probabilistic reasoning can also address the problems of sensor uncertainty and
positioning error that plague mobile robot deployment. We can model these uncer-
tainties and errors as probability distributions and use Kalman filtering (chapter 8)
and Bayesian estimation (chapter 9) to address localization, mapping, and SLAM
problems.

Just as the description of configuration space in chapter 3 provides many of the
kinematic and geometric tools used in path planning, the description of second-order
robot dynamics in chapter 10 is necessary for feasible trajectory planning, i.e., finding
motions parameterized by time. We can then pose time- and energy-optimal trajectory
planning problems for dynamic systems subject to actuator limits, as described in
chapter 11.

Chapter 11 assumes that the robot has an actuator for each degree of freedom.
In chapter 12 we remove that assumption and consider robot systems subject to
nonholonomic (velocity) constraints and/or acceleration constraints due to missing
actuators, or underactuation. We study the reachable states for such systems, i.e.,
controllability, using tools from differential geometry. The chapter ends by describing
planners that find motions for systems such as cars, cars pulling trailers, and spacecraft
or robot arms with missing actuators.

1.3 Mathematical Style

Our goal is to present topics in an intuitive manner while helping the reader appreciate
the deeper mathematical concepts. Often we suppress mathematical rigor, however,
when intuition is sufficient. In many places proofs of theorems are omitted, and the
reader is referred to the original papers. For the most part, mathematical concepts are
introduced as they are needed. Supplementary mathematical material is deferred to
the appendices to allow the reader to focus on the main concepts of the chapter.

Choset-79066 book February 22, 2005 17:31

14 1 Introduction

QO1

c(1)

c(0)

Figure 1.10 A path is a curve in the free configuration space Qfree connecting c(0) to c(1).

Throughout this book, robots are assumed to operate in a planar (R2) or three-
dimensional (R3) ambient space, sometimes called the workspaceW . This workspace
will often contain obstacles; let WOi be the i th obstacle. The free workspace is the
set of points Wfree = W\ ⋃

i WOi where the \ is a subtraction operator.
Motion planning, however, does not usually occur in the workspace. Instead, it

occurs in the configuration space Q (also called C-space), the set of all robot con-
figurations. We will use the notation R(q) to denote the set of points of the ambient
space occupied by the robot at configuration q. An obstacle in the configuration space
corresponds to configurations of the robot that intersect an obstacle in the workspace,
i.e., QOi = {q | R(q)

⋂
WOi �= ∅}. Now we can define the free configuration space

as Qfree = Q\⋃
i QOi . We sometimes simply refer to “free space” when the meaning

is unambiguous.
In this book we make a distinction between path planning and motion planning. A

path is a continuous curve on the configuration space. It is represented by a continu-
ous function that maps some path parameter, usually taken to be in the unit interval
[0, 1], to a curve in Qfree (figure 1.10). The choice of unit interval is arbitrary; any
parameterization would suffice. The solution to the path planning problem is a contin-
uous function c ∈ C0 (see appendix C for a definition of continuous functions) such
that

c : [0, 1] → Q where c(0) = qstart, c(1) = qgoal and c(s) ∈Qfree ∀s ∈ [0, 1].(1.1)

When the path is parameterized by time t , then c(t) is a trajectory, and velocities
and accelerations can be computed by taking the first and second derivatives with

Choset-79066 book February 22, 2005 17:31

1.3 Mathematical Style 15

respect to time. This means that c should be at least twice-differentiable, i.e., in the
class C2. Finding a feasible trajectory is called trajectory planning or motion planning.

In this book, configuration, velocity, and force vectors will be written as column
vectors when they are involved in any matrix algebra. For example, a configuration
q ∈ R

n will be written in coordinates as q = [q1, q2, . . . , qn]T . When the vector will
not be used in any computation, we may simply refer to it as a tuple of coordinates,
e.g., q = (q1, q2, . . . , qn), without bothering to make it a column vector.

Choset-79066 book February 22, 2005 17:34

2 Bug Algorithms

EVEN A simple planner can present interesting and difficult issues. The Bug1 and
Bug2 algorithms [301] are among the earliest and simplest sensor-based planners with
provable guarantees. These algorithms assume the robot is a point operating in the
plane with a contact sensor or a zero range sensor to detect obstacles. When the robot
has a finite range (nonzero range) sensor, then the Tangent Bug algorithm [217] is a
Bug derivative that can use that sensor information to find shorter paths to the goal. The
Bug and Bug-like algorithms are straightforward to implement; moreover, a simple
analysis shows that their success is guaranteed, when possible. These algorithms
require two behaviors: move on a straight line and follow a boundary. To handle
boundary-following, we introduce a curve-tracing technique based on the implicit
function theorem at the end of this chapter. This technique is general to following any
path, but we focus on following a boundary at a fixed distance.

2.1 Bug1 and Bug2

Perhaps the most straight forward path planning approach is to move toward the
goal, unless an obstacle is encountered, in which case, circumnavigate the obstacle
until motion toward the goal is once again allowable. Essentially, the Bug1 algorithm
formalizes the “common sense” idea of moving toward the goal and going around
obstacles. The robot is assumed to be a point with perfect positioning (no positioning
error) with a contact sensor that can detect an obstacle boundary if the point robot
“touches” it. The robot can also measure the distance d(x , y) between any two points x

Choset-79066 book February 22, 2005 17:34

18 2 Bug Algorithms

and y. Finally, assume that the workspace is bounded. Let Br (x) denote a ball of radius
r centered on x , i.e., Br (x) = {y ∈ R

2 | d(x , y) < r}. The fact that the workspace is
bounded implies that for all x ∈W , there exists an r < ∞ such that W ⊂ Br (x).

The start and goal are labeled qstart and qgoal, respectively. Let q L
0 = qstart and the

m-line be the line segment that connects q L
i to qgoal. Initially, i = 0. The Bug1

algorithm exhibits two behaviors: motion-to-goal and boundary-following. During
motion-to-goal, the robot moves along the m-line toward qgoal until it either encounters
the goal or an obstacle. If the robot encounters an obstacle, let q H

1 be the point where
the robot first encounters an obstacle and call this point a hit point. The robot then
circumnavigates the obstacle until it returns to q H

1 . Then, the robot determines the
closest point to the goal on the perimeter of the obstacle and traverses to this point.
This point is called a leave point and is labeled q L

1 . From q L
1 , the robot heads straight

toward the goal again, i.e., it reinvokes the motion-to-goal behavior. If the line that
connects q L

1 and the goal intersects the current obstacle, then there is no path to
the goal; note that this intersection would occur immediately “after” leaving q L

1 .
Otherwise, the index i is incremented and this procedure is then repeated for q L

i and
q H

i until the goal is reached or the planner determines that the robot cannot reach the
goal (figures 2.1, 2.2). Finally, if the line to the goal “grazes” an obstacle, the robot
need not invoke a boundary following behavior, but rather continues onward toward
the goal. See algorithm 1 for a description of the Bug1 approach.

qstart

WO1

WO2

qgoal

q1
H

q2
H

q1
L

q2
L

Figure 2.1 The Bug1 algorithm successfully finds the goal.

Choset-79066 book February 22, 2005 17:34

2.1 Bug1 and Bug2 19

qstart

qgoal

q1
H

q1
L

Figure 2.2 The Bug1 algorithm reports the goal is unreachable.

Algorithm 1 Bug1 Algorithm
Input: A point robot with a tactile sensor
Output: A path to the qgoal or a conclusion no such path exists

1: while Forever do
2: repeat
3: From q L

i−1, move toward qgoal.
4: until qgoal is reached or an obstacle is encountered at q H

i .
5: if Goal is reached then
6: Exit.
7: end if
8: repeat
9: Follow the obstacle boundary.

10: until qgoal is reached or q H
i is re-encountered.

11: Determine the point q L
i on the perimeter that has the shortest distance to the goal.

12: Go to q L
i .

13: if the robot were to move toward the goal then
14: Conclude qgoal is not reachable and exit.
15: end if
16: end while

Like its Bug1 sibling, the Bug2 algorithm exhibits two behaviors: motion-to-goal
and boundary-following. During motion-to-goal, the robot moves toward the goal on
the m-line; however, in Bug2 the m-line connects qstart and qgoal, and thus remains
fixed. The boundary-following behavior is invoked if the robot encounters an obstacle,

Choset-79066 book February 22, 2005 17:34

20 2 Bug Algorithms

qstart

qgoal

q1
H

qstart

WO1

WO2

qgoal

q1
H

q2
H

q1
L

q2
L

Figure 2.3 (Top) The Bug2 algorithm finds a path to the goal. (Bottom) The Bug2 algorithm
reports failure.

but this behavior is different from that of Bug1. For Bug2, the robot circumnavigates
the obstacle until it reaches a new point on the m-line closer to the goal than the
initial point of contact with the obstacle. At this time, the robot proceeds toward
the goal, repeating this process if it encounters an object. If the robot re-encounters the
original departure point from the m-line, then there is no path to the goal (figures 2.3,
2.4). Let x ∈ Wfree ⊂ R

2 be the current position of the robot, i = 1, and q L
0 be the

start location. See algorithm 2 for a description of the Bug2 approach.
At first glance, it seems that Bug2 is a more effective algorithm than Bug1 because

the robot does not have to entirely circumnavigate the obstacles; however, this is not
always the case. This can be seen by comparing the lengths of the paths found by the
two algorithms. For Bug1, when the i th obstacle is encountered, the robot completely
circumnavigates the boundary, and then returns to the leave point. In the worst case,
the robot must traverse half the perimeter, pi , of the obstacle to reach this leave point.

Choset-79066 book February 22, 2005 17:34

2.1 Bug1 and Bug2 21

qstart
qgoal

q1
H q2

H

q1
L q2

L

Figure 2.4 Bug2 Algorithm.

Moreover, in the worst case, the robot encounters all n obstacles. If there are no
obstacles, the robot must traverse a distance of length d(qstart, qgoal). Thus, we obtain

LBug1 ≤ d(qstart, qgoal) + 1.5
n∑

i=1

pi .(2.1)

For Bug2, the path length is a bit more complicated. Suppose that the line through
qstart and qgoal intersects the i th obstacle ni times. Then, there are at most ni leave
points for this obstacle, since the robot may only leave the obstacle when it returns to
a point on this line. It is easy to see that half of these intersection points are not valid
leave points because they lie on the “wrong side” of the obstacle, i.e., moving toward
the goal would cause a collision. In the worst case, the robot will traverse nearly the
entire perimeter of the obstacle for each leave point. Thus, we obtain

LBug2 ≤ d(qstart, qgoal) + 1

2

n∑

i=1

ni pi .(2.2)

Naturally, (2.2) is an upper-bound because the summation is over all of the obstacles
as opposed to over the set of obstacles that are encountered by the robot.

Choset-79066 book February 22, 2005 17:34

22 2 Bug Algorithms

Algorithm 2 Bug2 Algorithm
Input: A point robot with a tactile sensor
Output: A path to qgoal or a conclusion no such path exists

1: while True do
2: repeat
3: From q L

i−1, move toward qgoal along m-line.
4: until

qgoal is reached or
an obstacle is encountered at hit point q H

i .
5: Turn left (or right).
6: repeat
7: Follow boundary
8: until
9: qgoal is reached or

10: q H
i is re-encountered or

11: m-line is re-encountered at a point m such that
12: m �= q H

i (robot did not reach the hit point),
13: d(m, qgoal) < d(m, q H

i) (robot is closer), and
14: If robot moves toward goal, it would not hit the obstacle
15: Let q L

i+1 = m
16: Increment i
17: end while

A casual examination of (2.1) and (2.2) shows that LBug2 can be arbitrarily longer
than LBug1. This can be achieved by constructing an obstacle whose boundary
has many intersections with the m-line. Thus, as the “complexity” of the obsta-
cle increases, it becomes increasingly likely that Bug1 could outperform Bug2
(figure 2.4).

In fact, Bug1 and Bug2 illustrate two basic approaches to search problems. For each
obstacle that it encounters, Bug1 performs an exhaustive search to find the optimal
leave point. This requires that Bug1 traverse the entire perimeter of the obstacle,
but having done so, it is certain to have found the optimal leave point. In contrast,
Bug2 uses an opportunistic approach. When Bug2 finds a leave point that is better
than any it has seen before, it commits to that leave point. Such an algorithm is also
called greedy, since it opts for the first promising option that is found. When the
obstacles are simple, the greedy approach of Bug2 gives a quick payoff, but when the
obstacles are complex, the more conservative approach of Bug1 often yields better
performance.

Choset-79066 book February 22, 2005 17:34

2.2 Tangent Bug 23

2.2 Tangent Bug

Tangent Bug [216] serves as an improvement to the Bug2 algorithm in that it deter-
mines a shorter path to the goal using a range sensor with a 360 degree infinite
orientation resolution. Sometimes orientation is called azimuth. We model this range
sensor with the raw distance function ρ : R

2 × S1 → R. Consider a point robot
situated at x ∈ R

2 with rays radially emanating from it. For each θ ∈ S1, the value
ρ(x , θ) is the distance to the closest obstacle along the ray from x at an angle θ . More
formally,

ρ(x , θ) = min
λ∈[0,∞]

d(x , x + λ[cos θ , sin θ]T),
(2.3)

such that x + λ[cos θ , sin θ]T ∈
⋃

i

WOi .

Note that there are infinitely many θ ∈ S1 and hence the infinite resolution. This
assumption is approximated with a finite number of range sensors situated along the
circumference of a circular mobile robot which we have modeled as a point.

Since real sensors have limited range, we define the saturated raw distance function,
denoted ρR : R

2 × S1 → R, which takes on the same values as ρ when the obstacle
is within sensing range, and has a value of infinity when the ray lengths are greater
than the sensing range, R, meaning that the obstacles are outside the sensing range.
More formally,

ρR(x , θ) =
{

ρ(x , θ), if ρ(x , θ) < R
∞, otherwise.

The Tangent Bug planner assumes that the robot can detect discontinuities in ρR as
depicted in figure 2.5. For a fixed x ∈ R

2, an interval of continuity is defined to be a
connected set of points x + ρ(x , θ)[cos θ , sin θ]T on the boundary of the free space
where ρR(x , θ) is finite and continuous with respect to θ .

The endpoints of these intervals occur where ρR(x , θ) loses continuity, either as
a result of one obstacle blocking another or the sensor reaching its range limit. The
endpoints are denoted Oi . Figure 2.6 contains an example where ρR loses continu-
ity. The points O1, O2, O3, O5, O6, O7, and O8 correspond to losses of continuity
associated with obstacles blocking other portions of Wfree; note the rays are tangent
to the obstacles here. The point O4 is a discontinuity because the obstacle boundary
falls out of range of the sensor. The sets of points on the boundary of the free space
between O1 and O2, O3 and O4, O5 and O6, O7 and O8 are the intervals of continuity.

Just like the other Bugs, Tangent Bug iterates between two behaviors: motion-
to-goal and boundary-following. However, these behaviors are different than in the
Bug1 and Bug2 approaches. Although motion-to-goal directs the robot to the goal,

Choset-79066 book February 22, 2005 17:34

24 2 Bug Algorithms

WO1

WO2

WO3

WO4

WO5

x

Figure 2.5 The thin lines are values of the raw distance function, ρR(x , θ), for a fixed x ∈ R
2,

and the thick lines indicate discontinuities, which arise either because an obstacle occludes
another or the sensing range is reached. Note that the segments terminating in free space
represent infinitely long rays.

this behavior may have a phase where the robot follows the boundary. Likewise, the
boundary-following behavior may have a phase where the robot does not follow the
boundary.

The robot initially invokes the motion-to-goal behavior, which itself has two parts.
First, the robot moves in a straight line toward the goal until it senses an obstacle
R units away and directly between it and the goal. This means that a line segment
connecting the robot and goal must intersect an interval of continuity. For example, in
figure 2.7, WO2 is within sensing range, but does not block the goal, but WO1 does.
When the robot initially senses an obstacle, the circle of radius R becomes tangent
to the obstacle. Immediately after, this tangent point splits into two Oi ’s, which are
the endpoints of the interval. If the obstacle is in front of the robot, then this interval
intersects the segment connecting the robot and the goal.

The robot then moves toward the Oi that maximally decreases a heuristic distance
to the goal. An example of a heuristic distance is the sum d(x , Oi)+d(Oi , qgoal). (The
heuristic distance can be more complicated when factoring in available information

Choset-79066 book February 22, 2005 17:34

2.2 Tangent Bug 25

O2

O3

O4

O5

O7

O6

O8

O1

qgoal

x

Figure 2.6 The points of discontinuity of ρR(x , θ) correspond to points Oi on the obstacles.
The thick solid curves represent connected components of the range of ρR(x , θ), i.e., the
intervals of continuity. In this example, the robot, to the best of its sensing range, believes there
is a straight-line path to the goal.

WO1

WO2

O3

O4

O2

O1

qgoal

Figure 2.7 The vertical represents the path of the robot and the dotted circle its sensing range.
Currently, the robot is located at the “top” of the line segment. The points Oi represent the
points of discontinuity of the saturated raw distance function. Note that the robot passes by
WO2.

Choset-79066 book February 22, 2005 17:34

26 2 Bug Algorithms

WO1 WO1

WO2 WO2

O3 O3

O4 O4

O2O2

O1 O1

qgoal

qgoal xx

Figure 2.8 (Left) The planner selects O2 as a subgoal for the robot. (Right) The planner
selects O4 as a subgoal for the robot. Note the line segment between O4 and qgoal cuts through
the obstacle.

with regard to the obstacles.) In figure 2.8 (left), the robot sees WO1 and drives
to O2 because i = 2 minimizes d(x , Oi) + d(Oi , qgoal). When the robot is located
at x , it cannot know that WO2 blocks the path from O2 to the goal. In figure 2.8
(right), when the robot is located at x but the goal is different, it has enough sensor
information to conclude that WO2 indeed blocks a path from O2 to the goal, and
therefore drives toward O4. So, even though driving toward O2 may initially minimize
d(x , Oi) + d(Oi , qgoal) more than driving toward O4, the planner effectively assigns
an infinite cost to d(O2, qgoal) because it has enough information to conclude that any
path through O2 will be suboptimal.

The set {Oi } is continuously updated as the robot moves toward a particular Oi ,
which can be seen in figure 2.9. When t = 1, the robot has not sensed the obstacle,
hence the robot moves toward the goal. When t = 2, the robot initially senses the
obstacle, depicted by a thick solid curve. The robot continues to move toward the
goal, but off to the side of the obstacle heading toward the discontinuity in ρ. For
t = 3 and t = 4, the robot senses more of the obstacle and continues to decrease
distance toward the goal while hugging the boundary.

The robot undergoes the motion-to-goal behavior until it can no longer decrease
the heuristic distance to the goal. Put differently, it finds a point that is like a local
minimum of d(·, Oi) +d(Oi , qgoal) restricted to the path that motion-to-goal dictates.

When the robot switches to boundary-following, it finds the point M on the sensed
portion of the obstacle which has the shortest distance on the obstacle to the goal.
Note that if the sensor range is zero, then M is the same as the hit point from the Bug1
and Bug2 algorithms. This sensed obstacle is also called the followed obstacle. We
make a distinction between the followed obstacle and the blocking obstacle. Let x be

Choset-79066 book February 22, 2005 17:34

2.2 Tangent Bug 27

t = 1 t = 2 t = 4 t = 4

Figure 2.9 Demonstration of motion-to-goal behavior for a robot with a finite sensor range
moving toward a goal which is “above” the light gray obstacle.

WO1

WO2

qgoal

M

Figure 2.10 The workspace is the same as in figure 2.7. The solid and dashed segments
represent the path generated by motion-to-goal and the dotted path represents the boundary-
following path. Note that M is the “local minimum” point.

the current position of the robot. The blocking obstacle is the closest obstacle within
sensor range that intersects the segment (1 − λ)x + λqgoal ∀λ ∈ [0, 1]. Initially, the
blocking obstacle and the followed obstacle are the same.

Now the robot moves in the same direction as if it were in the motion-to-goal
behavior. It continuously moves toward the Oi on the followed obstacle in the cho-
sen direction (figure 2.10). While undergoing this motion, the planner also updates
two values: dfollowed and dreach. The value dfollowed is the shortest distance between the
boundary which had been sensed and the goal. Let � be all of the points within

Choset-79066 book February 22, 2005 17:34

28 2 Bug Algorithms

line of sight of x with range R that are on the followed obstacle WO f , i.e.,
� = {y ∈ ∂WO f : λx + (1 − λ)y ∈ Qfree ∀λ ∈ [0, 1]}. The value dreach is the
distance between the goal and the closest point on the followed obstacle that is within
line of sight of the robot, i.e.,

dreach = min
c∈�

d(qgoal, c).

When dreach < dfollowed, the robot terminates the boundary-following behavior.
Let T be the point where a circle centered at x of radius R intersects the segment

that connects x and qgoal. This is the point on the periphery of the sensing range that
is closest to the goal when the robot is located at x . Starting with x = qstart and
dleave = d(qstart, qgoal), see algorithm 3.

Algorithm 3 Tangent Bug Algorithm
Input: A point robot with a range sensor
Output: A path to the qgoal or a conclusion no such path exists

1: while True do
2: repeat
3: Continuously move toward the point n ∈ {T , Oi } which minimizes d(x , n) +

d(n, qgoal)
4: until

the goal is encountered or

The direction that minimizes d(x , n) + d(n, qgoal) begins to increase
d(x , qgoal), i.e., the robot detects a “local minimum” of d(·, qgoal).

5: Chose a boundary following direction which continues in the same direction as the
most recent motion-to-goal direction.

6: repeat
7: Continuously update dreach, dfollowed, and {Oi }.
8: Continuously moves toward n ∈ {Oi } that is in the chosen boundary direction.
9: until

The goal is reached.

The robot completes a cycle around the obstacle in which case the goal cannot
be achieved.

dreach < dfollowed

10: end while

Choset-79066 book February 22, 2005 17:34

2.2 Tangent Bug 29

qstart

D1

H1

D2

H2

H3

H4

L3

M3

M4 L4

qgoal

Figure 2.11 The path generated by Tangent Bug with zero sensor range. The dashed lines cor-
respond to the motion-to-goal behavior and the dotted lines correspond to boundary-following.

qstart

D1

H1

D2

H2 H3

H4

L3

M3

M4

L4

qgoal
sw3

sw4

Figure 2.12 Path generated by Tangent Bug with finite sensor range. The dashed lines corre-
spond to the motion-to-goal behavior and the dotted lines correspond to boundary-following.
The dashed-dotted circles correspond to the sensor range of the robot.

See figures 2.11, 2.12 for example runs. Figure 2.11 contains a path for a robot
with zero sensor range. Here the robot invokes a motion-to-goal behavior until it
encounters the first obstacle at hit point H1. Unlike Bug1 and Bug2, encountering
a hit point does not change the behavior mode for the robot. The robot continues
with the motion-to-goal behavior by turning right and following the boundary of the
first obstacle. The robot turned right because that direction minimized its heuristic
distance to the goal. The robot departs this boundary at a depart point D1. The robot

Choset-79066 book February 22, 2005 17:34

30 2 Bug Algorithms

D1

H1

D2H2
H3

T

S

d3

Figure 2.13 Path generated by Tangent Bug with infinite sensor range. The dashed-lines
correspond to the motion-to-goal behavior and there is no boundary-following.

continues with the motion-to-goal behavior, maneuvering around a second obstacle,
until it encounters the third obstacle at H3. The robot turns left and continues to invoke
the motion-to-goal behavior until it reaches M3, a minimum point. Now, the planner
invokes the boundary-following behavior until the robot reaches L3. Note that since
we have zero sensing range, dreach is the distance between the robot and the goal. The
procedure continues until the robot reaches the goal. Only at Mi and Li does the robot
switch between behaviors. Figures 2.12, 2.13 contain examples where the robot has
a finite and infininte sensing ranges, respectively.

2.3 Implementation

Essentially, the bug algorithms have two behaviors: drive toward a point and follow an
obstacle. The first behavior is simply a form of gradient descent of d(·, n) where n is
either qgoal or an Oi . The second behavior, boundary-following, presents a challenge
because the obstacle boundary is not known a priori. Therefore, the robot planner
must rely on sensor information to determine the path. However, we must concede
that the full path to the goal will not be determined from one sensor reading: the
sensing range of the robot may be limited and the robot may not be able to “see”
the entire world from one vantage point. So, the robot planner has to be incremental.
We must determine first what information the robot requires and then where the robot
should move to acquire more information. This is indeed the challenge of sensor-based
planning. Ideally, we would like this approach to be reactive with sensory information

Choset-79066 book February 22, 2005 17:34

2.3 Implementation 31

feeding into a simple algorithm that outputs translational and rotational velocity for
the robot.

There are three questions: What information does the robot require to circumnav-
igate the obstacle? How does the robot infer this information from its sensor data?
How does the robot use this information to determine (locally) a path?

2.3.1 What Information: The Tangent Line

If the obstacle were flat, such as a long wall in a corridor, then following the obstacle
is trivial: simply move parallel to the obstacle. This is readily implemented using
a sensing system that can determine the obstacle’s surface normal n(x), and hence
a direction parallel to its surface. However, the world is not necessarily populated
with flat obstacles; many have nonzero curvature. The robot can follow a path that is
consistently orthogonal to the surface normal; this direction can be written as n(x)⊥

and the resulting path satisfies ċ(t) = v where v is a basis vector in (n (c (t)))⊥. The
sign of v is based on the “previous” direction of ċ.

Consistently determining the surface normal can be quite challenging and there-
fore for implementation, we can assume that obstacles are “locally flat.” This means
the sensing system determines the surface normal, the robot moves orthogonal to
this normal for a short distance, and then the process repeats. In a sense, the robot
determines the sequence of short straight-line segments to follow, based on sensor
information.

This flat line, loosely speaking, is the tangent (figure 2.14). It is a linear approxi-
mation of the curve at the point where the tangent intersects the curve. The tangent

x

T
angent

Offset Curve

WOi

W*

D(x)

Figure 2.14 The solid curve is the offset curve. The dashed line represents the tangent to the
offset curve at x .

Choset-79066 book February 22, 2005 17:34

32 2 Bug Algorithms

can also be viewed as a first-order approximation to the function that describes the
curve. Let c : [0, 1] → Wfree be the function that defines a path. Let x = c(s0) for
a s0 ∈ [0, 1]. The tangent at x is dc

ds

∣
∣
s=s0

. The tangent space can be viewed as a line

whose basis vector is dc
ds

∣
∣
s=s0

, i.e.,
{

α dc
ds

∣
∣
s=s0

∣
∣ α ∈ R

}
.

2.3.2 How to Infer Information with Sensors: Distance and Gradient

The next step is to infer the tangent from sensor data. Instead of thinking of the
robot as a point in the plane, let’s think of it as a circular base which has a fine array
of tactile sensors radially distributed along its circumference (figure 2.15). When the
robot contacts an obstacle, the direction from the contacted sensor to the robot’s center
approximates the surface normal. With this information, the robot can determine a
sequence of tangents to follow the obstacle.

Unfortunately, using a tactile sensor to prescribe a path requires the robot to collide
with obstacles, which endangers the obstacles and the robot. Instead, the robot should
follow a path at a safe distanceW∗ ∈ R from the nearest obstacle. Such a path is called

Obstacle

n(t)

Tactile Ring

Robot

Figure 2.15 A fine-resolution tactile sensor.

Choset-79066 book February 22, 2005 17:34

2.3 Implementation 33

WO1

WO2

WO3

WO4

x
Robot

D(x)

Figure 2.16 The global minimum of the rays determines the distance to the closest obstacle;
the gradient points in a direction away from the obstacle along the ray.

an offset curve [381]. Let D(x) be the distance from x to the closest obstacle, i.e.,

D(x) = minc∈
⋃

i
WOi

d(x , c).(2.4)

To measure this distance with a mobile robot equipped with an onboard range sensing
ring, we use the raw distance function again. However, instead of looking for dis-
continuities, we look for the global minimum. In other words, D(x) = mins ρ(x , s)
(figure 2.16).

We will need to use the gradient of distance. In general, the gradient is a vector
that points in the direction that maximally increases the value of a function. See
appendix C.5 for more details. Typically, the i th component of the gradient vector is
the partial derivative of the function with respect to its i th coordinate. In the plane,
∇ D(x) = [∂ D(x)

∂x1

∂ D(x)
∂x2

]T which points in the direction that increases distance the
most. Finally, the gradient is the unit direction associated with the smallest value of
the raw distance function. Since the raw distance function seemingly approximates a
sensing system with individual range sensing elements radially distributed around the
perimeter of the robot, an algorithm defined in terms of D can often be implemented
using realistic sensors.

There are many choices for range sensors; here, we investigate the use of ultrasonic
sensors (figure 2.17), which are commonly found on mobile robots. Conventional
ultrasonic sensors measure distance using time of flight. When the speed of sound

Choset-79066 book February 22, 2005 17:34

34 2 Bug Algorithms

Figure 2.17 The disk on the right is the standard Polaroid ultrasonic transducer found on
many mobile robots; the circuitry on the left drives the transducer.

Figure 2.18 Beam pattern for the Polaroid transducer.

in air is constant, the time that the ultrasound requires to leave the transducer, strike
an obstacle, and return is proportional to the distance to the point of reflection on
the obstacle [113]. This obstacle, however, can be located anywhere along the angu-
lar spread of the sonar sensor’s beam pattern (figure 2.18). Therefore, the distance
information that sonars provide is fairly accurate in depth, but not in azimuth. The
beam pattern can be approximated with a cone (figure 2.19). For the commonly used
Polaroid transducer, the arcbase is 22.5 degrees. When the reading of the sensor is d,
the point of reflection can be anywhere along the arc base of length 2πd22.5

360 .

Choset-79066 book February 22, 2005 17:34

2.3 Implementation 35

d
Obstacle

Beam Pattern

Sensor Measurement Axis

Robot

Point Sensor

Figure 2.19 Centerline model.

Initially, assume that the echo originates from the center of the sonar cone. We
acknowledge that this is a naive model, and we term this the centerline model
(figure 2.19). The ultrasonic sensor with the smallest reading approximates the global
minimum of the raw distance function, and hence D(x). The direction that this sensor
is facing approximates the negated gradient −∇ D(x) because this sensor faces the
closest obstacle. The tangent is then the line orthogonal to the direction associated
with the smallest sensor reading.

2.3.3 How to Process Sensor Information: Continuation Methods

The tangent to the offset curve is (∇ D(x))⊥, the line orthogonal to ∇ D(x) (fig-
ure 2.14). The vector ∇ D(x) points in the direction that maximally increases distance;
likewise, the vector −∇ D(x) points in the direction that maximally decreases dis-
tance; they both point along the same line, but in opposite directions. Therefore, the
vector (∇ D(x))⊥ points in the direction that locally maintains distance; it is perpen-
dicular to both ∇ D(x) and −∇ D(x). This would be the tangent of the offset curve
which maintains distance to the nearby obstacle.

Another way to see why (∇ D(x))⊥ is the tangent is to look at the definition of the
offset curve. For a safety distance W∗, we can define the offset curve implicitly as
the set of points where G(x) = D(x) − W∗ maps to zero. The set of nonzero points
(or vectors) that map to zero is called the null space of a map. For a curve implicitly
defined by G, the tangent space at a point x is the null space of DG(x), the Jacobian of
G [410]. In general, the i, j th component of the Jacobian matrix is the partial derivative
of the i th component function with respect to the j th coordinate and thus the Jacobian

Choset-79066 book February 22, 2005 17:34

36 2 Bug Algorithms

is a mapping between tangent spaces. Since in this case, G is a real-valued function
(i = 1), the Jacobian is just a row vector DD(x). Here, we are reusing the symbol D.
The reader is forced to use context to determine if D means distance or differential.

In Euclidean spaces, the i th component of a single-row Jacobian equals the i th
component of the gradient and thus ∇ D(x) = (DD(x))T . Therefore, since the tangent
space is the null space of DD(x), the tangent for boundary-following in the plane
is the line orthogonal to ∇ D(x), i.e., (∇ D(x))⊥, and can be derived from sensor
information.

Using distance information, the robot can determine the tangent direction to the
offset curve. If the obstacles are flat, then the offset curve is also flat, and simply
following the tangent is sufficient to follow the boundary of an unknown obstacle.
Consider, instead, an obstacle with curvature. We can, however, assume that the
obstacle is locally flat. The robot can then move along the tangent for a short distance,
but since the obstacle has curvature, the robot will not follow the offset curve, i.e., it
will “fall off” of the offset curve. To reaccess the offset curve, the robot moves either
toward or away from the obstacle until it reaches the safety distance W∗. In doing
so, the robot is moving along a line defined by ∇ D(x), which can be derived from
sensor information.

Essentially, the robot is performing a numerical procedure of prediction and cor-
rection. The robot uses the tangent to locally predict the shape of the offset curve
and then invokes a correction procedure once the tangent approximation is not valid.
Note that the robot does not explicitly trace the path but instead “hovers” around it,
resulting in a sampling of the path, not the path itself (figure 2.20).

A numerical tracing procedure can be posed as one which traces the roots of the
expression G(x) = 0, where in this case G(x) = D(x) − W∗. Numerical curve-
tracing techniques rest on the implicit function theorem [9, 232, 307] which locally
defines a curve that is implicitly defined by a map G : Y × R → Y . Specifically, the
roots of G locally define a curve parameterized by λ ∈ R. See appendix D for a
formal definition.

Figure 2.20 The dashed line is the actual path, but the robot follows the thin black lines,
predicting and correcting along the path. The black circles are samples along the path.

Choset-79066 book February 22, 2005 17:34

2.3 Implementation 37

For boundary following at a safety distance W∗, the function G(y, λ) = D(y, λ)−
W∗ implicitly defines the offset curve. Note that the λ-coordinate corresponds to a
tangent direction and the y-coordinates to the line or hyperplane orthogonal to the
tangent. Let Y denote this hyperplane and DY G be the matrix formed by taking the
derivative of G(x) = D(x) − W∗ = 0 with respect to the y-coordinates. It takes
the form DY G(x) = DY D(x) where DY denotes the differential with respect to the
y-coordinates. If DY G(y, λ) is surjective at x = (λ, y)T , then the implicit function
theorem states that the roots of G(y, λ) locally define a curve that follows the boundary
at a distance W∗ as λ is varied, i.e., y(λ).

By numerically tracing the roots of G, we can locally construct a path. While there
are a number of curve-tracing techniques [232], let us consider an adaptation of a
common predictor-corrector scheme. Assume that the robot is located at a point x
which is a fixed distance W∗ away from the boundary. The robot takes a “small” step,
�λ, in the λ-direction (i.e., the tangent to the local path). In general, this prediction
step takes the robot off the offset path. Next, a correction method is used to bring
the robot back onto the offset path. If �λ is small, then the local path will intersect
a correcting plane, which is a plane orthogonal to the λ-direction at a distance �λ

away from the origin.
The correction step finds the location where the offset path intersects the cor-

recting plane and is an application of the Newton convergence theorem [232]. See
appendix D.2 for a more formal definition of this theorem. The Newton convergence
theorem also requires that DY G(y, λ) be full rank at every (y, λ) in a neighborhood
of the offset path. This is true because for G(x) = D(x) − W∗, [0 DY G(y, λ)]T =
DG(y, λ). Since DG(y, λ) is full rank, so must be DY G(y, λ) on the offset curve.
Since the set of nonsingular matrices is an open set, we know there is a neighborhood
around each (y, λ) in the offset path where DG(y, λ) is full rank and hence we can
use the iterative Newton method to implement the corrector step. If yh and λh are the
hth estimates of y and λ, the h + 1st iteration is defined as

yh+1 = yh − (DY G)−1 G(yh , λh),(2.5)

where DY G is evaluated at (yh , λh). Note that since we are working in a Euclidean
space, we can determine DY G solely from distance gradient, and hence, sensor
information.

Problems

1. Prove that D(x) is the global minimum of ρ(x , s) with respect to s.

2. What are the tradeoffs between the Bug1 and Bug2 algorithms?

Choset-79066 book February 22, 2005 17:34

38 2 Bug Algorithms

3. Extend the Bug1 and Bug2 algorithms to a two-link manipulator.

4. What is the difference between the Tangent Bug algorithm with zero range detector and
Bug2? Draw examples.

5. What are the differences between the path in figure 2.11 and the paths that Bug1 and Bug2
would have generated?

6. The Bug algorithms also assume the planner knows the location of the goal and the robot
has perfect positioning. Redesign one of the Bug algorithms to relax the assumption of
perfect positioning. Feel free to introduce a new type of “reasonable” sensor (not a high-
resolution Global Positioning System).

7. In the Bug1 algorithm, prove or disprove that the robot does not encounter any obstacle
that does not intersect the disk of radius d(qstart, qgoal) centered at qgoal.

8. What assumptions do the Bug1, Bug2, and Tangent Bug algorithms make on robot local-
ization, both in position and orientation?

9. Prove the completeness of the Tangent Bug algorithm.

10. Adapt the Tangent Bug algorithm so that it has a limited field of view sensor, i.e., it does
not have a 360 degree field of view range sensor.

11. Write out DY G for boundary following in the planar case.

12. Let G1(x) = D(x) + 1 and let G2(x) = D(x) + 2. Why are their Jacobians the same?

13. Let G(x , y) = y3 + y − x2. Write out a y as a function of x in an interval about the origin
for the curve defined by G(x , y) = 0.

Choset-79066 book February 22, 2005 17:37

3 Configuration Space

TO CREATE motion plans for robots, we must be able to specify the position of the
robot. More specifically, we must be able to give a specification of the location of
every point on the robot, since we need to ensure that no point on the robot collides
with an obstacle. This raises some fundamental questions: How much information
is required to completely specify the position of every point on the robot? How
should this information be represented? What are the mathematical properties of these
representations? How can obstacles in the robot’s world be taken into consideration
while planning the path of a robot?

In this chapter, we begin to address these questions. We first discuss exactly what
is meant by a configuration of a robot and introduce the concept of the configura-
tion space, one of the most important concepts in robot motion planning. We then
briefly discuss how obstacles in the robot’s environment restrict the set of admissible
paths. We then begin a more rigorous investigation of the properties of the config-
uration space, including its dimension, how it sometimes can be represented by a
differentiable manifold, and how manifolds can be represented by embeddings and
parameterizations. We conclude the chapter by discussing mappings between differ-
ent representations of the configuration, and the Jacobian of these mappings, which
relates velocities in the different representations.

Choset-79066 book February 22, 2005 17:37

40 3 Configuration Space

3.1 Specifying a Robot’s Configuration

To make our discussion more precise, we introduce the following definitions. The
configuration of a robot system is a complete specification of the position of every
point of that system. The configuration space, or C-space, of the robot system is the
space of all possible configurations of the system. Thus a configuration is simply a
point in this abstract configuration space. Throughout the text, we use q to denote a
configuration and Q to denote the configuration space.1 The number of degrees of
freedom of a robot system is the dimension of the configuration space, or the minimum
number of parameters needed to specify the configuration.

To illustrate these definitions, consider a circular mobile robot that can translate
without rotating in the plane. A simple way to represent the robot’s configuration is
to specify the location of its center, (x , y), relative to some fixed coordinate frame.
If we know the radius r of the robot, we can easily determine from the configuration
q = (x , y) the set of points occupied by the robot. We will use the notation R(q) to
denote this set. When we define the configuration as q = (x , y), we have

R(x , y) = {(x ′, y′) | (x − x ′)2 + (y − y′)2 ≤ r 2},
and we see that these two parameters, x and y, are sufficient to completely determine
the configuration of the circular robot. Therefore, for the circular mobile robot, we
can represent the configuration space by R

2 once we have chosen a coordinate frame
in the plane.

Robots move in a two- or three-dimensional Euclidean ambient space, represented
by R

2 or R
3, respectively. We sometimes refer to this ambient space as the workspace.

Other times we have a more specific meaning for “workspace.” For example, for a
robot arm, often we call the workspace the set of points of the ambient space reachable
by a point on the hand or end effector (see figure 3.3). For the translating mobile robot
described above, the workspace and the configuration space are both two-dimensional
Euclidean spaces, but it is important to keep in mind that these are different spaces.
This becomes clear when we consider even slightly more complicated robots, as we
see next.

Consider a two-joint planar robot arm, as shown in figure 3.1. A point on the first
link of the arm is pinned, so that the only possible motion of the first link is a rotation
about this joint. Likewise, the base of the second link is pinned to a point at the end of
the first link, and the only possible motion of the second link is a rotation about this
joint. Therefore, if we specify the parameters θ1 and θ2, as shown in figure 3.1, we

1. While q is used almost universally to denote a configuration, the configuration space is sometimes
denoted by C, particularly in the path-planning community.

Choset-79066 book February 22, 2005 17:37

3.1 Specifying a Robot’s Configuration 41

q1

q2

End effector

Link 2

Link 1

Figure 3.1 The angles θ1 and θ2 specify the configuration of the two-joint robot.

have specified the configuration of the arm. For now we will assume no joint limits,
so the two links can move over each other.

Each joint angle θi corresponds to a point on the unit circle S1, and the configuration
space is S1 × S1 = T 2, the two-dimensional torus. It is common to picture a torus
as the surface of a doughnut because a torus has a natural embedding in R

3, just as
a circle S1 has a natural embedding in R

2. By cutting the torus along the θ1 = 0 and
θ2 = 0 curves, we can flatten the torus onto the plane, as shown in figure 3.2. With
this planar representation, we are identifying points on S1 by points in the interval
[0, 2π) ⊂ R. While this representation covers all points in S1, the interval [0, 2π),
being a subset of the real line, does not naturally wrap around like S1, so there is a
discontinuity in the representation. As we discuss in section 3.4, this is because S1 is
topologically different from any interval of R.

We define the workspace of the two-joint manipulator to be the reachable points
by the end effector. The workspace for our two-joint manipulator is an annulus
(figure 3.3), which is a subset of R

2. All points in the interior of the annulus are
reachable in two ways, with the arm in a right-arm and a left-arm configuration,
sometimes called elbow-up and elbow-down. Therefore, the position of the end effec-
tor is not a valid configuration (not a complete description of the location of all points
of the robot), so the annulus is not a configuration space for this robot.

So we have seen that the configuration spaces of both the translating mobile robot
and the two-joint manipulator are two-dimensional, but they are quite different. The
torus T 2 is doughnut-shaped with finite area, while R

2 is flat with infinite area. We
delve further into these sorts of differences when we discuss topology in section 3.4.

Choset-79066 book March 22, 2005 9:59

42

0
0

2π

2π
F G

PR

(a)

(b) (c)

FG
P R

q1

q1

q1

q2
q2

q2

Figure 3.2 (a) A two-joint manipulator. (b) The configuration of the robot is represented as a
point on the toral configuration space. (c) The torus can be cut and flattened onto the plane. This
planar representation has “wraparound” features where the edge F R is connected to G P , etc.

Figure 3.3 The workspace for this two-joint manipulator is an annulus, a disk with a smaller
disk removed from it. Note that all points in the interior of the annulus are reachable with a
right-arm configuration and a left-arm configuration.

Choset-79066 book February 22, 2005 17:37

3.2 Obstacles and the Configuration Space 43

3.2 Obstacles and the Configuration Space

Equipped with our understanding of configurations and of configuration spaces, we
can define the path-planning problem to be that of determining a continuous mapping,
c : [0, 1] → Q, such that no configuration in the path causes a collision between the
robot and an obstacle. It is useful to define explicitly the set of configurations for which
such a collision occurs. We define a configuration space obstacle QOi to be the set of
configurations at which the robot intersects an obstacle WOi in the workspace, i.e.,

QOi = {q ∈ Q | R(q)
⋂

WOi �= ∅}.
The free space or free configuration space Qfree is the set of configurations at which
the robot does not intersect any obstacle, i.e.,

Qfree = Q\(
⋃

i
QOi

)
.

With this notation, we define a free path to be a continuous mapping c : [0, 1] →
Qfree, and a semifree path to be a continuous mapping c : [0, 1] → cl(Qfree), in which
cl(Qfree) denotes the closure of Qfree. A free path does not allow contact between the
robot and obstacles, while a semifree path allows the robot to contact the boundary
of an obstacle. We assume that Qfree is open unless otherwise noted.

We now examine how obstacles in the workspace can be mapped into the config-
uration space for the robots that we discussed above.

3.2.1 Circular Mobile Robot

Consider the circular mobile robot in an environment with a single polygonal obstacle
in the workspace, as shown in figure 3.4. In figure 3.4(b), we slide the robot around the
obstacle to find the constraints the obstacle places on the configuration of the robot,
i.e., the possible locations of the robot’s reference point. We have chosen to use the
center of the robot, but could easily choose another point. Figure 3.4(c) shows the
resulting obstacle in the configuration space. Motion planning for the circular robot
in figure 3.4(a) is now equivalent to motion planning for a point in the configuration
space, as shown in figure 3.4(c).

Figure 3.5 shows three mobile robots of different radii in the same environment.
In each case, the robot is trying to find a path from one configuration to another.
To transform the workspace obstacles into configuration obstacles, we “grow” the
polygon outward and the walls inward. The problem is now to find a path for the point
robot in the configuration space. We see that the growing process has disconnected the
free configuration space Qfree for the largest robot, showing that there is no solution
for this robot.

Choset-79066 book February 22, 2005 17:37

44 3 Configuration Space

(b) (c)(a)

Figure 3.4 (a) The circular mobile robot approaches the workspace obstacle. (b) By sliding
the mobile robot around the obstacle and keeping track of the curve traced out by the reference
point, we construct the configuration space obstacle. (c) Motion planning for the robot in the
workspace representation in (a) has been transformed into motion planning for a point robot
in the configuration space.

(c)(b)(a)

Workspace

C-space

Figure 3.5 The top row shows the workspace and the bottom row shows the configuration
space for (a) a point mobile robot, (b) a circular mobile robot, and (c) a larger circular mobile
robot.

Although the example in figure 3.5 is quite simple, the main point is that it is
easier to think about points moving around than bodies with volume. Keep in mind
that although both the workspace and the configuration space for this system can
be represented by R

2, and the obstacles appear to simply “grow” in this example,
the configuration space and workspace are different spaces, and the transformation
from workspace obstacles to configuration space obstacles is not always so simple.

Choset-79066 book February 22, 2005 17:37

3.2 Obstacles and the Configuration Space 45

For example, appendix F discusses how to generate configuration space obstacles for
a polygon that translates and rotates among polygonal obstacles in the plane. The
two-joint arm example is examined next.

3.2.2 Two-Joint Planar Arm

For the case of the circular mobile robot in a world populated with polygonal obstacles,
it is easy to compute configuration space obstacles. When the robot is even slightly
more complex, it becomes much more difficult to do so. For this reason, grid-based
representations of the configuration space are sometimes used. Consider the case of
the two-joint planar arm, for which Q = T 2. We can define a grid on the surface
of the torus, and for each point on this grid we can perform a fairly simple test to
see if the corresponding configuration causes a collision between the arm and any
obstacle in the workspace. If we let each grid point be represented by a pixel, we can
visualize the configuration space obstacle by “coloring” pixels appropriately. This
method was used to obtain figures 3.6, 3.7, and 3.8.2 In each of the figures, the image
on the left depicts a two-joint arm in a planar workspace, while the image on the right
depicts the configuration space. In each case, the arm on the left is depicted in several
configurations, and these are indicated in the configuration spaces on the right.

Figure 3.6 (Left) A path for the two-joint manipulator through its workspace, where the start
and goal configurations are darkened. (Right) The path in the configuration space.

2. These figures were obtained using the applet at http://ford.ieor.berkeley.edu/cspace/.

Choset-79066 book February 22, 2005 17:37

46 3 Configuration Space

Figure 3.7 (Left) The workspace for a two-joint manipulator where the start and goal con-
figurations are shown. (Right) The configuration space shows there is no free path between the
start and goal configurations.

Figure 3.8 (Left) The workspace for a two-joint manipulator where the start and goal con-
figurations are darkened. (Right) The path shows the wraparound of the planar representation
of the configuration space.

While pictures such as those in figures 3.6, 3.7, and 3.8 are useful for visualiz-
ing configuration space obstacles, they are not sufficient for planning collision-free
motions. The reason for this is that the grid only encodes collision information for the
discrete set of points lying on the grid. A path includes not only grid points, but also
the points on the curves that connect the grid points. One possible remedy for this
problem is to “thicken” the robot when we test it at a grid point, so that if the thickened

Choset-79066 book February 22, 2005 17:37

3.3 The Dimension of the Configuration Space 47

robot is collision-free, then paths to adjacent grid points are also collision-free.3 We
could also choose to ignore this problem by choosing a grid resolution that is “high
enough.”

3.3 The Dimension of the Configuration Space

In our introduction to configuration space above, we restricted our attention to two-
dimensional configuration spaces that are easy to visualize. For each example, it was
fairly straightforward to conclude that there were only two degrees of freedom: for a
translating robot, the configuration was specified by a point in the familiar Euclidean
plane, while for the two-joint arm the two joint angles gave a complete specification
of the arm’s position. In this section we determine the number of degrees of freedom
of more complex systems by considering constraints on the motions of individual
points of the systems.

As a first example, suppose the robot is a point that can move in the plane. The
configuration can be given by two coordinates, typically q = (x , y) ∈ Q = R

2,
once we have chosen a reference coordinate frame fixed somewhere in space. Thus
the robot has two degrees of freedom; the configuration space is two-dimensional.

Now consider a system consisting of three point robots, A, B, and C , that are free
to move in the plane. Since the points can move independently, in order to specify the
configuration of the system we need to specify the configuration of each of A, B, and
C . By simply generalizing the case for a single point, we see that a configuration for
this system can be given by the six coordinates xA, yA, xB , yB , xC , and yC (assuming
that the points can overlap). The system has six degrees of freedom, and in this case
we have Q = R

6.
Real robots are typically modeled as a set of rigid bodies connected by joints (or

a single rigid body for the case of most mobile robots), not a set of points that are
free to move independently. So, suppose now that the robot is a planar rigid body
that can both translate and rotate in the plane. Define A, B, and C to be three distinct
points that are fixed to the body. To place the body in the plane, we are first free
to choose the position of A by choosing its coordinates (xA, yA). Now we wish to
choose the coordinates of B, (xB , yB), but the rigidity of the body requires that this
point maintain a constant distance d(A, B) from A:

d(A, B) =
√

(xA − xB)2 + (yA − yB)2.

3. This approach is called conservative, as a motion planner using this approach will never find an incorrect
solution, but it might miss solutions when they exist. As a result, the planner can only be resolution complete,
not complete.

Choset-79066 book February 22, 2005 17:37

48 3 Configuration Space

This equation constrains B to lie somewhere on a circle of radius d(A, B) centered
at (xA, yA), and our only freedom in placing B is the angle θ from A to B.

Now when we try to choose coordinates (xC , yC) for C , we see that our choice is
subject to two constraints:

d(A, C) =
√

(xA − xC)2 + (yA − yC)2

d(B, C) =
√

(xB − xC)2 + (yB − yC)2

In other words, C has already been placed for us. In fact, every point on the body has
been placed once we have chosen (xA, yA, θ), making this a good representation of
the configuration. The body has three degrees of freedom, and its configuration space
is R

2 × S1.
Each of the distance constraints above is an example of a holonomic constraint.

A holonomic constraint is one that can be expressed purely as a function g of the
configuration variables (and possibly time), i.e., of the form

g(q , t) = 0.

Each linearly independent holonomic constraint on a system reduces the dimension
of the system’s configuration space by one. Thus a system described by n coordinates
subject to m independent holonomic constraints has an (n − m)-dimensional config-
uration space. In this case, we normally attempt to represent the configuration space
by a smaller set of n − m coordinates subject to no constraints, e.g., the coordinates
(xA, yA, θ) for the planar body above.

Nonholonomic constraints are velocity constraints of the form

g(q , q̇ , t) = 0

which do not reduce the dimension of the configuration space. Nonholonomic con-
straints are left to chapter 12.

We can apply the counting method above to determine the number of degrees of
freedom of a three-dimensional rigid body. Choose three noncollinear points on the
body, A, B, C . The coordinates (xA, yA, z A) of point A are first chosen arbitrarily.
After fixing A, the distance constraint from A forces B to lie on the two-dimensional
surface of a sphere centered at A. After both A and B are fixed, the distance constraints
from A and B force C to lie on a one-dimensional circle about the axis formed by
A and B. Once this point is chosen, all other points on the body are fixed. Thus the
configuration of a rigid body in space can be described by nine coordinates subject
to three constraints, yielding a six-dimensional configuration space.

We have already seen that a rigid body moving in a plane has three degrees of
freedom, but we can arrive at this same conclusion if we imagine a spatial rigid body

Choset-79066 book February 22, 2005 17:37

3.3 The Dimension of the Configuration Space 49

with six degrees of freedom with a set of constraints that restricts it to a plane. Choose
this book as an example, using three corners of the back cover as points A, B and
C . The book can be confined to a plane (e.g., the plane of a tabletop) using the three
holonomic constraints

z A = zB = zC = 0.

The two-joint planar arm can be shown to have two degrees of freedom by this
(somewhat indirect) counting method. Each of the two links can be thought of as
a rigid spatial body with six degrees of freedom. Six constraints restrict the bodies
to a plane (three for each link), two constraints restrict a point on the first link (the
first joint) to be at a fixed location in the plane, and once the angle of the first link is
chosen, two constraints restrict a point on the second link (the second joint) to be at
a fixed location. Therefore we have (12 coordinates) − (10 constraints) = 2 degrees
of freedom.

Of course we usually count the degrees of freedom of an open-chain jointed robot,
also known as a serial mechanism, by adding the degrees of freedom at each joint.
Common joints with one degree of freedom are revolute (R) joints, joints which rotate
about an axis, and prismatic (P) joints, joints which allow translational motion along
an axis. Our two-joint robot is sometimes called an RR or 2R robot, indicating that
both joints are revolute. An RP robot, on the other hand, has a revolute joint followed
by a prismatic joint. Another common joint is a spherical (ball-and-socket) joint,
which has three degrees of freedom.

A closed-chain robot, also known as a parallel mechanism, is one where the links
form one or more closed loops. If the mechanism has k links, then one is designated
as a stationary “ground” link, and k − 1 links are movable. To determine the number
of degrees of freedom, note that each movable link has N degrees of freedom, where
N = 6 for a spatial mechanism and N = 3 for a planar mechanism. Therefore the
system has N (k − 1) degrees of freedom before the joints are taken into account.
Now each of the n joints between the links places N − fi constraints on the feasible
motions of the links, where fi is the number of degrees of freedom at joint i (e.g.,
fi = 1 for a revolute joint, and fi = 3 for a spherical joint). Therefore, the mobility
M of the mechanism, or its number of degrees of freedom, is given by

M = N (k − 1) −
n∑

i=1

(N − fi)

= N (k − n − 1) +
n∑

i=1

fi .(3.1)

Choset-79066 book February 22, 2005 17:37

50 3 Configuration Space

A
B

C

D

E F

Figure 3.9 A planar mechanism with six links (A through F), seven revolute joints, and one
degree of freedom.

This is known as Grübler’s formula for closed chains, and it is only valid if the
constraints due to the joints are independent. In the planar mechanism of figure 3.9,
there are seven joints, each with one degree of freedom, and six links, yielding a
mobility of 3(6 − 7 − 1) + 7 = 1.

As an application of the ideas in this section, determine the number of degrees of
freedom of your arm by adding the degrees of freedom at your shoulder, elbow, and
wrist. To test your answer, place your palm flat down on a table with your elbow bent.
Without moving your torso or your palm, you should find that it is still possible to
move your arm. This internal freedom means that your arm is redundant with respect
to the task of positioning your hand (or a rigid body grasped by your hand) in space; an
infinity of arm configurations puts your hand in the same place.4 How many internal
degrees of freedom do you have? How many holonomic constraints were placed on
your arm’s configuration when you fixed your hand’s position and orientation? The
sum of the number of constraints and internal degrees of freedom is the number of
degrees of freedom of your (unconstrained) arm, and you should find that your arm
has more than six degrees of freedom. A robot is said to be hyper-redundant with
respect to a task if it has many more degrees of freedom than required for the task.
(There is no strict definition of “many” here.)

3.4 The Topology of the Configuration Space

Now that we understand how to determine the dimension of a configuration space,
we can begin to explore its topology and geometry, each of which plays a vital role
in developing and analyzing motion-planning algorithms. Some basic concepts from
topology are discussed in appendixes B and C.

4. Provided your arm is away from its joint limits.

Choset-79066 book February 22, 2005 17:37

3.4 The Topology of the Configuration Space 51

Figure 3.10 The surfaces of the coffee mug and the torus are topologically equivalent.

Topology is a branch of mathematics that considers properties of objects that do not
change when the objects are subjected to arbitrary continuous transformations, such
as stretching or bending. For this reason, topology is sometimes referred to as “rubber
sheet geometry.” Imagine a polygon drawn on a rubber sheet. As the sheet is stretched
in various directions, the polygon’s shape changes; however, certain properties of the
polygon do not change. For example, points that are inside the polygon do not move
to the outside of the polygon simply because the sheet is stretched.

Two spaces are topologically different if cutting or pasting is required to turn one
into the other, as cutting and pasting are not continuous transformations. For example,
the configuration spaces of the circular mobile robot (R2) and the two-joint planar arm
(T 2) are topologically different. If we imagine T 2 as the surface of a rubber doughnut,
we see that no matter how we stretch or deform the doughnut (without tearing it), the
doughnut will always have a hole in it. Also, if we imagine R

2 as an infinite rubber
sheet, there is no way to stretch it (without tearing it) such that a hole will appear in
the sheet. To a topologist, all rubber doughnuts are the same, regardless of how they
are stretched or deformed (figure 3.10). Likewise, all rubber sheet versions of R

2 are
the same.

One reason that we care about the topology of configuration space is that it will
affect our representation of the space. Another reason is that if we can derive a path-
planning algorithm for one kind of topological space, then that algorithm may carry
over to other spaces that are topologically equivalent (see, e.g., chapter 4, section 4.6).

Since topology is concerned with properties that are preserved under continu-
ous transformations, we begin our study of the topology of configuration spaces by
describing two types of continuous transformations: homeomorphisms and diffeo-
morphisms. Appendix C provides an introduction to differentiable transformations.

3.4.1 Homeomorphisms and Diffeomorphisms

A mapping φ : S → T is a rule that places elements of S into correspondence with
elements of T . We respectively define the image of S under φ and the preimage

Choset-79066 book February 22, 2005 17:37

52 3 Configuration Space

s
S

T

s
S

T

s
S

s
S

s
S

s
S

T

Discontinuous bijection
(isomorphism)

Homeomorphism Diffeomorphism

f(s) f(s) f(s)

TT T

f(s) f(s) f(s)

Surjection Injection Bijection

Figure 3.11 Representative ways of looking at surjective, injective, and bijective mappings.
Bijections may become homeomorphisms or diffeomorphisms if they are sufficiently differen-
tiable.

of T by

φ(S) = {φ(s) | s ∈ S} and φ−1(T) = {s | φ(s) ∈ T }.
If φ(S) = T (i.e., every element of T is covered by the mapping) then we say that

φ is surjective or onto. If φ puts each element of T into correspondence with at most
one element of S, i.e., for any t ∈ T , φ−1(t) consists of at most one element in S,
then we say that φ is injective (one-to-one). If φ is injective, then when s1 �= s2 we
have φ(s1) �= φ(s2) for s1, s2 ∈ S. Maps that are both surjective and injective are
said to be bijective. Figure 3.11 illustrates these definitions. As another example, the
map sin : (− π

2 , π

2) → (−1, 1) is bijective, whereas sin : R → [−1, 1] is only surjective.
Bijective maps have the property that their inverse exists at all points in the range T ,
and thus they allow us to move easily back and forth between the two spaces S and T .
In our case, we will use bijective maps to move back and forth between configuration
spaces (whose geometry can be quite complicated) and Euclidean spaces.

We will consider two important classes of bijective mappings.

DEFINITION 3.4.1 If φ : S → T is a bijection, and both φ and φ−1 are continuous, then
φ is a homeomorphism. When such a φ exists, S and T are said to be homeomorphic.

Choset-79066 book February 22, 2005 17:37

3.4 The Topology of the Configuration Space 53

Circle Ellipse Racetrack

Figure 3.12 A circle, an ellipse, and a racetrack.

A mapping φ : U → V is said to be smooth if all partial derivatives of φ, of all
orders, are well defined (i.e., φ is of class C∞). With the notion of smoothness, we
define a second type of bijection.

DEFINITION 3.4.2 A smooth map φ : U → V is a diffeomorphism if φ is bijective and
φ−1 is smooth. When such a φ exists, U and V are said to be diffeomorphic.

The condition for diffeomorphisms (smoothness) is stronger that the condition for
homeomorphisms (continuity), and thus all diffeomorphisms are homeomorphisms.

To illustrate these ideas, consider three one-dimensional surfaces: a circle, denoted
by Mc; an ellipse, denoted by Me; and a “racetrack,” denoted by Mr . The racetrack
consists of two half-circles connected by straight lines (figure 3.12). We define these
shapes mathematically as

Mc = {(x , y) | fc(x , y) = x2 + y2 − 1 = 0}(3.2)

Me = {(x , y) | fe(x , y) = x2

4
+ y2 − 1 = 0}(3.3)

Mr = {(x , y) | fr (x , y) = 0}(3.4)

with

fr (x , y) =

x − 1 : −1 ≤ y ≤ 1, x > 0
(y + 1)2 + x2 − 1 : y < −1
(y − 1)2 + x2 − 1 : y > 1

x + 1 : −1 ≤ y ≤ 1, x < 0

.(3.5)

Note that these surfaces are implicitly defined as being the set of points that satisfy
some equation f (x , y) = 0.

In some ways, these three surfaces are similar. For example, they are all simple,
closed curves in the plane; all of fc(x , y), fe(x , y), and fr (x , y) are continuous. In
other ways, they seem quite different. For example, both fc(x , y) and fe(x , y) are

Choset-79066 book February 22, 2005 17:37

54 3 Configuration Space

continuously differentiable, while fr (x , y) is not. We can more precisely state the
similarities and differences between these surfaces using the concepts of homeomor-
phism and diffeomorphism. In particular, it can be shown that Mc, Me, and Mr are
all homeomorphic to each other. For example, the map φ :Me →Mc given by

φ(x , y) =
[

x
√

x2 + y2
,

y
√

x2 + y2

]T

is a homeomorphism.
For this choice of φ, both φ and φ−1 are smooth, and therefore,Mc is diffeomorphic

to Me. Neither Mc nor Me is diffeomorphic to Mr , however. This is because
fr (x , y) is not continuously differentiable, while both fc(x , y) and fe(x , y) are. This
can be seen by examining the curvatures of the circle, ellipse, and racetrack. For the
circle, the curvature is constant (and thus continuous), and for the ellipse, curvature
is continuous. For the racetrack, there are discontinuities in curvature (at the points
(−1, 1), (−1, −1), (1, 1), (1, −1)), and therefore there is no smooth mapping from
either the circle or the ellipse to the racetrack.

We are often concerned only with the local properties of configuration spaces.
Local properties are defined on neighborhoods. For metric spaces5, neighborhoods
are most easily defined in terms of open balls. For a point p of some manifold M,
we define an open ball of radius ε by

Bε(p) = {p′ ∈ M | d(p, p′) < ε},
where d is a metric on M.6 A neighborhood of a point p ∈ M is any subset U ⊆ M
with p ∈ U such that for every p′ ∈ U , there exists an open ball Bε(p′) ⊂ U . Any
open ball is itself a neighborhood. The open disk in the plane is an example. For the
point (x0, y0) in the plane, an open ball defined by the Euclidean metric is

Bε(x0, y0) = {(x , y) | (x − x0)2 + (y − y0)2 < ε2}.
We say that S is locally diffeomorphic (resp. locally homeomorphic) to T if for

each p ∈ S there exists a diffeomorphism (resp. homeomorphism) f from S to T on
some neighborhood U with p ∈ U .

The sphere presents a familiar example of these concepts. At any point on the
sphere, there exists a neighborhood of that point that is diffeomorphic to the plane.
It is not surprising that people once believed the world was flat — they were only
looking at their neighborhoods!

5. A metric space is a space equipped with a distance metric. See appendix C.
6. One can define all topological properties, including neighborhoods, without resorting to the use of
metrics, but for our purposes, it will be easier to assume a metric on the configuration space and exploit
the metric properties.

Choset-79066 book February 22, 2005 17:37

3.4 The Topology of the Configuration Space 55

Let us now reflect on the two examples from the beginning of this chapter. For the
circular mobile robot, the workspace and the configuration space are diffeomorphic.
This is easy to see, since both are copies of R

2. In this case, the identity map φ(x) = x
is a perfectly fine global diffeomorphism between the workspace and configuration
space. In contrast, the two-joint manipulator has a configuration space that is T 2, the
torus. The torus T 2 is not diffeomorphic to R

2, but it is locally diffeomorphic. If the
revolute joints in the two-joint manipulator have lower and upper limits, θ�

i < θi < θu
i ,

so that they cannot perform a complete revolution, however, then the configuration
space of the two-joint manipulator becomes an open subset of the torus, which is
diffeomorphic to R

2 (globally). This follows from the fact that each joint angle lies
in an open interval of R

1, and we can “stretch” that open interval to cover the line.
An example of such a stretching function is tan : (− π

2 , π

2) → R.

3.4.2 Differentiable Manifolds

For all of the configuration spaces that we have seen so far, we have been able to
uniquely specify a configuration by n parameters, where n is the dimension of the
configuration space (two for the planar two-joint arm, three for a polygon in the plane,
etc.). The reason that we could do so was that these configuration spaces were all
“locally like” n -dimensional Euclidean spaces. Such spaces, called manifolds, are a
central topic of topology.

DEFINITION 3.4.3 (Manifold) A set S is a k-dimensional manifold if it is locally
homeomorphic to R

k , meaning that each point in S possesses a neighborhood that is
homeomorphic to an open set in R

k .

While a general k-dimensional manifold is locally homeomorphic to R
k , the config-

uration spaces that we will consider are locally diffeomorphic to R
k , an even stronger

relationship. In fact, when we parameterized configurations in section 3.1, we were
merely constructing diffeomorphisms from configuration spaces to R

2. If we con-
struct enough of these diffeomorphisms (so that every configuration in Q is in the
domain of at least one of them), and if these diffeomorphisms are compatible with
one another (an idea that we will formalize shortly), then this set of diffeomorphisms
together with the configuration space define a differentiable manifold. We now make
these ideas more precise.

DEFINITION 3.4.4 (Chart) A pair (U, φ), such that U is an open set in a k-
dimensional manifold and φ is a diffeomorphism from U to some open set in R

k ,
is called a chart.

Choset-79066 book February 22, 2005 17:37

56 3 Configuration Space

The use of the term chart is analogous to its use in cartography, since the subset
U is “charted” onto R

k in much the same way that cartographers chart subsets of
the globe onto a plane when creating maps. Charts are sometimes referred to as
coordinate systems because each point in the set U is assigned a set of coordinates in
a Euclidean space [410]. The inverse diffeomorphism, φ−1 : R

k → U , is referred to
as a parameterization of the manifold.

As an example, consider the one-dimensional manifold S1 = {x = (x1, x2) ∈ R
2 |

x2
1 + x2

2 = 1}. For any point x ∈ S1 we can define a neighborhood that is diffeomorphic
to R. For example, consider the upper portion of the circle, U1 = {x ∈ S1 | x2 > 0}.
The chart φ1 : U1 → (0, 1) is given by φ1(x) = x1, and thus x1 can be used to
define a local coordinate system for the upper semicircle. In the other direction, the
upper portion of the circle can be parameterized by z ∈ (0, 1) ⊂ R, with φ−1

1 (z) =
(z, (1 − z)

1
2), which maps the open unit interval to the upper semicircle. But S1 is not

globally diffeomorphic to R
1; we cannot find a single chart whose domain includes

all of S1.
We have already used this terminology in section 3.1, when we referred to θ1, θ2 as

parameters that represent a configuration of the two-joint arm. Recall that (θ1, θ2) ∈
R

2, and that when considered as a representation of the configuration, they define a
point in T 2, the configuration space, which is a manifold. We now see that in sec-
tion 3.1, when we represented a configuration of the planar arm by the pair (θ1, θ2), we
were in fact creating a chart from a subset of the configuration space to a subset of R

2.
A single mapping from T 2 to R

2 shown in figure 3.2 encounters continuity prob-
lems at θi = {0, 2π}. For many interesting configuration spaces, it will be the case
that we cannot construct a single chart whose domain contains the entire configuration
space. In these cases, we construct a collection of charts that cover the configuration
space. We are not free to choose these charts arbitrarily; any two charts in this col-
lection must be compatible for parts of the manifold on which their domains overlap.
Two charts with such compatibility are said to be C∞-related (figure 3.13).

DEFINITION 3.4.5 (C∞-related) Let (U, φ) and (V , ψ) be two charts on a k-
dimensional manifold. Let X be the image of U ∩ V under φ, and Y be the image of
U ∩ V under ψ , i.e.,

X = {φ(x) ∈ R
k | x ∈ U ∩ V }

Y = {ψ(y) ∈ R
k | y ∈ U ∩ V }.

These two charts are said to be C∞-related if both of the composite functions

ψ ◦ φ−1 : X → Y,

φ ◦ ψ−1 : Y → X

are C∞.

Choset-79066 book February 22, 2005 17:37

3.4 The Topology of the Configuration Space 57

Y
X

U V

f

f ° y-1

y ° f-1

y

Figure 3.13 The charts (U, φ) and (V , ψ) map open sets on the k-dimensional manifold to
open sets in R

k .

If two charts are C∞-related, we can switch back and forth between them in a smooth
way when their domains overlap. This idea will be made more concrete in the example
of S1 below.

A set of charts that are C∞-related, and whose domains cover the entire con-
figuration space Q, form an atlas for Q. An atlas is sometimes referred to as the
differentiable structure forQ. Together, the atlas andQ comprise a differentiable man-
ifold. There are other ways to define differentiable manifolds, as we will see in sec-
tion 3.5.

As an example, consider again the one-dimensional manifold S1. Above, we defined
a single chart, (U1, φ1). If we define three more charts, we can construct an atlas for
S1. These four charts are given by

U1 = {x ∈ S1 | x2 > 0}, φ1(x) = x1

U2 = {x ∈ S1 | x2 < 0}, φ2(x) = x1

U3 = {x ∈ S1 | x1 > 0}, φ3(x) = x2

U4 = {x ∈ S1 | x1 < 0}, φ4(x) = x2.

The corresponding parameterizations are given by φ−1
i : (−1, 1) → Ui , with

φ−1
1 (z) = (z, 1 − z2)

φ−1
2 (z) = (z, z2 − 1)

φ−1
3 (z) = (1 − z2, z)

φ−1
4 (z) = (z2 − 1, z).

It is clear that the Ui cover S1, so to verify that these charts form an atlas
it is only necessary to show that they are C∞-related (figure 3.14). Note that

Choset-79066 book February 22, 2005 17:37

58 3 Configuration Space

U4 U3

U1

U2

Figure 3.14 Four charts covering the circle S1.

U1 ∩ U2 = U3 ∩ U4 = ∅, so we need only check the four pairs of composite maps:

φ1 ◦ φ−1
3 : (0, 1) → (0, 1), φ3 ◦ φ−1

1 : (0, 1) → (0, 1)
φ1 ◦ φ−1

4 : (0, 1) → (−1, 0), φ4 ◦ φ−1
1 : (−1, 0) → (0, 1)

φ2 ◦ φ−1
3 : (−1, 0) → (0, 1), φ3 ◦ φ−1

2 : (0, 1) → (−1, 0)
φ2 ◦ φ−1

4 : (−1, 0) → (−1, 0), φ4 ◦ φ−1
2 : (−1, 0) → (−1, 0).

In each case, φi ◦ φ−1
j (z) is smooth on each of the open unit intervals that define the

domains for the composite mappings given above. For example, φ1 ◦φ−1
3 (z) = 1− z2.

This collection of four charts is not minimal; it is straightforward to find two charts
to cover S1 (see problem 9).

3.4.3 Connectedness and Compactness

We say that a manifold is path-connected, or just connected, if there exists a path
between any two points of the manifold.7 All of the obstacle-free configuration spaces
that we will consider in this text, e.g., R

n , Sn , and T n , are connected. The presence of
obstacles, however, can disconnect the free configuration space Qfree. In this case, the
free configuration space is broken into a set of connected components, the maximal
connected subspaces. In figure 3.5(c), for example, obstacles break the mobile robot’s
free configuration space into two connected components. There can be no solution to a
motion-planning problem if qstart and qgoal do not lie in the same connected component
of Qfree.

7. For more general spaces, the concepts of path-connectedness and connectedness are not equivalent, but
for a manifold they are the same. More generally, a space is connected if there is no continuous mapping
from the space to a discrete set of more than one element.

Choset-79066 book February 22, 2005 17:37

3.5 Embeddings of Manifolds in R
n 59

A space is compact8 if it resembles a closed, bounded subset of R
n . A space is closed

if it includes all of its limit points. As examples, the half-open interval [0, 1) ⊂ R is
bounded but not compact, while the closed interval [0, 1] is bounded and compact.
The space R

n is not bounded and therefore not compact. The spaces Sn and T n are
both compact, as they can be expressed as closed and bounded subsets of Euclidean
spaces. The unit circle S1, e.g., can be expressed as a closed and bounded subset
of R

2.
In configuration spaces with obstacles or joint limits, the modeling of the obstacles

may affect whether the space is compact or not. For a revolute joint subject to joint
limits, the set of joint configurations is compact if the joint is allowed to hit the limits,
but not compact if the joint can only approach the limits arbitrarily closely.

The product of compact configuration spaces is also compact. For a noncompact
space M1 ×M2, if M1 is compact, then it is called the compact factor of the space.
Compact and noncompact spaces cannot be diffeomorphic.

3.4.4 Not All Configuration Spaces Are Manifolds

We are focusing on configuration spaces that are manifolds, and more specifically
differentiable manifolds, but it is important to keep in mind that not all configuration
spaces are manifolds. As a simple example, the closed unit square [0, 1] × [0, 1] ⊂
R

2 is not a manifold, but a manifold with boundary obtained by pasting the one-
dimensional boundary on the two-dimensional open set (0, 1) × (0, 1). Also, some
parallel mechanisms with one degree of freedom have configurations from which
there are two distinct possible motion directions (i.e., the configuration space is a
self-intersecting figure eight). It is beyond the scope of this chapter to discuss other
types of configuration spaces, but be aware: if you cannot show it to be a manifold,
it may not be!

3.5 Embeddings of Manifolds in R
n

Although a k-dimensional manifold can be represented using as few as k parameters,
we have seen above that doing so may require multiple charts. An alternative is to
use a representation with “extra” numbers, subject to constraints, to achieve a single
global representation. As an example, S1 is a one-dimensional manifold that we can

8. In topology, a space is defined to be compact if every open cover of the space admits a finite subcover,
but we will not use these concepts here.

Choset-79066 book February 22, 2005 17:37

60 3 Configuration Space

represent as S1 = {(x , y) | x2 + y2 = 1}; we “embed” S1 in R
2. The fact that we

cannot find a single chart for all of S1 tells us that we cannot embed S1 in R
1. Likewise,

although the torus T 2 is a two-dimensional manifold, it is not possible to embed
the torus in R

2, which is why we typically illustrate the torus as a doughnut shape
in R

3.
The manifolds S1 and T 2 can be viewed as submanifolds of R

2 and R
3, respectively.

Submanifolds are smooth subsets of an ambient space that inherit the differentiability
properties of the ambient space. Submanifolds are often created by a smooth set of
equality constraints on R

n , as we see in the example of the circle S1 above. Any
differentiable manifold can be viewed as an embedded submanifold of R

n for large
enough n .

When we are confronted with a configuration space that does not permit a single
global coordinate chart, we are faced with a choice. We can either use a single set
of parameters and suffer the consequences of singularities and discontinuities in the
representation, use multiple charts to construct an atlas, or use a single global repre-
sentation by embedding the configuration space in a higher-dimensional space. One
advantage of the last approach is that the representation can facilitate other operations.
Important examples are representations of orientation using complex numbers and
quaternions (see appendix E) and matrix representations for the configuration of a
rigid body in the plane or in space, as discussed next.

3.5.1 Matrix Representations of Rigid-Body Configuration

It is often convenient to represent the position and orientation of a rigid body using an
m × m matrix of real numbers. The m2 entries of this matrix must satisfy a number of
smooth equality constraints, making the manifold of such matrices a submanifold of
R

m2
. One advantage of such a representation is that these matrices can be multiplied

to get another matrix in the manifold. More precisely, these matrices form a group
with the group operation of matrix multiplication.9 Simple matrix multiplication can
be used to change the reference frame of a representation or to rotate and translate a
configuration.

We describe the orientation of a rigid body in n-dimensional space (n = 2 or 3)
by the matrix groups SO(n), and the position and orientation by the matrix groups
SE(n). After describing these representations abstractly, we look in detail at examples

9. In fact, the matrix representations in this section are Lie groups, as (1) they are differentiable manifolds
which are also groups, (2) the group operation is C∞, and (3) the mapping from an element of the group
to its inverse is C∞.

Choset-79066 book February 22, 2005 17:37

3.5 Embeddings of Manifolds in R
n 61

ys

zs

xs

z~

y~

x~

Figure 3.15 The rotation matrix for a body is obtained by expressing the unit vectors x̃ , ỹ,
and z̃ of the body x-y-z frame in a stationary frame xs-ys-zs .

of the use of SE(n) for representing the configuration of a body, for changing the
reference frame of the representation, and for translating and rotating a configuration.

Orientation: SO(2) and SO(3)

Figure 3.15 shows a rigid body with a frame x-y-z attached to it. Our representation
of the orientation of the body will be as a 3 × 3 matrix

R =

x̃1 ỹ1 z̃1

x̃2 ỹ2 z̃2

x̃3 ỹ3 z̃3

 =

R11 R12 R13

R21 R22 R23

R31 R32 R33

 ∈ SO(3),

where x̃ = [x̃1, x̃2, x̃3]T is the unit vector in the body x-direction expressed in a
stationary coordinate frame xs-ys-zs . The vectors ỹ and z̃ are defined similarly (see
figure 3.15).

The matrix R is often called the rotation matrix representation of the orientation.
This representation uses nine numbers to represent the three angular degrees of free-
dom, so there are six independent constraints on the matrix entries: each column (and
row) is a unit vector,

||x̃ || = ||ỹ|| = ||z̃|| = 1,

yielding three constraints, and the columns (and rows) are orthogonal to each other,

x̃ T ỹ = ỹT z̃ = z̃T x̃ = 0,

Choset-79066 book February 22, 2005 17:37

62 3 Configuration Space

yielding three more constraints. Because we are assuming right-handed frames,10

the determinant of R is +1. Matrices satisfying these conditions belong to the spe-
cial orthogonal group of 3 × 3 matrices SO(3). “Special” refers to the fact that the
determinant is +1, not −1.

In the planar case, R is the 2 × 2 matrix

R =
[

x̃1 ỹ1

x̃2 ỹ2

]

=
[

cos θ −sinθ

sin θ cos θ

]

∈ SO(2),

where θ is the orientation of the x-y frame relative to the xs-ys frame.
Generalizing, orientations in n-dimensional space can be written

SO(n) = {R ∈ R
n×n | R RT = I, det(R) = 1},

where I is the identity matrix. This implies the relation

RT = R−1.

Position and Orientation: SE(2) and SE(3)

Figure 3.16 shows a rigid body with an attached x-y-z coordinate frame relative to a
stationary frame xs-ys-zs . Let p = [p1, p2, p3]T ∈ R

3 be the vector from the origin
of the stationary frame to the body frame, as measured in the stationary frame, and
let R ∈ SO(3) be the rotation matrix as described above, as if the body frame were
translated back to the stationary frame. Then we represent the position and orientation
of the body frame relative to the stationary frame as the 4 × 4 transform matrix

T =
[

R p
0 1

]

∈ SE(3),

where the bottom row consists of three zeros and a one. (These “extra” numbers will
be needed to allow us to perform matrix multiplications, as we will see shortly.) Since
R and p both have three degrees of freedom, the configuration of a rigid body in
three-space has six degrees of freedom, as we discovered earlier in the chapter.

Generalizing, the position and orientation of a rigid body in n-dimensional space
can be written as an element of the special Euclidean group SE(n):

SE(n) ≡
[

SO(n) R
n

0 1

]

,

where the bottom row consists of n zeros and a one.

10. To make a right-handed frame, point straight ahead with your right index finger, point your middle
finger 90 degrees to the left, and stick your thumb straight up. Your index finger is pointing in the +x
direction, your middle finger is pointing in the +y direction, and your thumb is pointing in the +z direction.

Choset-79066 book February 22, 2005 17:37

3.5 Embeddings of Manifolds in R
n 63

ys

zs

xs

z~

y~

x~

p

Figure 3.16 The body frame x-y-z relative to a stationary world frame xs-ys-zs .

Uses of the Matrix Representations

The matrix groups SO(n) and SE(n) can be used to

1. represent rigid-body configurations,

2. change the reference frame for the representation of a configuration or a point, and

3. displace (move) a configuration or a point.

When the matrix is used for representing a configuration, we often call it a frame.
When it is used for displacement or coordinate change, we often call it a transform.
The various uses are best demonstrated by example.

Figure 3.17 shows three coordinate frames on a regular grid of unit spacing. These
frames are confined to a plane with their z-axes pointing out of the page. Let TAB be
the configuration of frame B relative to frame A, and let TBC be the configuration of
frame C relative to frame B. It is clear from the figure that

TAB =
[

RAB pAB

0 1

]

=

−1 0 0 −2
0 −1 0 0
0 0 1 0
0 0 0 1

 , TBC =

0 1 0 −4
−1 0 0 −1

0 0 1 0
0 0 0 1

 .

From these, we can find TAC , the frame C relative to the frame A, by performing a
change of reference frame on TBC . This involves premutliplying by TAB , based on

Choset-79066 book February 22, 2005 17:37

64 3 Configuration Space

xB
~

yB
~

yA
~ yC

~

xA
~

xC
~

B
A

C

w

Figure 3.17 Three frames in a plane with their z-axes pointing out of the page.

the rule for coordinate transformations that the second subscript of the matrix on the
left cancels with the first subscript of the matrix on the right, if they are the same
subscript. In other words,

TAB TBC = TA �B T�BC = TAC .

We find that

TAC =

−1 0 0 −2
0 −1 0 0
0 0 1 0
0 0 0 1

0 1 0 −4
−1 0 0 −1

0 0 1 0
0 0 0 1

 =

0 −1 0 2
1 0 0 1
0 0 1 0
0 0 0 1

 ,

which we can verify by inspection.
The representation of the point w in the coordinates of frame C is written wC . From

figure 3.17, we can see that the coordinates of w in C are [−2, 1, 0]T . To facilitate
matrix multiplications, however, we will express points in homogeneous coordinates
by appending a 1 to the end of the vector, i.e.,

wC = [−2, 1, 0, 1]T .

To find the representation of the point w in other frames, we use a modification of the
subscript canceling rule to get

TBC wC = TB �C w �C = w B = [−3, 1, 0, 1]T

and

TAB TBC wC = TA �C w �C = wA = [1, −1, 0, 1]T ,

which can be verified by inspection.
Elements of SE(n) can also be used to displace a point. For example, TABwA does

not satisfy the subscript canceling rule, and the result is not simply a representation

Choset-79066 book February 22, 2005 17:37

3.5 Embeddings of Manifolds in R
n 65

AB

w'

A

(a) (b) (c) (d)

w

Figure 3.18 Displacing a point by the transformation TAB . (a) The frames A and B and the
point w . (b) Rotating frame A to the orientation of frame B, carrying the point w along with
it. (c) Translating frame A to the location of frame B, carrying w along with it. (d) The final
point w ′

A = TABwA.

of the point w in a new frame. Instead, the point w is rotated about the origin of the
frame A by RAB (expressed in the A frame), and then translated by pAB in the A
frame. This is the same motion required to take frame A to frame B. The result is

w ′
A = TABwA = [−3, 1, 0, 1]T ,

the location of the transformed point in the frame A. This transformation is shown
graphically in figure 3.18.

Finally, we can use elements of SE(3) to displace frames, not just points. For
example, given a frame B represented by TAB relative to frame A, and a transform
T1 ∈ SE(3), then

TAB ′ = TAB T1 =
[

RAB R1 RAB p1 + pAB

0 1

]

is the representation of the transformed frame B ′ relative to A after rotating B about
its origin by R1 (expressed in the B frame) and then translating by p1 in the original
B frame (before it was rotated). On the other hand,

TAB ′′ = T1TAB =
[

R1 RAB R1 pAB + p1

0 1

]

is the representation of the transformed frame B ′′ relative to A after rotating B about
the origin of A by R1 (expressed in the A frame) and then translating by p1 in the
A frame. Note that TAB ′ and TAB ′′ are generally different, as matrix multiplication is
not commutative.

If we consider frame B to be attached to a moving body, we call T1 a body-frame
transformation if it is multiplied on the right, as the rotation and translation are
expressed relative to the body frame B. If A is a stationary world frame, we call T1 a
world-frame transformation if it is multiplied on the left, as the rotation and translation

Choset-79066 book February 22, 2005 17:37

66 3 Configuration Space

A

B B''

B'

AA

Figure 3.19 (a) The initial frame B relative to A. (b) B ′ is obtained by rotating about B and
then translating in the original yB-direction. (c) B ′′ is obtained by rotating about A and then
translating in the yA-direction.

are expressed relative to the fixed A frame. An example is shown in figure 3.19 for

TAB =

−1 0 0 −2
0 −1 0 0
0 0 1 0
0 0 0 1

 T1 =

−1 0 0 0
0 −1 0 1
0 0 1 0
0 0 0 1

 ,

giving

TAB ′ = TAB T1 =

1 0 0 −2
0 1 0 −1
0 0 1 0
0 0 0 1

 TAB ′′ = T1TAB =

1 0 0 2
0 1 0 1
0 0 1 0
0 0 0 1

 .

Applying n world-frame transformations yields TAB ′′ = Tn . . . T2T1TAB , while n
body-frame transformations yields TAB ′ = TAB T1T2 . . . Tn .

3.6 Parameterizations of SO(3)

We have seen that the nine elements Ri j of a rotation matrix R ∈ SO(3) are subject
to six constraints, leaving three rotational degrees of freedom. Thus, we expect that
SO(3) can be locally parameterized using three variables. Euler angles are a common
parameterization. However, just as we see we cannot find a global parameterization
for a circle with a single variable, we cannot build a global parameterization of SO(3)
with Euler angles.

Given two coordinate framesF0 andF1, we can specify the orientation of frame F1

relative to frame F0 by three angles (φ , θ , ψ), known as Z-Y-Z Euler angles. These
Euler angles are defined by three successive rotations as follows. Initially, the two

Choset-79066 book February 22, 2005 17:37

3.6 Parameterizations of SO(3) 67

x0

y1

x1xb

zb, z1

z0, za

ya, yb

xa

Figure 3.20 Euler angle representation.

frames are coincident. Rotate F0 about the z-axis by the angle φ to obtain frame Fa .
Next, rotate frame Fa about its y-axis by the angle θ to obtain frame Fb. Finally,
rotate frame Fb about its z-axis by the angle ψ to obtain frame F1. This is illustrated
in figure 3.20.

The corresponding rotation matrix R can thus be generated by successive multi-
plication of rotation matrices that define rotations about coordinate axes,

R = Rz,φ Ry,θ Rz,ψ(3.6)

=

cφ −sφ 0
sφ cφ 0
0 0 1

cθ 0 sθ

0 1 0
−sθ 0 cθ

cψ −sψ 0
sψ cψ 0
0 0 1

(3.7)

=

cφcθcψ − sφsψ −cφcθ sψ − sφcψ cφsθ

sφcθcψ + cφsψ −sφcθ sψ + cφcψ sφsθ

−sθcψ sθ sψ cθ

 .(3.8)

Note that successive rotation matrices are multiplied on the right, as successive rota-
tions are defined about axes in the changing “body” frame.

Parameterization of SO(3) using Euler angles, along with some other representa-
tions of SO(3), are described in detail in appendix E.

Choset-79066 book February 22, 2005 17:37

68 3 Configuration Space

3.7 Example Configuration Spaces

In most cases, we can model robots as rigid bodies, articulated chains, or combinations
of these two. Some common robots and representations of their configuration spaces
are given in table 3.1.

When designing a motion planner, it is often important to understand the underlying
structure of the robot’s configuration space. In particular, we note the following.

S1 × S1 × · · · × S1 (n times) = T n , the n-dimensional torus

S1 × S1 × · · · × S1 (n times) �= Sn , the n-dimensional sphere in R
n+1

S1 × S1 × S1 �= SO(3)

SE(2) �= R
3

SE(3) �= R
6

It is sometimes important to know whether a manifold is compact. The manifolds
Sn , T n , and SO(n) are all compact, as are all of their direct products. The manifolds
R

n and SE(n) are not compact, and therefore R
n × M is not compact, regardless of

whether or not the manifold M is compact.
Despite their differences, all of these configuration spaces have an important sim-

ilarity. When equipped with an atlas, each is a differentiable manifold. In particular,

R
1 and SO(2) are one-dimensional manifolds;

R
2, S2 and T 2 are two-dimensional manifolds;

Type of robot Representation of Q

Mobile robot translating in the plane R
2

Mobile robot translating and rotating in SE(2) or R
2 × S1

the plane

Rigid body translating in the three-space R
3

A spacecraft SE(3) or R
3 × SO(3)

An n-joint revolute arm T n

A planar mobile robot with an attached SE(2) × T n

n-joint arm

Table 3.1 Some common robots and their configuration spaces.

Choset-79066 book February 22, 2005 17:37

3.8 Transforming Configuration and Velocity Representations 69

R
3, SE(2) and SO(3) are three-dimensional manifolds;

R
6, T 6 and SE(3) are six-dimensional manifolds.

Thus, for example, all of R
3, SE(2), and SO(3) can be represented locally by a set

of three coordinates.

3.8 Transforming Configuration and Velocity Representations

We often need to transform from one representation of the configuration of a robot
q ∈ Q to some other representation x ∈M. A common example occurs when q
represents the joint angles of a robot arm and x represents the configuration of the
end effector as a rigid body in the ambient space. The representation x is more
convenient when planning manipulation tasks in the world, but control of the robot
arm is more easily expressed in q variables, so we need an easy way of switching back
and forth. It is often the case that Q and M are not homeomorphic; the dimension of
the two spaces may not even be equal.

Using the robot arm as inspiration, we define the forward kinematics map φ : Q →
M and the inverse kinematics map φ−1 : M → Q. These maps may not be homeo-
morphisms even if the dimensions of Q and M are equal. As the robot system moves,
the time derivative ẋ = dx

dt is related to the time derivative q̇ = dq
dt by

ẋ = ∂φ

∂q
q̇ = J (q)q̇,

where J is the Jacobian of the map φ, also known as the differential Dφ (see
appendix C). The Jacobian is also useful for transforming forces expressed in one set
of coordinates to another (see chapter 4, section 4.7, and chapter 10).

EXAMPLE 3.8.1 The 2R robot arm of figure 3.21 has link lengths L1 and L2. Its
configuration space is Q = T 2, and we represent the configuration by the two
joint angles q = [θ1, θ2]T . The endpoint of the hand in the Cartesian space is
x = [x1, x2]T ∈ M ⊂ R

2. In this case, the dimensions of Q and M are equal,
but they are not homeomorphic. The forward kinematics map φ : Q → M is

φ(q) =
[

φ1(q)
φ2(q)

]

=
[

L1 cos θ1 + L2 cos(θ1 + θ2)
L1 sin θ1 + L2 sin(θ1 + θ2)

]

.

The inverse kinematics map φ−1 is one-to-two at most points of M, meaning that
the robot can be chosen to be in either the right-arm or left-arm configuration. The
inverse kinematics of the 2R arm is most easily found geometrically using the law of
cosines and is left for problem 20.

Choset-79066 book February 22, 2005 17:37

70 3 Configuration Space

L1

L2

(x1, x2)

q2

q1

Figure 3.21 The 2R robot arm and the velocity at its endpoint.

The Jacobian of the forward kinematics map is

J (q) = ∂φ

∂q
=

[
∂φ1
∂θ1

∂φ1
∂θ2

∂φ2
∂θ1

∂φ2
∂θ2

]

=
[−L1 sin θ1 − L2 sin(θ1 + θ2) −L2 sin(θ1 + θ2)

L1 cos θ1 + L2 cos(θ1 + θ2) L2 cos(θ1 + θ2)

]

.

Plugging in L1 = L2 = 1, θ1 = π/4, θ2 = π/2, and q̇ = [1, 0]T , as shown in
figure 3.21, we find that

ẋ = J (q)q̇ =
[−√

2 −√
2/2

0 −√
2/2

] [
1
0

]

=
[−√

2
0

]

,

matching the motion seen in the figure.
When sin θ2 = 0, the Jacobian J (q) loses rank, and the robot is said to be in a

singular configuration. In this case, the two-dimensional set of joint velocities q̇ maps
to a one-dimensional set of endpoint velocities ẋ — instantaneous endpoint motion
is impossible in one direction.

EXAMPLE 3.8.2 A polygon moving in the plane is represented by the configuration
q = [q1, q2, q3]T ∈ Q = R

2 × S1, where (q1, q2) gives the position of a reference
frame Fp attached to the polygon relative to a world frame F , and q3 gives the

Choset-79066 book February 22, 2005 17:37

Problems 71

Fp
q3

(x1, x2)

(q1, q2)

F

r

Figure 3.22 The point on the polygon is at r in the polygon frame Fp and x in the world
frame F .

orientation of Fp relative to F (see figure 3.22). A point is fixed on the polygon at
r = [r1, r2]T in the polygon frame Fp, and let x = [x1, x2]T ∈ M = R

2 be the
position of this point in the plane. Then the forward kinematics mapping is
[

x1

x2

]

= φ(q) =
[

q1

q2

]

+
[

cos q3 −sinq3

sin q3 cos q3

] [
r1

r2

]

,

where we recognize the 2 × 2 rotation matrix. The inverse map φ−1 in this example is
one-to-many, as the dimension ofQ is greater than the dimension ofM. The velocities
ẋ and q̇ are related by the Jacobian

J (q) = ∂φ

∂q
=

[
∂φ1
∂q1

∂φ1
∂q2

∂φ1
∂q3

∂φ2
∂q1

∂φ2
∂q2

∂φ3
∂q2

]

=
[

1 0 −r1 sin q3 − r2 cos q3

0 1 r1 cos q3 − r2 sin q3

]

.

Problems

1. Invent your own nontrivial robot system. It could consist of one or more robot arms, mobile
platforms, conveyor belts, fixed obstacles, movable objects, etc. Describe the configuration
space mathematically. Explain whether or not the configuration space is compact, and if
not, describe the compact factors. Describe the connected components of the configuration
space. Draw a rough picture of your robot system.

Choset-79066 book February 22, 2005 17:37

72 3 Configuration Space

2. Give the dimension of the configuration spaces of the following systems. Explain your
answers.

(a) Two mobile robots rotating and translating in the plane.
(b) Two translating and rotating planar mobile robots tied together by a rope.
(c) Two translating and rotating planar mobile robots connected rigidly by a bar.
(d) The two arms of a single person (with torso stationary) holding on firmly to a car’s

steering wheel.
(e) A train on train tracks. What if we include the wheel angles? (The wheels roll without

slipping.)
(f) A spacecraft with a 6R robot arm.
(g) The end effector of the 6R robot arm of a spacecraft.
(h) Your legs as you pedal a bicycle (remaining seated with feet fixed to the pedals).
(i) A sheet of paper.

3. Describe the Bug2 algorithm for a two-joint manipulator. What are the critical differences
between the Bug2 algorithm for a mobile base and the two-joint manipulator? What does
a straight line mean in the arm’s configuration space? Can Bug2 be made to work for the
two-joint arm?

4. Prove the configuration space obstacle of a convex mobile robot translating in a plane with
a convex obstacle is convex.

5. Prove the union operator propagates from the workspace to the configuration space. That
is, the union of two configuration space obstacles is the configuration space obstacle of the
union of two workspace obstacles. In other words, assuming Q is a configuration space
operator, show that

Q(WOi

⋃
WO j) = QOi

⋃
QO j .

6. How many degrees of freedom does a rigid body in n-space have? How many of them are
rotational? Prove these two ways: (a) using the method of choosing a number of points on
the body and sequentially adding their independent degrees of freedom until each point
on the body is fixed, and (b) using the definitions of SE(n) and SO(n).

7. Use cardboard and pushpins to create a closed chain with four links, a four-bar mechanism.
One of these bars is considered stationary, or fixed to the ground. Going around the loop,
the link lengths between joints are 6.5 (the ground link), 3.0, 1.5, and 3.0 inches (or
centimeters) in length. Poke a hole at the midpoint of the 1.5 inch link and trace the
path that the hole traces. Describe a good representation of the configuration space of the
linkage.

8. Give a homeomorphism from the racetrack to the ellipse in figure 3.12.

9. Find two charts for the unit circle S1 and prove they form an atlas.

Choset-79066 book February 22, 2005 17:37

Problems 73

10. Explain why the latitude-longitude chart we often place on the Earth is not a global
parameterization. Find two charts for the sphere and prove that they form an atlas.

11. The set of right-arm and left-arm configurations of the 2R manipulator in figure 3.3 each
give an annulus of reachable positions by the end effector, neither of which is diffeomorphic
to the robot’s configuration space. Consider the right-arm and left-arm workspaces as two
separate annuluses, and describe how they can be glued together to make a single space
that is a valid representation of the configuration space. Comment on the topology of this
glued space.

12. For the 2R manipulator of figure 3.7, how many connected components of free configura-
tion space are there? Copy the figure, color each of the connected components a different
color, and give a drawing of the robot in each of these connected components.

13. Show that compact and noncompact spaces are never diffeomorphic.

14. Find a diffeomorphism from any open interval (a, b) ∈ R to the whole real line R.

15. Give an implicit constraint equation f (x , y, z) = 0 that embeds a torus in R
3.

16. For T ∈ SE(3) consisting of the rotation matrix R ∈ SO(3) and the translation p ∈ R
3,

find the inverse transform T −1, so that T T −1 = T −1T = I. Your answer should not
contain any matrix inverses.

17. Consider two three-dimensional frames aligned with each other, called A and B. Rotate
B 90 degrees about the x-axis of A, then rotate again by 90 degrees about the y-axis
of A, then move the origin of B by three units in the z-direction of A. (Make sure you
rotate in the right direction! Use the right-hand rule: thumb points along the positive axis,
fingers curl in the direction of positive rotation.) Give the matrix TAB ∈ SE(3) describing
the frame B relative to the frame A. Consider the point xB = [4, 3, 1, 1]T in homogeneous
coordinates in frame B. What is the point xA (expressed in the frame A)? Consider the point
yA = [1, 2, 3, 1]T in homogeneous coordinates in frame A, and perform the transformation
TAB . Where is the new point y′

A?

18. Write a program to calculate the configuration space for a convex polygonal robot trans-
lating in an environment with convex obstacles. The program should read in from a file a
counterclockwise list of vertices representing the robot, where (0, 0) is the robot reference
point. From a second file, the program should read in a set of obstacles in the workspace.
The user enters an orientation for the robot and the program calculates the configuration
space obstacles (see, e.g., appendix F). Display the configuration space for different orien-
tations of the robot to show that translating paths between two points may exist for some
orientations of the robot, but not for others.

19. Write a program to display the configuration space for a 2R manipulator in a polygonal
environment. The program should read in a file containing the location of the base of
the robot, the length of the links, and the lists of vertices representing the obstacles. The

Choset-79066 book February 22, 2005 17:37

74 3 Configuration Space

q2

q1

q3

L2

L3

L1

u1

fixed base

Figure 3.23 A 3R planar robot with a frame attached to the end effector.

program should check for collision at 1 degree increments for each joint and create a plot
similar to that shown in figure 3.7.

20. Find the inverse kinematics φ−1 mapping the end-effector coordinates x to the joint coor-
dinates q for the 2R robot arm in example 3.8.1. Note that for most reachable points x ,
there will be two solutions, corresponding to the right- and left-arm configurations. Your
solution will likely make use of the two-argument arctangent atan2(x2, x1), which returns
the unique angle in [−π, π) to the point (x1, x2) in the plane, as well as the law of cosines
a2 = b2 + c2 − 2bc cos A, where a, b, and c are the lengths of the three edges of a triangle
and A is the angle opposite to edge a. Solve for general L1, L2 (do not plug in numbers).

21. Give the forward kinematics φ for the planar 3R arm shown in figure 3.23, from joint
angles q to the position and orientation of the end effector frame in the plane. Find the
manipulator Jacobian.

22. For the problem above, show that the forward kinematics mapping is injective, surjective,
bijective, or none of these, when viewed as a mapping from T 3 to R

2 × S1. Find a “large”
set of joint angle ranges U ⊂ T 3 and a set of end-effector configurations V ⊂ R

2 × S1

for which the mapping is a diffeomorphism.

23. The topology of SE(2) is equivalent to R
2 × SO(2). Let’s represent an element of R

2 ×
SO(2) by (x , R), where x ∈ R

2, R ∈ SO(2). As we have seen, we can make SE(2) a
group by giving it a group operation, namely, matrix multiplication. We can also make

Choset-79066 book February 22, 2005 17:37

Problems 75

R
2 × SO(2) a group by using the direct product structure to define composition of two

elements:

(x1, R1)(x2, R2) = (x1 + x2, R1 R2) ∈ R
2 × SO(2)

We are using vector addition as the group operation on R
2 and matrix multiplication on

SO(2). With this group operation, is R
2 × SO(2) commutative? Is SE(2) commutative?

The spaces SE(2) and R
2 × SO(2) are topologically equivalent, but are they equivalent

as groups?

Choset-79066 book February 22, 2005 17:43

4 Potential Functions

HAVING SEEN the difficulty of explicitly representing the configuration space, an alter-
native is to develop search algorithms that incrementally “explore” free space while
searching for a path. Already, we have seen that the Bug algorithms maneuver through
free space without constructing the configuration space, but the Bug algorithms are
limited to simple two-dimensional configuration spaces. Therefore, this chapter intro-
duces navigation planners that apply to a richer class of robots and produce a greater
variety of paths than the Bug methods, i.e., they apply to a more general class of
configuration spaces, including those that are multidimensional and non-Euclidean.

A potential function is a differentiable real-valued function U : R
m → R. The value

of a potential function can be viewed as energy and hence the gradient of the potential
is force. The gradient is a vector ∇U (q) = DU (q)T = [∂U

∂q1
(q), . . . , ∂U

∂qm
(q)]T which

points in the direction that locally maximally increases U . See appendix C.5 for a
more rigorous definition of the gradient. We use the gradient to define a vector field,
which assigns a vector to each point on a manifold. A gradient vector field, as its name
suggests, assigns the gradient of some function to each point. When U is energy, the
gradient vector field has the property that work done along any closed path is zero.

The potential function approach directs a robot as if it were a particle moving
in a gradient vector field. Gradients can be intuitively viewed as forces acting on a
positively charged particle robot which is attracted to the negatively charged goal.
Obstacles also have a positive charge which forms a repulsive force directing the robot
away from obstacles. The combination of repulsive and attractive forces hopefully
directs the robot from the start location to the goal location while avoiding obstacles
(figure 4.1).

Choset-79066 book February 22, 2005 17:43

78 4 Potential Functions

+

+

+

+

+++++++

+++++++

qstart

qgoal

+

+ + ++

+

Figure 4.1 The negative charge attracts the robot and the positive charge repels it, resulting
in a path, denoted by the dashed line, around the obstacle and to the goal.

Note that in this chapter, we mainly deal with first-order systems (i.e., we ignore
dynamics), so we view the gradients as velocity vectors instead of force vectors.
Potential functions can be viewed as a landscape where the robots move from a
“high-value” state to a “low-value” state. The robot follows a path “downhill” by
following the negated gradient of the potential function. Following such a path is
called gradient descent, i.e.,

ċ(t) = −∇U (c(t)).

The robot terminates motion when it reaches a point where the gradient vanishes,
i.e., it has reached a q∗ where ∇U (q∗) = 0. Such a point q∗ is called a critical point
of U . The point q∗ is either a maximum, minimum, or a saddle point (figure 4.2).
One can look at the second derivative to determine the type of critical point. For
real-valued functions, this second derivative is the Hessian matrix

∂2U
∂q2

1
. . . ∂2U

∂q1∂qn

...
. . .

...

∂2U
∂q1∂qn

· · · ∂2U
∂q2

n

 .

When the Hessian is nonsingular at q∗, the critical point at q∗ is non-degenerate,
implying that the critical point is isolated [173]. When the Hessian is positive-definite,
the critical point is a local minimum; when the Hessian is negative-definite, then

Choset-79066 book February 22, 2005 17:43

4 Potential Functions 79

(Maximum) (Saddle) (Minimum)

Figure 4.2 Different types of critical points: (Top) Graphs of functions. (Bottom) Gradients
of functions.

the critical point is a local maximum. Generally, we consider potential functions
whose Hessians are nonsingular, i.e., those which only have isolated critical points.
This also means that the potential function is never flat.

For gradient descent methods, we do not have to compute the Hessian because the
robot generically terminates its motion at a local minimum, not at a local maximum
or a saddle point. Since gradient descent decreases U, the robot cannot arrive at a local
maximum, unless of course the robot starts at a maximum. Since we assume that the
function is never flat, the set of maxima contains just isolated points, and the likelihood
of starting at one is practically zero. However, even if the robot starts at a maximum,
any perturbation of the robot position frees the robot, allowing the gradient vector field
to induce motion onto the robot. Arriving at a saddle point is also unlikely, because
they are unstable as well. Local minima, on the other hand, are stable because after
any perturbation from a minimum, gradient descent returns the robot to the minimum.
Therefore, the only critical point where the robot can generically terminate is a local
minimum. Hopefully this is where the goal is located. See figure 4.3 for an example
of a configuration space with its corresponding potential function, along with its
energy surface landscape and gradient vector field.

Choset-79066 book February 22, 2005 17:43

80 4 Potential Functions

(a) (b) (d)(c)

qstart

qgoal

Figure 4.3 (a) A configuration space with three circular obstacles bounded by a circle. (b)
Potential function energy surface. (c) Contour plot for energy surface. (d) Gradient vectors for
potential function.

There are many potential functions other than the attractive/repulsive potential.
Many of these potential functions are efficient to compute and can be computed
online [234]. Unfortunately, they all suffer one problem—the existence of local min-
ima not corresponding to the goal. This problem means that potential functions may
lead the robot to a point which is not the goal; in other words, many potential func-
tions do not lead to complete path planners. Two classes of approaches address this
problem: the first class augments the potential field with a search-based planner, and
the second defines a potential function with one local minimum, called a navigation
function [239]. Although complete (or resolution complete), both methods require
full knowledge of the configuration space prior to the planning event.

Finally, unless otherwise stated, the algorithms presented in this chapter apply to
spaces of arbitrary dimension, even though the figures are drawn in two dimensions.
Also, we include some discussion of implementation on a mobile base operating in
the plane (i.e., a point in a two-dimensional Euclidean configuration space).

4.1 Additive Attractive/Repulsive Potential

The simplest potential function in Qfree is the attractive/repulsive potential. The intu-
ition behind the attractive/repulsive potential is straightforward: the goal attracts the
robot while the obstacles repel it. The sum of these effects draws the robot to the goal
while deflecting it from obstacles. The potential function can be constructed as the
sum of attractive and repulsive potentials

U (q) = Uatt(q) + Urep(q).

Choset-79066 book February 22, 2005 17:43

4.1 Additive Attractive/Repulsive Potential 81

The Attractive Potential

There are several criteria that the potential field Uatt should satisfy. First, Uatt should
be monotonically increasing with distance from qgoal. The simplest choice is the conic
potential, measuring a scaled distance to the goal, i.e., U (q) = ζd(q, qgoal). The ζ is
a parameter used to scale the effect of the attractive potential. The attractive gradient
is ∇U (q) = ζ

d(q ,qgoal)
(q − qgoal). The gradient vector points away from the goal with

magnitude ζ at all points of the configuration space except the goal, where it is
undefined. Starting from any point other than the goal, by following the negated
gradient, a path is traced toward the goal.

When numerically implementing this method, gradient descent may have “chatter-
ing” problems since there is a discontinuity in the attractive gradient at the origin. For
this reason, we would prefer a potential function that is continuously differentiable,
such that the magnitude of the attractive gradient decreases as the robot approaches
qgoal. The simplest such potential function is one that grows quadratically with the
distance to qgoal, e.g.,

Uatt(q) = 1

2
ζd2(q, qgoal),

with the gradient

∇Uatt(q) = ∇
(

1

2
ζd2(q, qgoal)

)

,

= 1

2
ζ∇d2(q, qgoal),

= ζ (q − qgoal),(4.1)

which is a vector based at q, points away from qgoal, and has a magnitude proportional
to the distance from q to qgoal. The farther away q is from qgoal, the bigger the
magnitude of the vector. In other words, when the robot is far away from the goal,
the robot quickly approaches it; when the robot is close to the goal, the robot slowly
approaches it. This feature is useful for mobile robots because it reduces “overshoot”
of the goal (resulting from step quantization).

In figure 4.4(a), the goal is in the center and the gradient vectors for various points
are drawn. Figure 4.4(b) contains a contour plot for Uatt; each solid circle corresponds
to a set of points q where Uatt(q) is constant. Finally, figure 4.4(c) plots the graph of
the attractive potential.

Note that while the gradient ∇Uatt(q) converges linearly to zero as q approaches
qgoal (which is a desirable property), it grows without bound as q moves away from
qgoal. If qstart is far from qgoal, this may produce a desired velocity that is too large. For
this reason, we may choose to combine the quadratic and conic potentials so that the

Choset-79066 book February 22, 2005 17:43

82 4 Potential Functions

(a) (b) (c)

Figure 4.4 (a) Attractive gradient vector field. (b) Attractive potential isocontours. (c) Graph
of the attractive potential.

conic potential attracts the robot when it is very distant from qgoal and the quadratic
potential attracts the robot when it is near qgoal. Of course it is necessary that the
gradient be defined at the boundary between the conic and quadratic portions. Such
a field can be defined by

Uatt(q) =
{

1
2ζd2(q, qgoal), d(q, qgoal) ≤ d∗

goal,

d∗
goalζd(q, qgoal) − 1

2ζ (d∗
goal)

2, d(q, qgoal) > d∗
goal.

(4.2)

and in this case we have

∇Uatt(q) =

ζ (q − qgoal), d(q, qgoal) ≤ d∗
goal,

d∗
goalζ (q−qgoal)

d(q ,qgoal)
, d(q, qgoal) > d∗

goal,
(4.3)

where d∗
goal is the threshold distance from the goal where the planner switches between

conic and quadratic potentials. The gradient is well defined at the boundary of the two
fields since at the boundary where d(q, qgoal) = d∗

goal, the gradient of the quadratic
potential is equal to the gradient of the conic potential, ∇Uatt(q) = ζ (q − qgoal).

The Repulsive Potential

A repulsive potential keeps the robot away from an obstacle. The strength of the
repulsive force depends upon the robot’s proximity to the an obstacle. The closer
the robot is to an obstacle, the stronger the repulsive force should be. Therefore, the

Choset-79066 book February 22, 2005 17:43

4.1 Additive Attractive/Repulsive Potential 83

Q*

Obstacle

Figure 4.5 The repulsive gradient operates only in a domain near the obstacle.

repulsive potential is usually defined in terms of distance to the closest obstacle D(q),
i.e.,

Urep(q) =
{

1
2η

(
1

D(q) − 1
Q∗

)2
, D(q) ≤ Q∗,

0, D(q) > Q∗,
(4.4)

whose gradient is

∇Urep(q) =
{

η
(

1
Q∗ − 1

D(q)

)
1

D2(q) ∇ D(q), D(q) ≤ Q∗,

0, D(q) > Q∗,
(4.5)

where the Q∗ ∈ R factor allows the robot to ignore obstacles sufficiently far away
from it and the η can be viewed as a gain on the repulsive gradient. These scalars are
usually determined by trial and error. (See figure 4.5.)

When numerically implementing this solution, a path may form that oscillates
around points that are two-way equidistant from obstacles, i.e., points where D is
nonsmooth. To avoid these oscillations, instead of defining the repulsive potential
function in terms of distance to the closest obstacle, the repulsive potential function
is redefined in terms of distances to individual obstacles where di (q) is the distance
to obstacle QOi , i.e.,

di (q) = min
c∈QOi

d(q, c).(4.6)

Note that the min operator returns the smallest d(q, c) for all points c in QOi .

Choset-79066 book February 22, 2005 17:43

84 4 Potential Functions

q
∇di(q)

di(q)

co

QOi

Figure 4.6 The distance between x and QOi is the distance to the closest point on QOi . The
gradient is a unit vector pointing away from the nearest point.

It can be shown for convex obstacles QOi where c is the closest point to x that the
gradient of di (q) is

∇di (q) = q − c

d(q, c)
.(4.7)

The vector ∇di (q) describes the direction that maximally increases the distance to
QOi from q (figure 4.6).

Now, each obstacle has its own potential function,

Urepi
(q) =

{
1
2η

(
1

di (q) − 1
Q∗

i

)2
, if di (q) ≤ Q∗

i ,

0, if di (q) > Q∗
i ,

where Q∗
i defines the size of the domain of influence for obstacleQOi . Then Urep(q) =

∑n
i=1 Urepi

(q). Assuming that there are only convex obstacles or nonconvex ones can
be decomposed into convex pieces, oscillations do not occur because the planner does
not have radical changes in the closest point anymore.

4.2 Gradient Descent

Gradient descent is a well-known approach to optimization problems. The idea is
simple. Starting at the initial configuration, take a small step in the direction opposite
the gradient. This gives a new configuration, and the process is repeated until the gra-
dient is zero. More formally, we can define a gradient descent algorithm (algorithm 4).

Choset-79066 book February 22, 2005 17:43

4.3 Computing Distance for Implementation in the Plane 85

Algorithm 4 Gradient Descent
Input: A means to compute the gradient ∇U (q) at a point q
Output: A sequence of points {q(0), q(1), . . . , q(i)}

1: q(0) = qstart

2: i = 0
3: while ∇U (q(i)) �= 0 do
4: q(i + 1) = q(i) + α(i)∇U (q(i))
5: i = i + 1
6: end while

In algorithm 4, the notation q(i) is used to denote the value of q at the i th iteration
and the final path consists of the sequence of iterates {q(0), q(1), . . . , q(i)}. The
value of the scalar α(i) determines the step size at the i iteration. It is important that
α(i) be small enough that the robot is not allowed to “jump into” obstacles, while
being large enough that the algorithm does not require excessive computation time. In
motion planning problems, the choice for α(i) is often made on an ad hoc or empirical
basis, perhaps based on the distance to the nearest obstacle or to the goal. A number of
systematic methods for choosing α(i) can be found in the optimization literature [45].
Finally, it is unlikely that we will ever exactly satisfy the condition ∇U (q(i)) = 0.
For this reason, this condition is often replaced with the more forgiving condition
‖∇U (q(i))‖ < ε, in which ε is chosen to be sufficiently small, based on the task
requirements.

4.3 Computing Distance for Implementation in the Plane

In this section, we discuss some implementation issues in constructing the attrac-
tive/repulsive potential function. The attractive potential function is rather straight-
forward if the robot knows its current location and the goal location. The challenge
lies in computing the repulsive function because it requires calculation of distance
to obstacles. Therefore, in this section, we discuss two different methods to com-
pute distance, and hence the repulsive potential function. The first method deals with
sensor-based implementation on a mobile robot and borrows ideas from chapter 2 in
inferring distance information from sensors. The second method assumes the config-
uration space has been discretized into a grid of pixels and computes distance on the
grid.

Choset-79066 book February 22, 2005 17:43

86 4 Potential Functions

QO1

q

QO2

d2

d1

d4

d3
QO3

QO4

Robot

Figure 4.7 Local minima of rays determine the distance to nearby obstacles.

4.3.1 Mobile Robot Implementation

Thus far, the discussion has been general to any configuration space where we can
define distance. Now let’s consider some issues in implementing these potential
functions on a planar mobile robot equipped with range sensors radially distributed
around its circumference. These range sensors approximate a value of the raw distance
function ρ defined in chapter 2. Whereas D(q) corresponds to the global minimum
of the raw distance function ρ, a di (q) corresponds to a local minimum with respect
to θ of ρ(q , θ) (figure 4.7). For example, any sensor in the sonar array whose value
is less than that of both its left and right neighbors is a local minimum. Such sensors
face the closest points on their corresponding obstacles. Therefore, these sensors point
in the direction that maximally brings the robot closest to the obstacles, i.e., −∇di (q).
The distance gradient points in the opposite direction. An obstacle distance function
may be incorrect if the obstacle is partially occluded by another.

4.3.2 Brushfire Algorithm: A Method to Compute Distance on a Grid

In this subsection, we explain a method for computing distance from a map repre-
sentation called a grid, which is a two-dimensional array of square elements called
pixels. A pixel has a value of zero if it is completely free of obstacles and one if it is
completely or even partially occupied by an obstacle.

Choset-79066 book February 22, 2005 17:43

4.3 Computing Distance for Implementation in the Plane 87

n1 n2 n3

n6n5n4

n7 n8 n9

n1 n2 n3

n6n5n4

n7 n8 n9

Four-point Eight-point

Figure 4.8 Four-point vs. eight-point connectivity.

The user or planner has a choice in determining the neighboring relationships of
pixels in a grid. When only the north, south, east, and west pixels are considered neigh-
bors, the grid has four-point connectivity. When the grid also includes the diagonals
as neighbors, then it has eight-point connectivity (figure 4.8). Four-point connectivity
has the advantage in that it respects the Manhattan distance function (the L1 metric)
because it measures distance as if one were driving in city blocks in midtown
Manhattan.

The brushfire algorithm uses a grid to approximate distance, and hence the repul-
sive function. The input to the algorithm is a grid of pixels where the free-space pixels
have a value of zero and the obstacles have a value of one. The output is a grid of pixels
whose corresponding values each measure distance to the nearest obstacle. These val-
ues can then be used to compute a repulsive potential function, as well as its gradient.

In the first step of the brushfire algorithm, all zero-valued pixels neighboring one-
valued pixels are labeled with a two. The algorithm can use four-point or eight-point
connectivity to determine adjacency. Next, all zero-valued pixels adjacent to two’s
are labeled with a three. This procedure repeats, i.e., all zero-valued pixels adjacent
to an i are labeled with an i +1, as if a brushfire is growing from each of the obstacles
until the fire consumes all of the free-space pixels. The procedure terminates when
all pixels have an assigned value (figure 4.9).

The brushfire method produces a map of distance values to the nearest obstacle.
The gradient of distance at a pixel is determined by finding a neighbor with the lowest
pixel value. The gradient is then a vector which points to this neighbor. Note that
this vector points in either one of four or one of eight possible directions. If there are
multiple neighbors with the same lowest value, simply pick one to define the gradient.
Just as the grid is an approximation of the workspace, so is the computed gradient an
approximation of the actual distance gradient.

Choset-79066 book February 22, 2005 17:43

88 4 Potential Functions

2
2 2
2
2 2

2 2
2 2

2222
22222

2
2

2
2
2
2
2
2

222
22
2
2
2
2
2
22

22
2
222

22222222222 2 2222222222

22222222222222222222 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

2 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

3
333

3
3 3

3
3 3

3

333 3
3
3

3
3

3
3
3
3

3
3

3
3
3

3
3

3
3
3
3
3
3
3

3
3
3
3
3
3

3
3

3
3
3
3
3
3
3

3
3
3
3
3
3

3
3

3
3
3
3
3
3
3 3333333333333333333

3333333333333333333

444
4
4 4

4
4
4
4
4

4
4

4 4
4
4
4 4 4 4 4 4 4

4
4
4
4
4
4
4
4
4
4
4
4444444444444444444

4
4
4
4
4

4
4

4
4
4
4
4

2
2 2
2
2 2

2 2
2 2

2222
22222

2
2

2
2
2
2
2
2

222
22
2
2
2
2
2
22
2
2
222

22222222222 2 2222222222

22222222222222222222 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

2 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

2
2 2
2
2 2

2 2
2 2

2222
22222

2
2

2
2
2
2
2
2

222
22
2
2
2
2
2
22

22
2
222

22222222222 2 2222222222

22222222222222222222 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

2 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

3
333

3
3 3

3
3 3

3

333 3
3
3

3
3

3
3
3
3

3
3

3
3
3

3
3

3
3
3
3
3
3
3

3
3
3
3
3
3

3
3

3
3
3
3
3
3
3

3
3
3
3
3
3

3
3

3
3
3
3
3
3
3 3333333333333333333

3333333333333333333

444
4
4 4

4
4
4
4
4

4
4

4 4
4
4
4 4 4 4 4 4 4

4
4
4
4
4
4
4
4
4
4
4
4444444444444444444

4
4
4
4
4

4
4

4
4
4
4
4

555

5
55

55
55

5
5 5 5 5 5

5
5
5
5
5
5
5
5
5
55555555555

5
5
5
5

6
66

6
6 6
666

6

6
6 6 6

6
6
6
6
6
6
6
666666666

6
6

2
2 2
2
2 2

2 2
2 2

2222
22222

2
2

2
2
2
2
2
2

222
22
2
2
2
2
2
22

22
2
222

22222222222 2 2222222222

22222222222222222222 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

2 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

3
333

3
3 3

3
3 3

3

333 3
3
3

3
3

3
3
3
3

3
3

3
3
3

3
3

3
3
3
3
3
3
3

3
3
3
3
3
3

3
3

3
3
3
3
3
3
3

3
3
3
3
3
3

3
3

3
3
3
3
3
3
3 3333333333333333333

3333333333333333333

444
4
4 4

4
4
4
4
4

4
4

4 4
4
4
4 4 4 4 4 4 4

4
4
4
4
4
4
4
4
4
4
4
4444444444444444444

4
4
4
4
4

4
4

4
4
4
4
4

2
2 2
2
2 2

2 2
2 2

2222
22222

2
2

2
2
2
2
2
2

222
22
2
2
2
2
2
22
2
2
222

22222222222 2 2222222222

22222222222222222222 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

2 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

2
2 2
2
2 2

2 2
2 2

2222
22222

2
2

2
2
2
2
2
2

222
2
2
2
2
2
2
22

22
2
222

22222222222 2 2222222222

22222222222222222222 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

2 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

3
333

3
3 3

3
3 3

3

333 3
3
3

3
3

3
3
3
3

3
3

3
3
3

3
3

3
3
3
3
3
3
3

3
3
3
3
3
3

3
3

3
3
3
3
3
3
3

3
3
3
3
3
3

3
3

3
3
3
3
3
3
3 3333333333333333333

3333333333333333333

444
4
4 4

4
4
4
4
4

4
4

4 4
4
4
4 4 4 4 4 4 4

4
4
4
4
4
4
4
4
4
4
4
4444444444444444444

4
4
4
4
4

4
4

4
4
4
4
4

555

5
55

55
55

5
5 5 5 5 5

5
5
5
5
5
5
5
5
5
55555555555

5
5
5
5

6
66

6
6 6
666

6

6
6 6 6

6
6
6
6
6
6
6777 7 7 7 7

7
7
7
7
7
7

666666666
6
6

2
2 2
2
2 2

2 2
2 2

2222
22222

2
2

2
2
2
2
2
2

222
22
2
2
2
2
2
22

22
2
222

22222222222 2 2222222222

22222222222222222222 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

2 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

3
333

3
3 3

3
3 3

3

333 3
3
3

3
3

3
3
3
3

3
3

3
3
3

3
3

3
3
3
3
3
3
3

3
3
3
3
3
3

3
3

3
3
3
3
3
3
3

3
3
3
3
3
3

3
3

3
3
3
3
3
3
3 3333333333333333333

3333333333333333333

444
4
4 4

4
4
4
4
4

4
4

4 4
4
4
4 4 4 4 4 4 4

4
4
4
4
4
4
4
4
4
4
4
4444444444444444444

4
4
4
4
4

4
4

4
4
4
4
4

555

5
55

55
55

5
5 5 5 5 5

5
5
5
5
5
5
5
5
5
55555555555

5
5
5
5

2
2 2
2
2 2

2 2
2 2

2222
22222

2
2

2
2
2
2
2
2

222
22
2
2
2
2
2
22

22
2
222

22222222222 2 2222222222

22222222222222222222 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

2 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

3
333

3 3

3
3 3

3

333 3
3
3

3
3

3
3
3
3

3
3

3
3
3

3
3

3
3
3
3
3
3
3

3
3
3
3
3
3

3
3

3
3
3
3
3
3
3

3
3
3
3
3
3

3
3

3
3
3
3
3
3
3 3333333333333333333

3333333333333333333

Figure 4.9 Propagation of the brushfire algorithm with eight-point connectivity. The solid
lines pass through pixels where fronts collide.

Choset-79066 book February 22, 2005 17:43

4.4 Local Minima Problem 89

With distance and gradient to the nearest obstacle inhand, a planner can compute
the repulsive function. The attractive potential function can be computed analytically
and together with the repulsive function, a planner can invoke the additive attractive/
repulsive function described in section 4.1.

It is worth noting that the method described here generalizes into higher dimensions
where pixels then become volume elements. For example, in three-dimensions, four-
point connectivity generalizes to six-point connectivity and eight-point connectivity
generalizes to twenty-six-point connectivity. So, when assigning incremental pixel
values to neighboring pixels in higher dimensions, the algorithm choses the appro-
priate adjacency relationship and then iterates through as described above. Although
possible, it would become computationally intractable to compute the brushfire in
higher dimensions.

4.4 Local Minima Problem

The problem that plagues all gradient descent algorithms is the possible existence of
local minima in the potential field. For appropriate choice of α(i), it can be shown that
the gradient descent algorithm is generically guaranteed to converge to a minimum
in the field, but there is no guarantee that this minimum will be the global minimum.
This means that there is no guarantee that gradient descent will find a path to qgoal. In
figure 4.10, the robot is initially attracted to the goal as it approaches the horseshoe-
shaped obstacle. The goal continues to attract the robot, but the bottom arm of the
obstacle deflects the robot upward until the top arm of the horseshoe begins to influence

qgoal

Figure 4.10 Local minimum inside the concavity. The robot moves into the concavity until
the repulsive gradient balances out the attractive gradient.

Choset-79066 book February 22, 2005 17:43

90 4 Potential Functions

qgoal

Figure 4.11 Local minimum without concave obstacles. The robot moves away from the two
convex obstacles until it reaches a point where the gradient vanishes; at this point, the sum of
the attractive gradient and the repulsive gradient is zero.

the robot. At this point, the effect of the top and bottom arms keeps the robot halfway
between them and the goal continues to attract the robot. The robot reaches a point
where the effect of the obstacle’s base counteracts the attraction of the goal. In other
words, the robot has reached a q∗ where ∇U (q∗) = 0 and q∗ is not the goal. Note,
this problem is not limited to concave obstacles as can be seen in figure 4.11. Local
minima present a significant drawback to the attractive/repulsive approach, and thus
the attractive/repulsive technique is not complete.

Barraquand and Latombe [37] developed search techniques other than gradient
descent to overcome the problem of local minima present when planning with potential
functions. Their planner, the Randomized Path Planner (RPP) [37], used a variety
of potential functions some of which were simplified expressions of the potentials
presented in this chapter. RPP followed the negative gradient of the specified potential
function and when stuck at a local minimum, it initiated a series of random walks.
Often the random walks allowed RPP to escape the local minimum and in that case,
the negative gradient to the goal was followed again.

4.5 Wave-Front Planner

The wave-front planner [38, 208] affords the simplest solution to the local minima
problem, but can only be implemented in spaces that are represented as grids. For the
sake of discussion, consider a two-dimensional space. Initially, the planner starts with
the standard binary grid of zeros corresponding to free space and ones to obstacles. The

Choset-79066 book February 22, 2005 17:43

4.5 Wave-Front Planner 91

planner also knows the pixel locations of the start and goal. The goal pixel is labeled
with a two. In the first step, all zero-valued pixels neighboring the goal are labeled
with a three. Next, all zero-valued pixels adjacent to threes are labeled with four.
This procedure essentially grows a wave front from the goal where at each iteration,
all pixels on the wave front have the same path length, measured with respect to the
grid, to the goal. This procedure terminates when the wave front reaches the pixel
that contains the robot start location.

The planner then determines a path via gradient descent on the grid starting from
the start. Essentially, the planner determines the path one pixel at a time. Assume that
the value of the start pixel is 33. The next pixel in the path is any neighboring pixel
whose value is 32. There could be multiple choices; simply pick any one of the choices.
The next pixel is then one whose value is 31. Boundedness of the free space (and hence
the discretization) and continuity of the distance function ensure that construction
of the wave front guarantees that there will always be a neighboring pixel whose
value is one less than that of the current pixel and that this procedure forms a path in
the grid to the goal, i.e., to the pixel whose value is two.

Figure 4.12 contains six panels that demonstrate various stages of the wave-front
propagation using four-point connectivity. Note that all points on the wave front have
the same Manhattan distance to the goal. In the lower-left panel, note how the wave-
front seemingly collides on itself. We will see later that the point of initial collision
corresponds to a saddle point of the function that measures distance to the goal.
This point then propagates away from the start as well. The trace of this propagation
corresponds to a set of points that have two choices for shortest paths back to the goal,
either going around the top of the triangle or below it.

The wave-front planner essentially forms a potential function on the grid which
has one local minimum and thus is resolution complete. The planner also determines
the shortest path, but at the cost of coming dangerously close to obstacles. The major
drawback of this method is that the planner has to search the entire space for a path.

Finally, just like the brushfire method, the wave-front planner generalizes into
higher dimensions as well. Consider the three-dimensional case first. Just as a pixel
has four edges, a voxel (a three-dimensional pixel) has six faces. Therefore, the
analogy to four-point connectivity with pixels is six-point connectivity with voxels.
For a voxel with value i , if we assume six-point connectivity, then we assign i + 1 to
the surrounding six voxels that share a face with the current voxel. Likewise, if we
assume twenty-six-point connectivity (analogous to eight-point connectivity), then
we assign i + 1 to all surrounding voxels that share a face, edge or vertex. It should
be noted, however, implementation of the wavefront planner in higher dimensions
becomes computationally intractable.

Choset-79066 book February 22, 2005 17:43

92 4 Potential Functions

2

3

3
3

3

4

4

4

4
4

4

4
4

5

5

5

5

5

5
5

55

5
5

6

6

6

6

6

6

6

6

6

6
6

6

7

7

7

7

7

7

7
7

77

2
3

3
3

3
4

4
4

4
4

4

4
4
5

5

5

5
5

5
5

55

5
5
6

6

6

6

6

6

6

6
6

6
6

6

7

7

7
7

7
7

7
7

77

8

8
8

8

8

8
8

8
8

8 9

9
9

9
9

9

9

9
9

9
9
10

10
10

10

10
10

10

10
10

10
10

10

11
11

11

11

11

11
11

11

11
11

11
11

11 12

12
12

12
12

12

12
12

12
12

12

12

12

12

2

3

3
3

3

4
4

4

4
4

4

4
4

5
5

5

5
5

5
5

55

5
5

6

6

6

6

6

6

6

6
6

6
6

6

7

7

7

7

7
7

7
7

77

8

8

8

8

8

8
8

8
8

8 9

9
9

9
9

9

9

9

9

9

9

10

10

10

10

10

10

10

10
10

10
10

10

11

11

11

11

11

11

11

11

11
11

11
11

11 12

12
12

12
12

12

12

12

12

12

12

12

12

12

13

13

13
13

13

13

13

13

13

13

13
13

13
13

13

14

14
14

14 14

14

14

14

14

14

14

14

14
14

14
14

14 15

15
15

15
15

15

15

15

15

15

15

15

1515
15

15

15 15

16

16

16

16 16

16

16
16

16

16

16

16

16

16

16
16

16
16

16

17

17

17 17

17

17

17

17

17

17

17

17

17

17
17

17

17

17 2

3

3
3

3

4

4

4

4
4

4

4
4

5

5

5

5

5

5
5

55

5
5

6

6

6

6

6

6

6

6

6

6
6

6

7

7

7
7

7

7

7
7

77

8

8
8

8

8

8

8

8
8

8 9

9
9

9

9

9

9

9

9

9
9

10

10

10

10

10
10

10

10

10

10
10

10

11

11

11

11

11

11
11

11

11

11

11
11

11 12

12
12

12

12

12

12
12

12

12

12

12

12

12

13
13

13

13

13

13

13
13

13

13

13

13
13

13

13

14

14
14

14 14

14

14

14

14

14
14

14

14

14

14
14

14 15

15
15

15

15

15

15
15

15

15

15

15

1515

15

15
15 15

16

16
16

16 16

16

16

16

16

16

16

16
16

16

16

16

16
16

16

17
17

17 17

17
17

17

17

17

17

17
17

17

17

17

17

17

17

18

18 18

18
18

18

18

18

18

18
18

18

18

18

18
18

18

19 19

19

19

19

19

19

19
19

19

19

19

19

19

19

20

20

20

20

20

20

20

20
20

20

20

20

20
20

20

2
3

3

3

3
4

4
4

4

4

4

4

4
5

5
5

5
5

5

5

55

5

5
6

6

6

6
6

6

6
6

6
6

6

6

7
7

7

7

7
7

7

7

77

8

8

8
8

8
8

8
8

8

8 9

9

9
9

9
9

9

9

9
9

9

10
10

10

10

10

10

10
10

10
10

10

10

11

11

11

11

11
11

11

11
11

11
11

11

11 12

12

12
12

12
12

12

12
12

12

12
12

12

12

13
13

13

13

13

13
13

13

13
13

13
13

13

13

13

14
14

14

14 14

14

14

14

14
14

14

14
14

14
14

14

14 15

15

15
15

15
15

15

15
15

15

15

15
1515

15

15
15 15

16

16
16

16 16

16

16

16

16

16

16
16

16

16
16

16
16

16

16

17
17

17 17

17
17

17

17

17

17
17

17

17
17

17

17

17

17

18

18 18

18
18

18

18

18

18
18

18

18
18

18
18

18

18

19 19

19

19

19

19

19
19

19

19
19

19

19

19

19

20

20

20
20

20

20

20
20

20

20
20

20
20

20

20

21

21

21
21

21

21

21
21

21

21
21

21
21

21

21 22

22

22
22

22

22

22
22

22

22

22
22

22

22

22

2

3

3

3

3

4

4

4

4

4

4

4

4

5

5

5

5

5

5

5

55

5

5

6

6

6

6

6
6

6

6

6

6

6

6

7

7
7

7

7

7

7

7

77

8
8

8

8

8

8

8

8

8

8 9

9

9

9

9

9
9

9
9

9

9

10

10
10

10

10

10
10

10

10

10

10

10

11
11

11

11

11

11

11
11

11

11

11

11

11 12

12

12

12

12

12
12

12

12
12

12

12

12
12
13

13

13

13

13
13

13

13

13
13

13

13

13

13

13

14

14

14
14 14

14

14
14

14

14

14
14

14

14

14

14

14 15

15

15

15

15

15
15

15

15
15

15

15

1515

15
15

15 15

16
16

16

16 16

16

16

16

16
16

16

16

16
16

16

16

16

16

16

17

17

17 17

17

17
17

17
17

17

17

17
17

17

17

17

17

17

18

18 18

18

18

18

18
18

18

18

18
18

18

18

18

18

18

19 19

19

19

19
19

19

19

19
19

19

19

19

19

19

20

20

20

20

20
20

20

20

20
20

20

20

20

20

20

21

21

21

21

21
21

21

21

21
21

21

21

21

21

21 22

22

22

22

22
22

22

22
22

22

22

22

22

22 23

22 23

23
23

23

23

23
23

23

23

23
23

23

23

24

24

24
24

24

24

24
24

24

24

24
24
25

25

25
25

25

25

25

25
25

25

25 26

26

26
26

26

26

26
26

26

26

27
27

27

27

27

27
27

27

27 28

28

28
28

28

28

28
28
29

29

29

29
29

29

29 30

30

30
30

30

30

31

31

31
31

31

32

32

32
32

33

33

33

34

Figure 4.12 Propagation of the wave front using four-point connectivity (assume the start is
in the upper-right corner and the goal is the origin of the wave front).

Choset-79066 book February 22, 2005 17:43

4.6 Navigation Potential Functions 93

4.6 Navigation Potential Functions

Thus far, we have seen in chapter 2 that the Bug algorithms are complete sensor-based
planners that work in unknown spaces, but are limited to planar configuration spaces.
Then, at the beginning of this chapter, we have seen that the attractive/repulsive
potential function approach applies to a general class of configuration spaces, but
suffers from local minima problems, and hence is not complete. The wave-front
planner addresses the local minima problem, but requires time and storage exponential
in the dimension of the space. In this section, we introduce a new potential that is a
function of distance to the obstacles, has only one minimum and applies to a limited
class of configuration spaces with dimension two, three, and more. Such potential
functions are called navigation functions, formally defined in [239, 364].

DEFINITION 4.6.1 A function ϕ : Qfree → [0, 1] is called a navigation function if it

is smooth (or at least Ck for k ≥ 2),

has a unique minimum at qgoal in the connected component of the free space that
contains qgoal,

is uniformly maximal on the boundary of the free space, and

is Morse.

A Morse function is one whose critical points are all non-degenerate. This means
that critical points are isolated, and if a Morse function is used for gradient descent,
any random perturbation will destabilize saddles and maxima. The navigation func-
tion approach represents obstacles as QOi = {q | βi (q) ≤ 0}; in other words, βi (q)
is negative in the interior of QOi , zero on the boundary of QOi , and positive in the
exterior of QOi .

4.6.1 Sphere-Space

This approach initially assumes that the configuration space is bounded by a sphere
centered at q0 and has n dim(Qfree)-dimensional spherical obstacles centered at
q1, . . . qn . The obstacle distance functions are easy to define as

β0(q) = −d2(q, q0) + r 2
0 ,

βi (q) = d2(q, qi) − r 2
i ,

where ri is the radius of the sphere. Note that βi (q) increases continuously as q moves
away from the obstacle. Instead of considering the distance to the closest obstacle or

Choset-79066 book February 22, 2005 17:43

94 4 Potential Functions

the distance to each individual obstacle, we consider

β(q) =
n∏

i=0

βi (q).(4.8)

Note that β(q) is zero on the boundary of any obstacle, and positive at all points in
the interior of the free space. This presumes that the obstacles are disjoint.

This approach uses β to form a repulsive-like function. The attractive portion of
the navigation function is a power of distance to the goal, i.e.,

γκ (q) = (d(q, qgoal))
2κ ,(4.9)

where γκ has zero value at the goal and continuously increases as q moves away from
the goal. The function γκ

β
(q) is equal to zero only at the goal, and it goes to infinity

as q approaches the boundary of any obstacle. More importantly, for a large enough
κ , the function γκ

β
(q) has a unique minimum. This is true because as κ increases, the

term ∂γκ/∂q dominates ∂β/∂q, meaning that the gradient of γκ

β
points toward the

goal. Essentially, increasing κ has the effect of making γκ

β
take the form of a steep

bowl centered at the goal. Increasing κ also causes other critical points to gravitate
toward the obstacles, as the range of repulsive influence of the obstacles becomes
small relative to the overwhelming influence of the attractive field.

Near an obstacle, only that obstacle has a significant effect on the value of γκ

β
.

Therefore, the only opportunity for a local minimum to appear is along a radial line
between the obstacle and the goal. On this line near the boundary of an obstacle,
the Hessian of γκ

β
cannot be positive definite because γκ

β
is quickly decreasing in

value moving from the obstacle to the goal. Therefore there cannot be any local
minimum for large κ , except at the goal [239].

So γκ

β
has a unique minimum, but unfortunately it can have arbitrarily large values,

making it difficut to compute. Therefore, we introduce the analytical switch, which
is defined as

σλ(x) = x

λ + x
, λ > 0.(4.10)

Since σλ(x) is zero at x = 0, converges to one as x approaches ∞, and is continuous
(figure 4.13), we can use σλ(x) to bound the value of the function γκ

β
, i.e.,

s(q , λ) =
(

σλ ◦ γκ

β

)

(q) =
(

γκ

λβ + γκ

)

(q).(4.11)

The function s(q, λ) has a zero value at the goal, unitary value on the boundary
of any obstacle, and varies continuously in the free space. It has a unique minimum
for a large enough κ . However, it is still not necessarily a Morse function because it
may have degenerate critical points. So, we introduce another function that essentially

Choset-79066 book February 22, 2005 17:43

4.6 Navigation Potential Functions 95

x

(x)

Figure 4.13 Analytic switch function which is used to map the range of a function to the unit
interval.

qgoal

qstart

Figure 4.14 Configuration space bounded by a circle with five circle obstacles.

sharpens s(q , λ) so its critical points become nondegenerate, i.e., so that s(q, λ) can
become a Morse function. This sharpening function is

ξκ (x) = x
1
κ .(4.12)

For λ = 1, the resulting navigation function on a sphere-world is then

ϕ(q) =
(

ξκ ◦ σ1 ◦ γκ

β

)

(q) = d2(q, qgoal)

[(d(q, qgoal))2κ + β(q)]1/κ
,(4.13)

which is guaranteed to have a single minimum at qgoal for a sufficiently large κ [239].
Consider the configuration space in figure 4.14. The effect of increasing κ can be seen
in figure 4.15, which plots the contour lines for ϕ as κ increases. For κ = 3, ϕ has
three local minima, one of which is the global minimum. For κ = 4 and 6, the local
minima become more apparent because it is easier to see the contour lines (actually
loops) that encircle the local minima. For κ = 7 and 8, the “bad” minima are there

Choset-79066 book February 22, 2005 17:43

96 4 Potential Functions

-4

-2

0

2

4

-4

-2

0

2

4

-4

-2

0

2

4

-4 -2 0 2 4

-4

-2

0

2

-4 -2 0 2 4

-4

-2

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4

-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4

4

Figure 4.15 Navigation function for a sphere-space with five obstacles for κ = 3, κ = 4,
κ = 6, κ = 7, κ = 8, and κ = 10.

but hard to see. Eventually, the “bad” minima morph into saddle points, which are
unstable. For κ = 10, ϕ has a unique minimum. Therefore, gradient descent will
direct the robot to the goal.

We can see the effect of the potential function steepening, critical points gravitating
toward the goal, and local minima turning into saddles, in figure 4.16. Unfortunately,
this steepening effect has an adverse consequence. The drawback to this particular
navigation function is that it is flat near the goal and far away from the goal, but has
sharp transitions in between (figure 4.16). This makes implementation of a gradient
descent approach quite difficult because of numerical errors.

4.6.2 Star-Space

The result of sphere-spaces is just the first step toward a more general planner. A
sphere-space can serve as a “model space” for any configuration space that is diffeo-
morphic to the sphere-space. Once we have a navigation function for the model space,
to find a navigation function for the diffeomorphic configuration space, we need only
find the diffeomorphism relating the two spaces.

Choset-79066 book February 22, 2005 17:43

4.6 Navigation Potential Functions 97

-4 -2 0 2 4

-4

-2

0

2

4

00.250.50.751

-

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4

00.250.50.751

-

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4

00.250.50.751

-

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4

00.250.50.751

-

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4

00.250.50.751

-

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4

0.70.8
0.9

1

-

0

2

4

Figure 4.16 Navigation function for a sphere-space with five obstacles for κ = 3, κ = 4,
κ = 6, κ = 7, κ = 8, and κ = 10.

Figure 4.17 (Left) Star-shaped set. (Right) Not a star-shaped set.

In this subsection we consider star-spaces consisting of a star-shaped configuration
space populated by star-shaped obstacles. A star-shaped set S is a set where there exists
at least one point that is within line of sight of all other points in the set, i.e.,

∃x such that ∀y ∈ S, t x + (1 − t)y ∈ S ∀t ∈ [0, 1].

See figure 4.17. All convex sets are star-shaped, but the converse is not true.

Choset-79066 book February 22, 2005 17:43

98 4 Potential Functions

F M

h

Figure 4.18 The diffeomorphism h maps the star-space F to the sphere-space M .

The approach is to map a configuration space populated by star-shaped obstacles
into a space populated by sphere-shaped obstacles. It can be shown [364] that for two
free configuration spaces M and F , if ϕ : M → [0, 1] is a navigation function on M
and there exists a mapping h : F → M which is a diffeomorphism, i.e., it is smooth,
bijective, and has a smooth inverse, then φ = ϕ ◦ h is a navigation function on F (see
figure 4.18). This diffeormorphism ensures that there is a one-to-one correspondence
between critical points. We will use this property to define navigation functions in
star-spaces using results from sphere-spaces.

The h mapping between the star- and sphere-spaces will be constructed using a
translated scaling map

Ti (q) = νi (q)(q − qi) + pi ,(4.14)

where

νi (q) = (1 + βi (q))1/2 ri

d(q, qi)
,(4.15)

where qi is the center of the star-shaped set, and pi and ri are, respectively, the center
and radius of the spherical obstacle. Here βi (q) defines a star-shaped set such that
βi (q) is negative in the interior, zero on the boundary, and positive in the exterior.

Note that if q is in the boundary of the star-shaped obstacle, then (1 + βi (q)) = 1,
and thus Ti (q) = ri

q−qi

d(q,qi)
+ pi . In other words, Ti (q) maps points on the boundary

of the star-shaped set to a sphere.
For the star-shaped obstacle QOi , we define the analytical switch

si (q , λ) =
(

σλ ◦ γκβ̄ i

βi

)

(q) =
(

γκβ̄ i

γκβ̄ i + λβi

)

(q),(4.16)

where

β̄ i =
n∏

j=0, j �=i

β j ,(4.17)

Choset-79066 book February 22, 2005 17:43

4.7 Potential Functions in Non-Euclidean Spaces 99

i.e., β̄ i is zero on the boundary of the obstacles except the “current” obstacle QOi .
Note that si (q, λ) is one on the boundary of QOi , but is zero at the goal and on the
boundary of all other obstacles except QOi .

We define a similar switch for the goal which is one at the goal and zero on the
boundary of the free space, i.e.,

sqgoal (q , λ) = 1 −
M∑

i=0

si .(4.18)

Now, using the above switches and a translated scaling map, we can define a mapping
between star-space and sphere-space as

hλ(q) = sqgoal (q, λ)Tqgoal (q) +
M∑

i=0

si (q, λ)Ti (q),(4.19)

where Tqgoal (q) = q is just the identity map, used for notational consistency.
Note that hλ(q) is exactly Ti (q) on the boundary of the QOi because si is one on

the boundary of QOi and for all j �= i , s j is zero on the boundary of QOi (here we
include sqgoal as one of the s j ’s). In other words, for each i , hλ(q) is Ti on the boundary
of obstacle QOi , which maps the boundary of a star to a sphere. Moreover, hλ(q)
is continuous and thus hλ(q) maps the entire star-space to a sphere-space. It can be
shown that for a suitable λ, hλ(q) is smooth, bijective, and has a smooth inverse,
i.e., is a diffeomorphism [239]. Therefore, since we have a navigation function on a
sphere-space, we also have a navigation function on the star-space.

4.7 Potential Functions in Non-Euclidean Spaces

Putting the issue of local minima aside for a moment, another major challenge for
implementing potential functions is constructing the configuration space in the first
place. This is especially challenging when the configuration space is non-Euclidean
and multidimensional. In order to deal with this difficulty, we will define a potential
function in the workspace, which is Euclidean, and then lift it to the configuration
space. Here, we compute a gradient in the configuration space as a function of gradi-
ents in the workspace. To do so, instead of thinking of gradients as velocity vectors,
we will now think of them as forces. We then establish a relationship between a
workspace force and a configuration space force. Then we apply this relationship to a
single rigid-body robot, i.e., we show how to derive a configuration space force using
workspace forces acting a rigid-body robot. Finally, we apply this relationship to a
multibody robot. We focus the discussion in this section on the attractive/repulsive
potentials from section 4.1.

Choset-79066 book February 22, 2005 17:43

100 4 Potential Functions

4.7.1 Relationship between Forces in the Workspace and Configuration Space

Since the workspace is a subset of a low-dimensional space (either R
2 or R

3), it is
much easier to implement and evaluate potential functions over the workspace than
over the configuration space. Now, we will treat the gradient in the workspace as
forces. Naturally, workspace potential functions give rise to workspace forces, but
ultimately, we will need forces in the configuration space to determine the path for
the robot.

Let x and q be coordinate vectors representing a point in the workspace and the
configuration of the robot, respectively, where the coordinates x and q are related by
the forward kinematics (chapter 3) x = φ(q). Let f and u denote generalized forces
in the workspace and the configuration space, respectively. To represent a force f
acting at a point x = φ(q) in the workspace as a generalized force u acting in the
robot’s configuration space, we use the principle of virtual work, which essentially
says that work (or power) is a coordinate-independent quantity. This means that power
measured in workspace coordinates must be equal to power measured in configuration
space coordinates. In the workspace, the power done by a force f is the familiar f T ẋ .
In the configuration space, power is given by uT q̇. From chapter 3, section 3.8, we
know that ẋ = J q̇, where J = ∂φ/∂q is the Jacobian of the forward kinematic
map. Therefore, the mapping from workspace forces to configuration space forces is
given by

f T J q̇ = uT q̇

f T J = uT

J T f = u.

EXAMPLE 4.7.1 (A Force Acting on a Vertex of a Polygonal Robot) Consider the
polygonal robot shown in figure 4.19. The vertex a has coordinates [ax , ay]T in the
robot’s local coordinate frame. Therefore, if the robot’s coordinate frame is located at
[x , y]T with orientation θ , the forward kinematic map for vertex a (i.e., the mapping
from q = [x , y, θ]T to the global coordinates of the vertex a) is given by

φ(q) =
[

x + ax cos θ − ay sin θ

y + ax sin θ + ay cos θ

]

.(4.20)

The corresponding Jacobian matrix is given by

J (q) = ∂φ

∂q
(q) =

[
1 0 −ax sin θ − ay cos θ

0 1 ax cos θ − ay sin θ

]

.(4.21)

Choset-79066 book February 22, 2005 17:43

4.7 Potential Functions in Non-Euclidean Spaces 101

y

f

ay

ax
x

a

Figure 4.19 The robot A, with coordinate frame oriented at angle θ from the world frame,
and vertex a with local coordinates (ax , ay).

Therefore, the configuration space force is given by

ux

uy

uθ

 = J T (q)

[
fx

fy

]

(4.22)

=

1 0
0 1

−ax sin θ − ay cos θ ax cos θ − ay sin θ

[

fx

fy

]

=

fx

fy

− fx (ax sin θ + ay cos θ) + fy(ax cos θ − ay sin θ)

(4.23)

and uθ corresponds to the torque exerted about the origin of the robot frame. Our
result for uθ can be verified by the familiar torque equation τ = r × f , where r is
the vector from the robot’s origin to the point of application of f , and τ = uθ .

4.7.2 Potential Functions for Rigid-Body Robots

As before, our goal in defining potential functions is to construct a potential function
that repels the robot from obstacles, with a global minimum that corresponds to qgoal.
In the configuration space, this task was conceptually simple because the robot was
represented by a single point, which we treated as a point mass under the influence of

Choset-79066 book February 22, 2005 17:43

102 4 Potential Functions

a potential field. In the workspace, things are not so simple; the robot has finite area
in the plane and volume in three dimensions. Evaluating the effect of a potential field
on the robot would involve computing an integral over the area/volume defined by
the robot, and this can be quite complex (both mathematically and computationally).
An alternative approach is to select a subset of points on the robot, called control
points, and to define a workspace potential for each of these points. Evaluating the
effect of the potential field on a single point is no different from the evaluations
required in section 4.1. We then use the relationship established in the previous
subsection to convert the individual workspace forces to configuration space forces.
We then add them to get the total configuration space force. As a result, we have
approximately “lifted” the total workspace forces on the robot to a generalized force
in the configuration space.

We need to pick control points {ri } on the robot. The minimum number of control
points depends upon the number of degrees of freedom of the robot. It is the number
of points required to “pin down” the robot. For example, for a rigid-body robot in the
plane, we can fix the position of the robot by fixing the position of two of its points.
For each r j , the attractive potential is

Uatt, j (q) =
{

1
2ζi d2(r j (q), r j (qgoal)), d(r j (q), r j (qgoal)) ≤ d∗

goal

d∗
goalζ j d(r j (q), r j (qgoal)) − 1

2ζ j d∗
goal, d(r j (q), r j (qgoal)) > d∗

goal.

With this potential function, the workspace force for attractive control point ri is
defined by

∇Uatt, j (q) =

ζi (r j (q) − r j (qgoal)), d(r j (q), r j (qgoal)) ≤ d∗
goal,

d∗
goalζ j (r j (q)−r j (qgoal))

d(r j (q),r j (qgoal))
, d(r j (q), r j (qgoal)) > d∗

goal.

For the workspace repulsive potential fields, we use the same control points {r j },
and define the repulsive potential for r j as

Urepi, j (q) =

1
2η j

(
1

di (r j (q)) − 1
Q∗

i

)2
, di (r j (q)) ≤ Q∗

i ,

0, di (r j (q)) > Q∗
i ,

(4.24)

where di (r j (q)) is the shortest distance between the control point r j and obstacle
WOi , and Q∗

i is the workspace distance of influence for obstacles. The gradient of
each Urepi, j corresponds to a workspace force,

∇Urepi, j (q) =

η j

(
1

Q∗
i
− 1

di (r j (q))

)
1

d2
i (r j (q))

∇di (r j (q)), di (r j (q)) ≤ Q∗
i ,

0, di (r j (q)) > Q∗
i .

(4.25)

Choset-79066 book February 22, 2005 17:43

4.7 Potential Functions in Non-Euclidean Spaces 103

WOi

r1 r2
E1

R(q)

Figure 4.20 The repulsive forces exerted on the robot vertices r1 and r2 may not be sufficient
to prevent a collision between edge E1 and the obstacle.

Often the vertices of the robot are used as the repulsive control points, but it is
important to note that this selection of repulsive control points does not guarantee
that the robot cannot collide with an obstacle. Figure 4.20 shows an example where this
is the case. In this figure, the repulsive control points r1 and r2 are very far from the
obstacle WOi , and therefore the repulsive influence may not be great enough to
prevent the robot edge E1 from colliding with the obstacle. For this reason, we could
add a floating repulsive control point, rfloat. The floating control point is defined as
that point on the boundary of the robot that is closest to any workspace obstacle.
Obviously the choice of rfloat depends on the configuration q. For the example shown
in figure 4.20, rfloat would be located at the center of edge E1, thus repelling the robot
from the obstacle. The repulsive force acting on rfloat is defined in the same way as
for the other control points, using (4.25).

The total configuration space force acting on the robot is the sum of the configura-
tion space forces that result from all attractive and repulsive control points, i.e.,

u(q) =
∑

j

uatt j +
∑

i j

urepi j

=
∑

j

J T
j (q)∇uatti j (q) +

∑

i

∑

j

J T
j (q)∇urepi j(4.26)

in which Jj (q) is the Jacobian matrix for control point r j . It is essential that the
addition of forces be done in the configuration space and not in the workspace.

Choset-79066 book February 22, 2005 17:43

104 4 Potential Functions

Path-Planning Algorithm

Having defined a configuration space force, which we will again treat as a velocity,
we can use the same gradient descent method for this case as in section 4.1. As before,
there are a number of design choices that must be made.

ζ j controls the relative influence of the attractive potential for control point r j . It
is not necessary that all of the ζi be set to the same value. We might choose
to weight one of the control points more heavily than the others, producing a
“follow the leader” type of motion, in which the leader control point is quickly
attracted to its final position, and the robot then reorients itself so that the other
attractive control points reach their final positions.

η j controls the relative influence of the repulsive potential for control point r j . As
with the ζi it is not necessary that all of the η j be set to the same value.

Q∗
i We can define a distinct Q∗

i for each obstacle. In particular, we do not want
any obstacle’s region of influence to include the goal position of any repulsive
control point. We may also wish to assign distinct Q∗

i ’s to the obstacles to avoid
the possibility of overlapping regions of influence for distinct obstacles.

4.7.3 Path Planning for Articulated Bodies

It is straightforward to extend the methods of the previous subsection to the case of
articulated manipulators. Attractive control points are defined on the end effector and
repulsive control points are placed on the links. It may be a good idea to use at least
one floating control point for each link of the robot, since each link is a rigid body
and we would like to prevent the links from colliding with obstacles. For each control
point, a Jacobian matrix is computed (see chapter 3, section 3.8). These Jacobians
map workspace forces to generalized configuration space forces (joint torques for
revolute joints, joint forces for prismatic joints). With these exceptions, the formalism
of section 4.7.2 can be directly applied to the path-planning problem for articulated
arms (of course the implementation may be a bit more difficult, since the Jacobians
may be a bit more difficult to construct, and computing distances to polyhedrons in
three dimensions is a bit more involved than computing distances to polygons in the
plane). Naturally, this method will be plagued with local minima.

Choset-79066 book February 22, 2005 17:43

Problems 105

Problems

1. Prove that di (x) is a local minimum of ρ(x , s) with respect to s. Show that D(x) can be
defined in terms of di (x).

2. Does the wave-front planner in a discrete grid yield the shortest distance? (If so, in what
metric?)

3. Write a program that determines a path between two points in a planar grid using the wave-
front planner. Input from a file a set of obstacles in a known workspace. This file should be a
list of vertices and the program should automatically convert the polygonal representation to
a binary grid of pixels. Input from the keyboard a start and goal location and write a program
to display a meaningful output that a path is indeed determined. Use either four-point or
eight-point connectivity.

4. Write a program that determines a path for a planar convex robot that can orient from a start
to a final configuration using the wave-front planner. Input from a file a robot and from a
separate file a set of obstacles in a known workspace. Input a start and goal configuration
from the keyboard. Hand in meaningful output where the robot must orient to get from start
to goal. Hand in meaningful output where a path is not found.

5. The two-link manipulator in figure 4.21 has no joint limits. Use the wavefront planner to
draw the shortest path between the start and goal configurations.

6. Implement, either in simulation or on a mobile robot, a sensor-based attractive/repulsive
potential function.

360

360

T
he

ta
 2

Theta 1

180

180
0

0

S •

• G

Figure 4.21 (Left) The initial configuration of a two-link manipulator in a polygonal
workspace. (Right) The configuration space of the two-link manipulator with a start and goal
configuration labeled S and G respectively.

Choset-79066 book February 22, 2005 17:43

106 4 Potential Functions

7. Implement the attractive/repulsive potential function for a point robot in a configuration
space with the following obstacles

(a) polygons
(b) polygons and circles
(c) polyhedrons
(d) polyhedrons and spheres
(e) polyhedrons, spheres, and cylinders.

8. Adapt the attractive/repulsive potential function method to handle moving obstacles.

9. Explain why the paths resulting from the Bug2 algorithm and the navigation potential
function look similar.

Choset-79066 book February 22, 2005 17:53

5 Roadmaps

AS DESCRIBED in chapters 2 and 4, a planner plans a path from a particular start
configuration to a particular goal configuration. If we knew that many paths were to
be planned in the same environment, then it would make sense to construct a data
structure once and then use that data structure to plan subsequent paths more quickly.
This data structure is often called a map, and mapping is the task of generating models
of robot environments from sensor data. Mapping is important when the robot does not
have a priori information about its environment and must rely on its sensors to gather
information to incrementally construct its map. In the context of indoor systems, three
map concepts prevail: topological, geometric, and grids (see figure 5.1).

Topological representations aim at representing environments with graphlike struc-
tures, where nodes correspond to “something distinct” and edges represent an adja-
cency relationship between nodes. For example, places may be locations with specific
distinguishing features, such as intersections and T-junctions in an office building,
and edges may correspond to specific behaviors or motion commands that enable the
robot to move from one location to another, such as wall-following. Recently, it has
become popular to augment topological maps with metric information (e.g., relative
distance, angle) to help disambiguate places that “look” the same [108,250,382,418]
or to use them for navigation [188, 213, 240, 339].

Geometric models use geometric primitives for representing the environment. Map-
ping then amounts to estimating the parameters of the primitives to best fit the sensor
observations. In the past, different representations have been used with great success.
Many researchers use line segments [27, 122, 169, 180, 334] to represent parts of the

Choset-79066 book February 22, 2005 17:53

108 5 Roadmaps

Figure 5.1 Different ways to represent an environment: topologically, geometrically, and
using grids.

environment. Popular approaches also represent three-dimensional structures of the
environment with triangle meshes [17, 161, 182, 416].

Finally occupancy grids are grid structures, similar as those described in chapter 4,
where the value of each pixel corresponds to the likelihood that its corresponding
portion of workspace or configuration space is occupied [142]. Occupancy grids were
first introduced for mapping unknown spaces with wide-angle ultrasonic sensors; this
topic is discussed in chapter 9.

This chapter focuses on a class of topological maps called roadmaps [91, 262]. A
roadmap is embedded in the free space and hence the nodes and edges of a roadmap
also carry physical meaning. For example, a roadmap node corresponds to a specific
location and an edge corresponds to a path between neighboring locations. So, in
addition to being a graph, a roadmap is a collection of one-dimensional manifolds
that captures the salient topology of the free space.

Robots use roadmaps in much the same way people use highway systems. Instead
of planning every possible side-street path to a destination, people usually plan their
path to a network of highways, then along the highway system, and finally from the
highway to their destination. The bulk of the motion occurs on the highway system,
which brings the motorist from near the start to near the goal (figure 5.2).

Likewise, using a roadmap, the planner can construct a path between any two
points in a connected component of the robot’s free space by first finding a collision-
free path onto the roadmap, traversing the roadmap to the vicinity of the goal, and
then constructing a collision-free path from a point on the roadmap to the goal. The
bulk of the motion occurs on the roadmap and thus searching does not occur in a
multidimensional space, whether it be the workspace or the configuration space. If
the robot knows the roadmap, then it in essence knows the environment. So one way a
robot can explore an unknown environment is by relying on sensor data to construct a
roadmap and then using that roadmap to plan future excursions into the environment.
We now formally define the roadmap.

Choset-79066 book February 22, 2005 17:53

5 Roadmaps 109

Figure 5.2 Los Angeles freeway system: Planning a path from Pasadena to the Manhattan
Beach requires finding a path onto the 110, then to the 105 and 405, and finally from the 405
to the beach. Courtesy of Mapquest.

DEFINITION 5.0.2 (Roadmap) A union of one-dimensional curves is a roadmap RM
if for all qstart and qgoal inQfree that can be connected by a path, the following properties
hold:

1. Accessibility: there exists a path from qstart ∈ Qfree to some q ′
start ∈ RM,

2. Departability: there exists a path from some q ′
goal ∈ RM to qgoal ∈ Qfree, and

3. Connectivity: there exists a path in RM between q ′
start and q ′

goal.

In this chapter, we consider five types of roadmaps: visibility maps, deforma-
tion retracts, retract-like structures, piecewise retracts and silhouettes. All of these
roadmaps have a corresponding graph representation. Visibility maps tend to apply to
configuration spaces with polygonal obstacles. Nodes of the map are the vertices of
the polygons and for visibility maps we can use the terms node and vertex interchange-
ably. Two nodes of a visibility map share an edge if their corresponding vertices are
within line of sight of each other. Deformation retractions are analogous to melting
ice or burning grassland. As an arbitrary shaped piece of ice melts, a resulting “stick

Choset-79066 book February 22, 2005 17:53

110 5 Roadmaps

figure” forms. The ice represents the robot’s free space and since the stick figure cap-
tures the macroscopic properties of the piece of ice, it can be used for path planning in
the robot’s free space The representation used for silhouette methods is constructed
by repeatedly projecting a shadow of the robot’s multidimensional free space onto
lower-dimensional spaces until a one-dimensional network is formed.

5.1 Visibility Maps: The Visibility Graph

The defining characteristics of a visibility map are that its nodes share an edge if they
are within line of sight of each other, and that all points in the robot’s free space are
within line of sight of at least one node on the visibility map. This second statement
implies that visibility maps, by definition, possess the properties of accessibility
and departability. Connectivity must then be explicitly proved for each map for the
structure to be a roadmap. In this section, we consider the simplest visibility map,
called the visibility graph [262, 298].

5.1.1 Visibility Graph Definition

The standard visibility graph is defined in a two-dimensional polygonal configuration
space (figure 5.3). The nodes vi of the visibility graph include the start location,
the goal location, and all the vertices of the configuration space obstacles. The graph
edges ei j are straight-line segments that connect two line-of-sight nodes vi and v j , i.e.,

ei j �= ∅ ⇐⇒ svi + (1 − s)v j ∈ cl(Qfree) ∀s ∈ [0, 1].

qstart

qgoal

Figure 5.3 Polygonal configuration space with a start and goal.

Choset-79066 book February 22, 2005 17:53

5.1 Visibility Maps: The Visibility Graph 111

qstart

qgoal

Figure 5.4 The thin solid lines delineate the edges of the visibility graph for the three obstacles
represented as filled polygons. The thick dotted line represents the shortest path between the
start and goal.

Note that we are embedding the nodes and edges in the free space and that edges of
the polygonal obstacles also serve as edges in the visibility graph.

By definition, the visibility graph has the properties of accessibility and departabil-
ity. We leave it to the reader as an exercise to prove the visibility graph is connected
in a connected component of free space. Using the standard two-norm (Euclidean
distance), the visibility graph can be searched for the shortest path (figure 5.4) [366].
The visibility graph can be defined for a three dimensional configuration space popu-
lated with polyhedral obstacles, but it does not necessarily contain the shortest paths
in such a space.

Unfortunately, the visibility graph has many needless edges. The use of supporting
and separating lines can reduce the number of edges. A supporting line is tangent to
two obstacles such that both obstacles lie on the same side of the line. For nonsmooth
obstacles, such as polygons, a supporting line l can be tangent at a vertex vi if
Bε(vi)

⋂
l
⋂
QOi = vi . A separating line is tangent to two obstacles such that the

obstacles lie on opposite sides of the line. See figure 5.5 for an example of supporting
and separating lines.

The reduced visibility graph is soley constructed from supporting and separating
lines. In other words, all edges of the original visibility graph that do not lie on a
supporting or separating line are removed. Figure 5.6 contains the reduced visibility
graph of the example in figure 5.4. The notion of separating and supporting lines can
be used to generalize the visibility graph method for curved obstacles [294].

Choset-79066 book February 22, 2005 17:53

112 5 Roadmaps

Obstacle

Obstacle

Separating

Supporting

Figure 5.5 Supporting and separating line segments. Note that for polygonal obstacles, we
use a nonsmooth notion of tangency.

qstart

qgoal

Figure 5.6 Reduced visibility graph.

Choset-79066 book February 22, 2005 17:53

5.1 Visibility Maps: The Visibility Graph 113

qstart

qgoal

Figure 5.7 Reduced visibility graph with nonconvex obstacles.

At first, the definitions of the supporting and separating lines may seem to only
apply to convex obstacles. However, this definition applies to nonconvex shapes as
well. Here, we use the notion of local convexity. Recall that convex sets in the plane
have the property that for all points on their boundary, there exists a line orthogonal to
the surface normal that separates the convex set. This means that the set lies entirely
on one side of the line. A set is locally convex at a point c̄ if the hyperplane tangent to
c̄ separates the points in a neighborhood of c̄ on the boundary of the convex set QOi .
In other words, when N is the surface normal at c̄, QOi is locally convex at c̄ if for
all c ∈ (

QOi
⋂

nbhd (c̄)
)
, (c − c̄) · N ≥ 0 or (c − c̄) · N ≤ 0. Convex obstacles are

locally convex everywhere on the boundary of the set. Figure 5.7 contains a reduced
visibility graph for a configuration space with nonconvex obstacles. The reduced
visibility graph is beneficial because it has fewer edges making the search for the
shortest path more efficient.

5.1.2 Visibility Graph Construction

Let V = {v1, . . . , vn} be the set of vertices of the polygons in the configuration space
as well as the start and goal configurations. To construct the visibility graph, for each
v ∈ V we must determine which other vertices are visible to v. The most obvious
way to make this determination is to test all line segments vvi , v �= vi to see if they
intersect an edge of any polygon. For a particular vvi , there are O(n) intersections to
check because there are O(n) edges from the obstacles. Now, there are O(n) potential
segments emanating from v, so for a particular v, there are O(n2) tests to determine
which vertices are indeed visible from v. This must be done for all v ∈ V and thus
the construction of the visibility graph would have complexity O(n3).

Choset-79066 book February 22, 2005 17:53

114 5 Roadmaps

There is a more efficient way to compute the set of vertices that are visible from v.
Imagine a rotating beam of light emanating from a lighthouse beacon. At any moment,
the beam illuminates the object that is closest to the lighthouse. Furthermore, as the
beam rotates, the obstacle that is illuminated changes only at a finite number of
orientations of the beam. If the obstacles in the space are polygons, these orientations
occur when the beam is incident on a vertex of some polygon. This insight motivates
a class of algorithms known in the computational geometry literature as plane sweep
algorithms.

A plane sweep algorithm solves a problem by sweeping a line, called the sweep line,
across the plane, pausing at each of the vertices of the obstacles. At each vertex, the
algorithm updates a partial solution to the problem. Plane sweep algorithms are used to
efficiently compute the intersections of a set of line segments in the plane, to compute
intersections of polygons, and to solve many other computational geometry problems.

For the problem of computing the set of vertices visible from v, we will let the
sweep line, l, be a half-line emanating from v, and we will use a rotational sweep,
rotating l from 0 to 2π . The key to this algorithm is to incrementally maintain the
set of edges that intersect l, sorted in order of increasing distance from v. If a vertex
vi is visible to v, then it should be added to the visibility graph (algorithm 5). It is

Algorithm 5 Rotational Plane Sweep Algorithm
Input: A set of vertices {vi } (whose edges do not intersect) and a vertex v

Output: A subset of vertices from {vi } that are within line of sight of v

1: For each vertex vi , calculate αi , the angle from the horizontal axis to the line segment
vvi .

2: Create the vertex list E , containing the αi ’s sorted in increasing order.
3: Create the active list S, containing the sorted list of edges that intersect the horizontal

half-line emanating from v.
4: for all αi do
5: if vi is visible to v then
6: Add the edge (v, vi) to the visibility graph.
7: end if
8: if vi is the beginning of an edge, E , not in S then
9: Insert the E into S.

10: end if
11: if vi is the end of an edge in S then
12: Delete the edge from S.
13: end if
14: end for

Choset-79066 book February 22, 2005 17:53

5.1 Visibility Maps: The Visibility Graph 115

E5

E1

E4 E2

E8 E6

E7

E3

v4 v3

v8 v7

v1
v2

v6v5

v

Figure 5.8 An example of the sweep line algorithm at work for an environment containing
two rectangular obstacles.

straightforward to determine if vi is visible to v. Let S be the sorted list of edges that
intersects the half-line emanating from v; the set S is incrementally constructed as
the algorithm runs. If the line segment vvi does not intersect the closest edge in S,
and if l does not lie between the two edges incident on v (the sweep line does not
intersect the interior of the obstacle at v), then vi is visible from v.

Figure 5.8 shows an example configuration space containing two obstacles with
vertices v1, . . . , v8. Table 5.1 shows how the data structures are updated as the algo-
rithm proceeds from initialization to termination. Step 1 of the algorithm determines
the angles, αi ’s, at which the line l will pause; such angles correspond to the vertices
of the obstacles. In step 2 of the algorithm, these angles are used to construct the
vertex list, E , and in step 3 the active list S is initialized. After initialization, E and S
are the sorted lists:

E = {α3, α7, α4, α8, α1, α5, α2, α6, },
S = {E4, E2, E8, E6}.

Choset-79066 book February 22, 2005 17:53

116 5 Roadmaps

Vertex New S Actions

Initialization {E4, E2, E8, E6} Sort edges intersecting horizontal
half-line

α3 {E4, E3, E8, E6} Delete E2 from S. Add E3 to S.

α7 {E4, E3, E8, E7} Delete E6 from S. Add E7 to S.

α4 {E8, E7} Delete E3 from S. Delete E4 from S.
ADD (v, v4) to visibility graph

α8 {} Delete E7 from S. Delete E8 from S.
ADD (v, v8) to visibility graph

α1 {E1, E4} Add E4 to S. Add E1 to S.
ADD (v, v1) to visibility graph

α5 {E4, E1, E8, E5} Add E8 to S. Add E5 to S.

α2 {E4, E2, E8, E5} Delete E1 from S. Add E2 to S.

α6 {E4, E2, E8, E6} Delete E5 from S. Add E6 to S.

Termination

Table 5.1 Table showing the progress of the rotational plane sweep algorithm for the envi-
ronment of figure 5.8.

At termination, the algorithm has added three new edges to the visibility graph: (v, v4),
(v, v8), and (v, v1).

The complexity of algorithm 5 is O(n2 log n). The time required by step 1 is
O(n), since each vertex must be visited exactly once. For step 2, the required time is
O(n log n), since this is the time required to sort a list of n elements. For step 3, the
set of active edges can be computed in O(n) time by merely testing each edge to see if it
intersects the horizontal axis. In the worst case, if every edge were to intersect the hor-
izontal axis, this set could be sorted in time O(n log n). The main loop of the program
(step 4) iterates n times (once for each vertex). At each iteration, the algorithm must
perform basic bookkeeping operations (insert or delete), but these can be done in time
O(log n) if an appropriate data structure, such as a balanced tree, is used to main-
tain S Thus, the time required by step 4 is O(n log n), and therefore the total time
complexity of the algorithm is O(n2 log n).

Finally, we have not considered here the case when l may simultaneously intersect
multiple vertices. In order for this to occur, three vertices must be collinear. When this
does occur, the problem can be resolved by slightly perturbing the position of one of

Choset-79066 book February 22, 2005 17:53

5.2 Deformation Retracts: Generalized Voronoi Diagram 117

the three vertices. When no three vertices are collinear, we say that the polygons are in
general position, and the general position assumption is common for computational
geometry algorithms. It is also possible to modify the visibility test to account for
nongeneral configurations, and this is addressed in [124].

5.2 Deformation Retracts: Generalized Voronoi Diagram

The generalized Voronoi diagram (GVD) is the set of points where the distance to the
two closest obstacles is the same. Figure 5.9(d) displays an example of the GVD. Path
planning is achieved by moving away from the closest point until reaching the GVD,
then along the double equidistant GVD to the vicinity of the goal, and then from
the GVD to the goal. Since the GVD is defined in terms of distance, one can expect

ij

i
j

i
j

i
j

ij

ij
di(q)

dj(q)

(a) (b)

(c) (d)

Figure 5.9 (a) The set Si j contains points equidistant to two obstacles QOi and QOj . (b) The
set SS i j contains equidistant points with distinct gradients; note that there is no SS i j structure
to the right of the obstacles. We delay discussion of this structure for a moment. (c) The set
Fi j has the closest pair of obstacles. (d) The GVD is the union of all such sets.

Choset-79066 book February 22, 2005 17:53

118 5 Roadmaps

that a robot equipped with range sensors can incrementally construct the GVD in
an unknown space. Once the GVD is constructed, the robot has essentially explored
the space because the robot can use the GVD to plan paths in the free space with
the GVD.

We show that the GVD is a roadmap because the GVD is a type of deformation
retract. Deformation retracts are best described by an analogy. Imagine a doughnut-
shaped candy: a candy with a hole in the middle of it. As the candy dissolves, even-
tually a ring remains. This ring captures the topological structure of the candy even
though it is significantly smaller than the original. Every point on the ring serves as the
center of a corresponding planar disk orthogonal to the ring; each disk is shrunk to
a point. In this analogy, the original candy represents the robot’s free space and the
resulting ring corresponds to a geometric structure called a deformation retract. The
function that represents this shrinking process, i.e., the function that maps the filled
torus1 onto a ring, is called a deformation retraction.

First in section 5.2.1, we define the GVD and then in section 5.2.2, we show it
has the properties of accessibility, connectivity, and departability. In section 5.2.2,
we rely on the fact that the GVD is indeed a deformation retract to assure it has the
roadmap properties and in section 5.2.3 we describe in more detail as to how the
GVD is a deformation retract. Next, in section 5.2.4, we prove that the GVD is indeed
one-dimensional. Here, we review the preimage theorem to assert the dimensionality
property of the GVD. Finally, in section 5.2.5, we describe three methods to construct
the GVD.

5.2.1 GVD Definition

The Voronoi diagram is defined for a set of points called sites [31]. A Voronoi region
is the set of points closest to a particular site [31]. The Voronoi diagram is then the
set of points equidistant to two sites; it sections off the free space into regions that
are closest to a particular site. Points on the Voronoi diagram have two closest sites.
In the planar case, the Voronoi diagram is a collection of line segments.

For the purposes of path planning, we can think of the point sites as obstacles,
but obstacles are not simple points. Therefore, the definition of a Voronoi region is
extended to the generalized Voronoi region, Fi , which is the closure of the set of
points closest to QOi . In other words,

Fi = {q ∈ Qfree | di (q) ≤ dh(q) ∀h �= i},(5.1)

1. A torus is two-dimensional structure, and the filled torus is a three-dimensional version, i.e., the convex
hull of a torus embedded in R

3.

Choset-79066 book February 22, 2005 17:53

5.2 Deformation Retracts: Generalized Voronoi Diagram 119

where di (q) is the distance to an obstacle QOi from q, i.e., di (q) = minc∈QOi d(q, c)
(chapter 4, equation (4.6)).

The basic building block of the GVD is the set of points equidistant to two sets
QOi and QOj , which we term a two-equidistant surface denoted by Si j = {x ∈ Q |
(di (q) − d j (q)) = 0}. Note that di (q) − d j (q) = 0 is an equivalent way to state
di (q) = d j (q) (figure 5.9). A two-equidistant surface pierces obstacles, so we restrict
it to the set of points that are both equidistant to QOi and QOj and have QOi and
QOj as their closest obstacles. This restricted structure is the two-equidistant face,
which could be denoted by Fi j = {q ∈ Si j | di (q) ≤ dh(q) ∀h}2. We refine this
definition shortly. The union of the two-equidistant faces forms the GVD, i.e.,

GVD =
⋃

i

⋃

j

Fi j .

This definition of the GVD applies to any dimensional spaces. One can see that the
GVD partitions the free space into regions Fi such that points in the interior of one
Fi are closer to QOi than to any other obstacle. Points on the GVD have two or
more closest obstacles. In the planar case, we term the Fi j as GVD edges and they
terminate at either meet points, the set of points equidistant to three or more obstacles
(Fi jk), or boundary points, the set of points whose distance to the closest obstacle is
zero. Boundary points are the endpoints of “spokes” of the GVD.

5.2.2 GVD Roadmap Properties

In R
m , the GVD has the properties of accessibility, connectivity, and departability.

In the plane, the GVD is a roadmap because it has these properties and is one-
dimensional. We show that the planar GVD is one-dimensional in the next sub-
section and the properties of accessibility, connectivity, and departability here. The
robot achieves accessibility by moving away from the closest obstacle; it performs
gradient ascent of distance D to the closest obstacle, i.e.,

dc(t)

dt
= ∇ D(c(t)) where c(0) = qstart,(5.2)

until it reaches a point on the GVD.
Equation (5.2) is a first order differential equation implicitly defining the the path

c : [0, 1] → Qfree. At any point c(t) ∈ Qfree, the tangent to the path is defined by
the gradient of distance to the closest obstacle. The gradient ∇ D(q) points in the
direction that maximally increases distance. The tangent of the curve dc(t)

dt is “set”

2. Note that we could have written di (q) = d j (q) ≤ dh(q), but the “= d j (q)” is already implied by the
q ∈ Si j .

Choset-79066 book February 22, 2005 17:53

120 5 Roadmaps

to the gradient of distance. By constantly following the distance gradient, a path is
traced that maximally increases the distance.

LEMMA 5.2.1 (Accessibility of the GVD) In an obstacle-bounded environment, gra-
dient ascent of D traces a path from any point in the free space to the GVD.

Proof Assume the robot starts at a point q that is not on the GVD. Let QOi be the
closest obstacle to q. Hence di (q) = D(q) and dh(q) > di (q) for all h. The robot
traces a path dc(t)

dt = ∇di (c(t)) where c(0) = q. Since the environment is bounded,
continuity of the distance function guarantees that there exists a t̄ ∈ R and a QO j ,
such that di (c(t̄)) = d j (c(t̄)).

We use the fact that the GVD is a deformation retract to ensure connectivity of the
GVD. A deformation retract is the image of a continuous function called a deformation
retraction RM such that

RM(q) = q , for all q in the GVD,
RM(q) = q ′, for any q ∈ Qfree and q ′ ∈ GVD.

We more formally define the deformation retraction in the next section.
For the GVD, the gradient ascent accessibility procedure implicitly defines the

deformation retraction without explicitly doing so [340]. In other words, if q is on
the GVD, then the image of q is q, i.e., RM(q) = q. If q is in the free space but
not in the GVD, then the image q is the q ′ in the GVD that is obtained by moving
away from the closest point on the closest obstacle until encountering the GVD, i.e.,
RM(q) = q ′.

Connectivity of the GVD is then a consequence of continuity of the RM function.
In other words, since RM is continuous, for each connected component of the free
space there is a connected component of the GVD. Therefore, there exists a path that
connects qstart and qgoal if and only if there exists a path in the GVD that connects q ′

start

and q ′
goal where q ′

start = RM(qstart) and q ′
goal = RM(qgoal).

Departability is simply accessibility in reverse. However, there are other ways to
achieve departability. It can be shown that all points in free space have at least one
point on the GVD within line of sight, i.e.,

∀ q ∈ Qfree, ∃q ′ ∈ GVD such that sq + (1 − s)q ′ ∈ Qfree ∀s ∈ [0, 1].

This means that if the robot comes within line of sight of the goal, the robot can drive
straight toward it. This approach to departability only makes sense if the robot can
detect the goal using its on-board sensors.

Choset-79066 book February 22, 2005 17:53

5.2 Deformation Retracts: Generalized Voronoi Diagram 121

5.2.3 Deformation Retract Definition

Before defining the deformation retract, we define a weaker structure called a retract.
For a manifold X , a retraction is a continuous function f : X → A such that A ⊂ X ,
and f (a) = a for all a ∈ A [410]. The subset A is the retract. Typically, the dimension
of A is less than the dimension of X .

The set of deformation retracts is a subset of the set of retracts and hence the GVD
is a retract also. However, the properties of a retract are not sufficient to guarantee
that the GVD is a roadmap. It is the fact that that GVD is indeed a deformation retract
that makes it a roadmap. Essentially, a deformation retract inherits many topological
properties from its ambient space, whereas a retract may not. One important property
is that the number of “types” of closed paths in the free space is equal to the number
of “types” of closed paths in the deformation retract of the free space.

Let’s return to the candy example from the beginning of this section. Although a
retract can be a ring, it could also be a single point, a two-dimensional disk orthogonal
to the ring, etc. We need to enforce additional properties on the retract so as to
guarantee that it captures the topology of its free space and is still one-dimensional.
Recall from chapter 3, section 3.4.1 that global diffeomorphisms are mappings that
relate spaces that are “topologically similar.” Diffeomorphic spaces must have same
dimension. Now, we consider spaces that are similar, but of different dimensions.

Let f : U → V and g : U → V where U and V are manifolds. A homotopy is a
continuous function H : U × [0, 1] → V such that H (x , 0) = f (x) and H (x , 1) =
g(x). An example of H is H (x , t) = (1 − t) f (x) + tg(x). If there exists such a
continuous mapping that “deforms” f to g, then f and g are homotopic, and the
resulting equivalence relation is denoted f ∼ g. We can also say that two paths f
and g are path-homotopic, i.e., f ∼ g, if they can be continuously deformed into
one another. This relation allows for the classification of functions into equivalence
classes termed path-homotopy classes and are denoted as

[c] = {c̄ ∈ C0 | c̄ ∼ c}.
where c is a representative element of the class.

Let A ⊂ X and let f : X → A be a retraction. A deformation retraction is a
homotopy H : X × [0, 1] → X such that

H (x , 0) = x

H (x , 1) ∈ A

H (a, t) = a for a ∈ A and t ∈ [0, 1]

Choset-79066 book February 22, 2005 17:53

122 5 Roadmaps

In other words, H is a homotopy between a retraction and the identity map3. Note
that all retractions are not necessarily homotopic to the identity map. The retract is
now called a deformation retract.

We use deformation retractions to smoothly deform, without tearing or pasting X
onto a lower, preferably one-dimensional subset A of X . So, as t varies from 0 to
1, a point in X continuously moves through X to a point in A. Moreover, a point
y in a neighborhood of x also continuously moves through X to a point in A such
that H (x , t) and H (y, t) are close to each other as t varies from 0 to 1. Thefore, the
deformation retraction preserves many topological properties of the free space. Thus,
while a diffeomorphism preserves the structure of two spaces of the same dimension,
a deformation retraction preserves the structure of two spaces of different dimension.

One of the key topological properties of deformation retracts is that they preserve
the number of homotopically equivalent closed loops from the ambient space. The
number of homotopy equivalence classes of closed loops is called the first fundamental
group, and is denoted as π1(X, x0) for loops in X passing through x0. Since this is a
group, it has a group operator (�) that simply concatenates paths. A set X is simply
connected if the fundamental group associated with the set, π1(X, x0), contains only
the identity element (e.g., the group only contains one element). If f is a deformation
retraction with A as its deformation retract of X , then π1(X, x0) = π1(A, f (x0)). In
other words, the ambient space X and the deformation retract A have the same number
of homotopically equivalent closed loops.

Deformation retracts have the properties of connectivity, accessibility, and departa-
bility. For each connected component of X , A is a connected set because the image of
a connected set under a continuous mapping is a connected set [9]. The deformation
retraction determines a path from the start to the deformation retract, as well as a path
from the goal to the retract. Let H be the deformation retraction and H (x , 0) = qstart.
The path to the deformation retract is then defined by H (x , ·) : [0, 1] →Qfree where
H (x , 1) is an element of the deformation retract. Departability is shown in the
same manner. Since the deformation retract is connected, there is a path between
the retracted start and retracted goal configurations along the deformation retract.
Hence, one-dimensional deformation retracts are roadmaps.

The GVD is a retract because the RM (equation (5.2.2)) has been shown to be
continuous and maps all points on the GVD to the GVD. Since RM is continuous,
the GVD is connected in a connected component of the free space because the image
of connected set under a continuous function is a connected set. The GVD is a
deformation retract because RM has been shown to be homotopic to the indentity

3. Sometimes, a deformation retraction is defined as a retraction that is homotopic to the identity map [207]
as opposed to the homotopy.

Choset-79066 book February 22, 2005 17:53

5.2 Deformation Retracts: Generalized Voronoi Diagram 123

map. Therefore, RM smoothly deforms the free space onto a one-dimensional subset
and defines the accessibility and departability criteria. Finally, since the GVD is a
deformation retract, the number of closed-loop path equivalent classes in the GVD
equals the number of closed-loop path equivalent classes in the free space because
RM preserves the cardinality of the first fundamental group. This makes the GVD a
concise representation of the free space.

5.2.4 GVD Dimension: The Preimage Theorem and Critical Points

A key property of a roadmap is that it is one-dimensional. Actually, we show that in the
plane, the GVD consists of one-dimensional manifolds. Before we can demonstrate
this, we have to take a more careful look at the definition of the GVD. Recall that
we are using the distance function di to define the GVD, but this function assumes
that the obstacles are convex, which is unrealistic in most situations.

At first, it seems to make sense to decompose nonconvex obstacles into convex
pieces. This causes problems because there are many ways to construct such a decom-
position, thereby resulting in different representations of the free space. Consider the
obstacle in figure 5.10. Both decompositions are valid, but unfortunately they give
rise to two different definitions of Si j , the set of points equidistant to two obstacles
QOi and QOj . There are infinitely many ways to decompose a nonconvex obstacle
and hence the possibility for infinitely many representations.

j

i i

jq2

q3

q1 q1

Figure 5.10 A nonconvex obstacle is divided into two pieces, QOi and QOj , but in two
different ways. On the left, a diagonal forms the convex obstacles and on the right a vertical
cut forms them. Note that in both left and right, the gradient vectors pointing away from the
two closest obstacles are distinct at q1 but they are the same at q2 and q3.

Choset-79066 book February 22, 2005 17:53

124 5 Roadmaps

It would be nice to have a unique representation of the roadmap, so we refine
our definition of the GVD. In figure 5.10, note that there are two portions of Si j : the
upper-right portion, which is “between” the two arms of the obstacle and the lower-left
portion, which is on the other side of the obstacle. Note that for the portions between
the two arms, the gradients to the two closest obstacles are distinct, e.g., ∇di (q1) �=
∇d j (q1). However, for the other portions, the gradients line up, e.g., ∇di (q2) =
∇d j (q2) and ∇di (q3) = ∇d j (q3). Eliminating the portion of the two-equidistant
surface with nondistinct gradient vectors yields a set termed the two-equidistant sur-
jective surface denoted as

SS i j = {q ∈ Si j | ∇di (q) �= ∇d j (q)}.
See figure 5.9(b) for an example of a two-equidistant surjective surface defined by a
nonconvex obstacle that has been divided into two convex pieces.

This definition of a two-equidistant surjective surface should be salient from a
sensor-based perspective. Consider the planar case where distance and gradient vec-
tors can be derived from a laser ranger or a sonar ring which approximates the saturated
raw distance function. Recall that the saturated raw distance function corresponds to
all of the rays emanating from a single point intersecting as can be seen in figure 5.11.

j

i i

j

q2
q3

q1
q1

Figure 5.11 A robot is placed at different configurations q1, q2 and q3. It has range sensors
radially distributed pointing in a full 360 degrees. The rays emanating from the points corre-
spond to the range readings. Local minima correspond to distance to nearby obstacles. (Left)
Use a diagonal cut to break the nonconvex obstacles into convex ones, but a robot cannot see
the diagonal cut from q2 because there is no local minimum. (Right) Use a vertical cut to
break the nonconvex obstacles into convex ones, but a robot cannot see the vertical cut from
q3 because there is no local minimum.

Choset-79066 book February 22, 2005 17:53

5.2 Deformation Retracts: Generalized Voronoi Diagram 125

On the “inside” of the concavity (at q1 in figure 5.11), there are two local minima
in the raw distance function, whereas on the outside there is one at q2 and one at q3. In
other words, a robot situated on the “outside” of the obstacle cannot determine from its
sensor readings how the obstacle was cut. Another perspective is that on the “inside”
of the nonconvex obstacle, the robot “sees” two obstacles and on the “outside,” it
only “sees” one.

From here, the definition of the two-equidistant face Fi j is modified to be Fi j =
{q ∈ SS i j | di (q) ≤ dh(q) ∀h}. So the GVD is the set of points equidistant to two
obstacles such that the two obstacles are closest and have unique closest points on
them.

We are now ready to show that the GVD is indeed one-dimensional. We do this by
first rewriting the equidistant relationship di (q) = d j (q) as di (q) −d j (q) = 0, which
in turn can be written as (di − d j)(q) = 0. Intuitively, this one constraint in a two-
dimensional space defines a one-dimensional subspace. In other words, equidistance
is the preimage of zero under the map (di −d j) : Q → R. We use this reformulation
to demonstrate that in the plane the GVD comprises one-dimensional manifolds by
taking recourse to the preimage theorem [173].

THEOREM 5.2.2 (Preimage Theorem) Let M and N be manifolds. Let G : M → N ∈
C∞ and n ∈ N be a regular value of G. The set G−1(n) = {m ∈ M | G(m) = n} is a
closed submanifold of M with tangent space given by Tm G−1(n) = ker DG(m). If N
is finitely dimensional, then dim(G−1(n)) = dim(M) −dim(N), i.e., dim(G−1(n)) =
dim(M) − dim(N).

The preimage theorem contains a lot of terminology and notation. A regular value
is an n where for all m ∈ G−1(n), the differential DG(m) is surjective (e.g., has full
rank). See section C.5.5 for a description of the differential. Next, Tm denotes the tan-
gent space at m . So, Tm M is the tangent space at m on the manifold M and TpG−1(n)
is the tangent space at p on the manifold G−1(n), which is a submanifold of M .

A critical point is a point where the differential is not surjective and hence loses
rank. (For real-valued functions, it is a point where the first derivative vanishes.) Let
�(G) be the set of all critical points of G. For all q∗ ∈ �(G), G(q∗) are critical
values. Finally, all points q �∈ �(G) where DG(q) is surjective are termed regular
points with G(q) as their corresponding regular values.

To show that the GVD edges are indeed one-dimensional, we use the preimage
theorem to show that they are one-dimensional manifolds. First let’s see how the
preimage theorem is used to create manifolds. Consider the function f (x , y) = x2 +
y2. The differential D f (x , y) = [2x , 2y]. For all f (x , y) = 91, 538, D f (x , y) �= 0
and thus the preimage of 91,538 under f forms a one-dimensional manifold.

Choset-79066 book February 22, 2005 17:53

126 5 Roadmaps

With the GVD, G = (di − d j), and the set of points equidistant to two obstacles
is (di − d j)−1(0). However, for all points in the preimage to be regular, DG must
be surjective. In other words, D(di − d j) must not be equal to zero. Since in a
Euclidean space, Ddi (q) = (∇di (q))T , this means ∇di (q) cannot be equal to ∇d j (q).
However, we are fortunate to have the ∇di (q) �= ∇d j (q) condition in the definition
of SS i j . So, in actuality, the ∇di (q) �= ∇d j (q) enforces the surjective condition
for the preimage theorem, hence the term surjective in the two-equidistant surjective
surface. So, by the preimage theorem, SS i j is one-dimensional in the plane. The set
Fi j is a submanifold of SS i j . Therefore, the GVD comprises a set of one-dimensional
manifolds (figure 5.9).

5.2.5 Construction of the GVD

We discuss three methods for constructing the planar GVD: the first uses sensor
information allowing the robot to construct the GVD in an unknown space; the second
assumes the world has polygonal obstacles in which case we can compute complexity
information about the GVD; and the final method assumes that the world is a grid
allowing for efficient computation.

Sensor-Based Construction of the GVD

Exploring with the GVD is akin to simultaneously generating and exploring a graph
that is embedded in the free space. The GVD can be incrementally constructed because
it is defined in terms of distance information which is readily provided by range sensors
onboard mobile robots. Using such line-of-sight data, the robot initially accesses the
GVD and then begins tracing an edge until it encounters a meet point or a boundary
point. When the robot encounters a new meet point, it marks off the direction from
which it came as explored, and then identifies all new GVD edges that emanate from
it. From the meet point, the robot explores a new GVD edge until it detects either
another meet point or a boundary point. In the case that it detects another new meet
point, the above branching process recursively repeats. If the robot reaches an old
meet point, the robot has completed a cycle in the GVD graph and then travels to
a meet point with an unexplored edge associated with it. When the robot reaches a
boundary node, it simply turns around and returns to a meet point with unexplored
GVD edges. When all meet points have no unexplored edges associated with them,
exploration is complete.

The robot accesses the GVD by simply moving away from the nearest obstacle
until it is equidistant to two obstacles (figure 5.12). Once the robot accesses the GVD,
it must incrementally trace the GVD using the same curve tracing technique from

Choset-79066 book February 22, 2005 17:53

5.2 Deformation Retracts: Generalized Voronoi Diagram 127

Local Min

Sonar Ray

G
V

G

Figure 5.12 The circular disk represents a mobile robot with some of its range sensor readings.
The thick ray, labeled local min, corresponds to the smallest sensor reading, and hence the robot
will move in the direction indicated by the black arrow to access the GVD, denoted by a dashed
line between two nonparallel walls.

1 1

2 2

TqGVD
GVD

q1

q
q

q2

Figure 5.13 The tangent space to the GVD is orthogonal to the line that connects the two
closest points on the two closest obstacles.

chapter 2, section 2.3.3, except G(q) = di (q)−d j (q) whose roots are the set of points
where di (q) = d j (q). The tangent is the null space of ∇G(q), which corresponds to
a line orthogonal to ∇di (q) − ∇d j (q). This is identical to passing a line through the
two closest points and taking the vector perpendicular to the line to be the tangent
(figure 5.13). A meet point is detected by looking for a sudden change in one of the
two closest obstacles.

Polygonal Spaces

In a polygonal environment, obstacles have two features, vertices and edges, thereby
making equidistance relationships easy to define. The set of points equidistant to two
vertices is a line; the set of points equidistant to two edges is a line; and the set of
points equidistant to a vertex and an edge is a parabola. Therefore, by breaking down

Choset-79066 book February 22, 2005 17:53

128 5 Roadmaps

1

2

A
B

C

Figure 5.14 GVD edge fragment for two polygonal obstacles.

the free space into regions with the appropriate pair of closest features, one can easily
build the GVD. In figure 5.14, regions A and C have a pair of edges as their respective
closest features, whereas region B has an edge and vertex as its closest obstacle.

In a polygonal environment with n obstacles and N obstacle vertices, the number
of GVD edges falls between 3(n + 1)

2 and 6N + 3n − 3. The number of nodes on the
GVD falls between n + 5

2 and 4N − n − 2. See [359] for details.

Grid Configuration Spaces: The Brushfire Method

The method presented in chapter 4, section 4.3.2 can be readily adapted to construct
the GVD in a discrete grid. Originally, the input for the brushfire method is a grid of
zeros corresponding to free space and ones corresponding to an obstacle. The output
of the brushfire method is a discrete map where each pixel in the grid has a value
equal to the distance to the closest point on the closest obstacle (the closest pixel with
a value of one).

We can view the brushfire method as a wave initially starting at the obstacles and
propagating through the free space. As the wave front passes over a pixel, the method
assigns a value to the pixel corresponding to how far the wave has traveled. The wave
fronts collide at points where the distance to two different obstacles is the same. These
are points on the GVD.

The brushfire algorithm can be readily updated to identify the pixels where these
collisions occur. Essentially, as the wave propagates, each pixel in the wave front
maintains a back pointer to the obstacle pixel from which the wave originated.
When the updated brushfire algorithm attempts to assign a “free pixel” with two

Choset-79066 book February 22, 2005 17:53

5.3 Retract-like Structures: The Generalized Voronoi Graph 129

different back pointers, two wave fronts have collided and the current pixel belongs
to the GVD.

5.3 Retract-like Structures: The Generalized Voronoi Graph

Now, we consider the case when Q = R
3. In R

3, the GVD is two-dimensional and
therefore reduces the motion planning problem by a single dimension. We use fig-
ure 5.9(d) to show this. Imagine extruding the one-dimensional curves in figure 5.9(d)
into two-dimensional surfaces in three dimensions; so the one-dimensional curves in
figure 5.9(d) become cross sections of two-dimensional sheets. This makes sense
because we have a three-dimensional space with one constraint resulting in a two-
dimensional subspace. The preimage theorem confirms that the GVD actually com-
prises two-dimensional manifolds; the dimension of (di − d j)−1(0) is two because
3 − 1 = 2.

Just as two planes in R
3 generically intersect on a line, two two-equidistant faces

intersect and form a one-dimensional manifold. The union of these one-dimensional
structures is termed the generalized Voronoi graph (GVG) [105,106]. See figures 5.15
and 5.16 for examples of the GVG in three dimensions.

Figure 5.15 The solid lines represent the GVG for a rectangular enclosure whose ceiling has
been removed to expose the interior. Imagine a sphere rolling around touching the removed
ceiling, floor, and side wall; the center of this sphere traces a GVG edge.

Choset-79066 book February 22, 2005 17:53

130 5 Roadmaps

Figure 5.16 The GVG for the International Space Station (in a bounding box). Note that a
bounding box was used but is not displayed. Also note how complicated the GVG becomes.

5.3.1 GVG Dimension: Transversality

The GVG edges in R
3 are the set of points equidistant to three obstacles such that the

three obstacles are closest and have distinct gradients. Starting with triple equidistance,
we define Si jk = {q | (di − d j)(q) = 0 and (di − dk)(q) = 0}. We do not need the
additional (d j − dk)(q) = 0 constraint because di (q) = d j (q) and di (q) = dk(q)
imply that d j (q) = dk(q). Just like before, we are interested in a subset of Si jk where
the gradients are distinct, and thus

SS i jk = {q ∈ Si jk | ∇di (q) �= ∇d j (q), ∇di (q) �= ∇dk(q), ∇d j (q) �= ∇dk(q)}
= SS i j

⋂
SS ik

⋂
SS jk

Note that the transitivity of di (q) = d j (q) and d j (q) = dk(q) implies that di (q) = dk(q),
but it does not ensure thatSS i jk = SS i j

⋂
SS ik because we require all three gradients

to be distinct. To determine the dimension of the GVG edge, we look at G : R
3 → R

2

where

G(q) =
[

(di − d j)
(di − dk)

]

(q)

whose preimage G−1(0) is the set of points equidistant to three obstacles QOi , QOj ,
andQOk when the differential DG(q) is surjective, i.e., does not lose rank. The differ-
ential DG(q) can lose rank when either row of DG(q) is zero or the first row is a scalar
multiple of the second row in DG(q). We already know by definition that ∇di (q) �=

Choset-79066 book February 22, 2005 17:53

5.3 Retract-like Structures: The Generalized Voronoi Graph 131

Figure 5.17 Three ways two lines in the plane can intersect, but only a point-intersection is
transversal.

∇d j (q) and ∇di (q) �= ∇dk(q), so all we need to show is that ∇(di − d j)(q) �=
α∇(di −dk) for all α ∈ R. In other words, we must show that the two rows of DG(q)
do not depend upon each other.

We demonstrate this by making a “reasonable” assumption based on transversality,
a property of how sets intersect. Let’s start with a simple example of two intersecting
lines in the plane. These lines may intersect in one of three ways: not at all (parallel),
at a point (generic), and on a line (overlap) (figure 5.17). The parallel and overlap
cases can be viewed as “unstable” because if either line were perturbed a little bit, the
intersection would change dimension. The point intersection can be viewed as stable
in that if either of the lines were perturbed, a point-type intersection is preserved.
We call stable intersections transversal and nonstable intersections nontransversal.
Two lines in three dimensions can never intersect transversally because a generic
perturbation can break the intersection to no intersection. In three dimensions, two
planes transversally intersect on a line and a plane and a line transversally intersect
at a point.

In actuality, transversality is a local property of manifolds. For example, we say
that two manifolds may intersect transversally at a point. Since transversality is a
local property, we look at the intersection of the tangent spaces, not of the mani-
folds themselves. If intersection of the tangent spaces is transversal at a point, then
the manifolds intersect transversally at that point (figure 5.18). We know from the
preimage theorem that the tangent space Tq G−1(0) is given by the set of vectors
{v ∈ TqQ | DG(q)v = 0}. We assume that surjective equidistant sheets inter-
sect transversally at all points, i.e., Tq (di − d j)−1(0) and Tq (di − dk)−1(0) intersect
transversally for all q ∈ SS i j

⋂
SS ik . If they do not intersect transversally, then

after a small perturbation of one of the manifolds, the intersection of the two man-
ifolds will be transversal. In any event, the transversal intersection means that for
all q ∈ SS i j

⋂
SS ik , ∇(di − d j)(q) �= α∇(di − dk)(q) for all α ∈ R. There-

fore, DG(q) has full rank and we can use the preimage theorem to assure us that
SS i jk is indeed a one-dimensional manifold. The GVG in R

3 is then the union of
Fi jk = {q ∈ SS i jk | di (q) ≤ dh(q) ∀h}, i.e.,

GVG =
⋃

i

⋃

j

⋃

k

Fi jk .(5.3)

Choset-79066 book February 22, 2005 17:53

132 5 Roadmaps

Structure Dimension Codimension Equidistance Symbol

GVD m − 1 1 2 Fi1i2

GVG 1 m − 1 m Fi1,...,im

Table 5.2 Comparison of the GVD and the GVG.

A

B

C
x

y

Figure 5.18 The one-dimensional manifolds A and B intersect transversally at x whereas
the intersection of B and C at y is not transversal because the tangent spaces at B and C are
coincident at y.

In higher dimensions, one can define more equidistant sheets and intersect them
to form a GVG. In R

m , the GVG is the set of points equidistant to m obstacles and
has dimension one. In contrast, in R

m the GVD is the set of points equidistant to
two obstacles and has dimension m − 1. Sometimes, an m − k-dimensional object
lying in an m -dimensional space is said to have codimension k; therefore the GVD
has codimension one, regardless of the space in which it is defined. When m = 2,
the GVG and the GVD coincide. For naming convention refer to the GVG as the
“one-dimensional” roadmap structure and thus in the plane we will sometimes call it
the planar-GVG. See table 5.2.

Now, let’s more formally define transversality. Let Mint be the intersection of two
submanifolds M1 and M2 of M . The intersection is said to be transversal if Tx M1 +
Tx M2 = Tx M for all points x ∈ Mint. Therefore, if M1 and M2 are finitely dimensional,
transversality implies that codim(Tx M1

⋂
Tx M2) = codim(Tx M1) + codim(Tx M2)

for all x ∈ Mint. For example, two lines in the plane each have codimension one and
their intersection has codimension two, which means a zero-dimensional intersection
which is a point. Two two-dimensional planes in R

4 have codimension two and

Choset-79066 book February 22, 2005 17:53

5.3 Retract-like Structures: The Generalized Voronoi Graph 133

intersect at a point, which has codimension four in R
4. The transversality assumption

is a generalization of the general position assumption that is commonly assumed in
the computational geometry literature.

5.3.2 Retract-like Structure Connectivity

Alas, unlike the case in figure 5.15, the GVG is typically not connected and thus is
not a roadmap, as can be seen in the example shown in figure 5.19. Here, there is an
outer GVG network of one-dimensional manifolds associated with the rectangular
enclosure and there is an inner GVG edge associated with the interior box. We term
this latter edge a GVG cycle which is a GVG edge that is homeomorphic to S1. In this
section, we first explain why the GVG is not connected and then introduce some
techniques that can be used to connect disconnected components of the GVG. For a
thorough explanation of these procedures, see [106].

The lack of connectivity of the GVG is not the fault of the GVG definition, but rather
a consequence of using deformation retractions: in general, there cannot be a one-
dimensional deformation retract of a punctured three-or-more-dimensional space. In
other words, whereas in the plane we were able to retract the free space onto the

Figure 5.19 A rectangular environment with its ceiling removed to expose a rectangularly
shaped box in its interior. The GVG contains two connected components: an outer network
similar to the one in figure 5.15 and an inner “halo-like” structure that surrounds the inner box.

Choset-79066 book February 22, 2005 17:53

134 5 Roadmaps

GVD with the H mapping (section 5.2.3), in a punctured R
3 there is no continuous

function that maps the free space onto a one-dimensional subset that is homotopic to
the identity map [63]. The latter condition means that there is no map that “smoothly
deforms” the free space onto the one-dimensional structure.

We address the lack of connectivity of the one-dimensional structure by first looking
at a connected two-dimensional structure, and then defining one-dimensional struc-
tures on the two-dimensional structure to form a roadmap. In R

3 the two-dimensional
GVD is connected. In fact, the GVD is a two-dimensional deformation retract of
the three-dimensional space. We can exploit this connectivity of the GVD to “patch
together” the GVG. Notice that the GVG edges lie on the boundary of the GVD sheets
where adjacent GVD sheets intersect. In other words, Fi jk = ∂Fi j

⋂
∂Fik

⋂
∂F jk .

Therefore, if, and this is a big if, the boundaries of all two-equidistant sheets were
connected, then the resulting GVG would be connected because the GVD is con-
nected. This is the case in figure 5.15 where all two-equidistant faces have connected
boundaries. This is not the case in figure 5.19 with the two-equidistant sheet associ-
ated with the floor and ceiling; it has a hole in the middle. The boundary of this hole
is the GVG edge defined by the floor, ceiling, and interior box. So, our goal now is to
connect the boundaries of each of the two-equidistant sheets.

To connect the GVG edges (the boundaries of the two-equidistant faces), we define
additional structures called higher-order GVG edges. A second-order GVG edge
Fkl

∣
∣
Fi j

is the set of points where QOi and QOj are the closest pair of equidistant

obstacles and QOk and QOl are the second-closest, i.e.,

Fkl

∣
∣
Fi j

= {q | di (q) = d j (q) ≤ dk(q) = dl(q) ≤ dh(q) ∀h �= i, j, k, l,

such that ∇di (q) �= ∇d j (q) and ∇dk(q) �= ∇dl(q)}.(5.4)

The first line of equation (5.4) establishes the equidistance relationships: a pair of clos-
est obstacles and a pair of second-closest obstacles. The second line of equation (5.4)
ensures that the gradients are distinct, a condition necessary for the preimage theorem
to assert that Fkl

∣
∣
Fi j

is a one-dimensional manifold.

The second-order GVG edges are essentially planar-GVG edges but defined on
two-equidistant faces. The preimage theorem guarantees that these edges are one-
dimensional and terminate (and intersect) at second-order meet points, denoted as
Fklp

∣
∣
Fi j

(figure 5.20).
We call the union of the GVG and second-order GVG the hierarchical generalized

Voronoi graph (HGVG), which by itself, as can be seen in figure 5.20, is not connected.
However, there is a clue in the second-order GVG that directs the planner to “look for”
a separate GVG-connected component. Notice in figure 5.20 that there is a network
of second-order GVG edges that form a closed-loop path, which we term a period,
that has a common second-closest obstacle — the box in the middle of the room.

Choset-79066 book February 22, 2005 17:53

5.3 Retract-like Structures: The Generalized Voronoi Graph 135

Figure 5.20 The same environment as figure 5.19. The GVG, consisting of the outer network
and the “halo” surrounding the inner box, is drawn. The other lines represent the second order
GVG edges, each drawn on two-equidistant faces. Observe that the second-order GVG edges
form a period that surrounds the GVG cycle in the middle of the free space. Once the period
is determined, a link can be made to the inner GVG cycle.

Once a period is detected, the planner can trace a path that maintains two-way
equidistance between QOi and QOj while decreasing the distance to QOk . Such a
path follows, in general, the negative gradient of dk because we start with dk(q) >

di (q) = d j (q), and decreasing dk yields a configuration where dk(q) = di (q) =
d j (q). However, in order to maintain double equidistance between QOi and QOj ,
the negative gradient must be projected onto the two-equidistant face. Hence, the
path is ċ(t) = −πTc(t)Fi j ∇dk(c(t)) where the π operator is projection. Following the
projected negated gradient −πTc(t)Fi j ∇dk(c(t)) traces a path that terminates on a GVG
edge where di (q) = d j (q) = dk(q) as long as πTc(t)Fi j ∇dk(c(t)) does not vanish. If
πTc(t)Fi j ∇dk(c(t)) goes to zero, then no such GVG edge exists in which case the robot
returns to the second-order period to continue exploration.

This is just the beginning of what is required for connectivity. Ensuring connectivity
can be quite tedious and challenging. See [106] for details of connectivity of the
HGVG. The HGVG is a type of retract-like structure because it is not a retract, but
bears similarities to one.

Choset-79066 book February 22, 2005 17:53

136 5 Roadmaps

5.3.3 Lyapunov Control: Sensor-Based Construction of the HGVG

Exploration with the HGVG shares the same key steps as GVD exploration: (1)
access the HGVG; (2) explicitly “trace” the HGVG edges; (3) determine the location
of nodes; (4) explore the branches emanating from the nodes; and (5) determine when
to terminate the tracing procedure. Accessing the GVG (and hence the HGVG) is still
gradient ascent, but now it is a sequence of gradient ascent operations. The robot
moves away from the closest obstacle until it is two-way equidistant. Then, while
maintaining two-way equidistance, the robot increases distance until it is three-way
equidistant.

GVG Edge Tracing

Once the robot accesses the GVG, it must incrementally trace GVG edges. Instead of
using curve tracing techniques that have discrete steps and discrete corrections, we
now derive a control law that smoothly traces the roots of the expression

G(q) =
[

d1 − d2

d1 − d3

]

(q) = 0,

where di is the distance to an objectQOi , and thus if (d1 −d2)(q) = (d1 −d3)(q) = 0,
the robot is equidistant to three obstacles and on the GVG. (Likewise, when Q = R

2,
G(q) = (d1 − d2)(q), which is zero when the robot is equidistant to two obstacles, a
point on the GVD in the plane).

At a point q in the neighborhood of the interior of a GVG edge, the robot steps in
the direction

q̇ = αv + β(DG(q))†G(q),(5.5)

where

α and β are scalar gains,

v ∈ Null(DG(q)), the null space of DG(q),

(DG(q))† is the Penrose pseudoinverse of ∇G(q), i.e.,
(DG(q))† = (DG(q))T (DG(q)(DG(q))T)−1.

Note that when q is on the GVG, G(q) = 0 and thus q̇ = αv where v ∈
Null(∇G(q)) and is simply the tangent direction of the GVG, as prescribed by the
preimage theorem. Since ∇G(q) is a function of distance gradients, the planner can
compute ∇G(q) solely from range sensor information. This can be done by looking
at the n -closest points on the n -closest obstacles, fitting a codimension one plane

Choset-79066 book February 22, 2005 17:53

5.3 Retract-like Structures: The Generalized Voronoi Graph 137

through these points, and deriving the line orthogonal to this plane. The tangent vector
then points along this line.4

When q is not on the GVG, then (∇G(q))†G(q) �= 0. This term corresponds to the
“correction” step which accommodates for curvature in the GVG. Again, this term
can easily be determined from sensor data. Whereas the α determines how quickly
the robot moves along the GVG, the β represents how aggressively the robot moves
back to the GVG, as if α and β were spring constants.

To determine stability of the control law, let � = 1
2 GT G measure the distance a

point q is away from the GVG. We look at the first derivative �.

�̇(q) = GT (q) Ġ(q)

= GT (q) DG(q) q̇

= GT (q) DG(q) (αNull(DG(q)) + β (DG†(q)) G(q))

= β GT (q) DG(q) DG†(q) G(q)

= β GT (q) DG(q) DGT (q) (DG(q) DGT (q))−1 G(q)

= β GT (q) G(q).

The function � is a Lyapunov function [202] for the controller in equation (5.5).
Think of a Lyapunov function as an “error function” whose minimal value is zero.
Since (DG(q) DGT (q)) is invertible in a neighborhood of the GVG [108], if β < 0,
then �̇ is negative. This assures that � decreases to zero, meaning that equation (5.5)
directs the robot onto the GVG.

Meet Point Homing

While generating the GVG, the robot must precisely locate itself on the meet points.
A meet point homing algorithm can be used to stably converge onto the meet point
location [109]. The control law for homing onto a meet point is similar to the one for
generating GVG edges, except G is now defined as

G(q) =

d1 − d2

d1 − d3

d1 − d4

 (q) = 0.

In the planar case, G(q) =
[

d1 − d2

d1 − d3

]

(q). Since it has already been shown to be

stable, we use the controller in 5.5 to determine the the path for the robot to home

4. Note that there are two choices for this vector, but the planner chooses the direction that directs the robot
to continue in the “same” direction.

Choset-79066 book February 22, 2005 17:53

138 5 Roadmaps

onto a meet point. Since Null(DG(q)) = 0, the controller is q̇β(DG(q))†G(q).
Geometrically, this means that when the robot is in the vicinity of the meet point, it
draws a sphere through the four closest points on the four closest obstacles (in the
planar case, it is a circle through the three closest points). The velocity vector points
toward the center of this sphere.

Higher-Order GVG Control Laws

Naturally, by varying the G function, one can trace different structures. A second-
order GVG edge has G(q) = [di − d j , dk − dl]T (q). Likewise, a second-order meet
point has G(q) = [di − d j , dk − dl , dk − dp]T (q).

5.4 Piecewise Retracts: The Rod-Hierarchical Generalized Voronoi
Graph

Essentially, the previous roadmaps were defined for a point-robot in a workspace
which has a Euclidean configuration space. Now, we turn our attension to defining
a roadmap in a non-Euclidean configuration space. Even when full knowledge of
the workspace is available prior to the planning event, constructing non-Euclidean
configuration spaces can be quite challenging. However, what if the planner has no
previous knowledge of the workspace, i.e., it cannot compute the configuration space
prior to the planning event? Instead, we define a roadmap for a robot using work-
space information. This is of great use because sensors directly provide workspace
information.

In this section, we define a roadmap for a line segment operating in the plane.
Sometimes we call this line segment a rod (figure 5.21). To distinguish among previous
roadmaps we have defined, let the point-GVG and the point-HGVG be structures
defined for a point robot in a Euclidean configuration space.

Since the configuration space for the rod is SE(2), which is three-dimensional,
it makes sense to look at the set of configurations equidistant to three obstacles.
However, we measure distance in the workspace, not configuration space. To do so,
let R(q) ⊂ W be the set of points the rod occupies in the workspace when it is at
configuration q. At the risk of confusing notation, we re-use the di for distance to
obstacle WOi for the rod robot, i.e.,

di (q) = min
r∈R(q),c∈WOi

d(r, c).

Choset-79066 book February 22, 2005 17:53

5.4 Piecewise Retracts 139

P

Q

i

di(q)

Figure 5.21 The distance from the rod (thick black line) to an obstacle is the distance (dotted
line) between the nearest point on the rod to the obstacle and the nearest point on the obstacle
to the rod.

Using this notion of distance, a rod-two equidistant face RF i j is {q ∈ SE(2) |
di (q) − d j (q) = 0 and ∇di (q) �= ∇d j (q)}. Then the rod-GVG edge is RF i jk =
RF i j

⋂
RF ik

⋂
RF jk [107].

Just like the point-GVG in R
3, the collection of rod-GVG edges does not necessarily

form a connected set. To produce a connected structure we introduce another type of
edge, called an R-edge. An R-edge is the set of rod configurations that are tangent to
the planar point-GVG. The rod-HGVG then comprises rod-GVG edges and R-edges
(figure 5.22).

The rod-HGVG is a piecewise retract because it is formed by the union of defor-
mation retracts of subsets of the configuration space, the rod-GVG edges, which are
then linked together with the R-edges to form a connected roadmap. To show that
the rod-HGVG is indeed a piecewise retract, we first consider deformation retrac-
tion Hrod :Qfree× [0, 1] → rod − GVG, which is implicitly defined by a sequence of
gradient ascent operations. First the rod is moved away from the closest obstacle,
holding its orientation fixed, until it becomes two-way equidistant. Then, while main-
taining both two-way equidistance and the fixed orientation, the rod moves until it
becomes three-way equidistant, i.e., it arrives at a configuration on the rod-GVG.
Note that the orientation of the rod is unchanged by this operation, implying that
θ (q) = θ (Hrod(q, s)) for all s ∈ [0, 1], where θ (q) is the orientation of the rod at
configuration q.

Naturally, Hrod is not continuous over the entire configuration space, but we can
restrict ourselves to simple subsets of configuration space that are associated with
individual rod-GVG edges. LetRF i jk be the rod-GVG edge associated with obstacles

Choset-79066 book February 22, 2005 17:53

140 5 Roadmaps

(a1) (a2)

(b1) (b2)

(c1) (c2)

Figure 5.22 Swept volumes (sampled placements) of the rod in a planar workspace and the
configurations of the rod in configuration space. (a1) Rod-GVG-edges: each of the clusters
represents a set of configurations equidistant to three obstacles. (a2) The configurations of the
rod that are equidistant to three obstacles in the workspace. (b1) R-edges: the rods are two-way
equidistant and tangent to a planar point-GVG edge. (b2) The configurations of the rod that
are tangent to the planar point-GVG in the workspace. (c1) Placements of the rod along the
rod-HGVG. (c2) The entire rod-HGVG in SE(2).

Choset-79066 book February 22, 2005 17:53

5.5 Silhouette Methods 141

WOi , WO j and WOk . It can be shown that H is continuous in the preimage of a
connected component of the rod-GVG edge RF i jk [107]. This preimage, which we
denote as a junction region Ji jk , is contractable and thus has as a retract RF i jk .5

Since, for each connected component of a junction region Ji jk , there is a connected
component of RF i jk , motion planning within one junction region can be accom-
plished by using RF i jk as a roadmap. If the union of all the RF i jk’s form a connected
set, then planning would be trivial again. However, in general, the RF i jk’s will not
form a connected set in SE(2), so we use the R-edges to connect the roadmaps for
the junction regions. Intuitively, one can view the rod-GVG edges as being analogous
to the nodes of the planar point-GVG, which are connected by the edges of the planar
point-GVG. The distinction is that now the nodes are themselves one-dimensional
structures, capturing the complete set of rod orientations that are three-way equidistant
from a specific set of obstacles (see [107] for a rigorous explanation). Essentially, the
R-edges encode the adjacency of the rod-GVG edges by inheriting the correct topolog-
ical relationships from the plane, allowing us to construct a roadmap of configuration
space using the connectivity of the workspace. See [107] for more details.

The rod-HGVG edges can be constructed in a sensor-based fashion using the control
laws from section 5.3.3.

5.5 Silhouette Methods

In contrast to looking at equidistance, the silhouette approaches use extrema of a
function defined on a codimension one hyperplane called a slice6, which we denote
by Qλ. The λ parameterizes the slice; varying the parameter λ has the effect of
sweeping the slice through the configuration space. As the slice is swept through the
configuration space, for each value of λ, the critical points of a function restricted to
the slice are determined. The trace of the critical points as the slice is swept through
the configuration space does not necessarily form a connected set. Therefore, the
silhouette methods look for another type of critical point and then recursively call the
algorithm on a slice passing through these critical points. The resulting network of
extremal points forms the roadmap.

5. Note that if the rod were “small,” RF i jk would have one connected component which would be home-
omorphic to S1 (figure 5.22(a2)).
6. When the slice is one-dimensional, it can also be called a sweep line (section 5.1).

Choset-79066 book February 22, 2005 17:53

142 5 Roadmaps

5.5.1 Canny’s Roadmap Algorithm

Roadmap theory in motion planning begins with Canny’s work [90]. In addition to
developing the roadmap, Canny’s work established fundamental complexity bounds
using roadmap theory. For an environment populated by obstacles whose bound-
aries can be represented as p polynomials of maximum degree w for some positive
w in configuration space, any navigation path-planning problem can be solved in
pn(log p)w (O(n4)) time using his roadmap algorithm, where n is the degrees of free-
dom of the robot (the dimension of the configuration space). The derivation of this
result is beyond the scope of this book. See [91, 92] for details.

In this method, the choice of initial sweep direction is arbitrary, but for the sake
of discussion, let’s choose the q1-direction. As the slice is swept in the q1-direction,
“extremal points” in the q2-direction are determined in each slice. The extremal
points in the q2-direction are extrema of the projection function π2 : R

m −1 → R where
π2(q) = q2. The extremal points of π2 for all of the slices are the silhouette curves.

In general, the silhouette curves are not guaranteed to be connected, and hence
may not form a roadmap. However, we can look at the slices where the number of
silhouette curves changes. These slices are called critical slices, and the λ values that
parameterize critical slices are critical values. The points on the silhouette curves
where the silhouette curves are tangent to the critical slices are termed critical points.

On the critical slices, the silhouette algorithm is recursively invoked where the new
swept slice now has one less dimension than the critical slice, i.e., it has codimension
two in the ambient space and codimension one in the critical slice. This slice is swept
in the q2-direction. The new silhouette comprises the trace of extremal points in the
q3-direction. These silhouette curves may not be connected either, so this procedure
is recursively invoked on lower-dimensional critical slices until there are no more
critical points or the slice has one dimension. In the latter case, the one-dimensional
slice is the silhouette; in other words, the roadmap of a one-dimensional set is the set
itself. Finally, the union of the resulting silhouette curves forms the roadmap.

Accessibility and departability of the roadmap are achieved by treating the slices
that contain qstart and qgoal as critical (m − 1)-dimensional slices of the initial sweep.
The algorithm simply forms a silhouette network on these slices, possibly reinvoking
itself on lower-dimensional slices. Connectivity is proved via an inductive argument
[90]. See [189] for details on an example of an implementation of Canny’s roadmap.

Figure 5.23 contains an example of a two-dimensional configuration space with a
slice being swept through it. The silhouette curves trace the boundary of the environ-
ment. Critical points occur when the slice is tangent to the roadmap (and hence the
obstacle boundary), as can be seen in figure 5.23. The resulting roadmap is drawn
in figure 5.24. A path between a start and goal configuration is determined by first

Choset-79066 book February 22, 2005 17:53

5.5 Silhouette Methods 143

2 21 1

q2 q2

q1 q1

ex
tr

em
a

po
in

ts

sl
ic

e

Figure 5.23 Bounded two-dimensional environment with two obstacles QO1 and QO2. The
left figure contains a single slice, represented by a dashed line, and a partially constructed
silhouette. The right figure contains the complete silhouette and slices passing through all
critical points.

21

q2

qstart
qgoal

q1

Figure 5.24 Complete silhouette curves traced out with solid lines. A path from start to goal
is denoted as a thin curve.

passing a slice through the start and goal, and then including the slice in the roadmap,
as can be seen in figure 5.24.

Figure 5.25 contains an example of a two-dimensional surface embedded in R
3.

It is an ellipsoid with a hole drilled partially down and then up again. The slice is
swept from left to right and extrema are with respect to the in and out of page direc-
tion. The silhouette curves comprise an “equator” for the ellipsoid, the perimeter of
the holes on the surface and the two curves along the side of the hole. Figure 5.26

Choset-79066 book February 22, 2005 17:53

144 5 Roadmaps

Ellipsoid

Silhouette curve

Slice

Extrema on slice

Figure 5.25 Silhouette curves for an ellipsoid with a hole drilled through it that goes down
and then bends up.

Cp1

Cp2 Cp3

Cp4

21 3 4

Figure 5.26 Slices passing through the critical points, which are points where the roadmap
changes connectivity and is tangent to the slice. Note that the leftmost and rightmost points on
the ellipsoid also are critical points but are not displayed.

Choset-79066 book February 22, 2005 17:53

5.5 Silhouette Methods 145

Figure 5.27 The intersection of the slice as it is swept through the ellipsoid with a hole in
it displayed in figure 5.26. Starting from the top row on the left, the first two panels (a and b)
display the intersection immediately before and after the slice passes through the critical point
Cp1. The next two panels (c and d) display the intersection as the slice passes through critical
point Cp2. The left pair of panels on the bottom row (e and f) correspond to critical point Cp3

and the right pair (g and h) to Cp4.

displays the critical slices and critical points for the ellipsoid. Figure 5.27 shows
the intersection of the slice and the ellipsoid, immediately before and immediately
after, the critical points. Starting from the left in the top row, the first two panels
show the intersection just as the slice encounters the first hole. The next two panels
show the intersection as the slice finishes passing through the hole. At this critical
point, the intersection changes connectivity. Finally, figure 5.28 shows the silhou-
ettes on the two-dimensional slices and the final path for this example between qstart

and qgoal.

Critical Points and Morse Functions

In this section, we define the silhouette curves in terms of critical points of a function.
The function has to be Morse [315], as described in chapter 4, section 4.6. The slices
themselves are also defined in terms of a function. Originally, Canny suggested that a
slice be the preimage of the projection operator π1. Recall that π1 projects a point onto
its first coordinate, i.e., π1(q) = q1. We denote a slice as Qλ = {x ∈ Q | π1(q) = λ}
where λ = q1 ∈ R. Varying λ has the effect of sweeping the slice through the
configuration space and

⋃
λ Qλ = Q. On each Qλ, we look for extrema of π2, i.e.,

Choset-79066 book February 22, 2005 17:53

146 5 Roadmaps

qstart qgoal

321 4

Cp1
Cp2 Cp3

Cp4

Figure 5.28 (Left) Silhouettes on the two-dimensional slices. (Right) Determining a path
with a given start and goal position.

we look for extrema of π2|Qλ
, where π2|Qλ

is the projection operator restricted to the
slice. Also, recall that π2(q) = q2.

To determine the extrema, we need some machinery to calculate extrema of func-
tions restricted to manifolds. The Lagrange multiplier theorem, stated below, can be
used to determine the extrema of real-valued functions restricted to manifolds, which
themselves are defined by the preimage of real-valued functions.

LEMMA 5.5.1 (Lagrange Multiplier [410]) Let S be an n -manifold in R
n + 1, S =

f −1(c) where f : R
n + 1 → R is such that ∇ f (q) �= 0 for all q ∈ S. Suppose

h : R
n + 1 → R is a smooth function and p ∈ S is an extremal point of h on S. Then,

there exists a real number µ such that ∇h(p) = µ∇ f (p) (the number µ is called the
Lagrange multiplier). In other words, ∇ f (p) is parallel to ∇h(p) at an extremum p
of h on S.

For example, let’s look for extrema of h = π1 on a sphere defined by the preimage
of any positive scalar under the map f (q) = q2

1 + q2
2 + q2

3 − 51,141. The gradients
are ∇h(q) = [1, 0, 0]T and ∇ f (q) = [2q1, 2q2, 2q3]T . These two vectors are parallel
when q2 = q3 = 0 and the only points on f −1(0) that satisfy this condition are on
the left-most and right-most points on the sphere (which are in the q1 − q2 plane).

Choset-79066 book February 22, 2005 17:53

5.5 Silhouette Methods 147

We could assume that the free space is defined by the preimage of a function f ,
but there is no guarantee that this function will be real-valued. To determine extrema
of a function restricted to such manifolds, Canny generalizes the Lagrange multiplier
theorem to handle vector-valued functions.

LEMMA 5.5.2 (Generalized Lagrange Multiplier Theorem [91]) Let M be the preim-
age of f : R

m → R
p and h : R

m → R
n. The point x is a critical point of h|M if

and only if the following matrix loses its rank [91],

D(f, h)q =

∂ f1

∂q1
(q) · · · ∂ f1

∂qm
(q)

...
. . .

...
∂ fn

∂q1
(q) · · · ∂mn

∂qm
(q)

∂h1
∂q1

(q) · · · ∂h1
∂qm

(q)
...

. . .
...

∂hq

∂q1
(q) · · · ∂h p

∂qm
(q)

.(5.6)

Clearly, if f and h are real-valued functions (i.e., n = p = 1), then lemma 5.5.2
reduces to the Lagrange multiplier theorem because the above two-row matrix only
loses rank when one row is a scalar multiple of the other. In other words, the two
vectors corresponding to each row are parallel.

Canny introduces one more result, termed the slice lemma. The notation can be a
bit cumbersome, so let’s review it before introducing the slice lemma. Let π12 be the
projection operator onto the first two coordinates, e.g., π12(q) = (q1, q2). Then, π12|S

is the projection operator restricted to the set S. Finally, �(π12|S) is the set of critical
points of the projection operator restricted to S. The slice lemma then states that the
set of critical points of π12|S is the union of the critical points of π2 on each of the
slices, i.e.,

�(π12|S) =
⋃

λ

�
(
π2|π−1

1 (λ)

)
.

Therefore, the silhouette is the critical set of π12.
With the slice lemma and Canny’s generalization in hand, one can produce silhou-

ette curves. Consider again the example of a sphere embedded inR
3. Here, S = f −1(0)

where f (q) = q2
1 + q2

2 + q2
3 − 62,370. We sweep in the q1-direction and extremize

in the q2-direction, i.e., h(q) = π12(q1, q2, q3). Applying lemma 5.5.2,

D(f, h) =

2q1 2q2 2q3

1 0 0
0 1 0

 ,

Choset-79066 book February 22, 2005 17:53

148 5 Roadmaps

x

y

1(TxS2)

TxS2

1(TyS2)

TyS2

Figure 5.29 The tangent spaces of of S2 at x and y are projected down to a plane. Tx S2

projects to a two-dimensional space whereas Ty S2 does not, making y a critical point.

which loses rank on S only when q3 = 0, which corresponds to the unit circle in the
q1 −q2-plane, which is the “equator” of the sphere (figure 5.29). This is the silhouette
of the sphere.

Connectivity Changes at Critical Points

Canny’s roadmap has two types of critical points: those that define the silhouette
itself, as described above, and those that are used to bridge disconnected silhouette
curves. We now describe the latter. In particular, we relate the concepts of a “first
derivative” vanishing to connectivity changes in the silhouettes.

First, let’s consider a planar example. We are now looking for extrema of the slice
function h = π1, but restricted to the silhouette, which are extrema of π1|�(π12) .
Figure 5.30 depicts two sample critical points, Cp1 and Cp2, which are located
on the boundaries of the obstacles, ∂QO1 and ∂QO2, respectively. Again, in two-
dimensions, the silhouettes essentially trace out the boundaries of the free space (and
obstacles) and thus �(π1|�(π12)) = �(π1|∂Qfree).

We can intuitively show that Cp1 and Cp2 are indeed critical points, i.e., π1|�(π12)

takes its local extrema at Cp1 and Cp2. The function π1(q) can be viewed as measuring
the distance between a point q ∈ Q and the q2-axis. Therefore, consider a path on
∂QO1 that passes through Cp1, as depicted in figure 5.30. Moving along the path
toward Cp1 decreases the value of π1|�(π12) . After passing through Cp1, the value

Choset-79066 book February 22, 2005 17:53

5.5 Silhouette Methods 149

 1 (12)(Cp1) 1 (12)(Cp2)

Cp2
Cp1

21

q2

q1

Figure 5.30 The restriction of the slice function h = π1 to the silhouette takes a local
minimum at Cp1 and a local maximum at Cp2. The values π1|�(π12)(Cp1) and π1|�(π12)(Cp2)
are plotted on the bottom.

increases. In other words, Cp1 is a local minimum of π1|�(π12) . Likewise, Cp2 is a
local maximum of π1|�(π12) .

Now, let’s return the discussion to R
m . Now, we demonstrate that a critical point

is indeed a point on the roadmap where the tangent to the roadmap lies in the slice.
This is actually a direct result of lemma 5.5.2. Recall that q is a critical point of π1

restricted to the manifold defined by the preimage of f if D(f, π)(q) loses rank. Here,
we would like to define the roadmap as the preimage of f , but cannot do so. Instead,
we can reason about the differential of f , which is an m − 1-by-m matrix. The null
space of this matrix is the tangent to the roadmap and the m − 1 row vectors of the
same matrix form a plane orthogonal to the tangent. Call this plane T ⊥. Finally, this
matrix forms the top m − 1 rows of D(f, h). The slice function π1 has a gradient
[1, 0, . . . , 0]T and forms the bottom row of D(f, π1)(q). When the tangent lies in
the slice plane, the slice plane and T ⊥ are orthogonal to each other. This means that
∇π1(q) lies in T ⊥ which immediately implies that ∇π1(q) can be written as a linear
combination of the first m −1 rows of D(f, π)(q). In other words, D(f, π1)(q) loses
rank because its bottom row can be written as a linear combination of the top m − 1
rows. Therefore q is a critical point.

This can also be seen in three dimensions. Consider the torus in figure 5.31. Here
two slices are drawn, one before a critical point and one after. Before the critical
point, the intersection of the slice and the torus is diffeomorphic to S1 and after the
intersection it is diffeomorphic to two copies of S1. In figure 5.32, it can be seen that
before the critical point, the roadmap is singly connected and after the intersection it
has two connected components.

Choset-79066 book February 22, 2005 17:53

150 5 Roadmaps

Figure 5.31 Torus with two slices drawn, before and after a critical point.

Figure 5.32 Silhouette curves on the torus.

Let’s formalize the immediately “before” and “after” statements. Since a real-
valued Morse function has a one-dimensional range which can be ordered, the critical
values of the Morse function can be ordered as well. Assuming only one critical
point per slice, adjacent critical points are those whose critical values are “next” to
each other. In other words, let � be the set of all critical values. The critical values

Choset-79066 book February 22, 2005 17:53

5.5 Silhouette Methods 151

h h

Critical points

Critical points
Points on the silhouette curve

Figure 5.33 The number of silhouette fragments (open circles) changes as the slice passes
through critical points (black circles) and remains constant between adjacent critical points.

λ1, λ2 ∈ � are adjacent if for all critical values in � there does not exist a critical
value λ̄ such that λ1 < λ̄ < λ2.

Morse theory asserts that between adjacent critical points of a Morse function,
the topology of the manifold on which the Morse function is defined does not
change [315]. In the context of the slice function, Morse theory states that there
exists a diffeomorphism φ such that for all λ1, λ2 ∈ (λ∗, λ∗), φ(π1|�(π−1

12 (λ1))) =
φ(π1|�(π−1

12 (λ2))), where λ∗ and λ∗ are adjacent critical values of a real-valued Morse
function (figure 5.33).

5.5.2 Opportunistic Path Planner

The opportunistic path planner (OPP) generalizes Canny’s original roadmap algo-
rithm by tracing the local maxima of any potential function that is Morse on a flat slice
as the slice is swept through the configuration space. Canny and Lin [93] suggest that
the distance function D evaluated on the slice be used as the potential function. Local
maxima on the slice of the distance function are points on the OPP roadmap. The
traces of the local maxima as the slice is swept through the workspace or configuration
space are termed freeways.

The algorithm works as follows: First, a fixed slice direction is chosen. The algo-
rithm initially traces a path from the start to the roadmap by performing gradient
ascent on the distance function in the slice that contains the start. Likewise, a path is
traced from the goal to the freeway via slice-constrained gradient ascent. These two
actions correspond to accessibility and departability.

Choset-79066 book February 22, 2005 17:53

152 5 Roadmaps

Channel

Slice Freeway Curve (local maxima)

Bridge Curve Interesting
Critical Point

Figure 5.34 Schematic of the OPP planning scheme.

From the point at which the planner accesses the OPP roadmap, the algorithm
sweeps a slice through the configuration space tracing local maxima of D constrained
to the slice. These local maxima form a freeway. If the start and goal freeways are
connected, then the algorithm terminates. In general, the set of freeways will not be
connected, and paths between neighboring freeways must be found.

The OPP method uses a slightly different approach from Canny’s original roadmap
to ensure connectivity of its roadmap. The OPP freeways are connected via bridge
curves. The bridge curves are constructed in the vicinity of interesting critical points.
Interesting critical points occur when channels (figure 5.34) join or split on slices
whose connectivity changes in the free space. Bridge curves are also built when
freeways terminate in the free space at bifurcation points (where traces of local maxima
and local minima meet). A bridge curve is built leading away from a bifurcation point
to another freeway curve.

This procedure is repeated until the start and goal freeway curves are connected, or
all interesting critical points and bifurcation points have been explored, in which case
there does not exist a path between the start and the goal. The union of bridge and
freeway curves, sometimes termed a skeleton, forms the one-dimensional roadmap.

Connectivity and Critical Points

Instead of looking for connectivity changes in the roadmap, the OPP method looks
for connectivity changes in the slice in the free configuration space. Again, these

Choset-79066 book February 22, 2005 17:53

5.5 Silhouette Methods 153

q

slice

i = {(q1,q2) | f (q1,q2) = 0}

q2

q1

h(q)

h(q)

f (q)

q = q2

q1

Figure 5.35 At the critical point q, the gradient of the slice function ∇h(q) is parallel to
surface normal of the obstacle ∇ f (q). Also, the slice is tangent to the boundary of the obstacle
QOi at the critical point q.

connectivity changes correspond to a slice function taking on extremal values. This
can be seen in figure 5.30, except now we are looking at the slice function π1 restricted
to the boundary of the free space, as opposed to being restricted to the silhouette (both
of which coincide in the plane).

Again, D(f, h) loses rank at the critical points. Here, the f function can be used to
define the boundaries of the obstacles. In other words, we assume that the boundaries of
the obstacles can be represented as the preimage of 0 under the f mapping. Therefore,
for q ∈ ∂QOi , ∇ f (q) is the surface normal to QOi at q. Now, D(f, h) has two rows
and loses rank only when ∇ f (q) is parallel to ∇h(q) which means that the slice
gradient is parallel to the surface normal of the obstacle. (Note that we could have
used the original Lagrange multiplier theorem here.) See figure 5.35.

Morse theory [315] assures that the topology of the intersection of the boundary and
the slice remains constant between critical points, i.e., there exists a diffeomorphism
φ such that for all λ1, λ2 ∈ (λ∗, λ∗), φ(h|∂Qfree

−1(λ1)) = φ(h|∂Qfree
−1(λ2)), where

λ∗ and λ∗ are adjacent critical values of a real-valued Morse function. Therefore,
we are assured that we only need to look for critical points to connect disconnected
components of the roadmap.

Choset-79066 book February 22, 2005 17:53

154 5 Roadmaps

i

Slice

p di(p;)~

d

Figure 5.36 The dashed line represents a slice that is hovering above obstacle QOi . The
solid line above the slice is the graph of the distance to the obstacle, but restricted to the slice,
i.e., d̃ i .

Nonsmooth Functions

It should be noted that the distance function is nonsmooth. Consider the distance
function constrained to a slice Qλ = {q | π1(q) = λ}. Decompose the configuration
space coordinates q into “slice coordinates” p and the “sweep coordinate” λ such that
q = [λ, p]T . The single object distance function constrained to a slice is the distance
between a point that is in a slice Qλ and a set QOi , i.e.,

d̃ i (p ; λ) = di (q) where π1(q) = λ and p ∈ π−1
1 (λ).(5.7)

See figure 5.36 for an example of the distance function plotted along a slice. At each
slice point, d̃ i is computed to the closest point of the obstacle.

Typically, a robot’s environment is populated with multiple obstacles, and thus we
define a distance function for multiple obstacles. The multi-object distance function
constrained to a slice measures the distance between a point in a slice Qλ and the
closest obstacle to that point, i.e.,

D̃(p ; λ) = min
i

d̃ i (p ; λ).(5.8)

Even when all of the obstacles are smooth and convex, D̃ is not necessarily smooth
at the local maxima. For example, in figure 5.37 distance D(q) is plotted along a
horizontal slice. On the left-hand side of the slice, since QO1 is the closest obstacle,
D(q) = d1(q). Likewise, on the right-hand side of the slice, D(q) = d2(q). When
d1(q) = d2(q), D is nonsmooth, but for all other points, D(q) is smooth because it
inherits the smoothness properties of the single object distance function for convex

Choset-79066 book February 22, 2005 17:53

Problems 155

slice

1 2

D
(q

)

d1(q) = D(q) d2(q) = D(q)

Figure 5.37 Distance function D plotted along a horizontal slice. The slice is represented as
a dashed line. The graph of D is overlaid on top of the slice. Note D becomes nonsmooth when
d1(q) = d2(q), and hence there is not a unique closest obstacle.

sets. Therefore, the gradient vector is either ∇d1(q) or ∇d2(q) depending upon which
obstacle is the unique closest one. However, at the point q∗ where D is nonsmooth,
the gradient is no longer unique. In fact, it is the set formed by the convex hull of
∇d1(q∗) and ∇d2(q∗). This gradient is termed a generalized gradient [114] and is
denoted as

∂ D(q∗) = Co{∇di (q
∗) | i ∈ Z (q∗)}

=
∑

i∈Z (q∗)

µi∇di (q
∗) where

∑

i∈Z (q∗)

µi = 1 and µi > 0,

where Co is the convex hull operator and Z (q∗) is the set of integers that correspond to
the indices of the closest obstacles to q∗, i.e., Z = {i | for all i where di (q∗) < dh(q∗)
for all h}.

With this notion of a generalized gradient, we can establish a calculus for character-
izing extrema of a function by looking at the convex hull of the generalized gradient
of D [104]. Let 0 be the origin if the tangent space Tq∗Rm . If 0 ∈ ∂ D(q∗), then q∗ is
a local maximum. Likewise, if 0 = ∂ D(q∗), then q∗ is a local minimum. It is worth
noting that we never had to perform an additional differentiation but were able to
characterize the generalized gradient from first-order information.

Problems

1. Prove that the visibility graph is connected.

2. Show an example for which the visibility graph does not produce the shortest path in R
3.

Choset-79066 book February 22, 2005 17:53

156 5 Roadmaps

3. How can the visibility graph method be augmented so as to yield the shortest path in R
3?

4. How can the visibility graph in the plane be adapted to handle curved obstacles.

5. Write a program to compute the visibility graph. The program should take as input from
a file a list of polygons, which are in turn represented by a list of vertices. The user can
input from the keyboard the start and goal configurations. The program then computes the
visibility graph and then determines a path from start to goal.

6. Let S be the unit circle defined by the preimage of zero under f (x , y) = x2 + y2 − 1. Let
g(x , y) = ax2 + 2bxy + cy2 where a, b, c ∈ R. List the points where g is extremized on
S. Draw a picture.

7. Draw the Canny roadmap for the surface configuration space in figure 5.38.

8. Do connectivity changes in the free space in a slice imply connectivity changes in the
original Canny roadmap? In the OPP roadmap?

9. What are the benefits of using only the local maxima (and not the other extrema) in the
OPP method?

10. The HGVG contains a lot of structure which seemingly can be deleted. Suggest a method
to prune this structure.

11. What are the tradeoffs between using roadmaps and pixel-based maps?

12. Prove that for any slice direction, OPP is a subset of the GVG.

13. For the OPP and point-GVG, both in the plane and in R
3, there are useless spokes. If

we eliminate them in the planar case, do we still have a topological map? How could we
eliminate spokes online?

Figure 5.38 A cylinder with a hole drilled through it.

Choset-79066 book February 22, 2005 17:53

Problems 157

14. Use the brushfire implementation to compute the planar point-GVG. Beware of jagged
edges.

15. The planar point-GVG is defined using a Euclidean distance function and consists of
straight line and parabolic segments. One way of thinking of the planar point-GVG is the
locus of the centers of circles whose perimeters are tangent to obstacles at two or more
points. For the environment below, sketch the GVD using the circle analogy.

16. The definition of the planar point-GVG can be generalized to any convex distance function.
Instead of a circle, consider a convex distance function defined by a square (rotated by
45 degrees). For the environment in figure 5.39, sketch the point planar-GVG using both
the circle and the square analogy.

17. State at least two advantages and two disadvantages of using potential functions as a
sensor-based planner.

18. Consider the real-valued function

f (x , y, z) = x2 + y2 − z2.

Use the preimage theorem to state the values of c for which f −1(c) is a manifold. For the
values of c for which f −1(c) is a manifold, state the dimension of f −1(c). State the values
of c for which f −1(c) is connected. Draw pictures of the manifolds for different values
of c.

19. Prove that di is a convex function when QOi is convex.

20. Prove that the generalized Voronoi region is connected in a connected free space.

21. Verify that figure 5.6 contains the reduced visibility graph for figure 5.4.

22. Assume the boundaries of the two-equidistant faces are connected. Prove or disprove that
the GVG is connected in R

3.

23. Implement exploration of an unknown workspace using the incremental construction pro-
cedures described in this chapter

(a) Rotate the robot so that the sensor with the smallest sensor reading is pointing “back-
ward.” You may use a lookup table here.

(b) Drive the robot away from the closest obstacle until it is two-way equidistant.

Choset-79066 book March 22, 2005 10:1

158
Obstacle

Obstacle

Defining Shape

Defining Shape

Obstacle

Figure 5.39 Photocopy the above figures to draw planar point-GVG’s but with different
distance metrics.

Choset-79066 book February 22, 2005 17:53

Problems 159

(c) Rotate the robot so that it lies in the tangent space of the GVD. You may use a lookup
table here.

(d) Drive the robot forward a small distance and test to see if the robot still lies on the
GVD (falls into a dead zone that is centered on the GVD).

(e) Rotate the robot by 90 degrees and drive it forward or backward until it is on the GVD
and then reorient the robot back into the tangent space.

(f) Trace a GVD-edge until encountering a meet point.
(g) Depart a meet point on a GVD-edge.
(h) Implement the graph data structure for the GVD.

24. Use a local mapping routine to improve upon the exploration procedure described above.

Choset-79066 book February 22, 2005 18:3

6 Cell Decompositions

NEXT, WE consider a different type of representation of the free space called an exact
cell decomposition. These structures represent the free space by the union of simple
regions called cells. The shared boundaries of cells often have a physical meaning
such as a change in the closest obstacle or a change in line of sight to surrounding
obstacles. Two cells are adjacent if they share a common boundary. An adjacency
graph, as its name suggests, encodes the adjacency relationships of the cells, where
a node corresponds to a cell and an edge connects nodes of adjacent cells.

Assuming the decomposition is computed, path planning with a cell decomposition
is usually done in two steps: first, the planner determines the cells that contain the start
and goal, respectively, and then the planner searches for a path within the adjacency
graph. Note that the adjacency graph could serve as a roadmap of the free space as
well. Therefore, mapping can be achieved by incrementally constructing the adjacency
graph.

Cell decompositions, however, distinguish themselves from other methods in that
they can be used to achieve coverage. A coverage path planner determines a path
that passes an effector (e.g., a robot, a detector, etc.) over all points in a free space.
Since each cell has a simple structure, each cell can be covered with simple motions
such as back-and-forth farming maneuvers; once the robot visits each cell, coverage
is achieved. In other words, coverage can be reduced to finding an exhaustive walk
through the adjacency graph. Sensor-based coverage is achieved by simultaneously
covering an unknown space and constructing its adjacency graph.

The most popular cell decomposition is the trapezoidal decomposition [356].
This decomposition relies heavily on the polygonal representation of the planar

Choset-79066 book February 22, 2005 18:3

162 6 Cell Decompositions

configuration space. A more general class of decompositions, which are termed
Morse Decompositions [12], allow for representations of nonpolygonal and nonpla-
nar spaces. Morse decompositions are based on ideas from Canny’s roadmap work.
We then consider a broader class of decompositions which includes those based on
visibility constraints. One such decomposition serves as a basis for the pursuit/evasion
problem which is introduced section 6.3.

6.1 Trapezoidal Decomposition

The trapezoidal decomposition comprises two-dimensional cells that are shaped like
trapezoids. Some cells can be shaped like triangles, which can be viewed as degen-
erate trapezoids where one of the parallel sides has a zero-length edge. Assume a
simple (x , y) coordinate system for the planar configuration space, the free space is
bounded by a polygon and that all of the obstacles are polygonal. For the sake of
explanation, assume that each vertex vi on all of the polygons has a unique x coor-
dinate, i.e., for all i �= j , vix �= v jx . This assumption is equivalent to saying that the
polygons lie in general position (see figure 6.1).

To form the decomposition, at each vertex v draw two segments, one called an
upper vertical extension and the other called a lower vertical extension. Here, “up” and
“above” correspond to increasing the y coordinate, and likewise “down” and “below”
mean decreasing it. The upper and lower vertical extensions start at the vertex and

v13

v10

v11

v12

v8

v0

v1

v4

v5
v7

v2

v3

v6

v9

Figure 6.1 Sample polygonal configuration space.

Choset-79066 book February 22, 2005 18:3

6.1 Trapezoidal Decomposition 163

c1

c1

c2

c2

c3

c3

c4

c4

c5

c5

c6

c6

c7

c7

c8

c8

c9

c9

c10

c10

c11

c11

c12

c12

c13

c13

c14

c14

c15

c15

Figure 6.2 Trapezoidal decomposition for the configuration space in figure 6.1.

terminate when they first intersect an edge of the polygon that lies immediately above
and below v, respectively. Note that many vertices will have either just an upper or a
lower vertical extension. Figure 6.2 contains the trapezoidal decomposition and its
adjacency graph for the workspace in figure 6.1. Recall that two cells are adjacent if
they share a common boundary, i.e., a common vertical extension.

Once the cells that contain the start and goal are determined, the planner searches
the adjacency graph to determine the path. However, the result of the graph search is
just a sequence of nodes, not a sequence of points embedded in the free space, and
so the next step is to determine the explicit path. Since a trapezoid is a convex set,

Choset-79066 book February 22, 2005 18:3

164 6 Cell Decompositions

c1

c1

c2

c2

c3

c3

c4

c4

c5

c5

c6

c6

c7

c7

c8

c8

c9

c9

c10

c10

c11

c11

c12

c12

c13

c13

c14

c14

c15

c15

Figure 6.3 The resulting paths in the adjacency graph and free space.

any two points on the boundary of a trapezoidal cell can be connected by a straight-
line segment that does not intersect any obstacle. The planner constructs the path,
one trapezoid at a time, by connecting the midpoints of the vertical extensions to
the centroids of each trapezoid. This yields a connected collision-free path through
the free space that is derived from the adjacency graph. To connect the start and
goal points, simply draw a straight line to the vertical extensions’ midpoints of the
appropriate trapezoids (figure 6.3).

The next issue centers on constructing the decomposition itself. The input to the
algorithm is a list of polygons, each represented by a list of vertices. The first step is to
sort the vertices based on the x-coordinate of each vertex. This takes O(n log n) time
and O(n) storage where n is the number of edges (or vertices) in all of the polygons.

Choset-79066 book February 22, 2005 18:3

6.1 Trapezoidal Decomposition 165

The next step is to determine the vertical extensions. For each vertex vi , a naive
algorithm can intersect a line through vi with each edge e j for all j . This will require
O(n) time resulting in a O(n2) time to construct the trapezoidal decomposition.
We can do better: the extensions can be determined by sweeping a sweep line (similar
to the sweep line in chapter 5, section 5.1 or the slice in Canny’s roadmap algorithm
in section 5.5.1) through the free space stopping at the vertices, which are sometimes
termed events. While passing the sweep line, the planner can maintain a list L that
contains the “current” edges which the slice intersects.

With the list L , determining the vertical extensions at each event requires O(n)
time with a simple search, but if the list is stored in an “efficient” data structure like
a balanced tree, then the search requires O(log n) time. It is easy to determine the
y-coordinates of the intersection of the line that passes through vi and each edge ei .
The trick is to find the appropriate edge or edges for the vertical extensions, i.e., the
two edges that v lies between. Let these two edges be called eLOWER and eUPPER.

So as long as the “current” list requires O(log n) insertions and deletions, as bal-
anced trees do, then keeping track of all the edges that intersect the sweep line,
i.e., maintaining L , requires O(n log n) time. Let elower and eupper be the two edges
that contain v (these are not eLOWER and eUPPER). The “other” vertex of elower has
a y-coordinate lower than the “other” vertex of eupper. Now, there are four types of
events (figure 6.4) that can occur and the type of event determines the appropriate
action to take on the list. These events and actions are

elower and eupper are both to the left of the sweep line

– delete elower and eupper from the list
– (. . . , eLOWER, elower, eupper, eUPPER, . . .) → (. . . , eLOWER, eUPPER, . . .)

elower and eupper are both to the right of the sweep line

– insert elower and eupper into the list
– (. . . , eLOWER, eUPPER, . . .) → (. . . , eLOWER, elower, eupper, eUPPER, . . .)

elower

eupper

v

elower

eupper

v
elower

eupper

v
elower

eupper

v

Figure 6.4 The kinds of events.

Choset-79066 book February 22, 2005 18:3

166 6 Cell Decompositions

elower is to the left and eupper is to the right of the sweep line

– delete elower from the list and insert eupper

– (. . . , eLOWER, elower, eUPPER, . . .) → (. . . , eLOWER, eupper, eUPPER, . . .)

elower is to the right and eupper is to the left of the sweep line

– delete eupper from the list and insert elower

– (. . . , eLOWER, eupper, eUPPER, . . .) → (. . . , eLOWER, elower, eUPPER, . . .)

Figures 6.5 through 6.8 contain examples of a sweep line being swept through a
polygonal free space of figure 6.1 with the corresponding list updates at each event.

Finally, we need to determine which cells contain the start and goal. First, we will
seemingly construct a finer cell decomposition which will have cells that are subsets
of the trapezoid and then infer from there which trapezoids contain the start and goal.
Draw a vertical line through all of the events forming “slabs” of the free space. Let w be
a point in the free space. Determining which slab contains w requires O(log n) time.
From here, it is easy to determine which edge of the polygonal workspace intersects
the slab and thus it requires a second O(log n) search to determine the ceiling and floor
edges that contain w . With the ceiling and floor determined, it is trivial to determine
which trapezoid contains w . See [124] for more efficient algorithms.

e13

e12

e11

e10

e9

e8

e7

e6

e5

e4

e3

e2

e1

e0

Figure 6.5 L : ∅ → {e8, e13}.

Choset-79066 book February 22, 2005 18:3

6.1 Trapezoidal Decomposition 167

e13

e12

e11

e10

e9

e8

e7

e6

e5

e4

e3

e2

e1

e0

Figure 6.6 L : {e8, e13} → {e8, e0, e3, e13}.

e13

e12

e11

e10

e9

e8

e7

e6

e5

e4

e3
e2

e1

e0

Figure 6.7 L : {e8, e0, e3, e13} → {e8, e0, e3, e12}.

Choset-79066 book February 22, 2005 18:3

168 6 Cell Decompositions

e13

e12

e11

e10

e9

e8

e7

e6

e5

e4

e3

e2

e1e0

Figure 6.8 L : {e9, e1, e2, e6, e5, e12} → {e9, e6, e5, e12}.

6.2 Morse Cell Decompositions

Conventional motion planning approaches determine paths between start and goal
configurations, such as those described in chapters 2, 4, 5, and elsewhere. However,
applications such as robotic demining and floor cleaning require a robot to pass over
all points in its free space, i.e., follow a path to cover the space. A planner can use an
exact cell decomposition to cover an unknown space by simply covering each cell and
then using the adjacency graph to ensure each cell is visited and hence covered. This
approach requires that each cell can indeed be covered. Naturally, cells with simple
structure can easily be covered; e.g., the cells of the trapezoidal decomposition can
be covered with simple back-and-forth motions.

Unfortunately, the trapezoidal decomposition may not produce efficient paths for
coverage. Here, we measure efficiency in terms of area covered vs. path length tra-
versed. Observe that cells in the trapezoidal decomposition can be “clumped” together
to form more efficient coverage paths. Perhaps a bigger drawback to the trapezoidal
method is that it fundamentally requires a polygonal workspace, which is not a real-
istic assumption for many applications.

In this section, we use Morse functions (chapter 5, section 5.5) to define cells that
have simple structure and can be defined in nonpolygonal spaces. Recall that a Morse
function is one whose critical points are nondegenerate; from a practical perspective,

Choset-79066 book February 22, 2005 18:3

6.2 Morse Cell Decompositions 169

Coverage Path in a Cell. Coverage Path in a Cell.

Figure 6.9 (left) Trapezoidal decomposition and (right) boustrophedon decomposition for
the same space. Each cell, in both decompositions, can be covered with simple back and forth
motions. However, note that the coverage path in the boustrophedon decomposition is a little
bit shorter. The region below the polygon obstacle requires an extra pass because the planner
has to “start over” each time the robot enters a new cell. Since there are fewer cells under the
polygonal obstacle in the boustrophedon decomposition, the coverage path is shorter.

this means that critical points are isolated. In this section, we evolve the trapezoidal
decomposition to a new decomposition called the boustrophedon decomposition and
then show that the boustrophedon decomposition is a Morse decomposition. Next, we
generalize the boustrophedon decomposition to form other Morse decompositions.

6.2.1 Boustrophedon Decomposition

From a coverage perspective, a minor shortcoming of the trapezoidal decomposition
is that many small cells are formed that can seemingly be aggregated with neighboring
cells. Reorganizing the cells can result in a shorter and more efficient path to cover
the same area.

To address this issue, the boustrophedon1 cell decomposition approach was intro-
duced [110]. The boustrophedon decomposition is formed by considering the vertices
at which a vertical line can be extended both up and down in the free space (figure 6.9).
We call such vertices critical points, and we will show that these correspond to the
same critical points in Canny’s roadmap described in chapter 5, section 5.5.1.

With the decomposition in hand, the planner determines a coverage path in two
steps. First, the planner determines an exhaustive walk through the adjacency graph
(figure 6.10). This list can be computed by using a depth-first search algorithm. Once

1. The Greek word boustrophedon literally means “ox turning” [8]. Typically, when an ox drags a plow in
a field, it crosses the full length of the field in a straight-line, turns around, and then traces a new straight
line path adjacent to the previous one.

Choset-79066 book February 22, 2005 18:3

170 6 Cell Decompositions

1

1

22

33

44 5
5

66

7
7

8
8

Cells

Exhaustive walk 1–2–4–2–3–5–6–5–7–5–8–1

Critical Points

Figure 6.10 The boustrophedon decomposition of a space and its adjacency graph. The nodes
represent the cells and the edges indicate the adjacent cells. An exhaustive walk on the graph
is generated.

the ordered list of cells is determined, the planner then computes the explicit robot
motions within each cell. The path in each cell consists of a repeated sequence of
straight-line segments separated by one robot width and short segments connecting
the straight line-segments. Typically, these short segments follow the boundary of the
environment.

6.2.2 Morse Decomposition Definition

We generalize the boustrophedon decomposition beyond polygons by borrowing ideas
from Canny’s work [91,93] which first applied a “slicing method” to motion planning,
as described in chapter 5. Recall that a slice is a is a codimension one manifold denoted
byQλ. The slices are parameterized by λ (varying λ sweeps a slice through the space).
The portion of the slice in the free configuration space, Qfree, is denoted by Qfreeλ,
i.e., Qfreeλ = Qλ

⋂
Qfree. Recall from chapter 5 that connectivity changes of Qfreeλ

were used to ensure the connectivity of the roadmap. Now, we are going to use the
connectivity changes to define cells in a cell decomposition.

Recall from section 5.5 in chapter 5 that the slice can be defined in terms of the
preimage of the projection operator π1 : Q → R. In the plane π1(x , y) = x and the
slice Qλ = π−1

1 (λ) corresponds to a vertical slice. Increasing the value of λ sweeps
the slice to the right through the plane. As the slice is swept through the target region,
obstacles intersect (or stop intersecting) the slice in the free space, severing it into
smaller pieces as the slice first encounters an obstacle (or merging smaller pieces
into larger pieces as the slice immediately departs an obstacle). The connectivity

Choset-79066 book February 22, 2005 18:3

6.2 Morse Cell Decompositions 171

changes occur at points termed critical points. Note that critical points are analogous
to vertices which have vertical extensions that can be drawn both up and down.

Slices that contain critical points are termed critical slices. It should be emphasized,
however, that the slice Qλ itself does not change connectivity, but rather the slice in
the free space Qfreeλ changes connectivity at critical points. Naturally, Qfreeλ contains
one or more connected components, which are termed slice intervals and are denoted
Qfree

j
λ for the j th open connected slice interval. So, Qfreeλ = ⋃

j Qfree
j
λ. Denote the

set of slice intervals that contain a critical point by I ∗. Note that a critical point cannot
be in the interior of a slice interval; it can only lie at the endpoints of a slice interval.
With this, we can define a Morse decomposition

DEFINITION 6.2.1 (Morse Decomposition [12]) A Morse decomposition is an exact
cell decomposition whose cells are the connected components of Qfree\I ∗.

In figure 6.11, the dashed lines are the slice intervals lying in the free space and
have end points lying on obstacle boundaries. Each of these slice intervals has at
least one critical point on an obstacle boundary as well. When the slice intervals are
removed from the free space, the remaining free space is still two-dimensional but is
no longer connected. Each connected component is a cell.

One can see that within a cell, the slice interval remains connected and only extends
or contracts. Morse theory assures us that between critical slices, “merging” and
“severing” of slices do not occur, i.e., the topology of the slice remains constant.

Coverage Path in a Cell

Figure 6.11 The boustrophedon decomposition of a nonpolygonal environment. As we sweep
a straight-line slice from left to right, its connectivity in the free space changes first from one
to two, then two to one and so forth. At the points where these connectivity changes occur, we
locate the cell boundaries in the free space.

Choset-79066 book February 22, 2005 18:3

172 6 Cell Decompositions

This is useful for tasks such as coverage because the robot can trivially perform
simple motions between critical points and guarantee complete coverage of a cell
(figure 6.11). A coverage path within a cell contains two parts: motion along the
slice and motion along the boundary of the obstacles. A bulk of the coverage oper-
ation occurs with motions along the slices, sometimes called laps, and this motion
terminates when the robot encounters an obstacle. Motion along the boundary of the
obstacle directs the robot to move “one width2 over,” i.e., increase its slice function
value by one robot width while following the cell boundary along an obstacle. We
call the distabce between subsequent laps as the inter-lap distance.

Cao, Huang, and Hall [96] implicitly use a Morse decomposition to achieve cov-
erage but they assume all obstacles are convex. The Morse decompositions, defined
above, assume that the critical points are not degenerate, but Butler et al. [86] present
a coverage algorithm that uses decompositions of rectilinear spaces where all critical
points are degenerate.

6.2.3 Examples of Morse Decomposition: Variable Slice

The definition of a Morse decomposition is not specific to a particular slice. In the pre-
vious section, the slice was defined by the preimage of a real-valued function, which
happened to be π1. We can use this function to define the boustrophedon decomposi-
tion which induces back-and-forth coverage pattern. Now we will vary the function
that defines the shape of the slice, resulting in different decompositions and hence
different patterns by which the free space is covered. Now, we rewrite the definition
of the slice as the preimage of a general real-valued function h : Q → R. For the
boustrophedon decomposition in the plane, this function is h(x , y) = x .

Spiral, Spike, and Squarel Patterns

We can use the function h(x , y) = √
x2 + y2 to produce a pattern of concentric circles

in the plane. Critical points occur at points where a circle changes connectivity; this
happens when it is tangent to an obstacle. Critical points are then used to form annular
or arc-shaped cells and the adjacency graph (figure 6.12, left). As before, a planner
determines a coverage path in two steps: first it finds an exhaustive walk through the
adjacency graph and then it plans the explicit coverage path in each uncovered cell. The
coverage pattern within a cell has three parts: motion along a slice, motion orthogonal
to the slice, and motion along the boundary of the cell. The slice here, however, is
not a straight-line segment, but rather a circle or subset of a circle. Therefore, in

2. Here, width is determined by the size of the detector or end-effector that is being used.

Choset-79066 book February 22, 2005 18:3

6.2 Morse Cell Decompositions 173

Figure 6.12 (Left) Cell decomposition for h(x , y) =
√

x2 + y2 and (right) its associated
spiral coverage pattern. The slices are the circles that are the preimages of h. At the critical
points, labeled with little open circles (not to be confused with the slices), the circle-shaped
slices become tangent to the obstacles. Rather than moving along circular paths and stepping
outwardly, the robot follows a spiral pattern.

the plane, a planner initially directs the robot to circumnavigate a circle, move the
interlap distance along the radius of the circle, and then circumnavigate a circle of a
larger radius. If the robot encounters an obstacle while circumnavigating a circle, the
planner simply directs the robot to follow the obstacle boundary until the robot has
moved an interlap distance and then follows the circle of a larger radius.

Note that instead of following a circle and stepping outward, the robot can fol-
low a spiral pattern until it encounters critical points (figure 6.12, right). The spiral
pattern bypasses the need to step along the radial direction. This yields a path that
maximizes the area covered per unit distance traveled in regions sparsely populated
with obstacles.

The function h(x , y) = tan(y
x) induces a pattern that is orthogonal to the set of

concentric circles (figure 6.13). Using this pattern to perform coverage has the effect
of covering the region closest to the center of the pattern more densely. This is useful
if the likelihood of finding a desired object is highest at the center of the pattern and
the robot’s detector experiences false negatives (something is under the detector but
the detector does not sense it).

The function h(x , y) = |x |+ |y| can be used to produce cells that look like rotated
squares or diamonds (figure 6.14). For coverage, instead of driving in concentric
squares, we can direct the robot to “spiral” out while looking for critical points,
hence the term squarel. The resulting pattern is shown in figure 6.14. The squarel
pattern serves as an approximation to the spiral pattern that is easier to implement on
differential drive robots.

Choset-79066 book February 22, 2005 18:3

174 6 Cell Decompositions

Figure 6.13 Decomposition for h(x , y) = tan(y
x) and a spiked pattern. The free space is

sliced like a pie. At the critical points, the slices are tangent to obstacles. The robot can use
this pattern to cover more densely the region closest to the center of the pattern.

Figure 6.14 Decomposition for h(x , y) = |x | + |y| and a coverage pattern. Squares are the
slices and at the critical points the corner of a square touches an obstacle or the side of it
becomes tangent to an obstacle. Since it is easier for the robot to move along straight lines
rather than circles, this pattern can be used to approximate the spiral pattern.

Note that h(x , y) = |x | + |y| is not smooth so we have to use the formulation
of the generalized gradient given in chapter 5, section 5.5.2. The squarel pattern has
two parts: a straight line segment and a 90 degree turn, as can be seen in figure 6.14.
Note that critical points occur when the flat portions of {(x , y) : |x |+|y| = λ} become
tangent to an obstacle and at some of the 90 degree turn points. At these points, the
obstacle surface normal lies in the convex hull of the two flat portions that meet at
the 90 degree turn point.

Choset-79066 book February 22, 2005 18:3

6.2 Morse Cell Decompositions 175

Voronoi regions

Figure 6.15 GVD of an environment.

Brushfire Decomposition

The brushfire algorithm [262] is a popular technique to construct the GVD (fig-
ure 6.15). In chapter 4, section 4.3.2, we described the brushfire algorithm on a grid;
here we describe it on a continuous space.

The brushfire algorithm is so named because in implementation, imaginary wave
fronts emanate from each obstacle and collide at points on the GVD. By noting
the location of the collision points, the algorithm constructs the GVD. The algorithm,
however, induces a decomposition that is not the Voronoi regions of the GVD. Instead,
the decomposition models the topology of the wave fronts as they initially collide with
each other and form or destroy new wave fronts. Compare figure 6.15 and figure 6.16.

The distance function D, which measures the distance between the point x and
the nearest point c on the closest obstacle QOi , admits a decomposition termed the
brushfire decomposition. Each slice of D is a wave front where each point on the front
has propagated a distance λ from the closest obstacle. As λ increases, the wave fronts
progress. Cells of the brushfire decomposition are formed when these wave fronts
initially collide. Figure 6.16 contains a decomposition induced by D where regions
of the same color represent a cell. Whereas for the boustrophedon decomposition we
are essentially “pushing” a line segment through the cell, here we are “growing” a
wave front that originates on the boundary of the environment, which in figure 6.16
has three obstacles: the exterior, the vertical barlike obstacle, and a triangle. These
three wave fronts progress until they initially collide with each other, which occurs
at critical points. The light gray regions adjacent to the obstacles represent the three
newly formed cells. The type of critical points that define the gray regions in fig-
ure 6.16 are saddle points. In fact, all of the cells are defined by saddle points of D.
Note that since D is nonsmooth, its generalized gradient must be used as well.

To determine the coverage path, the planner again first derives the decomposition,
finds an exhaustive walk through the adjacency graph, and then plans the coverage
path within each cell. The coverage path within a cell consists of three parts: motion

Choset-79066 book February 22, 2005 18:3

176 6 Cell Decompositions

Obstacles

s

Stage 1 Stage 2

Stage 4

Stage 3

S
ec

on
d

sa
dd

le

Local maxima First saddle point (s)

Local maxima

Obstacles

Cell 1

Cell 2

Cell 3

Cell 4

Collision point

Figure 6.16 Incremental construction of the cells of the brushfire decomposition. The wave
fronts collide with each other at the points located on the GVD.

along the slice, motion orthogonal to the slice, and motion along the boundary of
the cell (figure 6.17). For motion along the slice, the robot follows a path at a fixed
distance from the nearest obstacle. The robot follows an obstacle boundary at a fixed
distance until it returns to its starting point or a point where the distance to two
obstacles becomes the same. When the robot returns to its starting point, it simply
moves away from the closest obstacle by one width and repeats following the obstacle
boundary at the new fixed distance. When the robot becomes doubly equidistant, it is
on the boundary of the cell, at which point it follows the GVD. The robot follows the
GVD until it reaches a point where the distance to the nearest obstacle is an integer
multiple of the robot’s diameter, at which point the robot then resumes obstacle
boundary-following at this fixed distance. Here, the boundary-following motion is
much different from before because cell boundaries lie exclusively in the free space
with the exception of the first slice λ = 0.

Choset-79066 book February 22, 2005 18:3

6.2 Morse Cell Decompositions 177

Figure 6.17 Coverage pattern for the brushfire decomposition. To generate this pattern, the
robot follows the boundaries of obstacles and thus it has a continuous robust reference for
localization. Therefore this pattern is suitable for the robots that are prone to accrue dead-
reckoning error. However, the robot relies heavily on long-range sensors.

The pattern induced by the brushfire algorithm is ideally suited for coverage with
mobile robots experiencing dead-reckoning error but have a large sensing range. A
mobile robot can follow this pattern servoing off of the boundaries of the obstacles
by moving forward and maintaining a fixed distance from the boundary (figure 6.17).
Since the robot is servoing off of range readings to the obstacle boundary, this method
is insensitive to dead-reckoning error. This benefit, however, requires that the robot
can indeed measure distance to the obstacle, which could be far away from the robot.
This is in contrast to the boustrophedon decomposition approach which requires only
very limited sensing range but which is sensitive to dead-reckoning error.

Wave-Front Decomposition

Let h(x , y) be the length of the shortest path between a point (x , y) and a fixed
location. The level sets h−1(λ) foliate the free space where for a given λ, the set of
points in h−1(λ) are a distance λ away from the fixed point in the free space. This
particular function is sometimes called the wave-front potential, which was described
for a discrete space in chapter 4, section 4.5. Imagine a wave front starting at qstart and
expanding into the free space. The value λ parameterizes each wave front (or level set
of h). Once the wave front crosses qgoal, the planner can backtrack a path from qgoal

to qstart [208].

Choset-79066 book February 22, 2005 18:3

178 6 Cell Decompositions

Figure 6.18 Wave-front decomposition defined on a continuous domain. The wave front
emanates from a point in the lower-left portion of the figure. Cusp points on the wave fronts
originate from the critical points, e.g., the cusp point on the upper boundary of the obstacle
located on the left.

The shortest path-length function induces a cell decomposition, as well. Critical
points of this function occur both when wave fronts becomes tangent to obstacles
and when wave fronts collide (figure 6.18). Note how once the waves collide, they
propagate as one wave with a nonsmooth point that originated at the critical point.
In fact, this nonsmooth point traces the set of points of equal pathlength to the goal
for two classes of paths, one to the right of the obstacle and one to the left. This
decomposition is especially useful for coverage by a tethered robot where the robot’s
tether is incrementally fed and the robot sweeps out curves each at constant tether
length.

6.2.4 Sensor-Based Coverage

Now, let’s place the robot in an unknown environment, but assume it has the standard
range sensor ring as depicted in chapter 2, figures 2.5 and 2.16. The task is to simul-
taneously cover and explore the unknown space. This can be reduced to concurrently
and incrementally covering each cell while constructing the adjacency graph. For
sensor-based coverage, however, we incrementally construct a “dual” graph called a
Reeb graph [154]. This graph is dual in the sense that the nodes of the Reeb graph are
the critical points and the edges connect neighboring critical points, i.e., correspond
to cells. For the sake of explanation, we limit discussion to Morse decompositions

Choset-79066 book February 22, 2005 18:3

6.2 Morse Cell Decompositions 179

Slices

Cell

Critical Points
∆m(x) ∆m(x)

∆h(x)

Cp1

Cp1

Cp2

Cp2

Cp3

Cp3

Cp4

Cp4

Cp5

Cp5

Cp6

Cp6

Figure 6.19 A boustrophedon decomposition and its Reeb graph. At the critical points, the
surface normals and sweep direction are parallel.

Cp1

Cp1

Cp1

Cp2
Cp2

Cp2

Cp2 Cp2 Cp2 Cp3 Cp4

Cp4

Cp3
Cp3

Cp3

Cp1

Cp1 Cp1 Cp1

Cp1

(a) (b) (c) (d)

Figure 6.20 Incremental construction of the graph while the robot is covering the space.

defined by h(x , y) = x , i.e., the boustrophedon decomposition. See figure 6.19 for
an example of the boustrophedon decomposition and its corresponding Reeb graph.

The procedure of concurrently covering the cells and constructing the Reeb graph
is depicted in figure 6.20. In figure 6.20(a), the robot starts to cover the space at the
critical point Cp1 and the planner instantiates an edge with only one node. When
the robot is done covering the cell between Cp1 and Cp2, the planner joins their
corresponding nodes with an edge in the graph representation (figure 6.20b). Now the

Choset-79066 book February 22, 2005 18:3

180 6 Cell Decompositions

(a) (b) (c) (d)

Figure 6.21 Four stages of coverage in an unknown environment with a robot-size detector on
a Nomad Scout named RT Snookums. The coverage path followed by RT Snookums is shown
by dotted black lines. We depict the critical points as light gray circles with lines emanating
from them. The lines represent the directions of the corresponding adjacent cells. The robot
incrementally constructs the graph representation by sensing the critical points 1, 2, 3, 4, 3, 2
(in the order of appearance) while covering the space. In the final stage (d), since all the critical
points have explored edges, the robot concludes that it has completely covered the space. For
the sake of discussion, we outlined the boundaries of the obstacles and cells in (d). The length
scale L = 0.53 meters.

robot has two new uncovered cells. Since the space is a priori unknown, the planner
arbitrarily chooses the lower cell to cover. When the robot reaches Cp3, nodes of Cp2

and Cp3 become connected with an edge and the lower cell is completed (figure 6.20c).
At Cp3, the planner directs the robot to cover the cell to the right of Cp3. When the
robot senses Cp4, it goes back to Cp3 and starts to cover the upper cell. When the
robot returns to Cp2, the planner determines that all of the edges of all of the nodes
(critical points) have been explored (figure 6.20d). Thus the planner concludes that
the robot has completely covered the space. Figure 6.21 shows different stages of this
incremental construction in an a priori unknown 2.75 meter × 3.65 meter room with
a Nomad mobile robot that has a sonar ring.

Two details remain: How does the robot sense a critical point when it encounters one
and how does the robot find all of the critical points? Critical point sensing is rather
straightforward: the robot looks for points where the surface normals are parallel
to the sweep direction. This is a direct consequence of lemma 5.5.2 in chapter 5,
section 5.5.1. Here, we are looking for extrema of h on the boundaries of the obstacles.
Let m implicitly represent a function whose preimage is the surface boundary. The
matrix D(h, m)(x) (chapter 5, section 5.5.1) then loses rank when ∇h(x) is parallel
to ∇m(x), i.e., the slice normal is parallel to the surface normal (figure 6.19). This
can easily be detected by looking at the global minimum of the range sensors in a
range sensor ring.

Choset-79066 book February 22, 2005 18:3

6.2 Morse Cell Decompositions 181

Uncovered Area

Missed Critical Points

Figure 6.22 Critical points in the ceiling are missed with conventional coverage algorithms.

The final challenge is to ensure that the robot encounters all critical points. Assume
the robot starts to cover a cell at one of its defining critical points. While covering the
cell, the robot looks for the other critical point that indicates complete coverage of
the cell and the next node in the Reeb graph. We term this critical point the closing
critical point. Since the Reeb graph is connected, the main challenge is to guarantee
that the robot finds the closing critical point of each cell.

Most conventional coverage algorithms (e.g., [187, 190, 300]) miss the closing
critical point because they perform the bulk of their coverage using a raster scan type
of motion: move along a slice or lap to an obstacle, follow the obstacle boundary
for a lateral distance equal to interlap spacing, and repeat. This alternates boundary-
following between the “ceiling” and “floor” of the cell, as shown in figure 6.22.
Unfortunately, this raster scan approach can miss the closing critical point of a cell. In
figure 6.22, since the robot did not follow the boundary of the ceiling, it cannot sense
the critical points in the ceiling using the critical point sensing method, described
above. We may try to solve this problem by making the robot perform boundary-
following along the ceiling in the reverse direction so that it will sense the critical
points related to the ceiling. We call this motion reverse boundary following. However,
reverse boundary following motion by itself is still not sufficient.

The robot must undergo additional motion to detect the closing critical point. We
present an algorithm called the cycle algorithm [11] that ensures that the robot will find
the closing critical point while performing coverage. For details, see [11]. Let Si be the
start point of the cycle algorithm; Si is on (or near) the boundary of free space. From
this point the robot looks for critical points via the following phases (figure 6.23):

1. Forward phase: The robot follows a slice, i.e., laps, until it encounters an obstacle.
Then the robot follows the boundary of the obstacle in the forward sweep direction
until either the robot moves laterally one lap width or until the robot encounters a
critical point in the floor.

Choset-79066 book February 22, 2005 18:3

182 6 Cell Decompositions

2

3
Closing Phase

Start Point

Forward Phase

Reverse Phase

Si

Figure 6.23 In this particular arrangement of the obstacles, the robot executes every step of
the cycle algorithm. The robot first follows the path between points Si and 2 during the forward
phase. Then it follows the path between points 2 and 3 during the reverse phase. Finally, in the
closing phase the robot follows the path between points 3 and Si .

2. Reverse phase: The robot executes one or more laps in the reverse direction,
intermixed with reverse boundary-following. Each reverse boundary-following
operation terminates when the robot finds a critical point or when the aggregate
lateral motion in the reverse direction is one lap width.

3. Closing phase: The robot executes one or more laps along the slice, possibly inter-
mixed with boundary-following. Each boundary-following operation terminates
when the robot encounters Si or the slice in which Si lies.

This algorithm is the most important part of the incremental construction. It guarantees
encountering the closing critical point of a cell if it exists between subsequent laps.

6.2.5 Complexity of Coverage

We define complexity of coverage in two ways: first, we establish a relationship among
the number of critical points, cells, and obstacles and second we determine an upper-
bound on path length given the perimeter the obstacles and the diameter � smallest
disk that circumscribes the space (figure 6.24). We limit our discussion to coverage
with the boustrophedon decomposition. First, we establish a relationship between

Choset-79066 book February 22, 2005 18:3

6.2 Morse Cell Decompositions 183

∆

Figure 6.24 To determine the complexity of the algorithm in terms of the environment size,
we use the diameter � of the “minimal” disk that fully contains the space.

the number of cells, critical points and obstacles. The Reeb graph encodes the cells,
critical points, and “obstacles.” Note that obstacles (including the outer boundary) are
represented with “faces”3 in the graph. Graph theory uses Euler’s formula to relate
the number of nodes v, edges e and faces f of a planar connected graph [57] by

v − e + f = 2.

The nodes of the Reeb graph correspond to critical points, its edges represent the
cells and its faces depict the obstacles. Moreover, the Reeb graph is connected and
planar. Therefore we can use Euler’s formula with one modification. Since the outer
boundary of the space is, in general, not termed an obstacle, we subtract one from
the number of faces to get the number of obstacles. Let Ncp be the number of critical
points, Nce be the number of cells and Nob be the number of obstacles (figure 6.25).
Then

Nce = Ncp + Nob − 1.

This formula tells us that the number of cells increases linearly as the robot discovers
new critical points.

Next, we calculate an upper bound on the total coverage path length. To simplify
the calculation, we analyze lapping, boundary following and backtracking motions

3. A plane graph partitions the space into connected regions. Closures of these regions are called faces [57].

Choset-79066 book February 22, 2005 18:3

184 6 Cell Decompositions

Cellular Decomposition

Critical Points

Reeb Graph

f1

f2
f3

Figure 6.25 In this decomposition example, there are twenty-one critical points (nodes in
the graph), Ncp = 21, and two obstacles (faces f2, f3 in the graph; f1 is the outer boundary),
Nob = 2. Using the modified Euler’s formula Nce = Ncp + Nob − 1, there must be twenty-two
cells (edges in the graph), Nce = 22.

Stage 1 Stage 2 Stage 3

Coverage
path

First lap in new cell Extra first lap in new cell Extra first lap in new cell

Figure 6.26 When the robot starts to cover a new cell, it performs an “extra” lap starting
from a critical point on one of its boundaries.

separately. Since the space is fully contained within a � diameter disk, the length
of each lapping path can be at most �. There must be at least � �

2r � lapping paths
where 2r is the interlap spacing. However, often there is an additional lap associated
with starting the coverage operation within a cell (figure 6.26). Hence, the maximum
number of lapping paths is � �

2r � + Nce. Since the length of each lapping path is
bounded above by �, the total path length of the lapping motions is bounded above
by �� �

2r � + �Nce.
Now we analyze the length of boundary-following paths. Let Pcell be the length

of the floor and ceiling of a cell. The coverage algorithm guarantees that the robot
follows the entire floor and ceiling of a cell along the obstacle boundaries. Therefore,
the length of boundary-following paths in a cell is at least Pcell. However, the robot,
for each cycle, performs an undo-reverse boundary-following motion to get to the

Choset-79066 book February 22, 2005 18:3

6.2 Morse Cell Decompositions 185

x

y

Forward boundary-following path

Reverse boundary-following path

Undo reverse boundary-following path

Forward lapStart

Figure 6.27 The total perimeter of the cell is equal to x + y where y is the length of the floor
and x is the length of the ceiling and x � y. The total path length traveled along the boundary
of the cell is bounded above by 2x + y. In the worst case, as x gets much larger than y, this
value is equal to 2(x + y).

start point. Hence, the lower bound is 1.5Pcell. In the worst case, the upper bound
becomes 2Pcell (figure 6.27). Then, the total length of the boundary-following paths
is less than 2Ptotal where Ptotal is the length of the perimeter of all of the obstacles and
the outer boundary.

After discovering the closing critical point of a cell, the robot backtracks to the
closing critical point of a cell with uncovered cells associated with it by boundary-
following and (if necessary) lapping (figure 6.28). In the worst case, the length of
this backtracking path is Pcell + � (where the robot follows every boundary and the
longest slice). When we consider all the backtracking paths, the upper bound becomes
Ptotal + �Nce.

The robot starts to cover an uncovered cell from one of its defining critical points.
While discovering this critical point by performing the cycle algorithm, the robot
covers a small portion of the uncovered cell. The extra boundary-following path
followed by the robot to discover the critical point is bounded above by Pcell. Hence,
the total extra boundary-following path length is bounded above by Ptotal.

When the robot finishes covering a cell, it performs a depth-first search on the
Reeb graph to choose an uncovered cell (if any are left) (figure 6.29). The robot
reaches the uncovered cell by traversing the covered cells. To traverse a covered
cell, the robot performs boundary-following and lapping motions as we explained in
section 6.2.1. Within each covered cell, the total path length traveled is bounded above

Choset-79066 book February 22, 2005 18:3

186 6 Cell Decompositions

(a) (b)
Stage 1 Stage 2

Cell A

Backtracking
Backtracking

Critical points

Cp2

Cp3

Cp1

Cp1 Cp2

Figure 6.28 (a) The robot starts to cover the space from Cp1. Along the first cycle path, it
discovers the critical points Cp1, Cp2, and Cp3. The robot moves back to Cp3 by following the
boundary of the obstacle to start to cover cell A. (b) The robot travels back to Cp2 from Cp1

by boundary-following and lapping. Therefore, the length of the backtracking path is bounded
above by Pcell + D for each cell.

Stage 1 Stage 2 Stage 3Cp3

Cp3

Cp1 Cp1 Cp1 Cp1

Cp2 Cp2
Cp2Cp2

Figure 6.29 The robot starts to cover the space from Cp1. Whenever the robot finishes
covering a cell, a depth-first search is performed on the graph to choose a new cell to cover.
On the graph, solid arrows depict the coverage directions and dashed arrows correspond to
backtracking directions. The depth-first search on the graph requires a maximum of Nce (number
of edges) backtracking.

by Pcell + 2� (figure 6.30). Since we perform a depth-first search on the graph, each
cell is traversed at most once [118], and therefore the backtracking path length is
bounded by

∑Nce
i=1 Pcelli + 2Nce� or Ptotal + 2Nce�.

Combining the above upper bounds, the length of the coverage path is less than

�2

2r
+ 4�Nce + 5Ptotal,

Choset-79066 book February 22, 2005 18:3

6.3 Visibility-Based Decompositions for Pursuit/Evasion 187

Cell A Cell B

Cell C

Cp2

Cp1

Figure 6.30 After finishing covering cells A and B, the robot needs to travel from Cp1 to Cp2

to start to cover cell C. The robot simply follows the boundary of the obstacle either along the
ceiling or floor of the cell. In the worst case, the boundary-following path length is bounded
above by the length of the perimeter of the obstacles that form the boundary of the cell.

or using the modified Euler’s formula,

�2

2r
+ 4�(Ncp + Nob) + 5Ptotal − 4�.

Therefore, the total coverage path length is bounded linearly by the area of the
space, the number of critical points, and the length of the perimeter of the obstacles
and the outer boundary.

6.3 Visibility-Based Decompositions for Pursuit/Evasion

In the previous section, we used connectivity changes (i.e., critical points) to decom-
pose the space into cells. The benefit of using the critical points is that the cells have
a structure that is “easy” to cover. In this section, we use changes in line-of-sight
related information to define cells. Such cells form visibility-based decompositions.
Moving from one cell to another corresponds to a change in visibility, e.g., obsta-
cle or target appears or disappears. We can use a visibility-based cell decomposition
to address the pursuit/evasion problem. This problem, first introduced by Suzuki
and Yamashita [403], considers one or more multiple agents called pursuers who
are searching a bounded free space (usually polygonal) for a single agent called an
evader. This evader can be a bad guy who is escaping the police or a trapped survivor
wandering around a disaster site in need of help in searching rescue for workers.
Lavalle, Guibas, and coworkers [172, 273] use a cell decomposition approach to
address the pursuit/evasion problem. This decomposition lies in the workspace, not
the configuration space, and the agents are points in the plane.

Choset-79066 book February 22, 2005 18:3

188 6 Cell Decompositions

gap-edge

gap-edge

3

2

1

V(x)

x x

0

01

Figure 6.31 The visibility polygon is shaded inside a polygonal world populated by obstacles.
The gap-edges and their labels for a generic visibility polygon V (x) are labeled. A clear edge
has a 0 label, a contaminated edge has a 1 label. Here, B(x) = {010}.

In this description, we borrow terminology and notation from [172, 273]. The
evader e is caught when any one of the pursuers γ i becomes within line of sight with
it, i.e., there exists an i such that for all τ ∈ [0, 1], τe + (1 − τ)γi ∈ Wfree. Let
e : [0, ∞) → Wfree and γ i : [0, ∞) → Wfree respectively be the paths that the
evader and the i th pursuer follow. An evader is caught at the earliest time t when
there exists an i such that for all τ ∈ [0, 1], τe(t) + (1 − τ)γi (t) ∈ Wfree. Let us
recast the capture condition once more: let V (x) ⊂ Wfree be the star-shaped set of
points that are within line of sight of x (figure 6.31). An evader is caught if there
exists an i and t such that e(t) ∈ V (γi (t)). A motion strategy is the collection of
the pursuer paths γ = {γ1, . . . , γn} and is termed a solution strategy if at least one
pursuer catches the evader for all e(t). Finally, let H (Wfree) be the minimum number
of pursuers required to capture an evader in Wfree in finite time.

We address the pursuit/evasion problem in two steps. Continuing to borrow ter-
minology from [172, 273], we will define qualitatively important subsets of the free
space and then use these subsets to define the decomposition. A region of Wfree that
may contain an evader is termed contaminated. If a region is not contaminated, then
it is clear. However, a region that was contaminated, then cleared, and contaminated
again is termed recontaminated (figure 6.32).

A visibility polygon now has two types of edges, those that lie on the boundary
of obstacles and those that lie in the free space, which we call gap-edges. Gap-edges
have a zero label if they bound a cleared region and a one if they bound a contaminated
region (figure 6.31).

Choset-79066 book February 22, 2005 18:3

6.3 Visibility-Based Decompositions for Pursuit/Evasion 189

cleared contaminated

contam
inated

V(x) x
free

i

Figure 6.32 A polygonal world with visibility polygon, cleared area, and contaminated area.
A cleared area is a region we know the evader is not in. A contaminated region could contain
the evader. The i th pursuer’s path is also drawn.

Let B(x) denote a binary vector of these gap-edge labels for a particular star-
shaped set centered x . The pair (x , B(x)) denotes the information state and the set of
all possible information states is the information space. A connected set ν ⊂ Wfree

is conservative if for all x ∈ ν, B(x) remains fixed (figure 6.33). Finally, we can
construct an adjacency graph for the conservative regions in a given environment.
Hence, the conservative regions form an exact cell decomposition. (figure 6.34)

To construct the conservative regions for a polygonal environment, simply extend
rays from each convex vertex of all of the obstacles until they intersect another
obstacle. Also, if two vertices are within line of sight of each other, extend two rays,
one from each vertex, but in the opposite directions. In other words, for vi ∈ WOi

and v j ∈ WOj , if λvi + (1 − λ)v j ∈ Wfree for all λ ∈ (−ε, 1 + ε) for some ε > 0,
then extend a ray from vi away from v j and vice versa until they intersect an obstacle
(figure 6.35).

This process forms a cell decomposition of the free space where each cell is a
conservative region. This cell decomposition, however, is not sufficient to solve the
pursuit/evasion problem. We have to form a cell decomposition in the information
space [172,273]. To do this, first identify all of the “transitions” that can occur when an
agent passes from one conservative cell to another in the free space decomposition
(figure 6.36). If

1. a gap-edge disappears, do nothing;

2. a gap-edge appears, assign it a zero;

Choset-79066 book February 22, 2005 18:3

190 6 Cell Decompositions

Conservative regions

Contaminated

Contaminated

Pursuer crosses
critical boundary

Pursuer does not
cross critical boundary

Figure 6.33 The leftmost figure denotes all of the conservative regions separated by dashed
lines. In the next figure, the pursuer starts off with a visibility polygon represented by a light
gray area and a contaminated region by dark gray. If the pursuer crosses the critical boundary,
then the contaminated region becomes cleared and the information state changes.

Figure 6.34 Conservative regions and their corresponding adjacency graph.

Choset-79066 book February 22, 2005 18:3

6.3 Visibility-Based Decompositions for Pursuit/Evasion 191

Case 3Case 1 Case 2

Figure 6.35 The three conservative edge construction cases.

q2q1

q4

q3

Figure 6.36 (Left) A gap-edge appears or disappears (Right) Multiple gap-edges merge or a
gap-edge divides. Moving from q3 to q4 causes two edges to merge into one (case 3). From q4

to q3, a single gap edge splits into two (case 4).

3. two or more gap-edges merge into one, if any of them had a one label, assign a
one to the new edge;

4. a gap-edge divides into multiple gap-edges, assign the new edges the same label
as the original;

This transition information serves as a basis for an adjacency graph for a new
decomposition. This graph, called the information graph, can be used to solve the

Choset-79066 book February 22, 2005 18:3

192 6 Cell Decompositions

Figure 6.37 A simple space with its corresponding adjacency graph overlaid on top.

pursuit/evasion problem. For each cell of the conservative region decomposition, we
generate a sequence of nodes, each corresponding to a possible set of gap-edge labels.
Figure 6.37 contains a simple free space with its adjacency graph overlaying on it.
Consider the upper right conservative region. For all points in this region, it can
only have one gap-edge which could have either a zero or a one label. Note that this
gap-edge does not lie in the conservative region, i.e., it is not the horizontal line that
separates the rightmost conservative regions.

Likewise, the conservative region in the lower-right cell has only one free edge.
However, the transition from the upper-right cell to the lower-right cell is limited by the
possible transition cases. In other words, if the upper-right cell has a B(x) = 1, then
the lower-right cell must have B(x) = 1, and it cannot be zero. Therefore, the edges of
the information graph represent the possible transitions from cell to cell (figure 6.38).

For a single pursuer and single evader in simply-connected spaces, a planner can
start from any node in the information graph and then search for a node that has
B(x) = 0 (a vector of zeros). This determines a path through the conservative regions
that is guaranteed to catch the pursuer (figure 6.39).

Now, let’s consider the number of pursuers required to find an evader. First,
assume that Wfree is a simply-connected polygon. Assume Wfree is partitioned into
Wfree1 and Wfree2 by connecting two vertices of the boundary of Wfree. Moreover,
if H (Wfree1) ≤ k, and H (Wfree2) ≤ k, then H (Wfree) ≤ k + 1, since Wfree can be
cleared by first clearingWfree1 andWfree2 successively using the same k pursuers while
keeping one pursuer, called the “static pursuer,” at the common boundary between
them.

Choset-79066 book February 22, 2005 18:3

6.3 Visibility-Based Decompositions for Pursuit/Evasion 193

Figure 6.38 The information graph Gi , with all possible routes through the graph shown.
Each node in the information graph has all the possible gap-edge labels for the conservative
region corresponding to each node.

Figure 6.39 The information graph Gi from figure 6.38 with a solution path highlighted.
Any node on the information graph with all zeros is a solution. Thus we use a graph search of
our choice until we find a node of all zeros.

Since a simply-connected polygon can be partitioned into two pieces such that
each component has at least one third of the edges of the original polygon, a simply-
connected polygon can be triangulated by recursively connecting two vertices, and
the “depth” of such a triangulation is at most O(log n). Therefore the original polygon
can be cleared by clearing each triangle using one pursuer while keeping O(log n)
static pursuers at each “level.” Thus, at most O(log n) pursuers are required to clear
a simply-connected polygon (figure 6.40).

Choset-79066 book February 22, 2005 18:3

194 6 Cell Decompositions

12 edges,
one pursurer

36 edges,
two pursurers

108 edges,
three pursurers

Figure 6.40 Using a U-shaped space we can show how there are simply-connected free
spaces that require order (log n) pursuers to explore. Each U-shape requires a single robot, and
we can use another to divide the space into smaller and smaller sections.

Now consider a space with holes. Let h be the number of the holes of a free space
Wfree, and assume that Wfree is triangulated. Let a trichromatic triangle be the triangle
that touches three distinct connected components of Wfree. If all of the trichromatic
triangles were removed, then Wfree would be divided into (disconnected) simply-
connected regions. The number of the trichromatic triangles can be determined by
forming a graph that has the following properties. The vertices of the graph correspond
to the holes of the space, and two of the vertices are connected if there is a trichromatic
triangle that touches the boundary of the two holes corresponding to these vertices.
Since this graph is planar, it can be shown that the number of edges of this graph and
therefore the number of the trichromatic triangles is O(h).

Now consider the dual graph of the triangulation of Wfree, but actually consider
only the vertices corresponding to the trichromatic triangles. Note that each edge of
this graph corresponds to a simply-connected region of Wfree, which can be cleared
using O(log n) pursuers using the result above. This graph can be partitioned using
O(

√
h) edges into two components so that each component has at least one third of the

edges. The O(
√

h) “static” pursuers are placed on the edges that partition the graph.
Recursively applying the planar graph separator theorem, and placing static pursuers
accordingly (thus total number of static pursuer is O(

√
h + √

2/3h + √
4/9h) =

O(
√

h), a simply-connected region (i.e., an edge of the dual graph) can be isolated.
Since a simply-connected region can be cleared using O(log n) pursuers, the complete
region can be cleared using O(

√
h + log n) pursuers (figure 6.41).

Choset-79066 book February 22, 2005 18:3

Problems 195

4 holes, 111 edges, 4 pursuers

Figure 6.41 An example of a space that requires O(
√

h + log n) pursuers, where n is the
number of edges and h is the number of holes. This example requires four pursuers. Three
pursuers are used to divide the space into simply-connected regions, while the other robot
searches.

Problems

1. At the end of section 6.1, we describe a method for locating a single query. Why is this
important if it takes less time to locate a single query than to construct the search graph?

2. Write a program that determines a path for a planar convex translation-only robot from a
start to final configuration using the trapezoidal decomposition. Input from a file a robot
and from a separate file a set of obstacles in a known workspace. Input a start and goal
configuration from the keyboard. Use the configuration space generator from chapter 3.
Hand in meaningful output.

3. Describe a generalization of the trapezoidal decomposition in three dimensions. What do
the cells look like?

4. Consider the trapezoidal decomposition and adjacency graph in figure 6.2. Using the method
described in section 6.1, determine a path when qstart is in c5 and qgoal is in c6.

5. Describe a generalization of the boustrophedon decomposition in three dimensions. What
do the cells look like?

6. How does the solution to the pursuit/evasion problem change if there are multiple evaders?

7. The solution for the pursuit/evasion problem is described in the workspace, not the config-
uration space. Why?

Choset-79066 book February 22, 2005 18:3

196 6 Cell Decompositions

8. Figure 6.35 shows the three cases that are used to construct the cell decomposition of
conservative cells. Show that the solution to the pursuit/evasion problem, described above,
works correctly without case 2. Hint: Show that there are no critical changes in gaps for
case 2, except where a gap is “anchored.” Note that removing case 2 does, however, lead to
concave cells. Show the new decomposition for the workspace in figure 6.34.

9. Adapt the pursuit/evasion problem to the case where the pursuer has a limited field-of-view
sensor, then has a limited range sensor, and then a limited range limited field-of-view sensor.

Choset-79066 book February 22, 2005 18:11

7 Sampling-Based Algorithms

DIFFERENT PLANNERS described in chapter 5 build roadmaps in the free (or semi-
free) configuration space. Each of these methods relies on an explicit representation
of the geometry of Qfree. Because of this, as the dimension of the configuration
space grows, these planners become impractical. Figure 7.1 shows a path-planning
problem that cannot be solved in a reasonable amount of time with the methods
presented in chapter 5, but can be solved with the sampling-based methods described
in this chapter. Sampling-based methods employ a variety of strategies for generating
samples (collision-free configurations of the robot) and for connecting the samples
with paths to obtain solutions to path-planning problems.

Figures 7.2(a) and (b) show two typical examples from industrial automation that
sampling-based planners can routinely solve. Sampling-based planners can also be
used to address problems that extend beyond classic path planning. Figure 7.2(c)
shows a CAD (computer-aided design) model of an aircraft engine. A planner can
be used to determine if a part can be removed from that engine. Such information
is extremely important for the correct design of the engine, as certain parts need to
be removable for maintainability purposes. In this case, the planner considers the
part to be separated as a robot that can move freely in space. Figure 7.2(d) involves
an example from computer animation where a planner is used to plan the motion of
the human figure. Figures 7.2(e) and (f) provide examples that involve planning with
kinematic and dynamic constraints, while figure 7.2(g) displays the folding of a small
peptide molecule. This chapter discusses the basics of sampling-based path planning.

Choset-79066 book February 22, 2005 18:11

198 7 Sampling-Based Algorithms

Figure 7.1 Snapshots along a path of a planar manipulator with ten degrees of freedom. The
manipulator has a fixed base and its first three links have prismatic joints—they can extend to
one and a half times their original length. (From Kavraki [221].)

The Development of Sampling-Based Planners

Sampling-based planners were developed at a time when several complexity results
on the path-planning problem were known. The generalized mover’s problem, in
which the robot consists of a collection of polyhedra freely linked together at various
vertices, was proven PSPACE-hard by Reif [361]. Additional study on exact path-
planning techniques for the generalized mover’s problem led Schwartz and Sharir to
an algorithm that was doubly exponential in the degrees of freedom of the robot [373].
This algorithm is based on a cylindrical algebraic decomposition of semi-algebraic
descriptions of the configuration space [117]. Recent work in real algebraic geometry
renders the algorithm singly exponential [42]. Canny’s algorithm [90], which builds
a roadmap in the configuration space of the robot, is also singly exponential in the
degrees of freedom of the robot. Furthermore, Canny’s work showed that the gener-
alized mover’s problem was PSPACE-complete [90, 95]. The implementation of the
above general algorithms is very difficult and not practical for the planning problems
shown in figure 7.2.

The complexity of path-planning algorithms for the generalized mover’s prob-
lem fueled several thrusts in path-planning research. These included the search for
subclasses of the problem for which complete polynomial-time algorithms exist
(e.g., [183, 374]), the development of methods that approximated the free config-
uration space (e.g., [67,68,132,297]), heuristic planners (e.g., [174]), potential-field
methods (e.g., [38,40]), and the early sampling-based planners (e.g., [40,47,101,165,
220, 231, 244]).

The Probabilistic RoadMap planner (PRM) [231] demonstrated the tremendous
potential of sampling-based methods. PRM fully exploits the fact that it is cheap
to check if a single robot configuration is in Qfree or not. PRM creates a roadmap in
Qfree. It uses rather coarse sampling to obtain the nodes of the roadmap and very fine
sampling to obtain the roadmap edges, which are free paths between node configu-
rations. After the roadmap has been generated, planning queries can be answered by
connecting the user-defined initial and goal configurations to the roadmap, and by

Choset-79066 book February 22, 2005 18:11

(g)

(a) (b)

(c) (d)

(e) (f)

Figure 7.2 Path-planning problems. (a) Industrial manipulation. (b) Welding. (c) Planning
removal paths for a part (the “robot”) located at the center of the figure. (d) Computer animation.
(e) Planning aircraft motion. (f) Humanoid robot. (g) Folding of a small peptide molecule.
((a) From Bohlin and Kavraki [54]; (b) from Hsu and Latombe [196]; (c) courtesy of Latombe;
(d) from Koga, Kondo, Kuffner and Latombe [241]; (e) from Kuffner and LaValle [272];
(f) from Kuffner [248]; (g) from Amato [21].)

199

Choset-79066 book February 22, 2005 18:11

200 7 Sampling-Based Algorithms

using the roadmap as in chapter 5 to solve the path-planning problem at hand. Initially,
node sampling in PRM was done using a uniform random distribution. This planner
is called basic PRM. It was observed that random sampling worked very well for a
wide variety of problems [221, 231, 345] and ensured the probabilistic completeness
of the planner [221,229]. However, it was also observed [221] that random sampling
is only a baseline sampling for PRM and many other sampling schemes are useful and
are bound to be efficient for many planning problems as the analysis of the planner
revealed. Today, these sampling schemes range from importance sampling in areas
that during the course of calculations are found difficult to explore, to deterministic
sampling such as quasirandom sampling and sampling on a grid. This chapter will
describe the basic PRM algorithm, several popular node-sampling strategies, as well
as their advantages and disadvantages, and popular node-connection strategies.
PRM was conceived as a multiple-query planner. When PRM is used to answer a sin-

gle query, some modifications are made: the initial and goal configurations are added
to the roadmap nodes and the construction of the roadmap is done incrementally and is
stopped when the query at hand can be answered. However, PRMmay not be the fastest
planner to use for single queries. The second part of this chapter describes sampling-
based planners that are particularly effective for single-query planning, including
the Expansive-Spaces Tree planner (EST) [192, 196] and the Rapidly-exploring
Random Tree planner (RRT) [249, 270]. These planners exhibit excellent experi-
mental performance and will be discussed in detail.

Combination of the above methods is also possible and desirable in many cases. The
Sampling-Based Roadmap of Trees (SRT) planner [14, 43] constructs a PRM-style
roadmap of single-query-planner trees. It has been observed that for very difficult path
planning problems, single-query planners need to construct large trees in order to find a
solution. In some cases, the cost of constructing a large tree may be higher than the cost
of constructing a roadmap of Qfree with SRT. This illustrates the distinction between
multiple-query and single-query planning, and its importance. The SRT planner will
be discussed in detail in this chapter.

Despite their simplicity, which is exemplified in the basic PRM planner, sampling-
based planners are capable of dealing with robots with many degrees of free-
dom and with many different constraints. Sampling-based planners can take into
account kinematic and dynamic constraints (e.g., [195, 271]), closed-loop kinemat-
ics (e.g., [121, 184, 268]), stability constraints (e.g., [64, 247, 248]), reconfigurable
robots (e.g., [98, 139, 149]), energy constraints (e.g., [251, 255]), contact constraints
(e.g., [210]), visibility constraints (e.g., [123]) and others. Clearly some planners are
better at dealing with specific types of constraints than others. For example, as dis-
cussed in section 7.5.1, EST and RRT planners are particularly useful for problems that
involve kinematic and dynamic constraints. Kinodynamic problems are described in
chapters 10, 11, and 12.

Choset-79066 book February 22, 2005 18:11

7 Sampling-Based Algorithms 201

PRM, EST, RRT, SRT, and their variants have changed the way path planning is
performed for high-dimensional robots. They have also paved the way for the devel-
opment of planners for problems beyond basic path planning. Because of space lim-
itations, this chapter concentrates on the above planners and some of their variants,
and does not include a comprehensive description of all effective sampling-based
planning methods.

Characteristics of Sampling-Based Planners

An important characteristic of the planners described in this chapter is that they do
not attempt to explicitly construct the boundaries of the configuration space obstacles
or represent cells of Qfree. Instead, they rely on a procedure that can decide whether a
given configuration of the robot is in collision with the obstacles or not. In some sense,
sampling-based planners have very limited access to the configuration space. Efficient
collision detection procedures ease the implementation of sampling-based planners
and increase the range of their applicability. Furthermore, since collision detection is a
separate module, it can be tailored to specific robots and applications. Recent advances
in collision detection algorithms have contributed heavily to the success of sampling-
based planners. Any future performance improvements in collision checking, which is
an active area of research, will also benefit directly the performance of sampling-based
planners. Examples of available collision detection packages include GJK [89, 163],
SOLID [420, 421], V-Clip [316], I-Collide [115, 290], V-Collide [199], QuickCD
[238], PQP [261], RAPID [168], SWIFT [140], SWIFT++ [141], and others [88,296,
357, 376].

Another important characteristic of sampling-based planners is that they can
achieve some form of completeness. Completeness requires that the planner always
answers a path-planning query correctly, in asymptotically bounded time. Complete
planners cannot be implemented in practice for robots with more than three degrees
of freedom due to their high combinatorial complexity. A weaker, but still interest-
ing, form of completeness is the following: if a solution path exists, the planner will
eventually find it. If the sampling of the sampling-based planner is random, then this
form of completeness is called probabilistic completeness. If the sampling is deter-
ministic, including quasirandom or sampling on a grid, this form of completeness is
called resolution completeness with respect to the sampling resolution. Probabilistic
completeness was shown for one of the earliest sampling-based planners, called the
Randomized Path Planner (RPP) [39,257], setting a standard for sampling-based meth-
ods. PRM was also shown to be probabilistically complete [195, 221–223, 228, 252].
The analysis of the probabilistic completeness for the basic PRM planner [221,228] is
presented in this chapter. The theoretical results relate the probability that PRM fails
to find a path to the running time of the planner. Hence there is not only experimental

Choset-79066 book February 22, 2005 18:11

202 7 Sampling-Based Algorithms

evidence that PRM planners work well; there is also theoretical evidence of why this
is the case. The analysis also sheds light on why the basic PRM planner works well on
a large class of difficult problems.

Overview of This Chapter

Section 7.1 introduces PRM. In its basic form, PRM constructs a roadmap that represents
the connectivity of Qfree. This roadmap can be used for answering multiple queries.
Guidelines for the efficient implementation of this planner for a general robot are
also given. The guidelines are also relevant for the efficient implementation of the
other sampling-based planners described in this chapter. A number of different sam-
pling methods and connection strategies for PRM are then presented. Planners that are
optimized for single-queries are described in section 7.2. In general, these planners
generate trees in Qfree. Some of the most efficient single-query planners, such as EST
and RRT planners, perform a conditional sampling of Qfree: the samples generated
depend on the currently constructed tree and the goal configuration. In section 7.2
the EST and RRT planners are described in detail. The combination of the different
sampling and connection strategies of sections 7.1 and 7.2 leads to an even more pow-
erful planner, SRT, which is described in section 7.3. An analysis of PRM is given in
section 7.4. Various extensions of the generalized mover’s problem are then discussed
in section 7.5, including applications from computational structural biology.

7.1 Probabilistic Roadmaps

The PRM planner is described in [231]. The planner resulted from the work of indepen-
dent groups [225,226,344,345,404] and was further developed in [221,223,227,228].
PRM divides planning into two phases: the learning phase, during which a roadmap
in Qfree is built; and the query phase, during which user-defined query configurations
are connected with the precomputed roadmap. The nodes of the roadmap are config-
urations in Qfree and the edges of the roadmap correspond to free paths computed by
a local planner. The objective of the first phase is to capture the connectivity of Qfree

so that path-planning queries can be answered efficiently.
The basic PRM algorithm presented below can be used to solve high-dimensional

problems such as the one in figure 7.1. It has been shown to be probabilistically
complete [221,229,252]. In this section, the choices for the sampling and connection
strategies of PRM are reduced to a bare minimum to facilitate the presentation. The
emphasis here is to describe a planner that is easy to implement and works well even
with rather high-dimensional problems (5–12 degrees of freedom).

Choset-79066 book February 22, 2005 18:11

7.1 Probabilistic Roadmaps 203

7.1.1 Basic PRM

The basic PRM algorithm first constructs a roadmap in a probabilistic way for a given
workspace. The roadmap is represented by an undirected graph G = (V , E). The
nodes in V are a set of robot configurations chosen by some method over Qfree. For
the moment, assume that the generation of configurations is done randomly from a
uniform distribution. The edges in E correspond to paths; an edge (q1, q2) corresponds
to a collision-free path connecting configurations q1 and q2. These paths, which are
referred to as local paths, are computed by a local planner. In its simplest form, the local
planner connects two configurations by the straight line in Qfree, if such a line exists.

In the query phase, the roadmap is used to solve individual path-planning problems.
Given an initial configuration qinit and a goal configuration qgoal, the method first tries
to connect qinit and qgoal to two nodes q ′ and q ′′, respectively, in V . If successful, the
planner then searches the graph G for a sequence of edges in E connecting q ′ to q ′′.
Finally, it transforms this sequence into a feasible path for the robot by recomputing
the corresponding local paths and concatenating them. Local paths can be stored in
the roadmap but this would increase the storage requirements of the roadmap, a topic
which is discussed later in this section.

The roadmap can be reused and further augmented to capture the connectivity of
Qfree. Although the learning phase is usually performed before any path-planning
query, the two phases can also be interwoven. It is reasonable to spend a considerable
amount of time in the learning phase if the roadmap will be used to solve many queries.

Roadmap Construction

To make the presentation more precise, let

� be the local planner that on input (q, q ′) ∈ Qfree×Qfree returns either a collision-
free path from q to q ′ or NIL if it cannot find such a path. Assume for the moment
that � is symmetric and deterministic.

dist be a function Q × Q → R
+ ∪ {0}, called the distance function, usually a

metric on Q.

Algorithm 6 describes the steps of the roadmap construction. For all algorithms
described in this chapter, it should be noted that only the main steps are given and
that implementation details are missing.

Initially, the graph G = (V , E) is empty. Then, repeatedly, a configuration is
sampled from Q. For the moment, assume that the sampling is done according to a
uniform random distribution on Q. If the configuration is collision-free, it is added to
the roadmap. The process is repeated until n collision-free configurations have been

Choset-79066 book February 22, 2005 18:11

204 7 Sampling-Based Algorithms

Algorithm 6 Roadmap Construction Algorithm
Input:

n : number of nodes to put in the roadmap
k : number of closest neighbors to examine for each configuration

Output:
A roadmap G = (V , E)

1: V ← ∅
2: E ← ∅
3: while |V | < n do
4: repeat
5: q ← a random configuration in Q
6: until q is collision-free
7: V ← V ∪ {q}
8: end while
9: for all q ∈ V do

10: Nq ← the k closest neighbors of q chosen from V according to dist
11: for all q ′ ∈ Nq do
12: if (q , q ′) �∈ E and �(q, q ′) �= NIL then
13: E ← E ∪ {(q, q ′)}
14: end if
15: end for
16: end for

sampled. For every node q ∈ V , a set Nq of k closest neighbors to the configuration q
according to some metric dist is chosen from V . The local planner is called to connect
q to each node q ′ ∈ Nq . Whenever � succeeds in computing a feasible path between
q and q ′, the edge (q, q ′) is added to the roadmap. Figure 7.3 shows a roadmap
constructed for a point robot in a two-dimensional Euclidean workspace, where � is
a straight-line planner.

A number of components in algorithm 6 are still unspecified. In particular, it needs
to be defined how random configurations are created in line (5), how the closest
neighbors are computed in line (10), how the distance function dist used in line (10)
is chosen, and how local paths are generated in line (12).

Query Phase

During the query phase, paths are found between arbitrary input configurations qinit

and qgoal using the roadmap constructed in the learning phase. Algorithm 7 illustrates
this process.

Choset-79066 book February 22, 2005 18:11

7.1 Probabilistic Roadmaps 205

Figure 7.3 An example of a roadmap for a point robot in a two-dimensional Euclidean space.
The gray areas are obstacles. The empty circles correspond to the nodes of the roadmap. The
straight lines between circles correspond to edges. The number of k closest neighbors for the
construction of the roadmap is three. The degree of a node can be greater than three since it
may be included in the closest neighbor list of many nodes.

Assume for the moment that Qfree is connected and that the roadmap consists of
a single connected component. The main question is how to connect qinit and qgoal

to the roadmap. Queries should terminate as quickly as possible, so an inexpensive
algorithm is desired here. The strategy used in algorithm 7 to connect qinit to the
roadmap is to consider the k closest nodes in the roadmap in order of increasing
distance from qinit, according to the metric dist, and try to connect qinit to each of
them with the local planner until one connection succeeds. The number of closest
neighbors considered in algorithm 7 can be different from the one in algorithm 6. The
same procedure is used to connect qgoal to the roadmap.

If the connection of qinit and qgoal to the roadmap is successful, the shortest path is
found on the roadmap between qinit and qgoal according to dist (e.g., using Dijkstra’s
algorithm or the A∗ algorithm). If one wishes, this path may be improved by running a
smoothing postprocessing algorithm. Figure 7.4 shows the solution to a query solved
with the roadmap from figure 7.3.

In general, the roadmap may consist of several connected components. This is
very likely when Qfree is itself not connected, but it may also happen when Qfree is
connected, and the roadmap has not managed to capture the connectivity of Qfree.
If the roadmap contains several components, algorithm 7 can be used to connect
both qinit and qgoal to two nodes in the same connected component of the roadmap,
e.g., by giving it as input a single connected component of G. All components of
G should be considered. If the connection of qinit and qgoal to the same connected

Choset-79066 book February 22, 2005 18:11

206 7 Sampling-Based Algorithms

Algorithm 7 Solve Query Algorithm
Input:

qinit: the initial configuration
qgoal: the goal configuration
k: the number of closest neighbors to examine for each configuration
G = (V , E): the roadmap computed by algorithm 6

Output:
A path from qinit to qgoal or failure

1: Nqinit ← the k closest neighbors of qinit from V according to dist
2: Nqgoal ← the k closest neighbors of qgoal from V according to dist
3: V ← {qinit} ∪ {qgoal} ∪ V
4: set q ′ to be the closest neighbor of qinit in Nqinit

5: repeat
6: if �(qinit, q ′) �= NIL then
7: E ← (qinit, q ′) ∪ E
8: else
9: set q ′ to be the next closest neighbor of qinit in Nqinit

10: end if
11: until a connection was succesful or the set Nqinit is empty
12: set q ′ to be the closest neighbor of qgoal in Nqgoal

13: repeat
14: if �(qgoal, q ′) �= NIL then
15: E ← (qgoal, q ′) ∪ E
16: else
17: set q ′ to be the next closest neighbor of qgoal in Nqgoal

18: end if
19: until a connection was succesful or the set Nqgoal is empty
20: P ← shortest path(qinit, qgoal, G)
21: if P is not empty then
22: return P
23: else
24: return failure

25: end if

Choset-79066 book February 22, 2005 18:11

7.1 Probabilistic Roadmaps 207

qinit qgoalq'

q"

Figure 7.4 An example of how to solve a query with the roadmap from figure 7.3. The
configurations qinit and qgoal are first connected to the roadmap through q ′ and q ′′. Then a
graph-search algorithm returns the shortest path denoted by the thick black lines.

component of the roadmap succeeds, a path is constructed as in the single-component
case. The method returns failure if it cannot connect both qinit and qgoal to the same
roadmap component.

Adding to the Roadmap

If path-planning queries fail frequently, the roadmap may not adequately capture the
connectivity of Qfree. When this occurs, the current roadmap can be extended by
resuming the construction step algorithm (exclude lines (1) and (2) from algorithm 6
and pass as a parameter the current roadmap). It should be emphasized again that in
this section we present a very basic PRM. It has been observed for example, that when
trying to connect components biased sampling may be particularly effective [231].
Biased sampling (see Connection Sampling in section 7.1.3) increases the sampling
density in areas of Qfree that have good chances to facilitate component connection.

Directed Roadmaps and Roadmaps That Store Local Paths

So far, it has been assumed that � is symmetric and deterministic. It is also possible
to use a local planner � that is neither symmetric nor deterministic.

In many cases, connecting some configuration q to some configuration q ′ does not
necessarily imply that the opposite can be done. If the local planner takes the robot
from q to q ′ and the robot can also execute the path in reverse to go from q ′ to q,
the roadmap is an undirected graph. Adding the edge (q, q ′) implies that the edge

Choset-79066 book February 22, 2005 18:11

208 7 Sampling-Based Algorithms

(q ′, q) can also be added. If local paths cannot be reversed, a directed roadmap must
be constructed. A separate check must be performed to determine if the edge (q ′, q)
can also be added to the roadmap.

A deterministic local planner will always return the same path between two con-
figurations and the roadmap does not have to store the local path between the two
configurations in the corresponding edge. The path can be recomputed if needed to
answer a query. On the other hand, if a nondeterministic local planner is used, the
roadmap will have to associate with each edge the local path computed by �. In
general, the use of nondeterministic local planners increases the storage requirements
of the roadmap. It permits, however, the use of more powerful local planners, which
can be an advantage in certain cases as discussed in section 7.3.

7.1.2 A Practical Implementation of Basic PRM

One of the advantages of the basic PRM algorithm presented in the previous section is
that it is easy to implement and performs well for a variety of problems. This section
focuses on the details of a successful implementation of basic PRM that scales well for
robots with many degrees of freedom. Issues that relate to a practical implementation
of a planner, such as smoothing of the final path, are also discussed. These issues
pertain to all planners in this chapter. The reader is also referred to [246] for details
on implementation details and potential pitfalls.

Sampling Strategy: Uniform Distribution

In basic PRM [231] the nodes of the roadmap constitute a uniform random sampling
of Qfree. To obtain a configuration, each translational degree of freedom can be drawn
from the interval of allowed values of the corresponding degree of freedom using
the uniform probability distribution over this interval. The same principle applies
to rotational degrees of freedom but care should be taken not to favor specific ori-
entations because of the representation used (see the example at the end of section
7.1.2 and [246]). The main idea is that the sampling distribution should be symmetry
invariant. The sampled configuration is checked for collision. If it is collision-free,
the sample is added to the nodes of the roadmap; otherwise, it is discarded. Collision
checking can be done using a variety of existing general techniques, as mentioned
above.

Sampling from a uniform distribution is the simplest method for generating sample
configurations, but other methods could be used, as we describe below. Section 7.4
offers a theoretical explanation of why sampling from a uniform distribution works
well for many problems.

Choset-79066 book February 22, 2005 18:11

7.1 Probabilistic Roadmaps 209

Connection Strategy: Selecting Closest Neighbors

Another important choice to be made is that of selecting the set Nq of closest neigh-
bors to a configuration q. Many data structures have been proposed in the field of
computational geometry that deal with the problem of efficiently calculating the clos-
est neighbors to a point in a d-dimensional space. A relatively efficient method both
in terms of space and time is the kd-tree data structure [124].

A d-dimensional kd-tree uses as input a set S of n points in d dimensions and
constructs a binary tree that decomposes space into cells such that no cell contains
too many points. A kd-tree is built recursively by splitting S by a plane into two
subsets of roughly equal size: S�, which includes points of S that lie to the left of
the plane; and Sr , which includes the remaining points of S. The plane is stored at
the root, and the left and right child are recursively constructed with input S� and Sr ,
respectively. Figure 7.5 illustrates the construction of a 2-dimensional kd-tree for ten
points on a plane.

A kd-tree for a set of n points in d dimensions uses O(dn) storage and can be built
in O(dn log n) time. A rectangular range query takes O(n1− 1

d + m) time, where m is
the number of reported neighbors. As d grows large, the cost of using kd-trees becomes
linear. The rectangular range query time can be reduced considerably by introducing
a small approximation error. This modified approach is called Approximate Nearest
Neighbor queries (ANN) and is becoming increasingly popular [30].

Distance Functions and Embeddings

Function dist is used to resolve the k closest neighbors query. It should be defined so
that, for any pair (q ′, q ′′) of configurations, dist(q ′, q ′′) reflects the likelihood that the

(a) The way the plane is subdivided. (b) The corresponding binary tree.

l3

l7

p3

p2

p1

p5

p4

p7

p6

p8

p8p2p9p7p3

p1 p4 p5 p6

p10

p10

p9

l8

l6

l5

l5l1

l4

l9

l9l7

l6

l1

l2

l3

l8

l4 l2

Figure 7.5 A kd-tree for ten points on a plane.

Choset-79066 book February 22, 2005 18:11

210 7 Sampling-Based Algorithms

local planner will fail to compute a collision-free path between these configurations.
One possibility is to define dist(q ′, q ′′) as some measure of the workspace region
swept by the robot, such as the area or the volume, when it moves in the absence
of obstacles along the path �(q ′, q ′′). Intuitively, minimizing the swept volume, will
minimize the chance of collision with the obstacles. An exact computation of swept
areas or volumes is notoriously difficult, which is why heuristic metrics generally
attempt to approximate the swept-volume metric (see [19, 246]).

An approximate and inexpensive measure of the swept-region can be constructed as
follows. The robot’s configurations q ′ and q ′′ can be mapped to points in a Euclidean
space, emb(q ′) and emb(q ′′), respectively, and the Euclidean distance between them
can be used, i.e.,

dist(q ′, q ′′) = ‖ emb(q ′) − emb(q ′′) ‖ .

A practical choice for the embedding function is to select p > 0 points on the robot,
concatenate them, and create a vector whose dimension is p multiplied by the dimen-
sion of the workspace of the robot. In order to represent a configuration q in the
embedded space, the set of transformations corresponding to this configuration is
applied to the p points, and emb(q) is obtained. Distances can be easily defined
using the equation above. An example is given at the very end of this section. Note,
however, that this choice of embeddings has its shortcomings. In particular, it is not
clear what the number p should be. It is also not clear how to choose p points so
that the exact shape of the robot is taken into account. Furthermore, as is the case
with the swept-volume metric, the embedding does not take into account obstacles.
So even when two configurations are close to one another, connecting them may be
impossible due to obstacles.

For the case of rigid body motion, an alternative solution is to split dist into
two components, one that expresses the distance between two configurations due
to translation and one due to orientation. For example, if X and R represent the trans-
lation and rotation components of the configuration q = (X, R) ∈ SE(3) respectively,
then

dist(q ′, q ′′) = wt ||X ′ − X ′′|| + wr f (R′, R′′)

is a weighted metric with the translation component ||X ′ − X ′′|| using a standard
Euclidean norm, and the positive scalar function f (R′, R′′) returning typically an
approximate measure of the distance between the rotations R′, R′′ ∈ SO(3). The rota-
tion distance is scaled relative to the translation distance via the weights wt and wr .
A reasonable choice of f (R′, R′′) is the length of the geodesic curve between R′ and
R′′. The selection of an appropriate rotation distance function f (R′, R′′) depends on
the representation for the orientation of the robot, such as Euler angles or quaternions.

Choset-79066 book February 22, 2005 18:11

7.1 Probabilistic Roadmaps 211

One of the difficulties with this method is deciding proper weight values. Furthermore,
the extension to articulated bodies is not straightforward. A thorough discussion of
metrics for rigid body planning is given in [246].

The choices for the embedding, its dimensionality, and the dist can have a great
effect on the efficiency of the PRM algorithm. Different problems may require dif-
ferent approaches and there is great interest in the motion-planning community in
finding appropriate metrics [19,246] and embeddings for interesting instances of the
generalized mover’s problem.

Local Planner

In section 7.1, it was assumed that � is symmetric and deterministic. This is a design
decision and it is possible to accommodate planners that are nondeterministic, and/or
not symmetric.

Another important design decision is related to how fast the local planner should
be. There is clearly a tradeoff between the time spent in each individual call of this
planner and the number of calls. If a powerful local planner is used, it would often
succeed in finding a path when one exists. Hence, relatively few nodes might be
required to build a roadmap capturing the connectivity of Qfree sufficiently well to
reliably answer path-planning queries. Such a local planner would probably be rather
slow, but this could be somewhat compensated by the small number of calls needed.
On the other hand, a very fast planner is likely to be less successful. It will require more
configurations to be included in the roadmap and as a result, the local planner is called
more times for the connections between nodes. Each call will be cheaper, however.
In section 7.3, a roadmap technique that uses a powerful local planner is discussed.

The choice of the local planner also affects the query phase. It is important to be
able to connect any given qinit and qgoal configurations to the roadmap or to detect very
quickly that no such connection is possible. This requires that the roadmap be dense
enough that it always contains at least some nodes to which it is easy to connect qinit

and qgoal. It thus seems preferable to use a very fast local planner, even if it is not too
powerful, and build large roadmaps with configurations widely distributed over Qfree.
In addition, if the local planner is very fast, the same planner can be used to connect
qinit and qgoal to the roadmap at query time. Discussions of the use of different local
planners can be found in [14, 162, 203, 221].

One popular planner, applicable to all holonomic robots, connects any two given
configurations by a straight-line segment in Q and checks this line segment for
collision. Care should be taken to interpolate the translation and rotation components
separately (see [246]). There are two commonly-used choices for collision checking,
the incremental and the subdivision collision-checking algorithms. In both cases, the

Choset-79066 book February 22, 2005 18:11

212 7 Sampling-Based Algorithms

line segment, or more generally, any path generated by the local planner between
configurations q ′ and q ′′, is discretized into a number of configurations (q1, . . . , q�),
where q ′ = q1 and q ′′ = q�. The distance between any two consecutive configurations
qi and qi+1 is less than some positive constant step size. This value is problem spe-
cific and is defined by the user. It is important to note that again sampling is used to
determine if a local path is collision-free. But in this case, sampling is done at a much
finer level than was done for node generation and this is a very important feature of
PRM. In general, the value of step size needs to be very small to guarantee that all
collisions are found.

In the case of incremental collision checking, the robot is positioned at q ′ and
moved at each step by step size along the straight line in Q between q ′ and q ′′.
A collision check is performed at the end of each step. The algorithm terminates as
soon as a collision is detected or when q ′′ is reached.

In the case of the subdivision collision checking, the middle point qm of the straight
line in Q between q ′ and q ′′ is first checked for collision. Then the algorithm recurses
on the straight lines between (q ′, qm) and (qm , q ′′). The recursion halts when a collision
is found or the length of the line segment is less then step size.

In both algorithms, the path is considered collision-free if none of the intermediate
configurations yields collision. Neither algorithm has a clear theoretical advantage
over the other, but in practice the subdivision collision checking algorithm tends
to perform better [162, 367]. The reason is that, in general, shorter paths tend to
be collision-free. Subdivision collision checking cuts down the length of the local
path as soon as possible. It is also possible to use an adaptive subdivision collision-
checking algorithm that dynamically adjusts step size. In [376], step size is
determined by relating the distance between the robot and the workspace obstacles
to the maximum length of the path traced out by any point on the robot. Furthermore,
the method in [376] is exact, i.e., it always finds a collision when a collision exists,
whereas the above discretization techniques may miss a collision if step size is too
large.

Figure 7.6 illustrates how the incremental and subdivision collision-checking algo-
rithms are sampling the straight line between two configurations q ′ and q ′′. In this
example, the subdivision algorithm performs a smaller number of collision checks.
If the obstacle had been close to q ′, then the incremental algorithm would have per-
formed a smaller number of collision checks.

Postprocessing Queries

A postprocessing step may be applied to the path connecting qinit to qgoal to improve
its quality according to some criteria. For example, shortness and smoothness might

Choset-79066 book February 22, 2005 18:11

7.1 Probabilistic Roadmaps 213

Obstacle Obstacle
1 2 3 4 5 6 7

q"

2

7
1

4

3
5

6

(a) Incremental: The algorithm returns
failure after five collision checks.

(b) Subdivision: The algorithm returns
failure after three collision checks.

q'

q"

q'

Figure 7.6 Sampling along the straight line path between two configurations q ′ and q ′′. The
numbers correspond to the order in which each strategy checks the samples for collision.

Original Path

Shorter Path

qinit

qgoal

Figure 7.7 Processing the path returned from PRM to get a shorter path with the greedy
approach.

be desirable. Postprocessing is applicable to any path-planning algorithm, but is pre-
sented here for completeness of the implementation guidelines of the basic PRM.

From a given path, a shorter path could be obtained by checking whether nonadja-
cent configurations q1 and q2 along the path can be connected with the local planner.
This idea has been described often in the literature (e.g., [150, 383]). The points q1

and q2 could be chosen randomly. Another alternative would be a greedy approach.
Start from qinit and try to connect directly to the target qgoal. If this step fails, start
from the configuration after qinit and try again. Repeat until a connection can be made
to qgoal, say from the point q0. Now set the target to q0 and begin again, trying to
connect from qinit to q0, and repeat the procedure. This procedure can also be applied
toward the opposite direction. Figure 7.7 illustrates the application of the greedy

Choset-79066 book February 22, 2005 18:11

214 7 Sampling-Based Algorithms

approach in the forward direction to shorten a path in a two-dimensional Euclidean
workspace.

There are various reasons why configurations q1 and q2 along a path may have not
been connected with an edge from the roadmap construction step of PRM. They may
not be close according to the distance function dist, and the k closest neighbor query
may not return them as neighbors. They may, however, be in a relatively uncluttered
part of Qfree and a long edge connecting them may still be possible. These cases will
occur more frequently if the Creating Sparse Roadmaps connection strategy has been
used (see section 7.1.4).

Instead of shortening the path, a different objective may be to get a path with
smooth curvature. A possible approach to this is to use interpolating curves, such as
splines, and use the configurations that have been computed byPRM as the interpolation
points for the curves. In this case, collision checking is performed along the curves
until curves that satisfy both the smoothness properties and the collision avoidance
criteria are found.

Postprocessing steps such as path shortening and path smoothing can improve the
quality of the path, but can also impose a significant overhead on the time that it takes
to report the results of a query. In general, if paths with certain optimality criteria are
desired, it is worth trying to build these paths during the roadmap construction phase
of PRM. For example, a large dense roadmap will probably yield shorter paths than a
smaller and sparser roadmap.

An Example

Figure 7.8(a) shows a motion-planning problem for a robot in a three-dimensional
workspace. The robot is a rigid nonconvex polyhedral object; it can freely translate and
rotate in the workspace as long as it does not collide with the obstacles. The workspace
is made up of a rigid thin wall that has a narrow passage. A bounding box is defined
that contains the wall and is small enough so that it does not allow the robot to move
from one side of the wall to the other without going through the narrow passage. The
goal is to build a roadmap that a planner can use to successively solve motion-planning
queries where qinit and qgoal appear on the two different sides of the wall.

The problem has six degrees of freedom, three translational and three rotational. The
configuration q = (p, r) of the robot can be represented by a point p expressing the
translational component and a quaternion r (see appendix E) expressing the rotational
component. A configuration is generated by picking at random a sample from a
uniform distribution from a subset of allowable positions in R

3 and picking a random
axis of rotation and a random angle for the quaternion (for details see [246]).

Choset-79066 book February 22, 2005 18:11

7.1 Probabilistic Roadmaps 215

(a) (b)

Figure 7.8 An example of a motion-planning problem where both the robot and the obstacles
are a collection of polyhedral objects in three dimensions. Parts of the robot on the other side
of the wall are indicated by the darker color. (a) The initial and goal configuration of the query.
(b) A path produced from a PRM with n = 1000 and k = 10.

In order to find the k closest neighbors of a configuration, configurations are embed-
ded in a space where Euclidean distance is defined. A method that works well in
practice is to choose a pair of points on the surface of the robot that have maximum
distance and construct a six-dimensional vector emb(q) for the robot’s initial config-
uration. If q ′ is obtained by applying a translation and rotation transformation to q,
then emb(q ′) is obtained by applying the same transformations to the pair of points
in emb(q). The distance metric dist is then defined as the Euclidean distance of the
two embeddings.

For every configuration and its k closest counterparts, the subdivision collision-
checking algorithm is used to check if the straight line in Q is collision-free. Inter-
mediate configurations between q ′ = (p′, r ′) and q ′′ = (p′′, r ′′) are obtained by
performing linear interpolations on p′ and p′′ and spherical interpolations on r ′ and
r ′′. The edge (q ′, q ′′) is added to the roadmap when all the intermediate configurations
are collision-free.

When the roadmap has been completed, it can be used to solve user-specified
queries. The k closest neighbors for the query points are calculated and the local
planner attempts to connect qinit and qgoal to them. As soon as they are connected to
the same component, an A∗ algorithm is run on the graph to find the path. Figure 7.8(b)
shows intermediate configurations of a path returned by the above procedure.

Choset-79066 book February 22, 2005 18:11

216 7 Sampling-Based Algorithms

7.1.3 PRM Sampling Strategies

Several node-sampling strategies have been developed over the years for PRM . For
many path-planning problems, a surprisingly large number of general sampling
schemes will provide reasonable results (see e.g., the comparison of sampling schemes
given in [162]). The analysis of section 7.4 provides some insight as to why this is
the case. Intuitively, many planning problems in the physical world are difficult but
not “pathological” (as in the kind of problem one encounters in NP-hardness proofs).
Without doubt, however, the choice of the node-sampling strategy can play a signifi-
cant role in the performance of PRM . This was observed in the original PRM publica-
tions which suggested mechanisms to generate samples in a non-uniform way [231].
Increasing the density of sampling in some areas of the free space is referred to as
importance sampling and has been repeatedly demonstrated to increase the observed
performance of PRM . In this section we describe several node-sampling schemes.

The uniform random sampling used in early work in PRM is the easiest sampling
scheme to implement. As a random sampling method, it has the advantage that, in the-
ory, a malicious opponent cannot defeat the planner by constructing carefully crafted
inputs. It has the disadvantage, however, that, in difficult planning examples, the run-
ning time of PRM might vary across different runs. Nevertheless, random sampling
works well in many practical cases involving robots with a large number of degrees
of freedom.

There exist cases where uniform random sampling has poor performance. Often,
this is the result of the so-called narrow passage problem. If a narrow passage exists
in Qfree and it is absolutely necessary to go through that passage to solve a query,
a sampling-based planner must select a sample from a potentially very small set in
order to answer the planning query. A number of different sampling methods have
been designed with the narrow passage problem in mind and are described below.
The narrow passage problem still remains a challenge for PRM planners and is an
active area of research.

The remainder of this section describes sampling strategies that have been devel-
oped with the narrow passage problem in mind and then other general sampling
strategies. We conclude the section with a brief discussion of how one might select
an appropriate sampling scheme for a particular problem.

Sampling Near the Obstacles

Obstacle-based sampling methods sample near the boundary of configuration-space
obstacles. The motivation behind this kind of sampling is that narrow passages can
be considered as thin corridors in Qfree surrounded by obstacles.

Choset-79066 book February 22, 2005 18:11

7.1 Probabilistic Roadmaps 217

OBPRM [18] is one of the first and very successful representatives of obstacle-based
sampling methods. Initially, OBPRM generates many configurations at random from
a uniform distribution. For each configuration qin found in collision, it generates a
random direction v, and the planner finds a free configuration qout in the direction v.
Finally, it performs a simple binary search to find the closest free configuration q to
the surface of the obstacle. Configuration q is added to the roadmap, while qin and
qout are discarded.

The Gaussian sampler [59] addresses the narrow passage problem by sampling from
a Gaussian distribution that is biased near the obstacles. The Gaussian distribution is
obtained by first generating a configuration q1 randomly from a uniform distribution.
Then a distance step is chosen according to a normal distribution to generate a
configuration q2 at random at distancestep from q1. Both configurations are discarded
if both are in collision or if both are collision-free. A sample is added to the roadmap
if it is collision-free and the other sample is in collision.

In [194], samples are generated in a dilated Qfree by allowing the robot to penetrate
by some small constant distance into the obstacles. The dilation ofQfree widens narrow
passages, making it easier for the planner to capture the connectivity of the space.
During a second stage, all samples that do not lie in Qfree are pushed into Qfree by
performing local resampling operations.

Sampling Inside Narrow Passages

The bridge planner [193] uses a bridge test to sample configurations inside narrow
passages. In a bridge test, two configurations q ′ and q ′′ are sampled randomly from
a uniform distribution in Q. These configurations are considered for addition to the
roadmap, but if they are both in collision, then the point qm halfway between them
is added to the roadmap if it is collision free. This is called a bridge test because the
line segment between q ′ and q ′′ resembles a bridge with q ′ and q ′′ inside obstacles
acting as piers and the midpoint qm hovering over Qfree. Observe that the geome-
try of narrow passages makes the construction of short bridges easy, while in open
space the construction of short bridges is difficult. This allows the bridge plan-
ner to sample points inside narrow passages by favoring the construction of short
bridges.

An efficient solution to the narrow passage problem would generate samples that are
inside narrow passages but as far away as possible from the obstacles. The Generalized
Voronoi Diagrams (GVDs) described in chapter 5 have exactly this property. Although
exact computation of the GVD is impractical for high-dimensional configuration
spaces, it is possible to find samples on the GVD without computing it explicitly. This
can be done by a retraction scheme [427]. The retraction is achieved by a bisection

Choset-79066 book February 22, 2005 18:11

218 7 Sampling-Based Algorithms

method that moves each sample configuration until it is equidistant from two points
on the boundary of Qfree.

A simpler approach is to compute the GVD of the workspace and generate sam-
ples that somehow conform to this GVD [155, 171, 191]. For example, the robot can
have some predefined handle points (e.g., end-points of the longest diameter of the
robot) and sampling can place those handle points as close to the GVD as possible
with the hope of aligning the whole robot with narrow passages. The disadvantage of
workspace-GVD sampling is that it is in general difficult to generate configurations
of the robot close to the GVD (details are given in [155, 171, 191]). The advantage
of workspace-GVD sampling is that the GVD captures well narrow passages in the
workspace that typically lead to narrow passages in Qfree. Additionally, an approx-
imation of the GVD of the workspace can be computed efficiently using graphics
hardware [352] which is one of the reasons why this sampling method is popular for
virtual walkthroughs and related simulations.

Visibility-Based Sampling

The goal of the visibility-based PRM [337] is to produce visibility roadmaps with a
small number of nodes by structuring the configuration space into visibility domains.
The visibility domain of a configuration q includes all configurations that can be
connected to q by the local planner. This planner, unlike PRM which accepts all the
free configurations generated in the construction stage, adds to the roadmap only
those configurations q that satisfy one of two criteria: (1) q cannot be connected to
any existing node, i.e., q is a new component, or (2) q connects at least two existing
components. In this way, the number of configurations in the roadmap is kept small.

Manipulability-Based Sampling

Manipulability-based sampling [281, 282] is an importance-sampling approach that
exploits the manipulability measure associated with the manipulator Jacobian [432].
Intuitively, manipulability characterizes the arm’s freedom of motion for a given con-
figuration. The motivation for using manipulability as a bias for sampling is as follows.
In regions of the configuration space where manipulability is high, the robot has great
dexterity, and therefore relatively fewer samples should be required in these areas.
Regions of the configuration space where manipulability is low tend to be near (or to
include) singular configurations of the arm. Near singularities, the range of possible
motions is reduced, and therefore such regions should be sampled more densely.

Let J (q) denote the manipulator Jacobian matrix (i.e., the matrix that relates veloc-
ities of the end effector to joint velocities). For a redundant arm (e.g., an arm with

Choset-79066 book February 22, 2005 18:11

7.1 Probabilistic Roadmaps 219

more than six joints for a 3D workspace) the manipulability in configuration q is
given by

ω(q) =
√

det J (q) J T (q).(7.1)

To bias sampling, an approximation to the cumulative density function (CDF) for
ω is created. Samples are then drawn from a uniform density on the configuration
space, and rejected with probability proportional to the associated CDF value of their
manipulability value.

Quasirandom Sampling

A number of deterministic (sometimes called quasirandom) alternatives to random
sampling have been used [62,269,291,292]. These alternatives were first introduced
in the context of Monte Carlo integration and aim to optimize various properties of the
distribution of the samples. Before discussing some of these alternatives, we briefly
describe two ways to evaluate a set of samples.

Let P be a set of point samples on some space X , and N be the number of points in
P . One way to evaluate the quality of the samples in P is to assess how “uniformly”
the points in P cover X . This is done with respect to a specific collection of subsets of
X , called a range space, denoted byR. LetR be the set of all axis-aligned rectangular
subsets of X , and define µ to be the measure (or volume) of a set. Since P contains
N points, the difference between the relative volumes of R to X and the fraction of
samples contained in R ∈ R is given by
∣
∣
∣
∣
µ(R)

µ(X)
− |P ∩ R|

N

∣
∣
∣
∣ .

If we take the supremum of this difference over all R ∈ R we obtain the concept of
discrepancy.

DEFINITION 7.1.1 The discrepancy of point set P with respect to range space R over
some space X is defined as

D (P, R) = sup
R∈R

∣
∣
∣
∣
µ(R)

µ(X)
− |P ∩ R|

N

∣
∣
∣
∣ .

It is not necessary to take R as the subset of axis-aligned rectangles, but this choice
gives an intuitive understanding of discrepancy. Another common choice is to take
R as the set of d-balls, i.e., for each R ∈ R we have R = {x ′ | ‖x − x ′‖ < ε}, for
some point x and radius ε > 0.

While discrepancy provides a measure of how uniformly points are distributed over
the space X , dispersion provides a measure of the largest portion of X that contains

Choset-79066 book February 22, 2005 18:11

220 7 Sampling-Based Algorithms

no points in P . For a given metric ρ, the distance between a point x ∈ X and a point
p ∈ P is given by ρ(x , p). Thus, minp∈P ρ(x , p) gives the distance from x to the
nearest point in P . If we take ρ to be the Euclidean metric, this gives the largest empty
ball centered on x . If we then take the minimization over all points in X , we obtain
the size of the largest empty ball in X . This is exactly the concept of dispersion.

DEFINITION 7.1.2 The dispersion δ of point set P with respect to the metric ρ is
given by

δ(P, ρ) = sup
x∈X

min
p∈P

ρ(x , p).

An important result due to Sukharev gives a bound on the number of samples
required to achieve a given dispersion. In particular, the Sukharev sampling criterion
states that when ρ is taken as the L∞ norm, a set P of N samples on the d-dimensional
unit cube will have

δ(P, ρ) ≥ 1

2N
1
d � .

So, to achieve a given dispersion value, say δ∗, since N must be an integer, we have

δ∗ ≥ 1

2N
1
d � → N ≥

(
1

2δ∗

)d

,

i.e., the number of samples required to achieve a desired dispersion grows expo-
nentially with the dimension of the space. In some sense, this result implies that to
minimize dispersion, sampling on a regular grid will yield results that are as good as
possible.

Now that we have quantitative measures for the quality of a set of samples, we
describe some common ways to generate samples. For the case of X = [0, 1] the
Van der Corput sequence gives a set of samples that minimizes both dispersion and
discrepancy. The nth sample in the sequence is generated as follows. Let ai ∈ {0, 1}
be the coefficients that define the binary representation of n,

n =
∑

i

ai 2
i = a0 + a12 + a222 + · · · .

The nth element of the Van der Corput sequence, �(n), is defined as

�(n) =
∑

i

ai 2
−(i+1) = a02−1 + a12−2 + · · · .

Figure 7.9(a) shows the first sixteen elements of a Van der Corput sequence.
The Van der Corput sequence can only be used to sample the real line. The Halton

sequence generalizes the Van der Corput sequence to d dimensions. Let {bi } define

Choset-79066 book February 22, 2005 18:11

7.1 Probabilistic Roadmaps 221

n nn (binary)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

10

11

100

101

110

111

1000

1001

1010

1011

1100

1101

1110

1111

0.0

0.1

0.01

0.11

0.001

0.101

0.011

0.111

0.0001

0.1001

0.0101

0.1101

0.0011

0.1011

0.0111

0.1111

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1/3

2/3

1/9

4/9

7/9

2/9

5/9

8/9

1/27

10/27

19/27

4/27

13/27

22/27

7/27

0

1/2

1/4

3/4

1/8

5/8

3/8

7/8

1/16

9/16

5/16

13/16

3/16

11/16

7/16

15/16

0

1/2

1/4

3/4

1/8

5/8

3/8

7/8

1/16

9/16

5/16

13/16

3/16

11/16

7/16

15/16

(a) (b)

1(n)2(n)(n)(n) (binary)

Figure 7.9 (a) Van der Corput sequence, (b) Halton sequence for d = 2.

a set of d relatively prime integers, e.g., b1 = 2, b2 = 3, b3 = 5, b4 = 7, The
integer n has a representation in base b j given by

n =
∑

i

ai j b
i
j , ai j ∈ {0, 1, . . . , b j − 1}

and �b j (n) is defined as

�b j (n) =
∑

ai j b
−(i+1)
j .

The nth sample is then defined by the coordinates pn = (�b1 (n), �b2 (n), · · · , �bd (n)).
Figure 7.9(b) shows the first sixteen elements of a Halton sequence for b1 = 2, b2 = 3.

When the range space R is a set of axis-aligned rectangular subsets of X , the
discrepancy for the Halton sequence is bounded by

D(P, R) ≤ O

(
logd N

N

)

.

Choset-79066 book February 22, 2005 18:11

222 7 Sampling-Based Algorithms

(a) (c)(b)

Figure 7.10 These figures shows 1024 samples generated in the plane using (a) a random
number generator, (b) a Halton sequence, (c) a Hammersley sequence.

When the range space R is the set of d−balls, the discrepancy is bounded by

D(P, R) ≤ O
(

N− (d +1)
2

)
.

When N is specified, a Hammersley sequence (sometimes called a Hammersley
point set, since the number of points is known and finite) achieves the best possible
asymptotic discrepancy. The nth point in a Hammersley sequence is obtained by using
the first d − 1 coordinates of a point in the Halton sequence, with the ratio n/N as
the first coordinate,

pn = (n/N , �b1 (n), �b2 (n), · · · �bd−1 (n)), n = 0 . . . N − 1.

Figure 7.10 shows point sets generated using a random number generator (fig-
ure 7.10a), a Halton sequence (figure 7.10b), and a Hammersley sequence (fig-
ure 7.10c). Each point set contains 1024 points.

The use of quasirandom sequences has the advantage that the running time is
guaranteed to be the same for all the runs due to the deterministic nature of the point
generation process. The resulting planner is resolution complete. The analysis of
section 7.4 also sheds light as to why quasirandom sequences work well. As with any
deterministic sampling method however, it is possible to construct examples where
the performance of the planner deteriorates. As a remedy, it has been suggested
to perturb the sequence [162]. The perturbation is achieved by choosing a random
configuration from a uniform distribution in a small area around the sample point
being added to the sequence. The area is gradually reduced as more points are added
to the sequence. Certain quasirandom sequences can also be seen as generating points
in a multiresolution grid in Q [269].

Choset-79066 book February 22, 2005 18:11

7.1 Probabilistic Roadmaps 223

Grid-Based Sampling

Grid-based planners have appeared in the early planning literature [244,274] but did
not use some key abstractions of PRM such as the collision checking primitives. The
nodes of a grid can be an effective sampling strategy in the PRM setting. Especially
when combined with efficient node connection schemes (see section 7.1.4), they can
result in powerful planners for problems arising in industrial settings [52]. A natural
way of using grid-based search in a PRM is to use a rather coarse resolution for the
grid and take advantage of the collision-checking abstraction; moving from one grid
node q to a neighboring grid node q ′ would require collision checking, and hence
sampling, at a finer resolution between the nodes. During the query phase, attempts
are made to connect qinit and qgoal to nearby grid points. The resolution of the grid that
is used to build the roadmap can be progressively increased either by adding points
one at a time or by adding an entire hyperplane of samples chosen to fill the largest gap
in the existing grid [52]. Of particular interest for path planning is the use of infinite
sequences based on regular structures, which incrementally enhance their resolution.
Recent work has demonstrated the use of such sequences for building lattices and other
regular structures that have an implicit neighborhood structure, which is very useful
for PRMs [269, 291]. A grid-based path-planning algorithm is resolution complete.

Connection Sampling

Connection sampling [221, 231] generates samples that facilitate the connection of
the roadmap and can be combined with all previously described sampling methods.
Typically, if a small number of configurations is initially generated, there may exist a
few disconnected components at the end of the construction step. If the roadmap under
construction is disconnected in a place whereQfree is not, this place may correspond to
some difficult area of Qfree, possibly to a narrow passage of Qfree. The idea underlying
connection sampling is to select a number of configurations from the roadmap that
are likely to lie in such regions and expand them. The expansion of a configuration
q involves selecting a new free configuration in the neighborhood of q as described
below, adding this configuration to the roadmap, and trying to connect it to other
configurations of the roadmap in the same manner as in the construction step. The
connection sampling step increases the density of the roadmap in regions of Qfree

that are believed to be difficult. Since the gaps between components of the roadmap
are typically located in these regions, the connectivity of the roadmap is likely to
increase. Connection sampling thus never creates new components in the roadmap.
At worst, it fails to reduce the number of components.

A simple probabilistic scheme can be used for connection sampling. Each config-
uration q is associated with a heuristic measure of the difficulty of the region around

Choset-79066 book February 22, 2005 18:11

224 7 Sampling-Based Algorithms

q expressed by a positive weight w(q). Thus, w(q) is large whenever q is considered
to be in a difficult region. Weights are normalized so that their sum for all configura-
tions in the roadmap is one. Then, repeatedly, a configuration q is selected from the
roadmap with probability

Pr (q is selected) = w(q),

and then q is expanded. The weights can be computed only once at the beginning of
the process and not modified when new configurations are added to the roadmap, or
can be modified periodically.

There are several ways to define the heuristic weight w(q) [221, 231]. A function
that has been found to work well in practice is the following. Let deg(q) be the number
of configurations to which q is connected. Then,

w(q) =
1

deg(q)+1
∑

q ′∈V
1

deg(q ′)+1

.

The expansion of a configuration q requires the generation of a configuration in the
neighborhood of q. Typically, such a configuration can be found easily by selecting
values for the degrees of freedom of the robot within a small interval centered at the
values of the corresponding degrees of freedom of q. If this fails, a small random-
bounce walk may be used to arrive at a new collision-free configuration. For holonomic
robots, a random-bounce walk [231] from q consists of repeatedly picking at random
a direction of motion and moving in this direction until an obstacle is hit. When a
collision occurs, a new random direction is chosen. The above steps are repeated for
a number of times. The configuration q ′ reached by the random-bounce walk and the
edge (q , q ′) are inserted into the roadmap. Moreover, the path computed between q
and q ′ is explicitly stored, since it was generated by a nondeterministic technique.
The fact that q ′ belongs to the same connected component as q is also recorded. Then
attempts are made to connect q ′ to the other connected components of the roadmap
in the same way as in the construction step of PRM.

Choosing Among Different Sampling Strategies

Choosing among different sampling strategies is an open issue. Here, we give some
very rough guidelines on how to choose a sampling strategy.

The success of PRM should be partly attributed to the fact that for a large range of
problems (difficult but not “pathological” problems—see section 7.4) several simple
sampling strategies work well. For example, uniform random sampling works well for
many problems found in practice involving 3–7 degrees of freedom. If consistency
in the running time is an issue, quasirandom sampling and lattice-based sampling

Choset-79066 book February 22, 2005 18:11

7.1 Probabilistic Roadmaps 225

provide some advantages. When the dimension grows, and again for problems that do
not exhibit pathological behavior, random sampling is the simplest way to go. When
problems that have narrow passages are considered, sampling-based strategies that
were designed with narrow passages in mind should be used.

Combinations of different sampling methods are possible and in many cases critical
for success. If πA and πB are two different sampling methods, a weighted hybrid
sampling method π can be produced by setting π = (1−w)πA +wπB . For example,
connection sampling could be used in combination with random sampling [231] or
OBPRM sampling. One sampling strategy can also be considered a filter for another.
For example, the Gaussian sampler can be used to filter nodes created according to
the bridge test [263].

None of the sampling methods described in this chapter provides clearly the best
strategy across all planning problems. Sampling should also be considered in relation
with the connection strategy used (see section 7.1.4) and the local planner used (see
[14, 162, 203, 221] and section 7.3). Finally, it must be emphasized that it is possible
to create “pathological” path-planning instances that will be arbitrarily hard for any
sampling-based planner.

7.1.4 PRM Connection Strategies

An important aspect of PRM is the selection of pairs of configurations that will be tried
for connections by a local planner. The objective is to select those configurations
for which the local planner is likely to succeed. As has been discussed, one possible
choice is to use the local planner to connect every configuration to all of its k closest
neighbors. The rationale is that nearby samples lead to short connections that have
good chances of being collision free. This section discusses some other approaches,
their advantages and disadvantages. Clearly, the function used to select the neighbors
and the implemented local planner can drastically affect the performance [19,246] of
any connection strategy described in this section.

Creating Sparse Roadmaps

A method that can speed up the roadmap construction step is to avoid the computation
of edges that are part of the same connected component [231,404]. Since there exists
a path between any two configurations in a connected component, the addition of the
new edge will not improve the connectivity of the roadmap. Several implementations
of this idea have been proposed. The simplest is to connect a configuration with the
nearest node in each component that lies close enough. This method avoids many
calls to the local planner and consequently speeds up the roadmap construction step.

Choset-79066 book February 22, 2005 18:11

226 7 Sampling-Based Algorithms

As the graph is being built, the connected components can be maintained by using a
fast disjoint-set data structure [119].

With the above method, no cycles can be created and the resulting graph is a forest,
i.e., a collection of trees. Since a query would never succeed due to an edge that is
part of a cycle, it is indeed sensible not to consume time and space computing and
storing such an edge. In some cases, however, the absence of cycles may lead the
query phase to construct unnecessarily long paths. This drawback can be mitigated
by applying postprocessing techniques, such as smoothing, on the resulting path.
It has been observed however that allowing some redundant edges to be computed
during the roadmap construction phase (e.g., two or three per node) can significantly
improve the quality of the original path without significant overhead [162]. Recent
work shows how to add useful cycles in PRM roadmaps that result in higher quality
(shorter) paths [336].

Connecting Connected Components

The roadmap constructed by PRM is aimed at capturing the connectivity of Qfree.
In some cases, due to the difficulty of the problem or the inadequate number of
samples being generated, the roadmap may consist of several connected compo-
nents. The quality of the roadmap can be improved by employing strategies aimed at
connecting different components of the roadmap. Connection sampling, introduced
in section 7.1.3, attempts to connect different components of the roadmap by plac-
ing more nodes in difficult regions of Qfree. Section 7.2 describes sampling-based
tree planners that can be very effective in connecting different components of the
roadmap. This is exploited in the planner described in section 7.3. Random walks and
powerful planners such as RPP [40] can also be used to connect components [221].
Other strategies are described in [323].

Lazy Evaluation

The idea behind lazy evaluation is to speed up performance by doing collision checks
only when it is absolutely necessary. Lazy evaluation can be applied to almost all
the sampling-based planners presented in this chapter [52–54]. In this section, lazy
evaluation is described as a node connection scheme. It has also given rise to very
effective planners that will be described in the next section.

When lazy evaluation is employed, PRM operates on a roadmap G, whose nodes
and paths have not been fully evaluated. It is assumed that all nodes and all edges
of a node to its k neighbors are free of collisions. Once PRM is presented with a
query, it connects qinit and qgoal to two close nodes of G. The planner then performs a

Choset-79066 book February 22, 2005 18:11

7.2 Single-Query Sampling-Based Planners 227

graph search to find the shortest path between qinit and qgoal, according to the distance
function used. Then the path is checked as follows. First, the nodes of G on the path
are checked for collision. If a node is found in collision, it is removed from G together
with all the edges originating from it. This procedure is repeated until a path with
free nodes is discovered. The edges of that path are then checked. In order to avoid
unnecessary collision checks, however, all edges along the path are first checked at
a coarse resolution, and then at each iteration the resolution becomes finer and finer
until it reaches the desired discretization. If an edge is found in collision, it is removed
from G. The process of finding paths, checking their nodes and then checking their
edges is repeated until a free path is found or all nodes of G have been visited. Once
it is decided that a node of G is in Qfree, this information is recorded to avoid future
checks. For the edges, the resolution at which they have been checked for collision
is also recorded so that if an edge is part of a future path, collision checks are not
replicated. If no path is found and the nodes of G have been exhausted, new nodes
and edges can be added to G. The new nodes can be sampled not only randomly but
also from the difficult regions of Qfree [54]. This kind of sampling is similar to the
connection sampling strategy of PRM described in section 7.1.3.

A related lazy scheme [335] assigns a probability to each edge of being collision
free. This probability is computed by taking into account the resolution at which the
edge has been checked. The edge probabilities can be used to search for a path in G
that has good chances of being in Qfree.

7.2 Single-Query Sampling-Based Planners

PRM was originally presented as a multiple-query planner: the goal was to create a
roadmap that captures the connectivity of Qfree and then answer multiple user-defined
queries very fast. In many planning instances, the answer to a single query is of interest
and these instances are best served by single-query planners. Single-query planners
attempt to solve a query as fast as possible and do not focus on the exploration of the
entire Qfree.

Many efficient single-query sampling-based planners exist. Some of them preceded
PRM. One of the first widely used sampling-based planners was RPP [40]. RPP works
by constructing potential fields over the workspace that attract control points of the
robot to their corresponding positions in the goal configuration while pushing these
robot points away from the obstacles (see also chapter 4). The workspace potentials
are combined using an arbitration function to generate a configuration space potential.
Starting from the initial configurationRPP performs a gradient motion until it reaches a
local minimum. If the goal configuration has not been reached, RPP executes a series

Choset-79066 book February 22, 2005 18:11

228 7 Sampling-Based Algorithms

of random motions to escape the local minimum. In this way, RPP incrementally
builds a graph of local minima, where the path joining two local minima is obtained
by concatenating a random motion and a gradient descent motion. “Ariadne’s clew”
is another algorithm that uses samples in the configuration space [47, 48]. The algo-
rithm works by interleaving the exploration of Q with searches for paths to the goal
configuration. “Ariadne’s clew” builds a tree from the initial configuration. During
exploration, new configurations are placed inQfree as far as possible from one another.
The selection of configurations can be difficult and is done through genetic optimiza-
tion. For each new configuration, a local search is performed to determine if the goal
configuration is reachable from it. Many other algorithms (e.g., [33, 102, 165, 204])
explored the idea of planning by generating sample points in Qfree, but will not be
presented in this chapter due to space limitations. The planner in [204] called the
2Z-method bears some similarities with PRM.
PRM itself can also be used as single-query planner. In that case, qinit and qgoal should

be inserted to the roadmap at the beginning. The planner should check periodically if
the given query can be solved, that is if qinit and qgoal belong to the same component
of the roadmap. At that point, the construction of the roadmap should be aborted.
The sampling and connections strategies described in section 7.1 are all applicable
here. In particular, the careful application of lazy evaluation has yielded an effective
single-query PRM planner, which is called LazyPRM [52–54]. LazyPRM “creates” a
roadmap whose nodes and edges have not been checked for collision. The planner
performs a standard search to find a path from the initial to the goal configuration and
starts checking the path for collisions as described in section 7.1.4. The planner stops
when a collision-free path has been found and it was shown experimentally that this
was achieved well before the roadmap was fully checked [53].

This section describes two planners that were designed primarily for single-query
planning. The planners are Expansive-Spaces Trees (ESTs) [192, 195, 196, 235] and
Rapidly-exploring Random Trees (RRTs) [249,270–272]. These planners also have the
advantage that they are very efficient for kinodynamic planning (see section 7.5 and
chapters 10, 11, and 12). For the moment, we concentrate on geometric path-planning.
ESTs and RRTs bias the sampling of configurations by maintaining two trees, Tinit

and Tgoal, rooted at qinit and qgoal configurations, respectively, and then growing the
trees toward each other until they are merged into one. It is possible to construct only
a single tree rooted at qinit that grows toward qgoal, but, for geometric path-planning,
this is usually less efficient than maintaining two trees. In the construction step,
new configurations are sampled from Qfree near the boundaries of the two trees. A
configuration is added to a tree only if it can be connected by the local planner to
some existing configuration in the tree. In the merging step, a local planner attempts

Choset-79066 book February 22, 2005 18:11

7.2 Single-Query Sampling-Based Planners 229

to connect pairs of configurations selected from both trees. If successful, the two trees
become one connected component and a path from qinit to qgoal is returned.

For answering a single query, it is necessary to cover only the parts of Qfree relevant
to the query. ESTs and RRTs developed sampling strategies that bias the sampling of
the configurations toward the unexplored components of Qfree relevant to the query.
The introduced sampling methods are fundamentally conditional: the generation of
a new configuration depends on the initial and goal configuration and any previ-
ously generated configurations. The planners, however, are faced with the following
dilemma: although it is important to search the part ofQfree that is relevant to the given
query, the planners need to demonstrate that their sampling can potentially cover the
whole Qfree. This is necessary for ensuring probabilistic completeness. ESTs are a
purely forward projection/propagation method. An EST pushes the constructed tree
to unexplored parts of Qfree by sampling points away from densely sampled areas. A
rigorous analysis shows that Qfree will be covered under certain assumptions [192].
RRTs employ a steering strategy that pulls the tree to unexplored parts ofQfree. An RRT
attempts to expand toward points in the free configuration space away from the tree.
The algorithm has been shown to be probabilistically complete under certain assump-
tions [271]. Figure 7.11 shows a single tree expanded from qinit using a variant of
EST [350].

At the end of this section, the SBL [367] planner is described. SBL is a bi-directional
EST that uses lazy evaluation for its node connection strategy. This allows the planner
to explore the free space very efficiently and at the same time reduce the number of
collision checks with further performance improvements over traditional ESTs.

Figure 7.11 Tree generated by a tree-based motion planner for docking a space shuttle at the
space station. (From Phillips and Kavraki [350].)

Choset-79066 book February 22, 2005 18:11

230 7 Sampling-Based Algorithms

7.2.1 Expansive-Spaces Trees

ESTs were initially developed as an efficient single-query planner that covers the space
between qinit and qgoal rapidly [192, 195, 196, 235]. The developers of the algorithm
did not use the acronym EST in their original publications. The acronym was later
adopted and was inspired by the notion of “expansive” space used in the theoretical
analysis of the algorithm. EST was initially geared toward kinodynamic problems,
and for these problems a single tree is typically built (see section 7.5.1). A number of
recent planners are based on or use ESTs [14, 350, 367]. The EST algorithm has been
shown to be probabilistically complete [192].

Construction of Trees

Let T be one of the trees Tinit or Tgoal rooted at qinit and qgoal, respectively. The
planner first selects a configuration q in T from which to grow T and then samples
a random configuration, qrand, from a uniform distribution in the neighborhood of q.
Configuration q is selected at random with probability πT (q). The local planner �

(see section 7.1) attempts a connection between q and qrand. If successful, qrand is added
to the vertices of T and (q, qrand) is added to the edges of T . The process is repeated
until a specified number of configurations has been added to T . The pseudocode is
given in algorithms 8 and 9. Figure 7.12 illustrates this method in the simple case of
a point robot in a two-dimensional Euclidean workspace.

Recall that in the roadmap construction of PRM, algorithm 6 in section 7.1, a new
random configuration in Qfree is never rejected but it is immediately added to the

Algorithm 8 Build EST Algorithm
Input:

q0: the configuration where the tree is rooted
n : the number of attempts to expand the tree

Output:
A tree T = (V , E) that is rooted at q0 and has ≤ n configurations

1: V ← {q0}
2: E ← ∅
3: for i = 1 to n do
4: q ← a randomly chosen configuration from T with probability πT (q)
5: extend EST (T , q)
6: end for
7: return T

Choset-79066 book February 22, 2005 18:11

7.2 Single-Query Sampling-Based Planners 231

Algorithm 9 Extend EST Algorithm
Input:

T = (V , E): an EST

q: a configuration from which to grow T
Output:

A new configuration qnew in the neighborhood of q, or NIL in case of failure

1: qnew ← a random collision-free configuration from the neighborhood of q
2: if �(q , qnew) then
3: V ← V ∪ {qnew}
4: E ← E ∪ {(q, qnew)}
5: return qnew

6: end if
7: return NIL

T q

q'rand

q"rand

Figure 7.12 Adding a new configuration to an EST. Suppose q is selected and q ′
rand is created

in its neighborhood. The local planner succeeds in connecting q to q ′
rand. Configuration q ′

rand

and the edge (q, q ′
rand) are added to the tree T . Had q ′′

rand been created, no nodes or edges would
have been added to T , as the local planner would have failed to connect q and q ′′

rand.

roadmap. No attempts are made to connect it to existing configurations in the roadmap.
In contrast, in the construction step of EST, a new configuration is added to T only
if � succeeds in connecting it to an existing configuration in T . It follows then that
there is a path from the root of T to every configuration in T .

Guiding the Sampling

The effectiveness of EST relies on the ability to avoid oversampling any region ofQfree,
especially the neighborhoods of qinit and qgoal. Hence, careful consideration is given

Choset-79066 book February 22, 2005 18:11

232 7 Sampling-Based Algorithms

to the choice of the probability density function πT . Ideally, the function πT should
be chosen such that the sampled configurations constitute a rather uniform covering
of the connected components of Qfree containing qinit and qgoal. A good choice of π

is biased toward configurations of T whose neighborhoods are not dense. There are
several ways to measure the density of a neighborhood. One that works well in practice
associates with each configuration q of T a weight, wT (q), that counts the number of
configurations within some predefined neighborhood of q. If πT (q) is defined to be
inversely proportional to wT (q), then configurations with sparse neighborhoods are
more likely to be picked by the planner and used as input to algorithm 9.

The naive method to compute πT (q) enumerates all the configurations of T and tests
if they are close to q. This method takes linear time in the number of configurations, n,
in the tree T and works well only for relatively small n. A reasonable approximation
to πT (q) can be obtained by imposing a grid on Q. At each iteration, the planner
selects the configuration from which to grow the tree by choosing at random a cell
and a configuration from this cell. This method was used in [367] and is described in
subsection 7.2.3.

Several other πT functions have been proposed. In [349, 350], πT (q) is defined to
be a function of the order in which q is generated, its number of neighbors, its out
degree, and an A∗ cost function A∗

cost. The A∗
cost is commonly used in graph search

to focus the search toward paths with low cost and is computed as the sum of the
total cost from the root of the tree to q and the estimated cost from q to the goal
configuration. The above weight function combines in a natural way standard EST

heuristics with potential field methods.

Merging of Trees

The merging of the trees is achieved by pushing the exploration of the space from
one tree toward the space explored by the other tree. Initially, a configuration in Tinit

is used as described in algorithm 9 to produce a new configuration q. Then the local
planner attempts to connect q to its closest k configurations in Tgoal. If a connection is
successful, the two trees are merged. Otherwise, the trees are swapped and the process
is repeated for a specified number of times. Figure 7.13 illustrates the merging of two
EST trees in a simple case of a two-dimensional Euclidean space.

The merging of the two trees is obtained by connecting some configuration q1 ∈
Tinit to some configuration q2 ∈ Tgoal by using the local planner �. Thus, the path
between qinit and qgoal, which are the roots of the corresponding trees, is obtained by
concatenating the path from qinit to q1 in Tinit to the path from q2 to qgoal in Tgoal.

Care should be taken when implementing ESTs. A successful implementation
requires a fast update of πT as new configurations are added to T . The linear cost of the

Choset-79066 book February 22, 2005 18:11

7.2 Single-Query Sampling-Based Planners 233

q

Tinit Tgoal

y

x

Figure 7.13 Merging two EST trees. Configuration q is just added to the first tree, Tinit. The
local planner attempts to connect q to its closest configurations x and y in the second tree,
Tgoal. The local planner fails to connect q to x , but succeeds in the case of y.

naive method is too high and grid-based approaches or hashing methods (such as those
described in section 7.2.3) must be employed for large n and high-dimensional Q.

7.2.2 Rapidly-Exploring Random Trees

RRTs were introduced as a single-query planning algorithm that efficiently covers the
space between qinit and qgoal [249,270–272]. The planner was again initially developed
for kinodynamic motion planning, where, as in the case of ESTs, a single tree is built.
The applicability of RRTs extends beyond kinodynamic planning problems. The RRT
algorithm has been shown to be probabilistically complete [271].

Construction of Trees

Let T be one of the trees Tinit or Tgoal rooted at qinit and qgoal, respectively. Each
tree T is incrementally extended. At each iteration, a random configuration, qrand, is
sampled uniformly in Qfree. The nearest configuration, qnear, to qrand in T is found
and an attempt is made to make progress from qnear toward qrand. Usually this entails
moving qnear a distance step size in the straight line defined by qnear and qrand.
This newly generated configuration, qnew, if it is collision-free, is then added to the
vertices of T , and the edge (qnear,qnew) is added to the edges of T . The pseudocode
is given in algorithms 10 and 11. Figure 7.14 illustrates the extension step of an RRT

for a point robot operating in a two-dimensional Euclidean workspace.
The sampling is done by algorithm 11, which produces a new configuration,

qnew, as a result of moving some configuration qnear by step size toward a con-
figuration qrand. A natural question to consider is how step size is determined.

Choset-79066 book February 22, 2005 18:11

234 7 Sampling-Based Algorithms

Algorithm 10 Build RRT Algorithm
Input:

q0: the configuration where the tree is rooted
n : the number of attempts to expand the tree

Output:
A tree T = (V , E) that is rooted at q0 and has ≤ n configurations

1: V ← {q0}
2: E ← ∅
3: for i = 1 to n do
4: qrand ← a randomly chosen free configuration
5: extend RRT (T , qrand)
6: end for
7: return T

Algorithm 11 Extend RRT Algorithm
Input:

T = (V , E): an RRT

q: a configuration toward which the tree T is grown
Output:

A new configuration qnew toward q, or NIL in case of failure

1: qnear ← closest neighbor of q in T
2: qnew ← progress qnear by step size along the straight line in Q between qnear and

qrand

3: if qnew is collision-free then
4: V ← V ∪ {qnew}
5: E ← E ∪ {(qnear, qnew)}
6: return qnew

7: end if
8: return NIL

One possible way is to choose step size dynamically based on the distance between
qnear and qrand as given by the distance function used. It makes sense to choose a large
value for step size if the two configurations are far from colliding, and small
otherwise. RRT is sensitive to the distance function used, since it is this function that
determines step size and guides the sampling. A discussion of the metrics and their
effects on RRTs is found in [103]. It is also interesting to consider a greedier alternative
that tries to move qnew as close to qrand as possible. This method, algorithm 12, calls

Choset-79066 book February 22, 2005 18:11

7.2 Single-Query Sampling-Based Planners 235

qT

qrand

qnew

step_size

Figure 7.14 Adding a new configuration to an RRT. Configuration qrand is selected randomly
from a uniform distribution in Qfree. Configuration q is the closest configuration in T to qrand

(this configuration is denoted as qnear in the algorithm). Configuration qnew is obtained by
moving q by step size toward qrand. Only qnew and the edge (q, qnew) are added to the RRT.

Algorithm 12 Connect RRT Algorithm
Input:

T = (V , E): an RRT

q: a configuration toward which the tree T is grown
Output:
connected if q is connected to T ; failure otherwise

1: repeat
2: qnew← extend RRT (T , q)
3: until (qnew= q or qnew= NIL)
4: if qnew = q then
5: return connected

6: else
7: return failure

8: end if

algorithm 11 until qnew reaches qrand or no progress is possible. If algorithm 12 is
called in algorithm 10, line 5, an RRT with greater than n nodes may be created.

It is important to note the tradeoff that exists between the exploration of Q and
the number of samples added to the tree, especially for high-dimensional problems.
If step size is small, then the exploration steps are short and the nodes of the tree
are close together. A successful call to algorithm 12 results in many nodes being
added to the tree. As the number of nodes becomes large, memory consumption is
increased and finding the nearest neighbor becomes expensive, which in turn reduces

Choset-79066 book February 22, 2005 18:11

236 7 Sampling-Based Algorithms

the performance of the planner. In such cases, it may be better to add only the last
sample of the Extend RRT iteration to the tree and no intermediate samples.

Guiding the Sampling

Selecting a node uniformly at random in step 4 of algorithm 10 is a basic mechanism
of RRT. It is also of interest to consider other sampling functions that are biased toward
the connected components of Q that contain qinit or qgoal. Let’s consider the case of
qgoal. At an extreme, a very greedy sampling function can be defined that sets qrand to
qgoal (if the tree being built is rooted at qinit) or to qinit (if the tree being built is rooted
at qgoal). The problem with this approach is that it introduces too much bias, and
eventually RRT ends up behaving like a randomized potential field planner that gets
stuck in local minima. It seems, therefore, that a suitable choice is a sampling function
that alternates, according to some probability distribution, between uniform samples
and samples biased toward regions that contain the initial or the goal configuration.
Experimental evidence [249,271] has shown that setting qrand to qgoal with probability
p, or randomly generating qrand with probability 1 − p from a uniform distribution,
works well. Even for small values of p, such as 0.05, the tree rooted at qinit converges
much faster to qgoal than when just uniform sampling is used. This simple function
can be further improved by sampling in a region around qgoal instead of setting qrand

to qgoal. The region around qgoal is defined by the vertices of the RRT closest to qgoal at
each iteration of the construction step.

Merging of Trees

In the merging step, RRT tries to connect the two trees, Tinit and Tgoal, rooted at qinit and
qgoal, respectively. This is achieved by growing the trees toward each other. Initially,
a random configuration, qrand, is generated. RRT extends one tree toward qrand and as
a result obtains a new configuration, qnew. Then the planner attempts to extend the
closest node to qnew in the other tree toward qnew. If successful, the planner terminates,
otherwise the two trees are swapped and the process is repeated a certain number of
times. Figure 7.15 illustrates a simple case of merging two RRTs in a two-dimensional
Euclidean space.

The merge algorithm, as presented in algorithm 13, uses algorithm 11. Recall that
algorithm 11 produces a new configuration that is only step size away from the
nearest node in the existing RRT. By replacing algorithm 11 in lines (3) and (5) with
algorithm 12, new configurations are produced farther away. This greedier approach
has been reported to work well [249, 271]. It is also reasonable to replace only one
of the algorithm 11 calls, and thus obtain a balance between the two approaches. The

Choset-79066 book February 22, 2005 18:11

7.2 Single-Query Sampling-Based Planners 237

qrand

q1
q2

Tgoal

Tinit

Figure 7.15 Merging two RRTs. Configuration qrand is generated randomly from a uniform
distribution in Qfree. Configuration q1 was extended to qrand. q2 is the closest configuration to
qrand in Tgoal. It was possible to extend q2 to qrand. As a result, Tinit and Tgoal were merged.

Algorithm 13 Merge RRT Algorithm
Input:

T1: first RRT
T2: second RRT

�: number of attempts allowed to merge T1 and T2

Output:
merged if the two RRTs are connected to each other; failure otherwise

1: for i = 1 to � do
2: qrand ← a randomly chosen free configuration
3: qnew,1 ← extend RRT (T1, qrand)
4: if qnew,1 �= NIL then
5: qnew,2 ← extend RRT (T2, qnew,1)
6: if qnew,1 = qnew,2 then
7: return merged

8: end if
9: SWAP(T1, T2)

10: end if
11: end for
12: return failure

choice of whether a greedier or more balanced approach is used for the exploration
depends on the particular problem being solved. Discussions can be found in [249,
271]. Once the two RRTs are merged together, a path from qinit to qgoal is obtained in
the same way as in the case of ESTs.

Choset-79066 book February 22, 2005 18:11

238 7 Sampling-Based Algorithms

The implementation of RRT is easier than that of EST. Unlike EST, RRT does not
compute the number of configurations lying inside a predefined neighborhood of a
node and it does not maintain a probability distribution for its configurations.

7.2.3 Connection Strategies and the SBL Planner

Lazy evaluation, which was introduced as a connection strategy in section 7.1.4,
can also be used in the context of tree-building sampling methods. A combination
of lazy evaluation and ESTs has been presented in the context of the Single-query,
Bi-directional, Lazy collision-checking (SBL) planner [367].
SBL constructs two EST trees rooted at qinit and qgoal. SBL creates new samples

according to the EST criteria but does not immediately test connections between
samples for collisions. A connection between two configurations is checked exactly
once and this is done only when the connection is part of the path joining the two trees
together (if such a path is found). This results in substantial time-savings as reported
in [367].

It is also worth noting that SBL uses a clever way to find which configurations
to expand and hence guide the sampling (see section 7.2.1). In the original EST, a
configuration is chosen for expansion according to the density of sampling in its
neighboorhood. Finding neighbors is in general an expensive operation as the dimen-
sion increases. SBL imposes a coarse grid on Q. It then picks randomly a non-empty
cell in the grid and a sample from that cell. The probability to pick a certain sample
is greater if this sample lies in a cell with few nodes. This simple technique allows
a fast implementation of SBL and is applicable to all EST-based planners. Details on
how this technique helps in the connection of trees grown from the initial and goal
configurations are given in [367].
EST and RRT employ excellent sampling and connection schemes that can be further

exploited to obtain even more powerful planners, as discussed in the next section.

7.3 Integration of Planners: Sampling-Based Roadmap of Trees

This section shows how to effectively combine a sampling-based method primar-
ily designed for multiple-query planning (PRM) with sampling-based tree methods
primarily designed for single-query planning (EST, RRT, and others). The Sampling-
Based Roadmap of Trees (SRT) planner [14, 43, 353] takes advantage of the local
sampling schemes of tree planners to populate a PRM-like roadmap. SRT replaces the
local planner of PRM with a single-query sampling-based tree planner enabling it to
solve problems that other planners cannot.

Choset-79066 book February 22, 2005 18:11

7.3 Integration of Planners: Sampling-Based Roadmap of Trees 239

A question arises as to whether SRT is a multiple-query or single-query planner.
SRT can be seen as a multiple-query planner, since once the roadmap is constructed,
SRT can use the roadmap to answer multiple queries. SRT can also be seen as a single-
query planner because for certain very difficult problems, the cost of constructing
a roadmap and solving a query by SRT is less than that of any single-query planner
solving the same query. This is why in section 7.1 it was pointed out that the distinction
of planners to multiple-query and single-query planners is very useful for describing
the planners, but always needs to be placed in perspective given the planning problem
at hand.

As in the PRM formulation, SRT constructs a roadmap aiming at capturing the
connectivity of Qfree. The nodes of the roadmap are not single configurations but
trees, as illustrated in figure 7.16. Connections between trees are computed by a bi-
directional tree algorithm such as EST or RRT. Recall that a roadmap is an undirected
graph G = (V , E) over a finite set of configurations V ⊂ Qfree, and each edge
(q ′, q ′′) ∈ E represents a local path from q ′ to q ′′. SRT constructs a roadmap of trees.
The undirected graph GT = (VT , ET) is an induced subgraph of G which is defined
by partitioning G into a set of subgraphs T1, . . . , Tn , which are trees, and contracting
them into the vertices of GT . In other words, VT = {T1, . . . , Tn} and (Ti , Tj) ∈ ET if

Figure 7.16 An example of a roadmap for a point robot in a two-dimensional workspace.
The dark gray areas are obstacles. Each node of the roadmap is a tree rooted at the black
squares. The thin-solid lines indicate connections between configurations of the same tree. The
thick-dashed lines indicate connections between configurations of two different trees. The light
gray areas delineate the separate trees.

Choset-79066 book February 22, 2005 18:11

240 7 Sampling-Based Algorithms

there exist configurations qi ∈ Ti and q j ∈ Tj such that qi and q j have been connected
by a local path.

Adding Trees to the Roadmap

In SRT, the trees of the roadmap GT are computed by sampling their roots uniformly
at random in Qfree, and then growing the trees using a sampling-based tree planner,
such as algorithms 8 and 10. Note that in principle any of the node-sampling strategies
of PRM described in section 7.1.3 can be applied.

Adding Edges to the Roadmap

The roadmap construction is not yet complete since no edges have been computed.
An edge between two trees indicates that they are merged into one. For each tree
Ti , a set NTi consisting of closest and random tree neighbors is computed and a
connection is attempted between Ti and each tree Tj in NTi . As in PRM, SRT may
choose to avoid the computation of candidate edges that cannot decrease the number
of connected components in GT . In fact, any of the PRM connection strategies of
section 7.1.4 can be applied here. In order to determine the closest neighbors, each
tree Ti defines a representative configuration qTi which is computed as an aggregate
of the configurations in Ti . The distance between two trees Ti and Tj is defined as
dist(qTi , qTj). It has been observed experimentally in [14,43] that the consideration of
random neighbors offsets some of the problems introduced by the distance function
used.

Computation of candidate edges is typically carried out by a sampling-based tree
planner. First, for each candidate edge (Ti , Tj), a number of close pairs of configura-
tions of Ti and Tj are quickly checked with a fast deterministic local planner. If a local
path is found, no further computation takes place. Otherwise, the sampling-based tree
planner used to add trees to the roadmap should be employed. During tree connection,
additional configurations are typically added to the trees Ti and Tj . If the connection
is successful, the edge (Ti , Tj) is added to ET and the graph components to which
Ti and Tj belonged are merged into one. Note that the trees Ti and Tj are connected
when some configuration qi ∈ Ti is connected to some configuration q j ∈ Tj .

The pseudocode is given in algorithm 14. In addition to RRT and EST, other
sampling-based tree planners, such as [251, 350], can be used with SRT. It is also
possible to incorporate lazy evaluation into SRT by using a planner similar to SBL for
tree expansion and edge computations.

Choset-79066 book February 22, 2005 18:11

7.3 Integration of Planners: Sampling-Based Roadmap of Trees 241

Algorithm 14 Connect SRT Algorithm
Input:

VT : a set of trees
k : number of closest neighbors to examine for each tree
r : number of random neighbors to examine for each tree

Output:
A roadmap GT = (VT , ET) of trees

1: ET ← ∅
2: for all Ti ∈ VT do
3: NTi ← k nearest and r random neighbors of Ti in VT

4: for all Tj ∈ NTi do
5: if Ti and Tj are not in the same connected component of GT then
6: merged ← FALSE

7: Si ← a set of randomly chosen configurations from Ti

8: for all qi ∈ Si and merged = FALSE do
9: q j ← closest configuration in Tj to qi

10: if �(qi , q j) then
11: ET ← ET ∪ {(Ti , Tj)}
12: merged ← TRUE

13: end if
14: end for
15: if merged = FALSE and Merge Trees (Ti , Tj) then
16: ET ← ET ∪ {(Ti , Tj)}
17: end if
18: end if
19: end for
20: end for

Answering Queries

As in PRM, the construction of the roadmap enables SRT to answer multiple queries
efficiently if needed. Given qinit and qgoal, the trees Tinit and Tgoal rooted at qinit and qgoal,
respectively, are grown for a small number of iterations and added to the roadmap.
Neighbors of Tinit and Tgoal are computed as a union of the k closest and r random trees,
as described previously. The tree-connection algorithm alternates between attempts
to connect Tinit and Tgoal to each of their respective neighbor trees. A path is found if
at any point Tinit and Tgoal lie in the same connected component of the roadmap. In
order to determine the sequence of configurations that define a path from qinit to qgoal,

Choset-79066 book February 22, 2005 18:11

242 7 Sampling-Based Algorithms

it is necessary to find the sequence of trees that define a path from Tinit to Tgoal and
then concatenate the local paths between any two consecutive trees. Path smoothing
can be applied to the resulting path to improve the quality of the output.

Parameters of SRT

A nice feature of SRT is that it can behave exactly as PRM, RRT, or EST. That is, if
the number of configurations in a tree is one, the number of close pairs is one and
the number of iterations to run the bi-directional tree planner is zero (denoted by
Merge Trees in line (15) of algorithm 14), then SRT behaves as PRM. If the number of
trees in the roadmap is zero and the number of close pairs is zero, then SRT behaves as
RRT or EST depending on the type of tree. SRT provides a framework where successful
sampling schemes can be efficiently combined.

Parallel SRT

SRT is significantly more decoupled than tree planners such as ESTs and RRTs. Unlike
ESTs and RRTs, where the generation of one configuration depends on all previ-
ously generated configurations, the trees of SRT can be generated independently of
one another. This decoupling allows for an efficient parallelization of SRT [14]. By
increasing the power of the local planner and by using trees as nodes of the roadmap,
SRT distributes its computation evenly among processors, requires little commu-
nication, and can be used to solve very high-dimensional problems and problems
that exceed the resources available to the sequential implementation [14]. Adding
trees to the roadmap can be parallelized efficiently, since there are no dependencies
between the different trees. Adding edges to the roadmap is harder to parallelize
efficiently. Since trees can change after an edge computation and since computing
an edge requires direct knowledge of both trees, the edge computations cannot be
efficiently parallelized without some effort [14]. Furthermore, if any computation
pruning according to the sparse roadmaps heuristic is done (see section 7.1.4), this
will entail control flow dependencies throughout the computation of the edges.

7.4 Analysis of PRM

The planners discussed in this chapter sample points in Qfree and connect them using
a local planner. As opposed to exact motion-planning algorithms, such as [90, 306,
361, 373, 375], it is possible that PRM and other sampling-based motion planners can
report falsely that no path exists. It would seem that the correctness of the motion

Choset-79066 book February 22, 2005 18:11

7.4 Analysis of PRM 243

planner has been sacrificed in favor of good experimental performance. This, however,
is not exactly the case. Rather than being a purely heuristic technique, a weaker
completeness property, called probabilistic completeness, can be proved to hold for
PRM as was discussed in the introductory section of this chapter.

This section deals with probabilistic completeness proofs and analyses of the basic
PRM planner. In the basic PRM planner, samples are chosen from a uniform random
distribution. Although the presented results are for an idealized version of PRM, it
is strongly conjectured that probabilistic completeness results can be extended to
conditional random sampling and to deterministic sampling, in the latter case, in the
form of resolution completeness results.

Suppose that a, b ∈ Qfree can be connected by a path in Qfree. PRM is considered to
be probabilistically complete, if for any given (a, b)

lim
n→∞

Pr[(a, b) FAILURE] = 0,

where Pr[(a, b) FAILURE] denotes the probability that PRM fails to answer the query
(a, b) after a roadmap with n samples has been constructed. The number of samples
gives a measure of the work that needs to be done and hence it can be used as a
measure of the complexity of the algorithm.

The results presented in this section apply to the basic PRM algorithm. Section 7.4.1
analyzes the operation of PRM in a Euclidean space. Using this analysis, it is possible
to gain an estimate on how much work (as measured by the number of generated
samples) is needed to produce paths with certain properties. Section 7.4.2 shows how
certain goodness properties of the underlying space affect the performance of PRM. It is
this analysis that sheds light on why PRM works well with extremely simple sampling
strategies such as uniform sampling. Experimental observations indicate that many of
the path-planning problems that arise in physical settings have goodness properties,
such as the ones described in section 7.4.2, that may not require elaborate sampling
schemes. Both analyses prove probabilistic completeness forPRM. Section 7.4.3 shows
an equivalence between the probabilistic completeness of PRM and a much simpler
planner.

7.4.1 PRM Operating in R
d

This section provides an analysis [222,223] of PRM operating in Euclidean R
d . Assum-

ing that a path between two different configurations a and b exists, it is shown that
the probability of PRM failing to connect a and b depends on (1) the length of the
known path, (2) the distance of the path from the obstacles, and (3) the number of
configurations in the roadmap. Connecting a and b by a long path requires a larger
number of intermediate configurations to be present in the roadmap. Paths that are

Choset-79066 book February 22, 2005 18:11

244 7 Sampling-Based Algorithms

closer to obstacles are harder to obtain because of potential collisions. Similarly, paths
that are inside narrow passages are harder to obtain because the probability of placing
random configurations inside narrow passages is small. The probabilistic complete-
ness of PRM is proved by tiling the known path with a set of carefully chosen balls
and showing that generating a point in each ball ensures that a path between a and b
will be found.

Let Qfree be an open subset of [0, 1]d and let dist be the Euclidean metric on R
d .

The local planner of PRM connects points a, b ∈ Qfree when the straight-line ab lies in
Qfree. A path γ in Qfree from a to b consists of a continuous map γ : [0, 1] → Qfree,
where γ (0) = a and γ (1) = b. The clearance of a path, denoted clr(γ), is the
farthest distance away from the path at which a given point can be guaranteed to be
in Qfree. If a path γ lies in Qfree, then clr(γ) > 0.

The measure µ denotes the volume of a region of space, e.g., µ([0, 1]d) = 1. For
any measurable subset A ⊂ R

d , µ(A) is its volume. For example, an open ball of
radius ε centered at x is denoted by Bε(x) and its volume is given by µ(Bε(x)). The
uniform distribution is used by PRM to sample points. If A ⊂ Qfree is a measurable
subset and x is a random point chosen from Qfree by the point-sampling function of
PRM, then

Pr(x ∈ A) = µ(A)

µ(Qfree)
.

THEOREM 7.4.1 Let a, b ∈ Qfree such that there exists a path γ between a and b
lying in Qfree. Then the probability that PRM correctly answers the query (a, b) after
generating n configurations is given by

Pr[(a, b) SUCCESS] = 1 − Pr [(a, b) FAILURE] ≥ 1 −
⌈

2L

ρ

⌉

e−σρd n ,

where L is the length of the path γ , ρ = clr(γ), B1(·) is the unit ball in R
d and

σ = µ(B1(·))
2dµ(Qfree)

.

Proof Let ρ = clr(γ) and note that ρ > 0. Let m =
⌈

2L
ρ

⌉
and observe that there

are m points on the path a = x1, . . . , xm = b such that dist(xi , xi+1) < ρ/2. Let
yi ∈ Bρ/2(xi) and yi+1 ∈ Bρ/2(xi+1). Then the line segment yi yi+1 must lie inside
Qfree since both endpoints lie in the ball Bρ(xi). An illustration of this basic fact is
given in figure 7.17. Let V ⊂ Qfree be a set of n configurations generated uniformly
at random by PRM. If there is a subset of configurations {y1, . . . , ym} ⊂ V such that
yi ∈ Bρ/2(xi), then a path from a to b will be contained in the roadmap. Let I1, . . . , Im

be a set of indicator variables such that each Ii witnesses the event that there is a y ∈ V

Choset-79066 book February 22, 2005 18:11

7.4 Analysis of PRM 245

/2 /2

/2

xi

yi xi+1

yi+1

b

a

Figure 7.17 Points yi and yi+1 are inside the ρ/2 balls and straight-line yi yi+1 is in Qfree.

and y ∈ Bρ/2(xi). It follows that PRM succeeds in answering the query (a, b) if Ii = 1
for all 1 ≤ i ≤ m . Therefore,

Pr[(a, b) FAILURE] ≤ Pr

(
m∨

i=1

Ii = 0

)

≤
m∑

i=1

Pr[Ii = 0],

where the last inequality follows from the union bound [119].
The events Ii = 0 are independent since the samples are independent. The prob-

ability of a given Ii = 0 is computed by observing that the probability of a single
randomly generated point falling in Bρ/2(xi) is µ(Bρ/2(xi))/µ(Qfree). It follows that
the probability that none of the n uniform, independent samples falls in Bρ/2(xi)
satisfies

Pr[Ii = 0] =
(

1 − µ(Bρ/2(xi))

µ(Qfree)

)n

.

Since the sampling is uniform and independent, then

Pr[(a, b) FAILURE] ≤
⌈

2L

ρ

⌉ (

1 − µ(Bρ/2(·))
µ(Qfree)

)n

.

However

µ(Bρ/2(·))
µ(Qfree)

=
(

ρ

2

)d
µ(B1(·))

µ(Qfree)
= σρd ,

Choset-79066 book February 22, 2005 18:11

246 7 Sampling-Based Algorithms

for σ defined as in the statement of this theorem. The bound is obtained by using the
relation (1 − β)n ≤ e−βn for 0 ≤ β ≤ 1:

Pr[(a, b) FAILURE] ≤
⌈

2L

ρ

⌉

e−σρd n.

As shown from the proof above, a better estimate for Pr[(a, b) FAILURE] is avail-
able than the exponential bound given in theorem 7.4.1. The exponential bound is a
simplification that allows the direct calculation of n when the user wishes to spec-
ify an acceptable value for Pr[(a, b) FAILURE]. The proof of theorem 7.4.1 can be
extended to take into account that clearance can vary along the path [223]. Theo-
rem 7.4.1 implies that PRM is probabilistically complete. Moreover, the probability of
failure converges exponentially quickly to 0.

7.4.2 (ε, α, β)-Expansiveness

This section argues how PRM roadmaps capture the connectivity of Qfree based on
the analysis of [192, 196, 197, 228, 229]. A principal intuition behind PRM has been
that in spaces that are not “pathologically” difficult, that is in spaces where reason-
able assumptions about connectivity hold, the planner will do well even with simple
sampling schemes such as random sampling.

Observe that, in the general case, Qfree can be broken into a union of disjoint
connected components {Qfree1, . . . , Qfreei , . . .}. Let G = (V , E) be the roadmap
constructed by PRM with uniform sampling. For each Qfreei , let Vi = V ∩ Qfreei and
let Gi be the subgraph of G induced by Vi . In the rest of this section, it is shown how
to determine the number of configurations that should be generated to ensure that,
with probability exceeding a given constant, each Gi is connected.

Given a subset S of Qfree, the reachable set from S is the set of configurations in
Qfree that are visible from any configuration in S. Figures 7.18(a) and (b) show an
example.

DEFINITION 7.4.1 Let S ⊂ Qfree. The reachable set of S is defined as

reach(S) = {x ∈ Qfree | ∃y ∈ S such that xy ⊂Qfree}.
The shorthand reach(x) is used instead of reach({x}) when x ∈ Qfree.

A space Qfree is ε-good if the volume of Qfree that each point in Qfree can reach is
at least an ε fraction of the total free volume of Qfree.

Choset-79066 book February 22, 2005 18:11

7.4 Analysis of PRM 247

(a) (b) (c)

A B A B A B

Figure 7.18 The areas in black indicate the obstacles. In (a) and (b), the areas in gray indicate
the reachability sets of the two points represented by black circles. In (c), the set A has a small
lookout (the gray area), because only a small subset of points in A near the narrow passage can
see a large fraction of points in B. (From Hsu [192].)

DEFINITION 7.4.2 Let ε be a constant in (0, 1]. A space Qfree is ε-good if for all
x ∈ Qfree,

µ(reach(x)) ≥ εµ(Qfree).

The β-lookout of a subset S of a connected component of Qfreei is the subset of
S for which each configuration in that subset can reach more than a β fraction of
Qfreei \ S. An example is given in figure 7.18(c).

DEFINITION 7.4.3 Let β be a constant in (0, 1] and let S be a subset of a connected
component Qfreei of Qfree. The β-lookout set of S is defined as

lookoutβ(S) = {x ∈ S | µ(reach(x) \ S) ≥ βµ(Qfreei \ S)}.

The following definition captures how reachability spreads across the space.

DEFINITION 7.4.4 Let ε, α and β be constants in (0, 1]. A space is (ε, α, β)-
expansive if

1. it is ε-good, and

2. for any connected subset of S ⊂ Qfree, µ(lookoutβ(S)) ≥ αµ(S).

The first condition of definition 7.4.4 ensures that a certain fraction of Qfree is
visible from any configuration in Qfree. The second condition ensures that each subset
S ⊆ Qfreei has a large lookout set. It is reasonable to think of S as the union of the

Choset-79066 book February 22, 2005 18:11

248 7 Sampling-Based Algorithms

w

Figure 7.19 An example of an (ε, α, β)-expansive Qfree with ε, α, β ≈ w/W . The points
with the smallest ε are located in the narrow passage between square A and square B. Each
such point sees only a subset of Qfree of volume approximately 3wW . Hence ε ≈ w/W . A
point near the top right corner of square A sees the entire square; but only a subset of A, of
approximate volume wW , contains points that each see a set of volume 2wW ; hence α ≈ w/W
and β ≈ w/W . (From Hsu [192].)

reachability sets of a set V of points. Large values of α and β indicate that it is easy
to choose random points from S such that adding them to V results in significant
expansion of S. This is desirable since it allows for a quick exploration of the entire
space. Figure 7.19 gives an example of an expansive space and indicates the values
of ε, α and β.

We now introduce the concept of a linking sequence, which will be used in the
development that follows.

DEFINITION 7.4.5 A linking sequence of length � for a configuration x ∈ Qfree is a
set of configurations x1 = x , x2, . . . , x� with an associated sequence of reachable
sets X1 = reach(x1), X2, . . . , X� ⊂ Qfree, where for all 1 < i ≤ �,

xi ∈ lookoutβ(Xi−1) and Xi = Xi−1 ∪ reach(xi).

The proof of the main result relies on two technical lemmas, whose proofs are
given in [192]. Lemma 7.4.6 gives a bound on the probability of sampling a linking
sequence for a given configuration x in terms of α, ε, and t , the length of the linking
sequence.

LEMMA 7.4.6 Let V be a set of n configurations chosen independently and uniformly
at random from Qfree. Let s = 1/αε. Given any configuration x ∈ V , there exists a
linking sequence in V of length t for x with probability at least 1 − se−(n−t−1)/s .

Lemma 7.4.7 gives a lower bound on the volume of Vt for an arbitrary linking
sequence of length t .

Choset-79066 book February 22, 2005 18:11

7.4 Analysis of PRM 249

LEMMA 7.4.7 Let x1 = x , x2, . . . , xt be a length t linking sequence for x ∈ Qfreei ,
where Qfreei is a connected component of Qfree. Let X1, X2, . . . , Xt be the associated
reachable sets. If t ≥ β−1 ln(4), then

µ(Xt) ≥ 3µ(Qfreei)

4
.

The main result of this section follows. Given a number δ, the theorem finds n such
that if 2n +2 configurations are sampled, then each subgraph Gi is a connected graph
with probability at least 1 − δ. This indicates that the connectivity of the roadmap
G conforms to the connectivity of Qfree. It means that, with high probability, no two
connected components of G lie in the same connected component of Qfree.

THEOREM 7.4.2 Let δ be a constant in (0, 1]. Suppose a set V of 2n+2 configurations
for

n =
⌈

8 ln
(

8
εαδ

)

εα
+ 3

β

⌉

,

is chosen independently and uniformly at random from Qfree. Then, with probability
at least 1 − δ, each subgraph Gi is a connected graph.

Proof Let x and y be any two configurations in the same connected component
Qfreei . Divide the remaining configurations into two sets V ′ and V ′′ of n configurations
each. By lemma 7.4.6, there is a linking sequence of length t for x in V ′ with probability
at least 1 − se−(n−t)/s . The same holds true for y and V ′. Let Xt (x) and Xt (y) be the
reachability sets determined by the linking sequences of length t of x and y. By
choosing t ≥ 1.5β, lemma 7.4.7 is applied to ensure that µ(Xt (x)) and µ(Xt (y))
are larger than 3µ(Qfreei)/4. It follows that µ(Xt (x) ∩ Xt (y)) ≥ µ(Qfreei)/2. It is
known that µ(Qfreei) ≥ ε, because Qfreei is an ε-good space; the visibility region
of any point in Qfreei must have volume at least ε. Since the configurations in V ′′

are sampled independently and uniformly at random, it follows that with probability
at least 1 − (1 − ε/2)n ≥ 1 − e−nε/2, there is a configuration in V ′′ that lies in the
intersection of the reachability sets. This means that there is a path from x to y in Gi .

Let B be the event that x and y fail to connect in Gi . By applying a union bound
and by the linking sequence construction, it follows that

Pr[B] ≤ 2se−(n−t)/s + e−nε/2.

By choosing n ≥ 2t and recalling that s = 1/αε,

Pr[B] ≤ 2se−n/2s + e−nε/2 ≤ 2se−n/2s + e−n/2αε ≤ 3se−n/2s .

Choset-79066 book February 22, 2005 18:11

250 7 Sampling-Based Algorithms

A graph Gi will fail to be connected if some pair x , y ∈ Vi fails to be connected.
There are at most (n

2) such pairs and the probability of this occurring is at most
(

n
2

)

Pr[B] ≤
(

n
2

)

3se−n/2s ≤ 2n2se−n/2s ≤ 2se(−n−4s ln n)/2s ≤ 2se−n/4s ,

where the last inequality follows from the observation that n/2 ≥ 4s ln n for n ≥
8s ln(8s). By requiring that n ≥ 8s ln(8s/δ), it follows that

2se−n/4s ≤ 2se−2 ln(8s/δ) ≤ 2s

(
δ2

8s

)

≤ δ.

It is sufficient to choose n ≥ 8s ln(8s/δ) + 2t for this argument to succeed. By
substituting s = 1/αε and t = 1.5β into this expression, the stated result is
obtained.

Theorem 7.4.2 implies probabilistic completeness, although some additional argu-
mentation is needed. The main limitation of the above analysis is the reliance on
the α, β, and ε constants being nonzero. This will be true for any polyhedral space.
Since any configuration space can be well approximated with a polyhedral space
without changing its connectivity, theorem 7.4.2 holds. A detailed analysis can be
found in [37, 192, 196, 197].

7.4.3 Abstract Path Tiling

In this section, theorem 7.4.1 is generalized by reducing the set of assumptions to a
bare minimum. The new assumptions are sufficient for defining the planner’s sampling
scheme and the notion of reachability. In fact, the structural requirements for the con-
figuration space are very simple and are captured by the mathematical abstraction of a
probability space: essentially a space over which probability can be defined. In the new
framework, the balls used to tile a path in theorem 7.4.1 can be replaced with arbitrary
sets of strictly positive measure. These sets are not necessarily connected or open. The
analysis is introduced in order to considerPRMoperating on motion-planning problems
with difficult configuration spaces, and with complex local planners such as those aris-
ing from motion planning with dynamics, deformable objects, objects with contact,
and others [252]. The framework presented in this section enables a rigorous treat-
ment of asymmetric reachability, nonmanifold configuration spaces, and sampling
from arbitrary distributions. Hence, it reveals the applicability of the PRM scheme to
problems beyond basic path-planning. A detailed analysis can be found in [252].

As before, the distribution for configuration generation is encoded with the proba-
bility measure µ. So if A ⊂ Qfree, then µ(A) is the probability that a random sample

Choset-79066 book February 22, 2005 18:11

7.4 Analysis of PRM 251

Algorithm 15 Random Incremental Algorithm
1: x0 ← x
2: � ← 0
3: loop
4: Check if x� Ry, if so return x0, . . . , x�, y as the computed path
5: Generate x�+1 at random from distribution µ

6: Check if x� Rx�+1, if not return no path

7: � ← � + 1
8: end loop

fromQfree lies in A. The local path planner is further generalized away from a straight-
line planner and is instead replaced with an arbitrary binary relation, R. Informally,
x Ry means y can be reached using the local planner from x . Note that x Ry need
not imply y Rx . More precisely, the set R ⊂ Qfree × Qfree is the set of all query
configurations that can be connected by the local planner. For example, if Qfree ⊂
[0, 1]d and the local planner is a straight-line planner, then

(x , y) ∈ R ⇔ xy ⊂ Qfree.

It is required that R is measurable in Qfree × Qfree. Membership in R is written
interchangeably as (x , y) ∈ R or x Ry.

This section develops two distinct ideas from these definitions. A simple motion
planner based on random incremental construction of a path is stated in algorithm 15.
First, it will be shown that PRM is probabilistically complete if and only if algorithm 15
can answer correctly on every query with nonzero probability. Second, it is proved
that probabilistic completeness implies a bound on Pr[(x , y) FAILURE] similar to
the one stated in theorem 7.4.1.

THEOREM 7.4.3 Algorithm 15 succeeds with nonzero probability on every query if
and only if PRM is probabilistically complete. Furthermore, if PRM is probabilistically
complete, then there exist constants � ≥ 0 and p > 0 such that

Pr[(x , y) FAILURE] ≤ �e−pn ,

where n is the number of configurations in the roadmap.

Proof First, the equivalence between PRM and algorithm 15 is proven. Suppose
that algorithm 15 succeeds on query (x , y) with probability P > 0. The probability
of generating each intermediate point along the path from x to y is the same for

Choset-79066 book February 22, 2005 18:11

252 7 Sampling-Based Algorithms

algorithm 15 and PRM, since they both sample randomly from the same distribution
µ. Hence, PRM succeeds on query (x , y) with probability P > 0.

For the converse, suppose that after constructing the roadmap, PRM succeeds on
query (x , y) with probability P > 0. Choose n to be the minimum number of config-
urations in the roadmap for the previous statement to be true. Since n is the smallest
such number, then every configuration of the roadmap appears exactly once as an
intermediate point of the path connecting x to y. Note that it does not matter in what
order the configurations are generated: the roadmap is permutation invariant. Since
the samples are independent, it suffices to consider only the solutions where the path
is generated in order and conclude that the probability of this occurring is then P

n ! > 0.
Algorithm 15, after running for n iterations, would have probability at least P

n ! > 0
of succeeding.

This concludes the proof of the probabilistic completeness equivalence between
algorithm 15 and PRM. It remains to show that the probability of failure for PRM

decreases exponentially with the number of samples generated.
Define R� to be the �th iteration of R, i.e.,

(x1, . . . , x�) ∈ R� ⇔ x1 Rx2 · · · x�−1 Rx�.

Suppose PRM is probabilistically complete. For any query (x , y), there exists an �

such that a sequence of � guesses is a path from x to y with probability P > 0. Let
S ⊂ R� be the set of guesses which are length � paths from x to y. The probability
of choosing such a sequence of � points is µ�(S) = P > 0 (it can be shown that S is
measurable in Qfree

�). The set S is decomposed into a union of disjoint rectangles, i.e.,

S =
∞⋃

i=1

Ai
1 × · · · × Ai

�.

Choose i such that

µn
(

Ai
1 × · · · Ai

�

) =
�∏

j=1

µ
(

Ai
j

)

is maximized. Observe that it must be larger than zero. Let x1, . . . , x� be any set of
points such that x j ∈ Ai

j . It follows that x Rx1 R · · · Rx� Ry by construction of S. Let

p = min
j

µ
(

Ai
j

)
.

The probability that PRM fails to find a path between x and y after generating n
configurations is therefore bounded by the probability that no such x1, . . . , x� is
contained in the configuration set. Let I j be an indicator variable that witnesses the

Choset-79066 book February 22, 2005 18:11

7.5 Beyond Basic Path Planning 253

event of the configuration set containing a point from Ai
j .

Pr[(x , y) FAILURE] ≤ Pr

[
�∨

j=1

I j = 0

]

≤
�∑

j=1

Pr[I j = 0]

=
�∑

j=1

(
1 − µ

(
Ai

j

))n

≤ �(1 − p)n ≤ �e−pn.

Finally, note that � ≥ 0 and p > 0.

It is interesting to note that the symmetry and reflexivity properties of the local
planner were never used in the proof. In particular, the proof will still hold for an
asymmetric and irreflexive local planner. This is a natural way to incorporate the
notion of time into PRM planning. Also, the sampling distribution is not necessarily
uniform. The obtained bound is of the same form as the previous bounds and shows that
probabilistic completeness ensures an inverse exponential bound on failure probability
in terms of the number of configurations in the roadmap.

7.5 Beyond Basic Path Planning

Sampling-based planners are becoming powerful and this allows the solution of prob-
lems beyond the generalized movers’ problem. Some instances are considered here.

7.5.1 Control-Based Planning

Control-based planning was initially introduced in the context of planners that used
discretization [41]. The notion, however, extends naturally to sampling-based planners
and the principal ideas are introduced here. This section, however, should be read in
conjunction with the material introduced in chapters 11 and 12.

Consider a nonholonomic robot such as a carlike robot, or any type of system
for which we are given a set of controls U and a well-behaved control function f ,
f : Q×U → Q that describes a method for propagating a robot state into the future.
Many of the sampling-based planners that have been described in this chapter can be
used with such systems.

Choset-79066 book February 22, 2005 18:11

254 7 Sampling-Based Algorithms

In particular, when f is given, a simple way of generating new samples in the
state space may be available, e.g., a new state can be obtained by sampling according
to some distribution of values for the controls, and applying these to the system
state via f . Several applications of random controls can yield a configuration far
away from the original sample. When such a forward propagation of the system is
relatively inexpensive, tree-based planners such as ESTs and RRTs can be directly
applied. The sampling method of EST is purely a forward propagation method as it
is explained in section 7.2.1. RRTs use steering to produce new configurations but do
not require the system to achieve the configurations toward which it is steered (see
section 7.2.2). In most cases when the above planners are applied to control-based
planning a single tree is generated from the initial configuration. Planning finishes
when the goal configuration is reached or approximated with a predefined accuracy.
EST and RRT planners have been used with success for several problems with robots

that exhibit various kinematic and dynamic constraints [41, 192, 195, 196, 235, 249,
270–272,350] as well as stability constraints [247,248]. Examples of such problems
are illustrated in figure 7.20. Time can also be accommodated as part of the state
space of the robot. This allows the modeling of a dynamic workspace (e.g., [195]).

In some cases, it may be possible to solve for the set of controls that are required to
travel between two given states either exactly or approximately. Then the application
of PRM is possible. PRM has been applied successfully to path-planning for nonholo-
nomic systems, such as carlike robots and tractor-trailer systems [379, 404, 405].

7.5.2 Multiple Robots

The multiple movers problem deals with path planning for many robots. A collision-
free path from an initial configuration of the robots to a goal configuration of the
robots implies that at every step there is no collision between a robot and an obstacle
or between a robot and another robot. A solution to this problem, in addition to finding
paths for the individual robots (which only guarantee that there are no collisions with
the obstacles), must be able to coordinate these paths so that no two robots are in
collision. This second requirement makes the problem significantly harder than in
the case of a single robot. There are two classic approaches to the multiple robots
problem: centralized and decoupled planning.

Centralized Planning

Centralized planning considers the different robots as if they were forming a sin-
gle multibody robot and represents Q as the Cartesian product of the configuration
spaces of all the robots. The dimensionality of Q is equal to the total number of

Choset-79066 book February 22, 2005 18:11

7.5 Beyond Basic Path Planning 255

(a)

(b) (c)

Figure 7.20 Control-based planning examples. (a) Car driving. (b) Humanoid robot. (c) Space
shuttle docking at the space station—the yellow cones represent the plume of the shuttle that
should not be directed toward the space station. ((a) From LaValle and Kuffner [272]; (b) from
Kuffner [248]; (c) from Phillips, Kavraki, and Bedrossian [350].)

degrees of freedom of all the robots. Coordination of the robots is trivially achieved:
a collision-free configuration inQ describes the configuration of each individual robot
and ensures that no robot is in collision with some obstacle or some other robot. The
difficulty of centralized planning arises from high the dimensionality of Q. As plan-
ners become more efficient in dealing with high-dimensional configuration spaces Q,
harder problems with multiple robots can be solved. Figure 7.21 shows a workspace
where six robots cooperate on a welding task [367].

Choset-79066 book February 22, 2005 18:11

256 7 Sampling-Based Algorithms

Figure 7.21 Multiple robots manipulating a car. (From Sánchez and Latombe [367].)

Decoupled Planning

Decoupled planning works in two stages. Initially, collision-free paths are computed
for each robot individually, not taking into account the other robots but simply con-
sidering the obstacles of the workspace. In the second stage, coordination is achieved
by computing the relative velocities of the robots along their individual paths that will
avoid collision among them [219]. Decoupled planning does not increase the dimen-
sionality of the configuration space. It is incomplete, however, even when the algo-
rithms used in both of its stages are complete: it may be impossible to coordinate
some of the paths generated during the first stage so that two different robots do not
collide. Alternatively, in what is known as prioritized planning, robots are processed
in some preassigned order and a robot is treated as a moving obstacle as soon as its
path has been computed.

Planners for the Multiple Robots Problem

In principle, all sampling-based planners of this chapter can be adapted for multiple
robots. Some key changes may be needed to retain good performance. For example,
ESTs and RRTs can be used directly, as presented in section 7.2 but their perfor-
mance can be improved with small modifications. A proposed scheme for connecting
an existing configuration in the tree to a random configuration qrand has been pro-
posed [14]. Each robot is moved incrementally toward qrand. The path is checked for
collisions by adding one robot at a time and checking for collisions with the obstacles
and with the previous robots. If a collision is found, then a new random configuration
for the robot being added is generated. Although this local planner is more expensive

Choset-79066 book February 22, 2005 18:11

7.5 Beyond Basic Path Planning 257

than checking all robots simultaneously, it is considerably more effective in covering
the space. The configuration returned by the call is the final configuration that was
computed. In the case where no robot can move, no configuration is returned. It has
been observed [14, 43] that this strategy avoids the problem of producing many con-
figurations close to obstacles, a problem that arose from the direct application of EST
and RRT algorithms to multiple robots.

The SRT [14, 43] algorithm presented in section 7.3 can be adapted to efficiently
plan for multiple robots. SRT uses a prioritized approach for the computation of each
edge on the roadmap and an incremental centralized approach for the computation of
the configurations at the endpoints of the edges. An advantage of SRT is that it can be
run in parallel to cut the cost of computation for solving planning problems involving
many robots.

7.5.3 Manipulation Planning

Another important area of motion planning is manipulation planning [15, 16, 36,
170, 241–243, 335]. An example that involves an animated character manipulating
different objects is given in figure 7.22. The objective is to move certain objects from
some initial configuration to a goal configuration while avoiding collisions with the
other objects and obstacles. Initially, the objects are static and at stable positions, e.g.,
resting against the obstacles or other stable objects. Since the objects cannot move
autonomously, the robot must grasp the object and move it from one stable position to
another, until it obtains the desired arrangement. A set of grasping positions at which
the objects can be grasped by the robot is given to the planner.

Figure 7.22 Manipulation example. (Courtesy of J. C. Latombe.)

Choset-79066 book February 22, 2005 18:11

258 7 Sampling-Based Algorithms

One approach to manipulation planning is to model the problem as fully dynamic
and use control-based planning. This is expensive, however, and thus other approaches
have been developed that make a distinction between the transit and transfer parts
of the path [16, 264]. Transfer paths are defined as motions of the system while the
robot grasps the object. Transit paths are defined as motions of the robot when it is not
grasping an object as it moves from one grasp to the next. The manipulation planner
is also responsible for computing regrasping operations. Fast planners are needed for
all three subproblems.

Initial attempts to solve the manipulation problem [241,243] for robots with many
degrees of freedom proceed by finding a path for the object from qinit to qgoal. The
planner then computes a series of transfer and transit paths for the robot that make it
possible for the object to move along the path computed in the first stage. Variational
dynamic programming [36] methods have also been used. A manipulation path is
initially computed by assuming that the object and the robot move independently.
Then an iterative process deforms the path to satisfy the constraints that the object
can only move when it is in a proper grasp.

In [335] a two-level PRM is developed to handle manipulation planning. The first
level of the PRM builds a manipulation graph, whose nodes represent stable placements
of the manipulated objects while the edges represent transfer and transit actions. The
second level of the PRM does the actual planning for the transfer and transit paths. The
computation is made efficient by verifying that the edges are collision-free only if they
are part of the final path. Otherwise, the local planner assigns a probability to the edge
that expresses its belief that the edge is collision-free. The resulting planner, called
FuzzyPRM, is yet another example of how sampling and connection strategies can be
used in the context of PRMs. More advanced recent methods use several specialized
roadmaps to address more complex problems and use manipulation planning as a
vehicle to connect task level AI planning and motion planning [170].

Manipulation is a broad topic in itself that has also been addressed with tech-
niques that do not fall under the general category of motion planning. For example,
parts feeding often relies on nonprehensile manipulation. Nonprehensile manipula-
tion exploits task mechanics to achieve a goal state without grasping and frequently
allows accomplishing complex feeding tasks with few degrees of freedom. It may
also enable a robot to move parts that are too large or heavy to be grasped and lifted.
Pushing is one form of nonprehensile manipulation. Work on pushing originated
in [311] where a simple rule is established to qualitatively determine the motion of
a pushed object. A number of interesting results followed: among them were the
development of a planning algorithm for a robot that tilts a tray containing a planar
part of known shape to orient it to a desired orientation [146], the development of an
algorithm to compute the shape of curved fences along a conveyor belt to reorient

Choset-79066 book February 22, 2005 18:11

7.5 Beyond Basic Path Planning 259

a given polygonal part [426], and the demonstration of a sequence of motions of
a single articulated fence on a conveyor belt that achieves a goal orientation of an
object [13]. A frictionless parallel-jaw gripper was used in [166] to orient polygo-
nal parts. For any part P having an n-sided convex hull, there exists a sequence of
2n − 1 squeezes achieving a single orientation of P (up to symmetries of the convex
hull). The result has been generalized to planar parts having a piecewise algebraic
convex hull [358]. It was later shown how to use a combination of squeeze and roll
primitives to orient a polygonal part without changing the orientation of the grip-
per [317]. Last but not least, distributed manipulation systems provide another form
of nonprehensile manipulation. These systems induce motions on objects through the
application of many external forces and are realized typically on a flat surface. One
way of implementing such forces is through the use of MicroElectoMechanical Sys-
tems (MEMS). Algorithms that position and orient parts based on identifying a finite
number (depending on the number of vertices of the part) of distinct equilibrium
configurations were given in [56]. Subsequent work showed that using a carefully
selected actuators field, it is possible to position and orient parts in two stable equi-
librium configurations [220]. Finally, a long standing conjecture was proven, namely
that there exist actuators fields that can uniquely position and orient parts in a single
step [55, 256, 399]. On the macroscopic scale it was shown that in-plane vibration
can be used for closed-loop manipulation of objects using vision systems for feed-
back [363], that arrays of controllable airjets can manipulate paper [431] and that foot-
sized discrete actuator arrays can handle heavier objects under various manipulation
strategies [302].

7.5.4 Assembly Planning

An assembly operation is typically defined as a merging motion of pairwise-separated
subassemblies into a new assembly. Two subassemblies are considered separated if
they are arbitrarily far apart from each other. During the operation each assembly is
treated as a single body and is not allowed to overlap with other subassemblies.

The assembly planning problem can be cast in a path-planning framework by con-
sidering one of the subassemblies that is to be merged as the robot and the other
as the workspace. The objective then becomes to find a collision-free path for the
moving subassembly to its final configuration. PRMs, ESTs, and RRTs have been used
successfully to solve these problems [192]. Using planners for determining merging
(or, equivalently, removal) paths for parts has important applications in the manufac-
turing cycle of new mechanical assemblies. E.g., when a new engine is designed, the
CAD model of the engine is available. Using this model a planner can test the removal
of various parts for maintainability purposes. Figure 7.2(d) shows such an example,

Choset-79066 book February 22, 2005 18:11

260 7 Sampling-Based Algorithms

Figure 7.23 An example of assembly planning. The objective is to separate the two α-shaped
pieces. (From Amato et al. [18].)

while figure 7.23 shows an assembly that is frequently used to test how well planners
can deal with the narrow passage problem.

It is worth noting that work on assembly planning has given rise to interesting
analysis methods in robotics. Besides planning, researchers have tried to analytically
determine the order in which the different parts of an assembly need to be assembled
[230, 428, 429] by using the NonDirectional Blocking Graph (NDBG) [428], which
represents all the blocking relations in a polygonal assembly.

7.5.5 Flexible Objects

Motion planning for flexible objects [22, 224, 255, 318] is an important problem
as several applications could benefit from planners that account for the physical
properties of the manipulated objects. For example, in industrial settings there is a need
to handle sheets of metal, pipes that can bend, and cables. In assembly maintainability
studies done with virtual prototyping, planning is used to compute a removal path for
a part from an assembly, given only the CAD model of the assembly. The flexibility of
the part needs to be considered as engineers use deformable parts to produce compact
assemblies. In medical and surgical procedures, flexible catheters are inserted in
human vessels. Accurate planning studies may help in choosing the size and properties
of the catheter to be used. In computer-assisted pharmaceutical drug design, path-
planning techniques are used to compute paths for drug molecules to their docking
sites. In that context, the rigorous treatment of the physical properties of the drug
molecule, expressed by its energy, is crucial for obtaining sequences that are of low
energy and can thus be encountered in nature.

A major difficulty in planning for flexible objects stems from the fact that the con-
figuration space is potentially of infinite dimension. So there is a need for geometric

Choset-79066 book February 22, 2005 18:11

7.5 Beyond Basic Path Planning 261

representations that approximate well the possible shapes of the flexible object and
are still compact in terms of the number of parameters used. The energy of the object
needs to be taken into consideration as a path must not only be collision-free but also
energetically feasible. For example, if an elastic object is manipulated, care must be
taken to not bend or stretch the object excessively and permanently deform it. This
is achieved by keeping the elastic energy of the object below a predefined energy
threshold. The computation of the energy is typically expensive [224]. Presently,
there is no efficient way to relate the geometric representation of a flexible object
to its flexibility/deformation properties except in specific cases [318, 319]. Collision
checking is finally a significant bottleneck for path planning for flexible objects. In
modern collision checking packages, some preprocessing of the robot is done to com-
pute an internal representation that is used to speed up collision checking [168]. As the
shape of the flexible robot changes continuously, such preprocessing is not possible
and, as a result, collision checking is very expensive.

One approach to obtaining realistic (physical) paths for flexible objects is to create
roadmaps of quasi-static nodes and then to connect the nodes using interpolating paths
of low-energy configurations. Quasi-static configurations can be found by energy
minimization or by physics-based simulation. Figure 7.24 shows a path for a thin
elastic metal sheet. In the considered setting, two actuators control the deformation of
the metal sheet by constraining the position of the two opposite sides of the sheet. The
path has been computed by the application of PRM [255]. Configurations of the object
in the roadmap are produced by first obtaining a low-energy random deformation and
then a random configuration with that deformation. Any computed paths keep the
elastic energy of the sheet below an energy minimum to avoid permanent deformations

Figure 7.24 An example of planning for flexible objects. The metal sheet needs to bend to
go through the hole. (From Kavraki [224].)

Choset-79066 book February 22, 2005 18:11

262 7 Sampling-Based Algorithms

of the object. Local deformation fields over the volume of the object can be used to
describe its deformation [255]. The choices for the local planner and the distance
measure in the above framework are nontrivial.

Recently, it has been shown that, in certain cases, it is possible to obtain geometric
representations for the flexible object that enforce certain physical properties of the
flexible object. For example, in [318,319] a low-dimensional representation is given
for a three-dimensional curve that enforces the length of the curve to be constant.
Hence there is no need for optimization procedures to maintain the the constant
length constraint, which in general speeds up computation. PRM roadmaps of low-
energy curves manipulated by actuators at their end points can then be constructed.

Finally, planning for flexible objects raises the issue of variable parametriza-
tion methods for the objects/robots [251]. It is sometimes necessary to change the
parametrization over time to capture the shape of the object as accurately as possible,
or to reduce the number of parameters of the problem, if the latter is feasible. When
planning with a variable parametrization, rules for relating motion between different
parametrizations must be established. In this case, the planner needs a mechanism
for deciding how much and when to reparametrize. The energy of the system can
also be seen as a heuristic that drives the exploration of tree sampling-based motion
planners [251].

In summary, planning for flexible objects raises important questions and challenges
to motion planning research. Planning for flexible objects in contact with obstacles
remains a largely unexplored problem.

7.5.6 Biological Applications

Motion planning algorithms can also be applied to problems from computational
structural biology [20, 23–25, 387, 408, 409, 433]. The problems in this domain are
high-dimensional and of a complexity that tests the limits of current motion-planning
algorithms. This section considers protein folding and protein-ligand docking. The
first problem is a long-standing open problem in biochemistry. The second prob-
lem is central to understanding biomolecular interactions that regulate biochemical
processes and can lead to the generation of new therapeutics. An example of fold-
ing is given in figure 7.2(g). Different three-dimensional representations of a widely
targeted protein and a ligand are shown in figure 7.25.

A protein is a linear sequence, or polymer, of amino acid residues. The genome
codes for twenty different residues give rise to a great variety of possible protein
sequences, and a corresponding variety in three-dimensional structure and func-
tion. Proteins are broadly classified by their function: enzymes catalyze biochem-
ical reactions; regulatory proteins modulate gene expression; peptide hormones and

Choset-79066 book February 22, 2005 18:11

7.5 Beyond Basic Path Planning 263

(a) (b)

(c) (d)

(e) (f)

Figure 7.25 Docking examples. (a) HIV-I protease and docked ligand (PDB ID 4HVP), where
the receptor (HIV-I protease) is rendered as a Connolly surface. The complex was obtained
using x-ray crystallography. (b) Receptor—HIV-I protease—rendered with backbone atoms
only. (c) Receptor rendered showing α-helices and β-sheets. (d) Receptor rendered as linkage.
(e) Receptor rendered as stick model. (f) Receptor’s backbone rendered as a tube. In all figures,
the ligand is rendered using a sphere for each of its atoms and can be found close to the center
of the HIV-I protease.

Choset-79066 book February 22, 2005 18:11

264 7 Sampling-Based Algorithms

signaling proteins carry chemical messages both within and between cells; and struc-
tural proteins make up microfilaments and microtubules, which act as frameworks
and molecular transport routes within cells, as well as macroscopic structures such
as hair, claws, and silk.

Folding and Docking

A guiding principle in biochemistry is that molecular structure determines function.
This is particularly evident in proteins where the biological function is strongly deter-
mined by the protein’s ability to fold into a stable three-dimensional structure, also
known as its native configuration. It is very important that proteins be able to reach
and maintain their native configuration since failure to do so would render the protein
nonfunctional. The pathway that the protein follows to reach its native configura-
tion is hard to determine experimentally because the intermediate steps usually occur
too rapidly to detect. The folding problem is concerned with trying to understand and
characterize the sequence of motions followed by a protein to go from a disorganized,
unfolded state to its highly ordered native configuration. A number of diseases result
from the misfolding of a particular protein, so an understanding of how normal pro-
teins fold may eventually aid medical researchers in understanding what goes wrong
when a protein misfolds, and what medical intervention may ultimately be possible.

Docking is an equally important problem. The biological function of enzymatic
and signaling proteins is often achieved by their ability to bind transiently to and react
with smaller molecules, known as ligands. This binding (docking) usually takes place
in a distinctive cleft in the protein’s surface known as the binding pocket or active
site. The ability of a receptor protein to dock a given prospective ligand depends on
the geometric matching of the ligand and the binding pocket, as well as the presence
of stabilizing chemical interactions between atoms of the ligand and atoms on the
surface of the binding pocket. When the receptor succeeds in docking a ligand the
free energy of the biomolecular complex is lower in the docked configuration than
any other possible configuration of the complex. Many drugs act by blocking the
active site of an enzyme or by binding to a signaling protein and either blocking it or
enhancing its activity (see figure 7.25). Finding a new drug candidate starts by finding
a compound that binds to a particular site on a protein’s surface. The screening of a
large number of potential ligands or drug candidates in the laboratory is very slow
and expensive. Computational docking methods therefore offer substantial savings
in both time and money to pharmaceutical researchers by providing promising leads
from a database of hundreds of thousands of known compounds, given a particular
receptor. Laboratory tests can then proceed only on those compounds predicted to
dock well in simulation.

Choset-79066 book February 22, 2005 18:11

7.5 Beyond Basic Path Planning 265

Several researchers have used sampling-based motion-planning techniques for pro-
tein folding and docking problems [20,23–25,387,408,409]. The notion of configu-
ration space offers a layer of abstraction that allows for problems from other areas to
be cast as motion-planning problems.

Application of PRM Methods

Any molecule can be seen as a collection of atoms and bonds between pairs of atoms.
An underlying graph representation of a molecule can be constructed with atoms
at the vertices and bonds on the edges. A common simplification that works for
most molecules is to represent a cycle in the graph, which corresponds to a ring in
the molecule, as a single special atom that is connected by bonds to the rest of the
molecule. It follows then that the underlying graph is a tree. One atom, called the
anchor, is chosen arbitrarily as the root of the tree. Thus the molecule is represented
as a treelike articulated robot [433]. For each atom, information is kept about its mass,
van der Waals radius, and other physical properties relevant to predicting interactions
with other atoms. For each bond, information is kept about the bond length, which
is the separation distance between the two atoms the bond connects; the bond angle,
which is the angle between a given bond and the previous bond in the direction
toward the anchor atom; and the set of possible torsional (or dihedral) angles, which
expresses the possible rotations of the structure at one end of the bond with respect
to the structure at the other end. A bond is fixed if its dihedral angle must remain
constant, otherwise it is rotatable. A common assumption is to consider bond lengths
and angles as fixed, with dihedral angles as the only variables. Figure 7.26 offers an

Figure 7.26 An example of a small molecule where arrows indicate rotatable bonds.

Choset-79066 book February 22, 2005 18:11

266 7 Sampling-Based Algorithms

example for a small ligand. A small ligand may have 5–15 dihedral angles, while a
protein has a few hundreds of dihedral angles. Robotics methodologies can be used
to encode dihedral angles and efficiently compute molecular configurations [433].

Both folding and docking involve the exploration of a high-dimensional energy
landscape for low-energy configurations or complexes. For a PRM roadmap that aims
to explore the energy landscape of a small protein, node configuration can be gen-
erated by selecting uniformly at random values for the dihedral angles from their
allowable range. Random configurations, however, do not all correspond to feasible
configurations of the molecule that can be observed experimentally. The validity of a
configuration is determined by the potential energy of the corresponding configura-
tion, denoted Econfig. The potential energy of a configuration depends on the properties
of the atoms and the values of the dihedral angles and can be explicitly computed [387].
A configuration is considered feasible if its potential energy is below some threshold
Emax. In addition to detecting unfavorable interactions, the use of an energy cutoff
implicitly allows collision detection: most force fields include a term that imposes
an exponential energetic penalty for overlapping atoms. In [21, 387], the following
probability is used to add a configuration to the roadmap:

Pr(config is accepted) =

0, ifEconfig > Emax

Emax−Econfig

Emax−Emin
, ifEmin ≤ Econfig ≤ Emax

1, ifEconfig ≤ Emin.

Selecting configurations as shown above results in denser sampling of low-energy
configurations. For each configuration, a set of k closest neighbors is computed using
either the Euclidean or least-root-mean-square distance as the metric. Neighboring
configurations are connected by performing linear interpolation between the two
configurations and checking that all the intermediate configurations correspond to
feasible configurations. A weight is associated with each local path that reflects the
difficulty of traversing the path. The probability of traversing a path is computed by
using the energy of each intermediate configuration. Based on the ideas presented
above, roadmaps have been constructed for exploring the energy landscape for the
docking problem [387]. Also PRM roadmaps are used for tracing protein-folding or
RNA-folding pathways [20,21,408] when the native configuration is known. Finally,
for exploring the energy landscape of a protein a novel method influenced by PRM has
been developed. Stochastic Roadmap Simulation [23–25] allows the simultaneous
analysis of motion pathways and the computation of ensemble properties over the
entire molecular energy landscape.

Computational structural biology offers challenging problems of unprecedented
scale. Some promising solutions are currently influenced by a robotics methodology.

Choset-79066 book February 22, 2005 18:11

Problems 267

It is conceivable that, in the near future, we could see novel robotics planning methods
inspired by biological problems.

Problems

1. You are given a rigid-body robot that can freely translate and rotate in an empty three-
dimensional box. Quaternions are used to represent the configurations of the robot.
Implement a procedure that generates random free configurations of the robot. Implement
an efficient planner that connects two configurations.

2. Implement a procedure that determines if two polygons in a plane are in collision.

3. Implement an efficient local planner for four robots that move in the plane. There are no
obstacles.

4. Define two functions to compute the distance between two configurations of three-
dimensional rigid and articulated robots and discuss their advantages and disadvantages.

5. Implement the closest neighbors query using one of the distance functions defined in the
previous problem and a grid-based approach.

6. Implement a basic PRM planner for a single robot operating in a two-dimensional Euclidean
space. Assume that the robot and the obstacles are polygons.

7. Modify your implementation of PRM to include one of the sampling strategies discussed in
section 7.1.3, e.g., Gaussian, bridge-test, and so on.

8. Implement one of the path-smoothing strategies discussed in section 7.1.2.

9. Implement a tree-based planner such as SBL or RRT for a point robot. Display the generated
trees.

Choset-79066 book February 22, 2005 17:27

8 Kalman Filtering

HERETOFORE, WE have assumed that the planner has access either to an exact geomet-
ric description of its environment, or to a suite of sensors (e.g., sonars) that provide
perfect information about the environment. In this chapter, we begin to consider cases
for which the robot’s knowledge of the world derives from measurements provided
by imperfect, noisy sensors.

The Kalman filter is one of the most useful estimation tools available today. Loosely
speaking, Kalman filtering provides a recursive method of estimating the state of a
dynamical system in the presence of noise [215, 313]. A key feature of the Kalman
filter is that it simultaneously maintains estimates of both the state vector (x̂) and the
estimate error covariance matrix (P), which is equivalent to saying that the output
of a Kalman filter is a Gaussian probability density function (PDF) with mean x̂
and covariance P . In the context of localization, the Kalman filter output is then a
distribution of likely robot positions instead of a single position estimate. As such, the
Kalman filter is a specific example of a more general technique known as probabilistic
estimation. Some of more general probabilistic estimation techniques are presented
in chapter 9.

We begin this chapter by presenting a conceptual overview of probabilistic estima-
tion in section 8.1. Section 8.2 carefully derives the Kalman filter for linear systems.
The approach taken here begins with a simplified version of the problem, then gradu-
ally adds complexity until the full Kalman filtering equations are reached. Section 8.3
describes the extended Kalman filter (EKF), which is a Kalman filtering variant that
can be used on nonlinear systems. Examples that use the EKF for mobile robot local-
ization are presented and discussed. Section 8.4 concludes the chapter by introducing

Choset-79066 book February 22, 2005 17:27

270 8 Kalman Filtering

the problem of simultaneous localization and mapping (SLAM) and showing how it
can be solved using a Kalman filter.

8.1 Probabilistic Estimation

In this section, we introduce the concept of probabilistic estimation by considering
the fundamental problem of estimating the location of a mobile robot. Probabilistic
localization is a probabilistic algorithm: instead of maintaining a single hypothesis
as to where in the world a robot might be, probabilistic localization maintains a
probability distribution over the space of all such hypotheses. The probabilistic rep-
resentation allows for the uncertainties that arise from uncertain motion models and
noisy sensor readings to be accounted for in a principled way. The challenge is then to
maintain a position probability density over all possible robot poses. Such a density
can have arbitrary forms representing various kinds of information about the robot’s
position. For example, the robot can start with a uniform distribution representing
that it is completely uncertain about its position, i.e., that the robot could be in any
location with equal probability. It furthermore can contain multiple modes in the case
of ambiguous situations. In the usual case, in which the robot is highly certain about
its position, it consists of a unimodal distribution centered around the true position of
the robot. This chapter discusses Kalman filtering, which is a form of probabilistic
estimation where the estimate is assumed to be a Gaussian (unimodal) PDF. Other
probabilistic estimation methods, such as Bayesian methods and particle filtering, can
handle more general distributions and are discussed in chapter 9.

One crude method of mobile robot localization is achieved by simply integrating
robot velocity commands from a known starting position. When the commands are
executed perfectly and the robot starting position is perfectly known, this method
gives a perfect estimate of position. Of course, perfect performance and knowledge are
impossible to achieve in the real world. Errors between the velocity commands and the
actual robot velocities will accumulate over time. In other words, as the robot moves,
it is continuously losing information about its location. Eventually, the robot will lose
so much information that the command integration estimate becomes meaningless for
any practical purpose. A similar approach is to integrate robot velocity measurements
reported by onboard odometry sensors. Figure 8.1 shows typical odometry data of a
B21 robot as it is recorded with its odometry sensors. Note that the error in odometry
quickly accumulates over time up to a rotational error of almost 45 degrees.

With just a few extensions, command integration can be thought of as a probabilistic
estimation method. First, consider the robot starting location. Since, in the real world,
the starting position cannot be perfectly known, it makes sense to represent the starting

Choset-79066 book February 22, 2005 17:27

8.1 Probabilistic Estimation 271

Figure 8.1 Odometry measurements of a B21 robot.

location as a PDF over the state space, i.e., the space of possible robot positions. If
a good estimate of the starting position is available, the PDF will have a peak at that
location, and the “sharpness” of the peak will represent the certainty of the initial
estimate: the more certain the initial estimate, the higher and narrower the peak.
Now the challenge is to propagate this PDF as the robot moves. The location of the
peak is propagated by integrating the velocity commands just as before. However,
since the commands are not executed perfectly, the estimate becomes more uncertain
as time progresses and the peak of the PDF will become smaller and more spread
out. The rate at which the peak spreads is determined by the amount of error (noise) in
the velocity command: the greater the noise, the faster the peak spreads. Eventually,
the peak will become so flat that the estimate provided by the PDF is meaningless.

It goes without saying that the goal of probabilistic estimation (or any estimation
method, for that matter) is to provide a meaningful estimate of the system state, which
in this case is the robot pose. The problem with the command integration method is that
information is continually lost and no new information is ever gained. The solution to
this is to inject new information into the system through the use of sensors that gather
infomation about the environment. Consider, e.g., a robot equipped with a sensor
capable of measuring the range and bearing to a landmark with a known location.
Such a measurement adds new information to the system and can be used (at least
partially) to compensate for the information that was lost by integrating. The new

Choset-79066 book February 22, 2005 17:27

272 8 Kalman Filtering

information can be represented as a PDF in sensor space, usually with a peak at the
value of the sensor reading. As we have already described, knowledge about the robot
location prior to the sensor measurement is described by a PDF in the state space.
The crux of the probabilistic estimation problem is to merge these two distributions
in a meaningful way.

Generally, any probabilistic estimation method can be thought of as a two–step
process of prediction and update. Given an estimate of the system state in the form of
a PDF, the prediction propagates the PDF according to robot commands together with
a motion model for the robot. The update step then corrects the prediction by merging
the predicted PDF with information collected by the sensors. The “new” estimate is
given by the updated PDF, and the process is iterated. Note that in each iteration, the
prediction step accounts for the information lost due to errors in the motion model
while the update step incorporates information gained by the sensors.

The following sections describe the well-known Kalman filter, which is a specific
probabilistic estimation technique. In Kalman filtering, the motion model is assumed
to be a linear function of the state variables and the inputs (commands). The quantities
measured by the sensors are assumed to be linear functions of the state variables.
Errors in both the motion model and the sensor model are assumed to be zero-mean
white Gaussian noise. Because of this simple form, it is possible to derive closed-
form equations to perform the prediction and update steps, making Kalman filter
implementation a straightforward process.

8.2 Linear Kalman Filtering

One reason that Kalman filtering has become such a popular estimation method is that
it is extremely easy to implement for linear systems. The equations in section 8.2.5
can be implemented directly with little understanding of the underlying theory. This
feature makes Kalman filtering useful and accessible to a broad range of potential
users, but it does not mean that the underlying theory is unimportant. In fact, most
modern applications of Kalman filtering employ substantial modifications of the orig-
inal equations. For example, modifications are necessary to address nonlinear sensor
models or non-Gaussian noise models in robot localization and mapping problems.
Other modifications are often used to reduce computational complexity.

This section is intended to provide the reader with an understanding of the funda-
mentals of Kalman filtering for linear systems. The approach taken here is intuitive
and uses basic facts from geometry and linear algebra to reconstruct Kalman’s equa-
tions. Some knowledge of multivariate Gaussian distributions is assumed (see the
statistics primer in appendix I for an overview). We begin with a simplified version

Choset-79066 book February 22, 2005 17:27

8.2 Linear Kalman Filtering 273

of the Kalman filtering problem to illustrate the basic concept, then we incrementally
add complexity until we arrive at the full Kalman equations. An example illustrat-
ing the application of the Kalman filter equations is presented, and the property of
observability in linear systems is introduced. With the understanding provided here,
the reader should be able to modify the Kalman filter to fit the needs of a specific
estimation problem.

8.2.1 Overview

In order to apply Kalman filtering to the problem of robot localization, it is neces-
sary to define equations that can be used to model the dynamics and sensors of the
robot system. The vector x is used to denote the system (robot) state as it evolves
through time. This chapter uses discrete time models, meaning that the continuously
varying robot state is sampled at discrete, regularly spaced intervals of time to create
the sequence x(k), k ∈ {0, 1, 2, . . .}. Specifically, if x(0) is the value of the state at
time t = t0, then x(k) is the value of the state at time t0 + T k, where T is defined to
be the sampling time step.

For now we assume that the evolution of the robot state and the values measured
by the robot sensors can be modeled as a linear dynamical discrete–time system:

x(k + 1) = F(k)x(k) + G(k)u(k) + v(k)(8.1)

y(k) = H (k)x(k) + w(k).(8.2)

The vector x(k) ∈ R
n denotes the full system state. The vector u(k) ∈ R

m is used to
represent the system input such as velocity commands, torques, or forces intentionally
applied to the robot. The vector y(k) ∈ R

p is the system output and contains the values
reported by the system sensors. The matrix F(k) ∈ R

n×n encodes the dynamics of the
system, and G(k) ∈ R

n×m describes how the inputs drive the dynamics. The vector
v(k) ∈ R

n is called the process noise and is assumed to be white Gaussian noise with
zero mean and covariance matrix V (k).1 The process noise is used to account for
unmodeled disturbances (such as slipping wheels) that affect the system dynamics.
The matrix H (k) ∈ R

p×n describes how state vectors are mapped into outputs. The
measurement noise vector w(k) ∈ R

p is assumed to be white Gaussian noise with
zero mean and covariance matrix W (k). Here we assume that H (k) is full row rank
for all k, although it may not be square.

1. Here the term “white” means that the vector v(k) is independent of v(k − 1) for all k. The properties of
a Gaussian distribution, which is defined entirely by its mean vector and covariance matrix, is discussed
in more detail later in this chapter.

Choset-79066 book February 22, 2005 17:27

274 8 Kalman Filtering

The objective of Kalman filtering is to determine the “best” estimate of the state x
at the kth time step given a previous estimate together with the known input u(k) and
output y(k). In order to achieve this there are two separate difficulties that must be
overcome. The first is the presence of the unknown and unmeasurable noise vectors
v(k) and w(k). Hence, as its name implies, one task of the Kalman filter is to filter out
these unwanted disturbances. The second difficulty is that the state in general cannot be
directly observed from the outputs because H (k) may not be invertible. This means
that the state estimate must be reconstructed using the time history of the known
signals y(k) and u(k) together with known parameters F(k), G(k), H (k), V (k), and
W (k).2 A device that does this is called an observer. The Kalman filter is both an
observer and a filter.

In this section we build up to Kalman’s equations by first building an observer
for a system with no measurement noise. Specifically, we derive the equations for a
simple two-step observer using only a few simple facts from linear algebra. We then
introduce the concept of using a multivariate Gaussian distribution as a state estimate,
and we rederive the simple observer equations that use this kind of estimate. This
leads naturally to the derivation of the Kalman filter equations for linear discrete time
systems.

8.2.2 A Simple Observer

Here we consider a linear discrete time system with no noise:

x(k + 1) = F(k)x(k) + G(k)u(k)(8.3)

y(k) = H (k)x(k)(8.4)

Here, H (k) is assumed to be full row rank at every k. The objective is to build an
observer for this system, i.e., we would like to find a set of equations that allows us
to reconstruct the state x . The observer we build will be recursive3: it will take the
most recent estimate together with the most recent input u and output y, and then
return the next estimate. If the observer works (and the assumptions are valid), then
the estimate will converge to the actual value of x over time.

Before we begin deriving the necessary equations, we first introduce some notation
to make the job of keeping track of the estimate easier. Given two integers k1 and k2

2. For this to be possible the pair (F, H) must be observable, a property which is discussed briefly in
section 8.2.7. Observability is also discussed in the overview of linear time invariant control systems
in appendix J. A more thorough discussion can be found in any good linear systems theory textbook,
e.g., [214].
3. Note that the definition of recursive is subtly different from what is commonly found in computer
science.

Choset-79066 book February 22, 2005 17:27

8.2 Linear Kalman Filtering 275

with k1 ≥ k2, we use x̂(k1 | k2) to denote the value of the state estimate at time k1

given the value of the output at all times up to k2. The symbol x̂(k1 | k2) is pronounced
“x hat at k-one given k-two.” This notation may seem cumbersome at first, but its
usefulness will soon become apparent.

Now the observer follows an intuitive two-step process. Given the current state
estimate x̂(k | k), we first generate a prediction x̂(k + 1 | k) by propagating the prior
estimate according to the system dynamics in equation (8.3). We then correct the
prediction based on the output y(k + 1) to generate the next estimate x̂(k + 1 | k + 1).
We call these two steps the prediction and update steps, respectively.

For the prediction step, we simply substitute x̂(k | k) into equation (8.3) to get

x̂(k + 1 | k) = F(k) x̂(k | k) + G(k)u(k).(8.5)

To perform the update, we first note that given the output y(k + 1), the system state
is constrained to lie on the hyperplane

� = {x ∈ R
n|H (k + 1)x = y(k + 1)}.

Note that � is the set of states that are consistent with the measurement y(k + 1). For
our simple observer, we choose the next estimate x̂(k + 1 | k + 1) to be the point in �

that has the shortest distance to the prediction x̂(k + 1 | k). This is an intuitive choice:
we have some reason to believe that x̂(k + 1 | k) is close to the actual state value, and
we know that the actual state must be in �. So it makes sense to choose the update
to be the point in � that is closest to x̂(k + 1 | k). This choice of update is depicted
graphically in figure 8.2. We can use algebra to find an expression for x̂(k +1 | k +1).
Define the vector �x to be the vector that points from x̂(k+1 | k) to x̂(k+1 | k+1), i.e.,

�x = x̂(k + 1 | k + 1) − x̂(k + 1 | k).

x(k +1|k)

x
= {x |H(k +1)x = y(k +1)}

Figure 8.2 The set � corresponds to the states consistent with the current output y(k + 1).
The corrected state lies in this set and is the state closest to the predicted estimate.

Choset-79066 book February 22, 2005 17:27

276 8 Kalman Filtering

By our choice of x̂(k+1 | k+1), �x is the shortest vector pointing from x̂(k+1 | k)
to �. This means that �x must be orthogonal to � by the standard inner product on
R

n , i.e., we must have aT �x = 0 for any a that is parallel to �.4 Now we need two
basic facts from linear algebra [398]:

1. A vector a ∈ R
n is parallel to � if and only if H (k + 1)a = 0. The set of all such

a is called the null space of H (k + 1) and is denoted by null(H (k + 1)).

2. A vector b ∈ R
n is orthogonal to every vector in the space null(H (k + 1)) if

and only if b is in the column space of H (k + 1)T , where the column space of
H (k + 1)T is denoted column(H (k + 1)T) and is defined to be the span of the
columns of H (k + 1)T .

Note that any vector b ∈ column(H (k + 1)T) can be written as a weighted sum of
the columns of H (k + 1)T , which is equivalent to saying that b = H (k + 1)T γ for
some γ ∈ R

p. Combining these two facts, we see that in order to have �x orthogonal
to �, we must have

�x = H (k + 1)T γ

for some vector γ in R
p. Next, we will try to find γ .

Define the innovation error ν to be the difference between the actual output y(k+1)
and the predicted output H (k + 1) x̂(k + 1 | k). In other words, ν is the difference
between what the sensors reported and what they would have reported if the prediction
was correct. The larger the discrepancy between the actual and predicted measure-
ments, the larger the necessary correction �x will be. So for now we make the guess
that γ can be written as a linear function of ν, i.e., γ = Kν for some K ∈ R

p×p. This
yields the equation

�x = H (k + 1)T Kν

= H (k + 1)T K (y(k + 1) − H (k + 1)x(k + 1 | k)).

If we can find a K such that H (k+1) (x̂(k + 1 | k) + �x) agrees with the measurement
y(k + 1) (i.e., (x̂(k + 1 | k) + �x) ∈ �), then our guess is correct and we have an
expression for x̂(k + 1 | k + 1). To find K , we start with the requirement that

H (k + 1) (x̂(k + 1 | k) + �x) = y(k + 1),(8.6)

which implies that

H (k + 1)�x = y(k + 1) − H (k + 1) x̂(k + 1 | k) = ν.

4. Technically, we must also define what we mean by “parallel.” We say a vector a is parallel to a hyperplane
� if x + a ∈ � for every x ∈ �.

Choset-79066 book February 22, 2005 17:27

8.2 Linear Kalman Filtering 277

Substituting �x = H (k + 1)T Kν yields

H (k + 1)H (k + 1)T Kν = ν,(8.7)

which implies that K = (H (k+1)H (k+1)T)−1. Note that the matrix H (k+1)H (k+
1)T is guaranteed to be invertible by the assumption that H (k + 1) is full row rank
for all k. We were able to find a K that solves equation (8.7) meaning that for the
choice �x = Kν, equation (8.6) is satisfied. Our guess that �x is a linear function
of ν is then verified. As a result, we now have equations that fully express our simple
two-step observer:

prediction:

x̂(k + 1 | k) = F(k) x̂(k | k) + G(k)u(k)

update:

x̂(k + 1 | k + 1) = x̂(k + 1 | k) + H T (H H T)−1 (y(k + 1) − H x̂(k + 1 | k))

Note that in the update equation we have denoted H (k + 1) simply by H to keep the
expression manageable.

It turns out that there are some problems with this observer. Our choice of the update
is naive. Since the update is always perpendicular to the set �, only the component
of the state that directly affects the current sensor reading is updated. Estimate errors
in the direction parallel to � are never corrected. As a result, the estimate x̂ will
not in general converge to x . However, what is important is that the intuitive notions
of prediction and correction are the same as those used in the Kalman filter. In the
following discussion we follow this intuition toward Kalman’s equations, and in the
process we fix the problems associated with our simple observer.

8.2.3 Observing with Probability Distributions

The estimate produced by the simple observer discussed in the previous section
is a vector. In contrast, the estimate produced by a Kalman filter is a multivariate
Gaussian probability distribution over the state space. In addition to providing a vector
estimate x̂(k | k), a Kalman filter also provides an estimate of the error covariance
P(k | k) associated with x̂(k | k). In this section, we advance the simple observer
from the previous section one step toward Kalman’s filter by augmenting it to provide
a covariance estimate.

First we review some basic facts about multivariate Gaussian distributions. A more
detailed discussion can be found in the statistics primer in appendix I. For x ∈ R

n , a

Choset-79066 book February 22, 2005 17:27

278 8 Kalman Filtering

multivariate Gaussian distribution has a PDF of the form

p(x) = 1√
(2π)n|P|e− 1

2 (x−x̄)T P−1(x−x̄) ,(8.8)

where x̄ is a vector in R
n and P is a symmetric, positive definite n×n matrix. It is clear

that p(x) is entirely defined by x̄ and P . Further, E[x] = x̄ and E[(x − x̄)(x − x̄)T] =
P , so x̄ and P are called the mean vector and covariance matrix, respectively. In the
Kalman filter, we maintain a state estimate which will be the mean of a Gaussian
distribution, so in the sequel we replace x̄ with x̂ .

In this section, we consider linear discrete time systems with process noise but no
measurement noise, i.e.,

x(k + 1) = F(k)x(k) + G(k)u(k) + v(k)(8.9)

y(k) = H (k)x(k).(8.10)

As before, v(k) ∈ R
n is assumed to be white noise chosen from a zero-mean Gaussian

distribution with covariance matrix V (k) and the matrix H (k) is assumed to be full
row rank for all k.

Here we follow the same basic steps of prediction and update that were used for
the simple observer. The main difference is that this time we must generate both a
state vector estimate x̂(k | k) and a covariance matrix estimate P(k | k). Hence the
prediction step will generate x̂(k + 1 | k) and P(k + 1 | k), and the update step will
generate the next estimate given by x̂(k + 1 | k + 1) and P(k + 1 | k + 1).

The state vector prediction x̂(k + 1 | k) is found by substituting x̂(k | k) into equa-
tion (8.9). Since the expected value of v(k) is zero, the resulting prediction is

x̂(k + 1 | k) = F(k) x̂(k | k) + G(k)u(k).(8.11)

To compute the predicted covariance matrix we start with the definition of the covari-
ance matrix:

P(k + 1 | k) = E
[
(x(k + 1) − x̂(k + 1 | k)) (x(k + 1) − x̂(k + 1 | k))T

]

Substituting x(k +1) from equation (8.9) and x̂(k +1 | k) from equation (8.11), then
multiplying the terms inside the expectation, yields

P(k + 1 | k) = E
[
F(k) (x(k) − x̂(k | k)) (x(k) − x̂(k | k))T F(k)T

+ 2F(k) (x(k) − x̂(k | k)) v(k)T + v(k)v(k)T
]
.

The fact that v(k) is independent of both x(k) and x̂(k | k) implies that E[(x(k) −
x̂(k | k))v(k)] = E[x(k) − x̂(k | k)]E[v(k)], which is zero due to the fact that v(k) is
assumed to be zero mean. Using this fact together with the linearity property of the

Choset-79066 book February 22, 2005 17:27

8.2 Linear Kalman Filtering 279

expectation yields

P(k + 1 | k) = F(k)E
[
(x(k) − x̂(k | k)) (x(k) − x̂(k | k))T

]
F(k)T

+E
[
v(k)v(k)T

]
.

The first expectation term in this equation matches the definition of the covariance
matrix P(k | k), while the second expectation term matches the definition of the
covariance matrix V (k). As a result we can write the prediction equation

P(k + 1 | k) = F(k) P(k | k)F(k)T + V (k).(8.12)

To perform the update step, we choose x̂(k + 1 | k + 1) to be the most likely point
x in the set

� = {x ∈ R
n | H (k + 1)x = y(k + 1)}.

Hence, we look for x ∈ � that maximizes the Gaussian distribution defined by
x̂(k + 1 | k) and P(k + 1 | k), i.e.,

p(x) = 1√
(2π)n |P(k + 1 | k)|e− 1

2 (x−x̂(k +1 | k))T P(k +1 | k)−1(x−x̂(k +1 | k)).

Because the exponential is monotonically increasing, p(x) is maximized when (x −
x̂(k + 1 | k))T P(k + 1 | k)−1(x − x̂(k + 1 | k)) is minimized. With this in mind, we
introduce a new notion of distance with the norm5

‖x‖2
M = xT P(k + 1 | k)−1x ,

which is derived from the new inner product on R
n ,

〈x1, x2〉M = xT
1 P(k + 1 | k)−1x2.

Define �x = x̂(k + 1 | k + 1) − x̂(k + 1 | k). So we want to find x̂(k + 1 | k + 1)
such that

1. ‖�x‖M is minimized.

2. (x̂(k + 1 | k) + �x) ∈ �.

The first condition means that the vector �x is orthogonal to the hyperplane � with
respect to the inner product 〈·, ·〉M . This notion is depicted graphically in figure 8.3.
The ellipses in this figure represent sets of points that are equidistant to x̂(k + 1 | k)
according to the ‖ · ‖M norm. With this notion of distance, choosing x̂(k + 1 | k + 1)
to be the closest point on � to x̂(k +1 | k) is equivalent to choosing the point at which

5. dM (x , x̂) = ‖x − x̂‖M is called the Mahalanobis distance between x and x̂ . The Mahalanobis distance
indicates how far away the point x is from the mean x̂ in units of standard deviations.

Choset-79066 book February 22, 2005 17:27

280 8 Kalman Filtering

x(k +1|k)

= {x |H(k +1)x = y(k +1)}

Figure 8.3 Correction determines the “closest” and “most likely” state on the set of states �.

one of the equidistant ellipses tangentially intersects �. The resulting �x must be
orthogonal to �, but our notion of orthogonality is skewed by P(k + 1 | k)−1. This
means that we must have

a P(k + 1 | k)−1(�x) = 0

for all a ∈ null(H (k +1)). In the remainder of this section, we simply denote H (k +1)
by H for brevity. Using the linear algebra facts presented earlier, this expression can
only be true if �x ∈ column(P(k + 1 | k)H T), which means that

�x = P(k + 1 | k)H T γ

for some γ ∈ R
p. As in the case of the simple observer, we guess that γ can be

expressed as a linear function of the innovation error ν = y(k + 1) − H x(k + 1 | k),
i.e.,

�x = P(k + 1 | k)H T Kν(8.13)

for some K ∈ R
p ×p. Now we enforce (x̂(k + 1 | k) + �x) ∈ �, i.e.,

H (x̂(k + 1 | k) + �x) = y(k + 1),

which implies that H�x = ν. Substituting for �x from equation (8.13) yields

H P(k + 1 | k)H T Kν = ν,

Choset-79066 book February 22, 2005 17:27

8.2 Linear Kalman Filtering 281

which means that we must have

K = (
H P(k + 1 | k)H T

)−1
.

The resulting update equation for the state vector estimate is

x̂(k + 1 | k + 1) = x̂(k + 1 | k) + P(k + 1 | k)H T
(

H P(k + 1 | k)H T
)−1

ν.(8.14)

To ease notation, we define

R = P(k + 1 | k)H T
(

H P(k + 1 | k)H T
)−1

so that the update equation can be written simply

x̂(k + 1 | k + 1) = x̂(k + 1 | k) + Rν.

To find the update equation for the covariance matrix estimate, we use the definition
of the covariance matrix together with the update equation for the state vector estimate
to get

P(k + 1 | k + 1) = P(k + 1 | k) − RH P(k + 1 | k).(8.15)

The details of this derivation are the subject of problem 7.
Summarizing the observer derived in this section:

prediction:

x̂(k + 1 | k) = F(k) x̂(k | k) + G(k)u(k)(8.16)

P(k + 1 | k) = F(k) P(k | k)F(k)T + V (k)(8.17)

update:

x̂(k + 1 | k + 1) = x̂(k + 1 | k) + Rν(8.18)

P(k + 1 | k + 1) = P(k + 1 | k) − RH P(k + 1 | k)(8.19)

where

ν = y(k + 1) − H x(k + 1 | k)(8.20)

R = P(k + 1 | k)H T
(

H P(k + 1 | k)H T
)−1

(8.21)

and H is shorthand for H (k + 1).
As in the case of the simple observer, this observer also has some problems. Because

we assumed no sensor noise, the update equations will cause the covariance matrix
estimate to become singular. This makes sense: noiseless measurements mean that the
uncertainty in the directions associated with the sensor measurements will be zero.
But the singular covariance makes the resulting notions of Gaussian distribution and
Mahalanobis distance meaningless since they rely on the inverse of P . Still, the intu-
ition behind using and propagating a Gaussian distribution as a state estimate is in line

Choset-79066 book February 22, 2005 17:27

282 8 Kalman Filtering

with the intuition behind the Kalman filter in spite of this problem. In the next section,
we advance this intuition one final step to derive the full Kalman filter equations.

8.2.4 The Kalman Filter

Consider the system described at the beginning of this chapter:

x(k + 1) = F(k)x(k) + G(k)u(k) + v(k)(8.22)

y(k) = H (k)x(k) + w(k)(8.23)

The only difference between this system and the system in the previous section is that
we have included the sensor noise term w(k), a zero-mean white Gaussian random
vector with covariance matrix W (k).

Since the dynamic equation has not changed, the prediction step for the Kalman
filter is identical to the prediction step for the observer defined in section 8.2.3. The
addition of noise to the sensor equation significantly changes the update step, however.
In the previous case, the output y(k +1) constrained the next estimate x̂(k +1 | k +1)
to lie in the hyperplane �. We knew exactly what the output y(k + 1) had to be, and
we chose x̂(k +1 | k +1) to match it. As a result, we could use the algebraic equation
y(k + 1) = H (k + 1) x̂(k + 1 | k + 1) to find x̂(k + 1 | k + 1). In the current case,
there is no such algebraic constraint. We do not know exactly what the output should
be; we only know that it is drawn from a Gaussian distribution in R

p with mean
y(k + 1) and covariance matrix W (k). Without this constraint, we cannot use the
same algebraic approach to define x̂(k + 1 | k + 1). Instead, we will first look for
the most likely output y∗ given the prediction (x̂(k + 1 | k), P(k + 1 | k)) together
with the measured output y(k + 1). Once we have y∗, we can introduce the algebraic
constraint y∗ = H (k + 1) x̂(k + 1 | k + 1) and proceed as before.

We begin to find y∗ by projecting the prediction into output space. Using the output
map H (k +1) and the definition of covariance, we see that the state space distribution
with mean x̂(k + 1 | k) and covariance matrix P(k + 1 | k) projects into a Gaussian
distribution in the output space (Rp) with mean

ŷ(k + 1) = H (k + 1) x̂(k + 1 | k)

and covariance matrix

Ŵ = E
[
(ŷ(k + 1) − y(k + 1)) (ŷ(k + 1) − y(k + 1))T

]

= E
[
H (k + 1)

(
x̂(k + 1 | k) − x(k + 1)

)(
x̂(k + 1)

− x(k + 1)
)T

H (k + 1)T
]

= H (k + 1) P(k + 1 | k)H (k + 1)T .

Choset-79066 book February 22, 2005 17:27

8.2 Linear Kalman Filtering 283

The most likely output y∗ is then defined to be the most likely point in the output
space R

p given the Gaussian distribution that results from projecting the prediction
and the Gaussian distribution that results from taking the measurement. The projected
prediction and output distributions have mean-covariance pairs (ŷ, Ŵ) and (y(k +1),
W (k +1)), respectively. Since these distributions are independent, y∗ will be the peak
of the function that results from taking their product. Fortunately the product of two
Gaussian distributions is also Gaussian and the result can be obtained using a well-
known formula [389]. We summarize the required result as a theorem:

THEOREM 8.2.1 (Product of Gaussians) The product of two Gaussian distributions
with mean-covariance pairs (z1, C1) and (z2, C2) is proportional to a third Gaussian
with mean vector

z3 = z1 + Q(z2 − z1)

and covariance matrix

C3 = C1 − QC1,

where

Q = C1(C1 + C2)−1.

To sketch the proof of this theorem, we use the property that the product of two
exponentials is the exponential of the sum of the exponents. A clever reordering of the
terms in the resulting sum yields the result. See problem 8 for the details of the proof.

Applying theorem 8.2.1,

y∗ = ŷ + Ŵ (Ŵ + W (k + 1))−1(ŷ − y(k + 1)).

Now that we have found the most likely output y∗, we can define �∗ = {x ∈
R

n |H (k +1)x = y∗} and, as in the previous section, proceed to find the �x = x̂(k +
1 | k +1)− x̂(k +1 | k) that minimizes ‖�x‖M while satisfying x̂(k +1 | k +1) ∈ �∗

(see figure 8.4). Using H to denote H (k + 1), we get the result

�x = P(k + 1 | k)H T
(

H P(k + 1 | k)H T
)−1

(y∗ − H x(k + 1 | k))
= P(k + 1 | k)H T

(
H P(k + 1 | k)H T + W (k)

)−1
ν,

where, as before, ν = y(k + 1) − H x(k + 1 | k) is the innovation error. Defining

R = P(k + 1 | k)H T
(

H P(k + 1 | k)H T + W (k + 1)
)−1

,

we can write the state vector estimate update equation

x̂(k + 1 | k + 1) = x̂(k + 1 | k) + Rν.(8.24)

Choset-79066 book February 22, 2005 17:27

284 8 Kalman Filtering

x(k +1|k)

= {x |H(k +1)x = y(k +1)}

* = {x |H(k +1)x = y*}

Figure 8.4 The sensor noise distribution is projected into the state space and is an extruded
Gaussian centered on the states consistent with the current sensor reading. The most likely
output y∗ is determined by multiplying the Gaussian distribution that results from the mea-
surement y(k + 1) with the Gaussian distribution that results from projecting the prediction
into the output space. This then corresponds to a set of states �∗. The update is the point on
�∗ that is closest to the prediction x̂(k + 1 | k) in the sense of Mahalanobis distance.

To find the update equation for the covariance matrix estimate, we use the definition
of the covariance matrix together with the update equation for the state vector estimate
to get

P(k + 1 | k + 1) = P(k + 1 | k) − RH P(k + 1 | k).(8.25)

8.2.5 Kalman Filter Summary

The Kalman filter equations are summarized as follows:
prediction:

x̂(k + 1 | k) = F(k) x̂(k | k) + G(k)u(k)(8.26)

P(k + 1 | k) = F(k) P(k | k)F(k)T + V (k)(8.27)

Choset-79066 book February 22, 2005 17:27

8.2 Linear Kalman Filtering 285

update:

x̂(k + 1 | k + 1) = x̂(k + 1 | k) + Rν(8.28)

P(k + 1 | k + 1) = P(k + 1 | k) − RH (k + 1) P(k + 1 | k)(8.29)

where

ν = y(k + 1) − H (k + 1)x(k + 1 | k))(8.30)

S = H (k + 1) P(k + 1 | k)H (k + 1)T + W (k + 1)(8.31)

R = P(k + 1 | k)H (k + 1)T S−1.(8.32)

These equations provide the optimal estimate of x in the sense that the expected
value of the error between x(k) and x̂(k | k) is minimized at every k. One can view R
as the weighting factor that takes into account the relationship between the accuracy
of the predicted estimate and the measurement noise. If R is “large,” then the sensor
readings are more believable than the prediction and the Kalman filter weights the
sensor reading highly when computing the updated estimate. If R is “small,” then
the sensor readings are not as believable and, as a result, they do not have as much
influnce in the update step.

In this chapter we have chosen to present the derivation of the Kalman filter equa-
tions as an optimization problem because we believe that to be an intuitive approach.
It is important to note, however, that the state and covariance estimates that result from
the use of these equations are not only the “best” estimates, they are also the “correct”
estimates. If the estimate at time k is Gaussian and described by (x̂(k | k), P(k | k)),
then the correct distribution at time k + 1 (i.e., the posterior distribution) is in fact
also Gaussian and is described by (x̂(k + 1 | k + 1), P(k + 1 | k + 1)).

If we allow the noise terms v(k) and w(k) to have non-Gaussian distributions, then
these equations still provide the best linear estimator, but there may be nonlinear
estimators that do a better job.

8.2.6 Example: Kalman Filter for Dead Reckoning

In mobile robotics, the term dead reckoning typically refers to a position estimate
achieved by integrating odometry measurements. Here we present an example of a
more sophisticated form of dead reckoning where a Kalman filter is used to fuse the
robot commands (inputs) with measurements from odometry sensors.

Consider a mobile robot constrained to move along a straight line. The robot state
is defined to be x = [xr , vr]T where xr and vr are the robot position and velocity,
respectively. The input u is a real–valued force applied to the robot. Newton’s law
states that dvr

dt = u
m , where m is the mass of the robot. This can be approximated by

Choset-79066 book February 22, 2005 17:27

286 8 Kalman Filtering

the discrete time equation

vr (k + 1) − vr (k)

T
= u(k)

m
,

where T is the sampling rate (in seconds) of the discretization. So then the discrete
time state equation can be written as

x(k + 1) =
[

1 T
0 1

]

x(k) +
[

0
T
m

]

u(k) + v(k)

�= Fx(k) + Gu(k) + v(k),

(8.33)

where the process noise term v(k) is used to account for errors that arise from unmod-
eled sources such as discretization and friction. The vector v(k) is assumed to be
zero-mean white Gaussian noise with covariance matrix V .

We assume that the robot is equipped with a sensor that measures velocity. We
also assume that the error in this measurement is well modeled as zero-mean white
Gaussian noise with known variance W . Then the output y(k) can be written

y(k + 1) = [
0 1

]
x(k) + w(k)

�= Gx(k) + w(k),
(8.34)

where w is the noise term.
Now the Kalman filter can be applied using the sequence of equations listed in

section 8.2.5. We simulated this example in MATLAB using the parameters m = 1,
W = .5, T = 0.5, and

V =
[

0.2 0.05
0.05 0.1

]

.

Assume that the input at time k is known to be u(k) = 0, and assume an initial state
estimate of x̂(k | k) = [2, 4]T and an initial covariance estimate of

P(k | k) =
[

1 0
0 2

]

.

Further, assume that the (unknown) value of the actual state is x(k + 1) = [1.8, 2]T .
The sequence of prediction, combining prediction with measurement in output space,
and update are depicted graphically in figures 8.5, 8.6, and 8.7. Here, the two-
dimensional Gaussian distributions that result from x̂ and P are represented by con-
fidence ellipses. Specifically, these ellipses are chosen so that the probability that the
actual value of the state x is contained within the ellipse is 0.95.

Choset-79066 book February 22, 2005 17:27

8.2 Linear Kalman Filtering 287

-2 0 2 4 6 8 10
-2

0

2

4

6

8

10

Prediction Step

position (xr)

ve
lo

ci
ty

 (
v r

)
x(k + 1)

P(k + 1|k)
P(k |k)

x (k |k)

x(k + 1|k)

Figure 8.5 The initial estimate x̂(k | k) has an uncertainty P(k | k) which grows to P(k+1 | k)
when the robot moves, reflecting the increase in uncertainty. This increase in uncertainty is
depicted by plotting the 0.95 confidence ellipses.

8.2.7 Observability in Linear Systems

Note that in the update step of the previous example, the updated ellipse is “squished”
significantly in the vertical direction. This squishing corresponds to the information
gained from the velocity measurement. For this particular example, each iteration of
the Kalman filter will reflect a gain of information in the velocity direction and a
loss of information in the position direction. As a result, the expected error on the
position estimate will grow monotonically without bound. This failure is not the fault
of the Kalman filter, which is guaranteed to provide the best possible estimate. The
problem instead lies with the system itself; specifically, the system dynamics and
output equations do not interact in a way that allows the state to be recovered from the
available outputs. In other words, the system in the example fails to be observable.

Loosely speaking, a system is said to be observable if the full state can be recon-
structed by observing the input u and the output y over some period of time (see
appendix J for a discussion of observability in linear systems.) For linear systems
where the system matrices F(k) and H (k) do not vary with k, there is a simple test
to determine observability:

Choset-79066 book February 22, 2005 17:27

288 8 Kalman Filtering

Hx(k +1|k) = y(k +1)y(k +1)

–2 –1 0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Velocity measurement (y)

p
(y

)

Finding Most Likely Ouput

y*

Combined
PDF

PDF from
measurement

PDF from
projected prediction

Figure 8.6 Measurements and predictions are then merged. The PDF plotted with the dot-
dashed line results from the combination of the measurement PDF and the PDF of the prediction
projected into output space, where the combination is computed using theorem 8.2.1. The most
likely output y∗ is the value at which this combined distribution reaches its peak.

THEOREM 8.2.2 (Observability Test) The linear time-invariant discrete time system

x(k + 1) = Fx(k) + Gu(k) + v(k)

y(k) = H x(k) + w(k)

is observable if and only if the observability matrix

Q =

H
H F
H F2

...

H F (n−1)

has rank n.

Choset-79066 book February 22, 2005 17:27

8.3 Extended Kalman Filter 289

–2 0 2 4 6 8 10
–2

0

2

4

6

8

10

position (x)

ve
lo

ci
ty

 (
v)

Update Step

P(k +1|k +1)

P(k +1|k)
x(k +1|k)

x(k +1|k +1)x(k +1)

*

Figure 8.7 The updated estimate x̂(k +1 | k +1) is the point on �∗ that is closest to x̂(k +1 | k)
in terms of Mahalanobis distance. The smaller of the two dotted ellipses is the smallest ellipse
that intersects �∗, hence x̂(k + 1 | k + 1) is defined by this intersection. Note that the line �∗

represents the set of states that are consistent with the most likely output y∗ that was found in
figure 8.6.

For any observable linear system, the estimate provided by the Kalman filter is
guaranteed to converge in the sense that the expected error between the actual and
estimated state will be bounded for all time.

8.3 Extended Kalman Filter

The Kalman filter is a powerful tool for linear systems, but many systems encountered
in practice are nonlinear. Consider the system

x(k + 1) = f (x(k), u(k), k) + v(k)(8.35)

y(k) = h(x(k), k) + w(k),(8.36)

where x , y, u, v, and w are as before and

f : R
n × R

m × Z
+ → R

n

Choset-79066 book February 22, 2005 17:27

290 8 Kalman Filtering

and

h : R
n × Z

+ → R
p

are both continuously differentiable in x(k). One approach to state estimation for
systems of this type is to linearize the equations about the current estimate and then
apply Kalman’s equations using the resulting approximation. This formulation is
called the extended Kalman filtering. The EKF equations are:

prediction:

x̂(k + 1 | k) = f (x̂(k | k), u(k), k)(8.37)

P(k + 1 | k) = F(k) P(k | k)F(k)T + V (k)(8.38)

where

F(k) = ∂ f

∂x

∣
∣
∣
∣

x=x̂(k | k)

=

∂ f1

∂x1

∂ f1

∂x2
· · · ∂ f1

∂xn

∂ f2

∂x1

∂ f2

∂x2
· · · ∂ f2

∂xn

...
...

. . .
...

∂ fn

∂x1

∂ fn

∂x2
· · · ∂ fn

∂xn

x=x̂(k | k)

.(8.39)

update:

x̂(k + 1 | k + 1) = x̂(k + 1 | k) + Rν(8.40)

P(k + 1 | k + 1) = P(k + 1 | k) − RH (k + 1) P(k + 1 | k)(8.41)

where

ν = y(k + 1) − h(x(k + 1 | k), k + 1)(8.42)

S = H (k + 1) P(k + 1 | k)H (k + 1)T + W (k + 1)(8.43)

R = P(k + 1 | k)H (k + 1)T S−1(8.44)

and

H (k + 1) = ∂h

∂x

∣
∣
∣
∣

x=x̂(k +1 | k)

=

∂h1
∂x1

∂h1
∂x2

· · · ∂h1
∂xn

∂h2
∂x1

∂h2
∂x2

· · · ∂h2
∂xn

...
...

. . .
...

∂h p

∂x1

∂h p

∂x2
· · · ∂h p

∂xn

x=x̂(k +1 | k)

.(8.45)

8.3.1 EKF for Range and Bearing Localization

The EKF is well suited to the problem of localizing a mobile robot equipped with
sensors that can detect range and bearing to previously mapped landmarks in the

Choset-79066 book February 22, 2005 17:27

8.3 Extended Kalman Filter 291

environment [278]. Consider a robot whose state at time k is given by x(k) =
[xr (k), yr (k), θr (k)]T , where (xr (k), yr (k)) denotes its position in the plane and θ (k)
denotes its orientation. The input is u(k) = [u1(k), u2(k)]T , where u1(k) and u2(k)
denote the forward and angular velocities of the robot, respectively. The process model
for this robot nonlinear, i.e.,

x(k + 1) =

cos θr (k)u1(k) + xr (k)
sin θr (k)u1(k) + yr (k)

u2(k) + θr (k)

 + v(k),

where v(k) is a random vector from a Gaussian distribution whose mean is zero and
covariance is V (k).

The robot is equipped with sensors that can measure the range and bearing to
certain landmarks in the environment. Assume that the free space is populated with n�

landmarks whose locations are known to be (x�i , y�i), i = 1, 2, . . . , n�. At any time k,
the robot can only see the subset of landmarks that is within the range of its sensors, so
the number of measurements taken varies with k. The number of measurements taken
at the kth timestep is denoted by p(k). Each measurement has two components, a
range component and a bearing component. We also assume for now that for each
measurement, we somehow know which landmark was observed. We introduce the
association map a: {1, 2, . . . , p(k)} → {1, 2, . . . , n�} which is defined such that the
i th measurement at time k corresponds to the a(i)th landmark. The output equation
for this system is then given as

y(k) =

h1(x(k), a(1))
h2(x(k), a(2))

...

h p(k)(x(k), a(p(k)))

+

w1(k)
w2(k)

...

w p(k)(k)

,

where, for i = 1, 2, . . . , p(k),

h j (x(k), j) =
[√

(xr (k) − x�j)2 + (yr (k) − y�j)2

atan2(yr (k) − y�j , xr (k) − x�j) − θr (k)

]

and wi (k) ∈ R
2 is a random vector taken from a Gaussian distribution with zero mean

and covariance matrix Wi (k).
In order to linearize, we differentiate the process and sensor models with

F(k) = ∂ f

∂x

∣
∣
∣
∣

x=x̂(k|k)

Choset-79066 book February 22, 2005 17:27

292 8 Kalman Filtering

and

H (k + 1) =

H1(k + 1, a(1))
H2(k + 1, a(2))

...

Hp(k +1)(k + 1, a(p(k + 1)))

=

∂h1
∂x

∣
∣

x=x̂(k +1 | k)

∂h2
∂x

∣
∣

x=x̂(k +1 | k)
...

∂h p(k +1)

∂x

∣
∣
∣

x=x̂(k +1 | k)

resulting in

F =

1 0 − sin θr (k)u1(k)
0 1 cos θr (k)u1(k)
0 0 1

and

Hi (k + 1, j) =

(x̂r (k +1|k)−x�j)√
(x̂r (k +1|k)−x�j)2+(ŷr (k +1|k)−y�j)2

(ŷr (k +1|k)−y�j)√
(x̂r (k +1|k)−x�j)2+(ŷr (k +1|k)−y�j)2

0

−(ŷr (k +1|k)−y�j)

1+
(ŷr (k +1|k)−y�j

x̂r (k +1|k)−x�j

)2

(x̂r (k +1|k)−x�j)2

1

1+
(ŷr (k +1|k)−y�j

x̂r (k +1|k)−x�j

)2
(x̂r (k +1|k)−x�j)

−1

 .

With these matrices in hand, we can use the linearized Kalman filter equations to
estimate the robot state.

8.3.2 Data Association

The solution presented in the previous section glosses over one very important aspect
of localization: it assumes that each measurement is automatically associated with the
correct landmark. In practice, landmarks have similar properties which make them
good features but often make them difficult to distinguish one from another. When
this happens, we must address the problem of data association, which is the question
of which landmark corresponds to a particular measurement. This is equivalent to
finding the association map used in the previous section.

The basic idea used for data association is as follows. Consider the i th measurement
yi (k + 1). For each landmark in the map, we compute the innovation νi j which
is defined to be the difference between the actual measurement yi (k + 1) and the
measurement that we would expect if yi (k + 1) corresponded to the j th landmark
and the prediction x̂(k + 1 | k) was correct. This means that

νi j
�= yi (k + 1) − hi (x̂(k + 1 | k), j).

Choset-79066 book February 22, 2005 17:27

8.3 Extended Kalman Filter 293

The smaller the innovation νi j , the more likely it is that the i th measurement cor-
responds to the j th landmark. We then can make a good guess of which landmark
corresponds to the measurement by choosing the landmark that yields the smallest
innovation. However, the notion of size must be weighted by the uncertainties in
the predictions and measurements. Fortunately, these uncertainties are encoded in
the matrix S from the Kalman filter update equation (8.31), and S can be used to
create a Mahalanobis norm for νi j which indicates the size of the innovation in units
of standard deviations. We write this measure of the innovation as

χ2
i j = νi j S

−1
i j νT

i j ,

where

Si j = Hi (k + 1, j) P(k + 1 | k)Hi (k + 1, j)T + Wi (k + 1).

We then can build the data association function a() by setting a(i) equal to the value
of j that minimizes χi j .

Figure 8.8 contains an example of localization using an extended Kalman filter. The
actual path, i.e., ground truth, is displayed along with estimates of the robot’s location
and its uncertainty of that estimate as the robot moves along the path. Note that the
estimate converges to the actual path as the robot moves along the path and as more
measurements are taken. Also, note that the uncertainty of the estimate considerably
decreases as well.

Figure 8.8 The dotted line displays the actual path of the Nomad Scout mobile robot. The
triangles and ellipses correspond to the estimated location and variance, respectively, of the
robot’s location. The stars correspond to the measured location of the beacon, which also has
an associated variance (due to noise) which is not displayed.

Choset-79066 book February 22, 2005 17:27

294 8 Kalman Filtering

8.3.3 EKF for Range-Only Localization

The EKF solution to the problem of localization using range-only sensors is a trivial
extension to the range and bearing case. The only difference is that the output equation
will not contain any bearing information, so we simply remove the rows from h and
H that correspond to the bearing measurements. The EKF equations are then applied
in the usual manner.

8.4 Kalman Filter for SLAM

In this section we introduce the use of the Kalman filter to solve the problem
SLAM which has been an active topic of research in recent years (see, e.g., [99,
128,321,390]). We begin with a very simple case where the robot is able to measure
the relative displacement between itself and a number of fixed landmarks. The sim-
ple example also assumes that each sensor reading is automatically associated with
the correct landmark so that the robot does not have to determine which landmark
corresponds to any given measurement. After using this simple example to demon-
strate the basic concept of Kalman filter-based SLAM, we present a more realistic
example where the robot measures range and bearing to fixed landmarks and the data
association problem is not automatically solved.

8.4.1 Simple SLAM

One common approach to solving the SLAM problem is to use a Kalman filter to
simultaneously estimate the position of a moving vehicle along with the positions of
landmarks seen by the vehicle. This technique was originally suggested by Smith,
Self, and Cheeseman [390]. Here we present the most basic example of this technique:
we assume an omnidirectional motion model for the vehicle and we assume that the
vehicle has sensors capable of uniquely identifying each landmark and providing a
measurement of the relative displacement between the vehicle and the landmark. We
assume that the vehicle’s sensor can see every landmark at every instant of time.

We first define the state to be the location of the vehicle (xr , yr) together with the
locations of each of the landmarks, (x�i , y�i), i = 1, 2, . . . , n�, where n� is the total
number of landmarks. In other words,

x = [xr yr x�1 y�1 x�2 y�2 · · · x�n�
y�n�

]T .

We assume that the control inputs are ux and uy , the vehicle velocities in the x- and
y-directions, respectively. We model the errors associated with this motion with the

Choset-79066 book February 22, 2005 17:27

8.4 Kalman Filter for SLAM 295

random vector vr (k) = [vr x (k), vr y(k)]T , which is zero-mean white Gaussian noise
with covariance matrix Vr (k). The landmarks do not move, so the resulting dynamic
equations for the system are

x(k + 1) = x(k) +

1 0
0 1
0 0
0 0
...

...

0 0

[
ux (k)
uy(k)

]

+

vr x (k)
vr y(k)

0
0
...

0

.

This equation can clearly be written in the form

x(k + 1) = Fx(k) + Gu(k) + v(k),

where v(k) is a zero-mean white Gaussian noise with covariance matrix

V (k) =

Vr (k) 0 · · · 0
0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

.

The measurement to the i th landmark is the position of the landmark relative to the
vehicle plus some noise, i.e.,

yi (k) =
[

x�i (k) − xr (k)
y�i (k) − yr (k)

]

+ wi (k),

where wi (k) is an independently distributed Gaussian random vector with covariance
matrix Wi (k). Note the yi (k) is a linear function of the system state x(k). Specifically,
we can write

yi (k) = Hi x(k) + wi (k),

where

Hi =
[−1 0 0 · · · 0 1 0 0 · · · 0

0 −1 0 · · · 0 0 1 0 · · · 0

]

.

The first row of H has a −1 in the first column that to corresponds xr and a 1 in the
(2i + 1)th column that corresponds to x�i , and zeros everywhere else. Similarly, the
second row is all zeros except for a −1 in the second column and a 1 in the (2i + 2)th
column.

Choset-79066 book February 22, 2005 17:27

296 8 Kalman Filtering

With this notation, we can stack all of the measurements together to create one big
measurement vector y = [y1, y2, . . . , yn�

]T which gives the measurement equation

y(k) = H x(k) + w(k),

where

H =

H1

H2
...

Hn�

, and w(k) =

w1(k)
w2(k)

...

wn�
(k)

,

and the covariance matrix associated with w(k) is

W (k) =

W1(k) 0 · · · 0

0 W2(k)
. . .

...
...

. . .
. . . 0

0 · · · 0 Wn�

,

where Wi (k) is the covariance matrix associated with wi (k). The problem has now
been put into a form suitable for the Kalman filtering equations in section 8.2.5.
Kalman estimates of the system state x provide estimates of both vehicle and landmark
locations, hence solving the SLAM problem.

8.4.2 Range and Bearing SLAM

Now we consider the SLAM problem for a mobile robot whose inputs are forward
velocity and angular velocity and whose measurements are range and bearing read-
ings. In a sense, we are combining the range-bearing localization approach from
section 8.3.1 with the SLAM approach described above in section 8.4.1. The differ-
ence is that the number of columns in the H matrix is the same as the number of
rows in the state vector. Moreover, the H matrix now contains partial derivatives of
the measurement equations with respect to the state.

The measurement equations are the same as in the range and bearing localization
example, i.e.,

yi (k) =
[√

(x�i (k) − xr (k))2 + (y�i (k) − yr (k))2

atan2((y�i (k) − yr (k)), (x�i (k) − xr (k)) − θr (k)

]

+ wi (k).(8.46)

The first three columns of the H matrix will be fairly dense since the planar location
of the robot is part of both measurement equations. The columns to the right will be

Choset-79066 book February 22, 2005 17:27

Problems 297

sparse as in the last example of EKF SLAM since the measurement of each landmark
is only a function of the robot position and that landmark’s position.

Hi =
[

∂ yi

∂xr

∂ yi

∂ yr

]

(8.47)

=

−x�i (k)+xr (k)

ρi

−y�i (k)+yr (k)
ρi

0 . . . x�i (k)−xr (k)
ρi

y�i (k)−yr (k)
ρi

. . .

y�i (k)−yr (k)
ρ2

i

−x�i (k)+xr (k)
ρ2

i
−1 . . . −y�i (k)+yr (k)

ρ2
i

x�i (k)−xr (k)
ρ2

i
. . .

where ρi is the range of the landmark as given in the measurement equation. Now, we
substitute the modified H matrix into the previously defined framework for Kalman
filter SLAM.

Again, we have the problem of data association, i.e., we must determine which
landmark corresponds to each measurement. We also have to determine when a new
landmark has been encountered. Once again, we use the Mahalanobis distance met-
ric to compare the i th measurement with the measurement prediction for the j th
landmark, i.e.,

χ2
i j = (

y(k)i − h(k) j)
T Si j (y(k)i − h(k) j

)
.(8.48)

Once the χi j has been calculated for each combination of landmarks and mea-
surements, the minimum is checked against an acceptance threshold to assure that
the match is likely enough. If the minimum χ is above a high threshold, then the
measurement is not likely to have come from any existing landmark. Therefore, we
have an indication that a new landmark should be initialized and added to the map.

Problems

1. The methods presented in this chapter generally assume that the noise is modeled as a zero-
mean white Gaussian random process and that the noise enters the system dynamics and
measurement equations through addition. It is important to understand that this is always
an approximation; real systems never contain such nice noise. For each of the noise sources
listed below, briefly describe how the zero-mean white Gaussian noise assumption used
in the Kalman filter fails:

(a) distance measurements;
(b) bearing measurements;
(c) odometry error in a differentially steered wheeled robot due to a mismatch in wheel

size;
(d) odometry error in a wheeled robot due to wheel slippage;
(e) sonar errors due to multipath reflections;
(f) temperature dependent drift in a rate gyro.

Choset-79066 book February 22, 2005 17:27

298 8 Kalman Filtering

m

Fext

Fs = –kz

Fd = z

Figure 8.9 Mass–spring–damper.

2. The mass–spring–damper system shown in figure 8.9 with mass m, spring constant k, and
damping coefficient γ can be modeled by the second order differential equation

m z̈ + γ ż + kz = 0.

Define the system state to be x = [z ż]T . In discrete time with sampling time step T , the
derivative d

dt can be approximated as

ẋ(t)
∣
∣

t=kT
≈ x(k + 1) − x(k)

T
.

Use this approximation to write the mass–spring–damper system as a linear discrete time
system in state space.

3. Consider the linear time invariant, noise-free, zero-input, single-output discrete time sys-
tem

x(k + 1) = Fx(k); y(k) = H x(k),

where x(k) ∈ R
2.

(a) Describe the set of states x(k) that are possible given the measurement y(k).
(b) Describe the set of states x(k + 1) that are possible given the measurement y(k) (but

not y(k + 1)).
(c) Given the measurement y(k +1), under what condition will the set of possible x(k +1)

be a single point? How does this relate to the result in theorem 8.2.2?

4. Let x̂ ∈ R
n , y ∈ R

p , and H ∈ R
p ×n . Define the hyperplane � = {x ∈ R

n | H x = y}. Let
P be a positive definite matrix and define the norm ‖x‖P = xT Px . Show that, with respect
to this norm, the shortest vector �x that satisfies H (x + �x) = y must be orthogonal to
�, i.e., �xT Pa must be zero for every a that is parallel to �.

Choset-79066 book February 22, 2005 17:27

Problems 299

5. Using the definitions from problem4, show that null(H) is parallel to �.

6. Show that for a matrix A, null(A) is orthogonal to column(AT).

7. The solutions to the following sequence of problems combine to form the derivation of
equation (8.15). To make the expressions more manageable, we introduce the notation
xk = x(k), x̂ k = x̂(k | k), x̂−

k +1 = x̂(k + 1 | k), Pk = P(k | k), and P−
k +1 = P(k + 1 | k).

We also denote the innovation as ν = ν(k + 1) = y(k + 1) − H (k)xk .

(a) Starting with the definition of Pk ,

Pk = E
[
(xk +1 − x̂ k +1)(xk +1 − x̂ k +1)T

]
,

show that

Pk = E
[
(xk +1 − x̂−

k +1)(xk +1 − x̂−
k +1)T

− 2Rν(xk +1 − x̂−
k +1)T − Rν(Rν)T

]
.

(b) Continue to show that

Pk = P−
k +1 − 2RH P−

k +1 + RH P−
k +1 H T RT .

(c) Next show that

Pk = P−
k +1 − 2RH P−

k +1 H T RT + RH P−
k +1 H T RT .

Equation (8.15) follows trivially from this last expression.

8. The solutions to the following sequence of problems combine to form the proof of theo-
rem 8.2.1. Consider two multivariate Gaussian distributions with mean-covariance pairs
(z1, C1) and (z2, C2).

(a) Show that the product of these two Gaussian distributions is proportional to

e− 1
2 (zT (C−1

1 +C−1
2)z−2zT (C−1

1 z1+C−1
2 z2)+zT

1 C−1
1 z1+zT

2 C−1
2 z2).

(b) Consider the term in the exponential of a Gaussian with mean-covariance pair (z3, C3).
By equating the terms that are quadratic in z, show that

C3 = C1 − QC1,

where Q = C1(C1 + C2)−1.
(c) By equating the terms that are linear in z, show that

z3 = z1 + Q(z2 − z1).

9. Consider the nonlinear discrete time system

x(k + 1) =

x1(k) + T u1(k)cos(x3(k))
x2(k) + T u1(k)sin(x3(k))

x3(k) + T u2(k)

 ; y(k) = x1(k) + w(k),

Choset-79066 book February 22, 2005 17:27

300 8 Kalman Filtering

where v(k) is Gaussian white noise with zero mean and variance 0.5. Suppose the estimate
x̂(1|1) = [1 0.5 π

4]T , the input u(1) = [3 π], and the time step T = 0.25. Also suppose
that the covariance estimate P(1|1) is the 3×3 identity matrix. Using the extended Kalman
filter formulation,

(a) compute the predicted estimate and covariance, x̂(2|1) and P(2|1).
(b) given the measurement y(2) = 1.7, compute x̂(2|2) and P(2|2).

10. Consider the system of problem 9 with noise added to the inputs: u1(k) is replaced by
u1(k) + s1(k) and u2(k) is replaced by u2(k) + s2(k), where s1 and s2 are Gaussian white
noise with variances σ 2

1 and σ 2
2 respectively. Given an estimate x̂(k | k), state the equation

used to find the estimate covariance prediction P(k + 1 | k).

11. Consider the system given by equations (8.1) and (8.2) with all of the standard assumptions.
Show that if the initial estimate x̂(0|0) is such that the expected value of the intitial estimate
error E[x(0) − x̂(0|0)] = 0, then the expected value of the error of the estimate provided
by the Kalman filter remains zero for all k.

Choset-79066 book February 22, 2005 18:29

9 Bayesian Methods

OPERATING IN the real world, robots lack the perfect sensors and deterministic actions
of many artificial worlds. Rather, robots are faced with various kinds of uncertainty. In
this chapter we continue to discuss probabilistic frameworks for typical fundamental
tasks of mobile robots such as localization, mapping, and simultaneous localization
and mapping (SLAM). While the methods presented in this chapter employ the same
iterative prediction-update process that is used in the Kalman filter (see chapter 8), they
do not rely on the restrictive assumptions required by the Kalman filter. The methods
described here can use nonlinear models for both robot motion and sensing. Most
important, the resulting estimate may be an arbitrary distribution instead of a Gaussian.
Throughout this chapter we present the key ideas of successful techniques together
with a derivation of their mathematical foundations. We will also discuss ways to
efficiently implement these approaches, since the capability to represent arbitrary
distributions can lead to higher computational demands compared to Kalman filters.

9.1 Localization

In the previous chapter, we achieved localization by maintaining a distribution of
the robot by iteratively estimating the mean and covariance matrix of a Gaussian
distribution. This way of representing a belief about the location of the robot assumes
that there is no “ambiguity” in the sense that the distribution is always unimodal or
more specifically a Gaussian. One form of localization in which this assumption is
often met is position tracking, which assumes that the initial configuration of the robot

Choset-79066 book February 22, 2005 18:29

302 9 Bayesian Methods

is (approximately) known and whose task is to keep track of the robot’s location while
it is moving through the environment. If the robot’s configuration is approximately
known and if there is only a small region of uncertainty around the true location of
the robot, the observations of the robot can usually be associated uniquely with the
corresponding features in its map. Consider, e.g., that a robot knows its location up
to a few centimeters. If it detects a door, it can use this observation to accurately
compute its location given the door stored in its map of the environment. If, however,
the uncertainty is high and the robot knows its location only up to several meters,
there might be multiple doors in the map that its current observation can correspond
to. Accordingly, the situation is ambiguous and a single Gaussian obviously cannot
appropriately represent the robot’s belief about its location.

In this chapter, we consider a form of position estimation where the robot may
have ambiguity, i.e., the belief about its location can be modeled by a multimodal
distribution. The techniques described in this chapter are able to deal with a more
complex version of localization called global localization. Here the robot has to
estimate its location under global uncertainty as it is not given its initial location. The
techniques can also solve the most complex problem of robot localization, the so-
called kidnapped robot problem. The kidnapped robot problem, or the relocalization
problem, is more complicated than the global localization problem because the robot
has generated a false belief of its most likely location which it must identify and
“unlearn” before it can relocalize.

9.1.1 The Basic Idea of Probabilistic Localization

Before we delve into mathematical detail, let us illustrate the basic concepts with
a simple example. Consider the environment depicted in figure 9.1. For the sake of
simplicity, assume that the space of robot locations is one-dimensional, i.e., the robot
can only move horizontally. Now suppose the robot is switched on somewhere in
this environment to start its operation, but it is not told its location. Probabilistic
localization represents this state of uncertainty by a uniform distribution over all
locations, as shown by the graph in the top diagram in figure 9.1. Now assume the
robot queries its sensors and finds out that it is next to a door. Probabilistic localization
modifies the belief by raising the probability for locations next to doors, and lowering
it elsewhere. This is illustrated in the second diagram in figure 9.1. Notice that the
resulting belief is multimodal, reflecting the fact that the available information is
insufficient to uniquely derive the robot’s configuration. Also note that locations not
close to a door still possess nonzero probability. This is because sensor readings are
noisy, and a single sight of a door is typically insufficient to exclude the possibility
of not being next to a door.

Choset-79066 book February 22, 2005 18:29

9.1 Localization 303

Figure 9.1 The basic idea of probabilistic localization: a mobile robot during global
localization.

Now the robot advances to the next door. Probabilistic localization incorporates
this information by propagating the belief distribution accordingly. To account for
the inherent noise in robot motion, which in this situation inevitably leads to a loss of
information, the new belief is smoother (and less certain) than the previous one. This
is visualized in the third diagram in figure 9.1. Finally, the robot senses a second time,
and again finds itself next to a door. This observation is combined with the current
(nonuniform) belief, which leads to the final belief shown in the bottom diagram in
figure 9.1. At this point, “most” of the probability is centered around a single location.
The robot is now quite certain about its location.

Choset-79066 book February 22, 2005 18:29

304 9 Bayesian Methods

Note that the final belief includes five different peaks given our sequence of two
observations and one motion. The four smaller peaks correspond to the four cases in
which the robot could only once explain its two observations given the map of the
environment. At the location of the highest peak, which is in front of the second door at
the true location of the robot, the robot has correctly identified a door twice. All other
locations have small probabilities, since the robot could not explain its observations
using its map.

Note that in this example the robot did not have an erroneous measurement. A
false-positive detection of a door would lead to a situation in which the highest peak
does not correspond to the true location of the robot. If, however, the robot knows
about potential measurement errors, it would not become overly confident by just a
few observations. One of the key features of probabilistic localization is that it uses
the sensory information obtained to compute a belief that most accurately reflects
the uncertainty about the configuration of the robot, given the knowledge about the
behavior of the sensors of the robot.

Moreover, if the doors were uniquely identifiable by the robot, a Kalman filter
would be sufficient for global localization. Since the robot is not able to identify the
door it has sensed, it cannot associate an observation of a door uniquely to the doors
given in its map. This problem is well-known as the data association problem. If the
data association is known, Kalman filters can in fact be sufficient. Without knowing
how to associate measurements to features in the map, the resulting beliefs will be
inherently multimodal due to the resulting ambiguities. The strength of probabilistic
localization lies in its capability to allow the representation of arbitrary distributions
that are much more flexible than Gaussians. Put another way, probabilistic localization
can also be applied when the data association is unknown or when the robot’s motion
models or sensor models are highly nonlinear.

9.1.2 Probabilistic Localization as Recursive Bayesian Filtering

Let X be the state space for the robot. We want to estimate the state x ∈ X of the
robot, which essentially is its configuration given as its position and orientation. In
probabilistic localization the robot estimates at every time step k the conditional
probability P(x(k) | u(0 : k − 1), y(1 : k)) over all possible configurations given the
sensor information y(1 : k) it gathered about the environment and the movements
u(0 : k − 1) carried out. The term y(1 : k) denotes all observations obtained in
the time steps 1, . . . , k. The notation y(1 : k) “unfolds” to y(1), y(2), . . . , y(k) and
u(0 : k − 1) unfolds in a similar fashion. The term P(x(k) | u(1 : k − 1), y(1 : k)) is
usually called the posterior probability (or simply posterior) [347]. Note that when u
and y are written side by side, we assume that data have arrived in a synchronized way,

Choset-79066 book February 22, 2005 18:29

9.1 Localization 305

i.e., in the form u(0), y(1), . . . , u(k −1), y(k). This assumption makes the derivation
of probabilistic localization easier, but our algorithms can easily be extended to data
streams that are not synchronized.

Note that in the previous chapter, u(k) was simply the control input. In this chapter,
we denote it as movements and do not rely on a specific interpretation of u(k). It
can represent the commanded velocities, the odometry measurements, or the result of
filtering and fusing commanded velocities and odometry measurements, as described
in the previous chapter.

Throughout this section we will assume that the robot is also given a model or
map m of the environment. In principle we have to add this model as background
knowledge in every term. However, for the sake of simplicity we will skip m in the
equations below and assume that it is given as background knowledge. The heart
of probabilistic localization is the following equation which tells us how to use the
sensory input to update the most recent estimate (the prior) to obtain a new estimate
(the posterior):

P(x(k) | u(0 : k − 1), y(1 : k))

= η(k) P(y(k) | x(k))
∑

x(k−1)∈X

(P(x(k) | u(k − 1), x(k − 1))

P(x(k − 1) | u(0 : k − 2), y(1 : k − 1)))(9.1)

As mentioned above, the term P(x(k) | u(0 : k − 1), y(1 : k)) is the posterior about
the location of the robot at time k given the input data gathered so far. The term
P(x(k − 1) | u(0 : k − 2), y(1 : k − 1))), in contrast, is denoted as the prior as it
quantifies the probability that the robot is at location x(k − 1) before the integration
of u(k − 1) and y(k). The term P(y(k) | x(k)) is called the observation model which
specifies the likelihood of the measurement y(k) given the robot is at location x(k).
The term P(x(k) | u(k−1), x(k−1)) represents the motion model and can be regarded
as a transition probability. It specifies the likelihood that the movement action u(k−1)
carried out at location x(k − 1) carries the robot to the location x(k). Finally, η(k) is
a normalization constant that ensures that the left-hand side of this equation sums up
to one over all x(k). Note that (9.1) effectively accomplishes a combination of both
the prediction and update steps of the Kalman filter.

Equation (9.1) is a special case of the following general equation for recursive
Bayesian filtering.

P(x(k) | u(0 : k − 1), y(1 : k))

= η(k) P(y(k) | x(k))
∫

X
(P(x(k) | u(k − 1), x(k − 1))

P(x(k − 1) | u(0 : k − 2), y(1 : k − 1))) dx(k − 1)(9.2)

Choset-79066 book February 22, 2005 18:29

306 9 Bayesian Methods

Whereas (9.1) assumes discrete state spaces, (9.2) deals with continuous state spaces.
Additionally, (9.2) can be shown to be a generalization of Kalman filtering. In this
context the term P(x(k) | u(k−1), x(k−1)) is a generalization of (8.1) (see chapter 8)
to arbitrary and nonlinear noise. Similarly, the term P(y(k) | x(k)) can handle arbitrary
and nonlinear noise in the measurements. Finally, the posterior P(x(k) | u(0 : k − 1),
y(1 : k)) generalizes the belief representation of Kalman filters from Gaussians to
arbitrary probability density functions (PDFs).

Note the recursive character of probabilistic localization. The belief at time k is
computed out of the posterior at time k − 1 by incorporating two quantities, namely
P(y(k) | x(k)) and P(x(k) | u(k − 1), x(k − 1)). Obviously, both the motion model
and the observation model are the crucial components of probabilistic localization.
Further below we will describe typical realizations of these models. We will also
discuss different ways to represent the posterior P(x(k) | u(k − 1), x(k − 1)) and
describe how to update the posterior given these representations.

Independent of the specific representation, the update of the belief is generally
carried out in two different steps. The two steps are the prediction step and the update
step which are joined together by (9.1). Note that the separation of a filtering process
into these two steps is common in the context of Kalman filtering. The prediction step
is applied whenever the belief has to be updated because of an odometry measurement
u(k − 1). Suppose u(0 : k − 2) and y(1 : k − 1) are the data obtained thus far and
P(x(k − 1) | u(0 : k − 2), y(1 : k − 1))) is the current belief about the configuration
of the robot. Then we obtain the resulting belief P(x(k) | u(0 : k − 1), y(1 : k − 1))
by integrating over all possible previous configurations x(k − 1). For each such
x(k − 1) we multiply P(x(k − 1) | u(0 : k − 2), y(1 : k − 1)) by the probability
P(x(k) | u(k − 1), x(k − 1)) that the measured motion action u(k − 1) has carried
the robot from x(k − 1) to x(k) and compute P(x(k) | u(0 : k − 1), y(1 : k − 1)) as
the sum over all these values, i.e.,

P(x(k) | u(0 : k − 1), y(1 : k − 1))

=
∑

x(k−1)∈X

(P(x(k) | u(k − 1), x(k − 1))

P(x(k − 1) | u(0 : k − 2), y(1 : k − 1)))(9.3)

Note that this operation basically corresponds to the step depicted in the third diagram
of figure 9.1.

The update step is carried out whenever the robot perceives a measurement y(k)
with information about its environment. Suppose the current belief of the robot is
P(x(k) | u(0 : k−1), y(1 : k−1)). In the update step we simply multiply for each con-
figuration x(k) the current value P(x(k) | u(0 : k −1), y(1 : k −1)) with the likelihood

Choset-79066 book February 22, 2005 18:29

9.1 Localization 307

of P(y(k) | x(k)) that the robot perceives y(k) given the map of the environment and
given that the robot’s configuration is x(k). Additionally, we multiply each value with
a normalization constant that ensures that P(x(k) | u(0 : k − 1), y(1 : k)) sums up to
one over all x(k), i.e.,

P(x(k) | u(0 : k − 1), y(1 : k))

= η(k) P(y(k) | x(k)) P(x(k) | u(0 : k − 1), y(1 : k − 1)).(9.4)

According to Bayes rule, the constant η(k) is given as

η(k) = P(y(k) | u(0 : k − 1), y(1 : k − 1))−1,(9.5)

which generally is hard to compute. This is mainly because the dependency between
consecutive measurements without any information about the location of the robot
in general is hard to determine. However, if we apply the law of total probability, we
can sum over all locations x(k) and transform (9.5) to

η(k) =
[

∑

x(k)∈X

P(y(k) | x(k)) P(x(k) | u(0 : k − 1), y(1 : k − 1))

]−1

.(9.6)

Obviously, we now can compute η(k) using the terms that are already contained in
(9.4). As we will see later, using this equation the normalization constant can be
computed on the fly while integrating y(k) into the current belief.

To summarize, we have the following equations that completely describe the two
individual steps of recursive Bayesian filtering and that correspond to the prediction
and update steps also found in the Kalman filter:

prediction:

P(x(k) | u(0 : k − 1), y(1 : k − 1))

=
∑

x(k−1)∈X

(P(x(k) | u(k − 1), x(k − 1))

P(x(k − 1) | u(0 : k − 2), y(1 : k − 1)))

update:

η(k)

=
[

∑

x(k)∈X

P(y(k) | x(k)) P(x(k) | u(0 : k − 1), y(1 : k − 1))

]−1

P(x(k) | u(0 : k − 1), y(1 : k))

= η(k) P(y(k) | x(k)) P(x(k) | u(0 : k − 1), y(1 : k − 1)).

Choset-79066 book February 22, 2005 18:29

308 9 Bayesian Methods

In probabilistic localization the initial belief P(x(0)), reflects the prior knowledge
about the initial configuration of the robot. This distribution can be initialized arbitrar-
ily, but in practice two cases prevail. If the configuration of the robot relative to its map
is entirely unknown, P(x(0)) is usually uniformly distributed, or if the initial state
of the robot would be known up to a slight uncertainty, one would initialize P(x(0))
using a narrow Gaussian distribution centered at the robot’s believed configuration.

The reader may notice that the principle of probabilistic localization leaves open

1. how the belief P(x) is represented as well as

2. how the conditional probabilities P(x(k) | u(k − 1), x(k − 1)) and P(y(k) | x(k))
are computed.

Accordingly, existing approaches to probabilistic localization mainly differ in the
representation of the belief and the way the perceptual and motion models are repre-
sented. After a derivation of the equation for probabilistic localization in the following
subsection, we will discuss different ways to represent the posterior. As we will see,
the representation of the posterior has a serious impact on the efficiency of probabilis-
tic localization and the type of situations that can be accommodated with probabilistic
localization.

9.1.3 Derivation of Probabilistic Localization

When computing P(x | u(0 : k−1), y(1 : k)), we distinguish two cases, depending on
whether the most recent data item is an odometry reading or a sensor measurement.1

Let us first consider how to incorporate the most recent data item, namely a sensor
measurement y(k) the robot uses to gather information about its environment. If we
apply Bayes rule considering y(1 : k −1) and u(0 : k −1) as background knowledge,
we obtain

P(x(k) | u(0 : k − 1), y(1 : k))

= P(y(k) | u(0 : k − 1), y(1 : k − 1), x(k)) P(x(k) | u(0 : k − 1), y(1 : k − 1))

P(y(k) | u(0 : k − 1), y(1 : k − 1))
.(9.7)

First consider the left term P(y(k) | u(k − 1), y(1 : k − 1), x(k)) in the numerator.
This term represents the likelihood of the most recent measurement y(k) given all
previous measurements and given that the configuration x(k) of the robot at time k
is known. In recursive Bayesian filtering, one generally makes the assumption that,
once the state x(k) is known, the measurement y(k) is independent of all previous
measurements and controls. Given this assumption we can simply remove y(1 : k−1)

1. These two cases are analogous to the Kalman prediction and update steps, respectively.

Choset-79066 book February 22, 2005 18:29

9.1 Localization 309

and u(0 : k − 1) from this term. Accordingly, we simplify (9.7) to

P(x(k) | u(0 : k − 1), y(1 : k))

= P(y(k) | x(k)) P(x(k) | u(0 : k − 1), y(1 : k − 1))

P(y(k) | u(0 : k − 1), y(1 : k − 1))
.(9.8)

Observe that the denominator is a normalizer that does not depend on the configuration
of the robot. It simply ensures that the left-hand side of (9.8) sums up to one over all
x(k). Accordingly, we can replace the denominator by a normalization constant η(k)
which is the same for all x(k). This leads to

P(x(k) | u(0 : k − 1), y(1 : k))

= η(k) P(y(k) | x(k)) P(x(k) | u(0 : k − 1), y(1 : k − 1)).(9.9)

To see how to incorporate the motions of the robot into the belief we next consider
the rightmost term P(x(k) | u(0 : k − 1), y(1 : k − 1)) in this equation. If we use the
law of total probability we derive

P(x(k) | u(0 : k − 1), y(1 : k − 1))

=
∑

x(k−1)∈X

[
P(x(k) | u(0 : k − 1), y(1 : k − 1), x(k − 1))

P(x(k − 1) | u(0 : k − 1), y(1 : k − 1))
]
.(9.10)

To simplify the lefthand term in the sum we again make an independence assumption.
We assume that x(k) is independent of the measurements y(1 : k − 1) and the
movements u(0 : k − 2) obtained and carried out before the robot arrived at x(k − 1)
given we know x(k − 1). Rather the likelihood of being at x(k) only depends on
x(k − 1) and the most recent movement u(k − 1), i.e.,

P(x(k) | u(0 : k − 1), y(1 : k − 1), x(k − 1))

= P(x(k) | u(k − 1), x(k − 1))(9.11)

Thus we simplify (9.10) to

P(x(k) | u(0 : k − 1), y(1 : k − 1))

=
∑

x(k−1)∈X

(P(x(k) | u(k − 1), x(k − 1))

·P(x(k − 1) | u(0 : k − 1), y(1 : k − 1))).(9.12)

Now consider the second factor P(x(k − 1) | u(0 : k − 1), y(1 : k − 1)) in the sum.
This term specifies the probability that the robot’s configuration at time k − 1 is
x(k − 1) given the motions u(0 : k − 1) and given the observations y(1 : k − 1).

Choset-79066 book February 22, 2005 18:29

310 9 Bayesian Methods

According to our terminology, the motion u(k − 1) is carried out at time step k − 1
so that u(k − 1) carries the robot away from x(k − 1). Since we have no information
about x(k) and under the assumption that the time that elapses between consecutive
measurements is small, we can in fact conclude that the information that the robot has
moved after it was at x(k − 1) does not provide any information about x(k − 1). Note
that this is not true in general. Suppose the environment of the robot consists of two
rooms, a small and a large room, and that there is no door between these two rooms.
Furthermore suppose the robot moved a distance that is larger than the diameter of
the small room. After that movement the probability that the robot is in the larger
room must exceed the probability that the robot is in the smaller room. If, however,
the time intervals between consecutive measurements are small, each movement can
only represent a small distance and the fact that the robot has moved a few inches
away from its current location x(k − 1) carries almost no information about x(k − 1)
given we do not know x(k). Under this assumption we therefore can conclude that
u(k − 1) does not provide information about x(k − 1) if we have no information
about x(k). Thus, we assume that x(k − 1) is independent of u(k − 1) in the term
P(x(k − 1) | u(0 : k − 1), y(1 : k − 1)). Thus we obtain

P(x(k − 1) | u(0 : k − 1), y(1 : k − 1))

= P(x(k − 1) | u(0 : k − 2), y(1 : k − 1))(9.13)

and simplify (9.12) to

P(x(k) | u(0 : k − 1), y(1 : k − 1))

=
∑

x(k−1)∈X

(P(x(k) | u(k − 1), x(k − 1))

·P(x(k − 1) | u(0 : k − 2), y(1 : k − 1))).(9.14)

If we now substitute this result into (9.9) we obtain

P(x(k) | u(0 : k − 1), y(1 : k))

= η(k) P(y(k) | x(k))
∑

x(k−1)∈X

(P(x(k) | u(k − 1), x(k − 1))

P(x(k − 1) | u(0 : k − 2), y(1 : k − 1)))(9.15)

which directly corresponds to the (9.1).

9.1.4 Representations of the Posterior

As mentioned above, the probabilistic formulation leaves open how the posterior is
represented. In principle, there are various ways to represent the posterior. Mathemati-
cally speaking, P is a function P : X → R. When X is continuous (or infinite), P lives

Choset-79066 book February 22, 2005 18:29

9.1 Localization 311

in an infinitely dimensional space. Of course it is impossible to arbitrarily represent
an infinitely dimensional map. Thus we have to be content with a finite approxima-
tion. Throughout this section we discuss three different approaches: Kalman filters,
discrete approximations, and particle filters.

Kalman Filters

The previous chapter covered a common approach to the representation of the belief
P(x(k) | u(0 : k − 1), y(1 : k)) as Extended Kalman filters (EKFs) [215, 390]. In this
case, the posterior is represented using a unimodal Gaussian distribution. Many
successful applications of Kalman filters for mobile robot localization have been
demonstrated [28, 179, 276, 371]. One advantage of Kalman filtering is that it can be
implemented quite efficiently and that it works well in high-dimensional state spaces.
Additionally, Kalman filters provide a floating-point resolution and in this way allow
highly accurate estimates.

Unfortunately, Kalman filters are only optimal for systems whose behavior is gov-
erned by the linear equations given by (8.1) and (8.2). Since Kalman filters use
Gaussian distributions, they cannot appropriately represent beliefs that correspond
to ambiguous situations as they appear, e.g., in the context of global localization.
As a result, localization approaches using Kalman filters typically require that the
starting location of the robot is known or that unique landmarks are given so that
there is no data association problem. To overcome the limitations of Kalman filters,
recent extensions of this approach have been developed. For example, Jensfeld and
Christensen [209] use a mixture of Gaussians to represent the belief about the location
of the robot. They also present techniques to update this mixture based on sensory input
and robot motions. In this chapter, we consider two alternative nonparametric state
representations—discrete grids and samples—to bypass the Gaussian assumption.

Discrete Approximations

An alternative form to represent P(x(k)) is to use a discrete approximation of the
configuration space. Independent of the structure of the discretization all approaches
store in each element of their discrete structure the probability that the robot is at
the location that corresponds to this element. In practice, one mainly finds topo-
logical and geometric discretizations. In the first case, the configuration space is
separated according to the topological structure of the environment. Many sys-
tems that exploit topological structures use individual states for junctions, door-
ways and rooms and four possible headings. Several systems [213, 339, 386] follow
this approach and perform probabilistic localization for landmark-based corridor

Choset-79066 book February 22, 2005 18:29

312 9 Bayesian Methods

navigation. Choset and Nagatani exploit the topology of the generalized Voronoi
diagram (GVD) [108], described in chapter 5. The advantage of a topological rep-
resentation lies in its compactness, because only a limited number of states need
to be considered. Its disadvantage, on the other hand, is limited accuracy with
respect to position and orientation. To achieve more accurate estimates, Burgard,
Fox, and coworkers [83, 158] use a fine-grained grid to represent the posterior.
Throughout this section we will give a detailed description of this grid-based
technique.

If we assume that the configuration of the robot is SE(2) and thus a configuration is
represented by a three-dimensional random vector consisting of the (xr , yr)-position
and the orientation θr of the vehicle, our grid needs to be three-dimensional. Whereas
the first two dimensions are used for the position of the vehicle, the third dimension
is used for its orientation. Figure 9.2 shows the structure of the grid for this kind of
representation. In practical applications of this technique, spatial resolution of 10 to
30 cm and an angular resolutions of 2 to 10 degrees turned out to be sufficient for
robust and accurate localization of mobile robots [81, 177].

To compute the posterior P(x(k) | u(0 : k − 1), y(1 : k)) represented by a grid we
follow the procedure summarized in Algorithm 16. Given u(0 : k−1), y(1 : k) and an
initial belief P(x(0)), we carry out k loops. In the every round i we integrate u(i −1)
and y(i). The first step (i.e., the prediction step) incorporates the movement u(i − 1),
which means that we have to recompute the grid according to the motion model
P(x | u(i − 1), x ′). In principle, this involves integrating over all possible prior states
of the robot, which would result in an O(N 2) complexity, where N is the number of
states represented by the grid. One way to reduce the complexity of this operation is to

[0,0,0]T

P([xr,yr,qr]
T (k) | u(0:k –1),y(1:k))

yr

xr
qr

Figure 9.2 Grid-based representation of the state space.

Choset-79066 book February 22, 2005 18:29

9.1 Localization 313

Algorithm 16 Probabilistic localization for discrete state spaces
Input: Sequence of measurements y(1 : k) and movements u(0 : k − 1) and initial
belief P(x(0))
Output: A posterior P(x(k) | u(0 : k − 1), y(1 : k)) about the configuration of the
robot at time step k

1: P(x) ← P(x(0))
2: for i ← 1 to k do
3: for all states x ∈ X do
4: P ′(x) ← ∑

x ′∈X P(x | u(i − 1), x ′) · P(x ′)
5: end for
6: η ← 0
7: for all states x ∈ X do
8: P(x) ← P(y(i) | x) · P ′(x)
9: η ← η + P(x)

10: end for
11: for all states x ∈ X do
12: P(x) ← P(x)/η
13: end for
14: end for

limit the number of predecessor states summed over. In a successful implementation
of the grid-based representation Fox, Burgard and Thrun [158] applied the following
approach to approximate the integration over all potential previous states: First, all
grid cells are shifted according to the motion u(i − 1) carried out by the robot, and
then the whole grid is convolved using a bounded Gaussian kernel that corresponds
to the uncertainty of u(i − 1). Whenever the robot has moved, we can easily compute
for every (x , y)-plane of the grid the offsets �x and �y by which each cell has
to be shifted according to u(i − 1) (and assuming there are no odometry errors).
Please note that �x and �y both depend on the angle θ that the corresponding
plane in the grid represents. The convolution operation can be carried out efficiently
using a separable kernel. This involves convolving independently over the individual
dimensions of the grid. To realize this, one usually introduces a one-dimensional
array P ′ that stores the intermediate results of this computation. In the case of the
x-dimension we proceed as follows for all x :

P ′((x , y, θ)) = 0.5 · P((x , y, θ))

+ 0.25 · (P((x − 1, y, θ)) + P((x + 1, y, θ)))(9.16)

Choset-79066 book February 22, 2005 18:29

314 9 Bayesian Methods

Special care has to be taken at the borders of the grid. In this case only one neighboring
cell is given and one chooses the coefficients 2

3 for the cell itself and 1
3 for the neighbor

cell (x +1 or x −1 depending on where one is in the grid). Whenever P ′((x , y, θ)) has
been computed for all x and a given pair of y and θ , the results are then stored back
in the original cells. Similarly we proceed with all y and θ . To correctly model the
uncertainty introduced by the motion u(i −1) the convolution process can be repeated
appropriately. The second step (i.e., the update step) of Algorithm 16 integrates the
observation y(i) into the grid. To achieve this, we simply multiply every grid cell by the
likelihood of the observation y(i), given the robot has the configuration corresponding
to that particular cell. Afterward the whole grid is normalized.

Algorithm 16 can also be used for incremental filtering. If the initial belief is
set to the output obtained from the preceeding application of the algorithm and if
all measurements and movements since this point in time are given as input, the
algorithm incrementally computes the corresponding posterior. Please also note that
Algorithm 16 can easily be extended to situations in which the movements and the
environment measurements do not arrive in an alternating and fixed scheme.

One important aspect of all state estimation procedures is the extraction of relevant
statistics such as the mean and the mode. These parameters are important whenever the
robot has to generate actions based on the current belief about its state. For example,
this can be the next motion command to enter a specific room. Both the mode and
the mean can be determined efficiently given a grid-based approximation. The x- and
y-coordinates of the mean (x̃ and ỹ) can be computed by computing the weighted
sums i = 1, . . . , N over all cells of the grid. To compute the angle mean we use the
following equation:

φ̂ = atan2

(
N−1∑

i=0

P(i) · sin φ(i),
N−1∑

i=0

P(i) · cos φ(i)

)

(9.17)

Unfortunately, the mean has the disadvantage that the resulting values can lack any
useful meaning, especially in the context of multimodal distributions. For example,
the mean of a bimodal distribution might lie within an obstacle so that no meaningful
commands can be generated. An alternative statistic is the mode of the distribution
which, given a grid-based approximation, can be computed efficiently by a simple
maximum operation. Compared to the mean, the mode has the advantage that it
generally corresponds to a possible location of the vehicle. However, the locations
of subsequent modes can differ largely so that the estimates are not as continuous as
if we choose the mean. Whereas the mean automatically yields estimates at subgrid-
resolution accuracy, we can obtain the same for the mode by averaging over a small
region around the cell containing the maximum probability [82].

Choset-79066 book February 22, 2005 18:29

9.1 Localization 315

To illustrate an application example of a grid-based representation, consider the map
and the data set depicted in the left image of figure 9.3. The map, which was generated
using the system described by Buhmann and coworkers [73], corresponds to the
environment of the AAAI ’94 mobile robot competition. The size of this environment
is 31 by 22 m. The right image of the same figure depicts the path of the B21 robot
Rhino [415] along with measurements of the twenty four ultrasound sensors obtained
as the robot moved through the competition arena. Here we use this sensor information
to globally localize the robot from scratch. The time required to process this data on
a 400 MHz Pentium II is 80 seconds, using a position probability grid with a spatial
resolution of 15 cm and an angular resolution of 3 degrees.

The right image of figure 9.3 also marks the points in time when the robot perceived
the fifth (A), eighteenth (B), and twenty-fourth (C) sensor sweep. The posteriors
during global localization at these three points in time are illustrated in figure 9.4.
The figures show the belief of the robot projected onto the (x , y)-plane by plotting

31m

22m 3m

20m

C

A
B

Figure 9.3 Occupancy grid map of the 1994 AAAI mobile robot competition arena (left)
and data set recorded in this (right). It includes the odometry information and the ultrasound
measurements. Point A is after five steps, B is after eighteen, and C is after twenty-four.

Robot position (A) Robot position (B) Robot position (C)

Figure 9.4 Density plots after incorporating five, eighteen, and twenty-four sonar scans (the
darker locations are more likely).

Choset-79066 book February 22, 2005 18:29

316 9 Bayesian Methods

for each (x , y)-position the maximum probability over all possible orientations. More
likely locations are darker and, for illustration purposes, the left and middle images
use a logarithmic scale in intensity. The leftmost image of figure 9.4 shows the belief
state after integrating five sensor sweeps (i.e. when the robot is at step A on its path).
At this point in time, all the robot knows is that it is likely in one of the corridors
of the environment. After integrating eighteen sweeps of the ultrasound sensors (at
step B) the robot is almost certain that it is at the end of a corridor (see center image of
figure 9.4). After incorporating twenty-four scans (step C) the robot has determined
its location uniquely. This is represented by the unique peak containing 99% of the
whole probability mass (see rightmost image of figure 9.4).

Although the grid-based approach has the advantage that it provides a well-
understood approximation of the true distribution and that important statistics such as
the mean and the mode can be easily assessed, it has certain disadvantages. First, the
number of grid cells grows exponentially in the number of dimensions and therefore
limits the application of this approach to low-dimensional state spaces. Additionally,
the approach uses a rigid grid. If the whole probability mass is concentrated on a
unique peak, most of the states in the grid are useless and approaches that focus the
processing time on regions of high likelihood are preferable. One method to dynam-
ically adapt the number of states that have to be updated is the selective updating
scheme [158]. Burgard, Derr, Fox, and Cremers [82] use a tree structure and store
only cells whose probability exceeds a certain threshold. In this way, memory and
computational requirements can be adapted to the complexity of the posterior.

Particle Filters

An alternative and efficient way of representing and maintaining probability densi-
ties is the particle filter. The key idea of particle filters is to represent the posterior
by a set M of N samples. Each sample consists of a pair (x , ω) containing a state
vector x of the underlying system and a weighting factor ω, i.e., M = (X, [0, 1])N .
The latter is used to store the importance of the corresponding particle. The poste-
rior is represented by the distribution of the samples and their importance factors.
In the past a variety of different particle filter algorithms have been developed
and many variants have been applied with great success to various application
domains [97,125,138,157,167,201,218]. Algorithm 17 describes a particle filter algo-
rithm that uses sequential importance sampling with resampling [29] to implement the
update step. This algorithm follows a survival of the fittest scheme. Whenever a new
measurement y(k) arrives, the weight ω of a particle (x , ω) is computed as the like-
lihood p(y(k) | x) of this observation given the system is in state x . After computing

Choset-79066 book February 22, 2005 18:29

9.1 Localization 317

Algorithm 17 Probabilistic localization using a particle filter
Input: Sequence of measurements y(1 : k) and movements u(0 : k − 1) and set M
of N samples (x j , ω j) corresponding to the initial belief P(x)
Output: A posterior P(x(k) | u(0 : k − 1), y(1 : k)) about the configuration of the
robot at time step k represented by M.

1: for i ← 1 to k do
2: for j ← 1 to N do
3: compute a new state x by sampling according to P(x | u(i − 1), x j).
4: x j ← x
5: end for
6: η ← 0
7: for j ← 1 to N do
8: w j = P(y(i) | x j)
9: η = η + w j

10: end for
11: for j ← 1 to N do
12: w j = η−1 · w j

13: end for
14: M = resample(M)
15: end for

the weights, a so-called resampling procedure is applied. We draw N samples with
replacement from M such that each sample in M is selected with a probability that is
proportional to its weight ω. Accordingly, samples with greater weights survive with
higher likelihood than samples with values of small importance. In principle, there
are many ways of achieving this. One popular approach (see also [29]) is described by
algorithm 18. In this algorithm, the procedure rand(I) draws a random value from the
interval I according to a uniform distribution. The major advantage of this algorithm
is that the whole resampling process is carried out in O(N) steps. One alternative
technique is the one used by Isard and Blake [201]. This approach relies on binary
search to select a sample and thus requires O(N log N) steps.

We also need to describe the prediction step that we use to incorporate the motions
of the robot into the sample set. Throughout this chapter we assume that incremental
motions of a robot between two configurations x1 and x2 are encoded by the three
parameters α, β, and d (see figure 9.5). Here α is an initial rotation in x1 toward x2,
d is the distance to be traveled from x1 to x2, and β is the final rotation carried out at
the location x2 to reach the orientation of the robot in x2. Since the motions carried

Choset-79066 book February 22, 2005 18:29

318 9 Bayesian Methods

Algorithm 18 The procedure resample(M)
Input: Set M of N samples
Output: Set M′ of N samples obtained by importance resampling from M

1: M′ ← ∅
2: � ← rand((0; N−1])
3: c ← ω0

4: i ← 0
5: for j ← 0 to N − 1 do
6: u ← � + j · N−1

7: while u > c do
8: i ← i + 1
9: c ← c + ωi

10: end while
11: M′ ← M′ ∪ {(xi , N−1)}
12: end for

α'

β'

d'

final pose

α

d

measured pose

β

initial pose

path

Figure 9.5 The parameters α, β, and d specifying any incremental motion of a robot in the
(x , y, θ)-space.

out by the robot are not deterministic, we need to cope with potential errors when
we compute new locations for samples. We proceed as follows: Whenever we com-
pute the new configuration for a sample after a movement u(i − 1), we incorporate
the possible deviations from the values of α, β, and d. Throughout this section, we
assume Gaussian noise in these values and compute the new location of a sample
according to values α′, β ′, and d ′ that deviate from the measured values α, β, and d
according to Gaussian distributions. If we denote the robot state as x = [xr , yr , θr]

Choset-79066 book February 22, 2005 18:29

9.1 Localization 319

and the i th particle by xi , then the motion model is implemented by assigning

xi := xi +

xi
r + d ′ cos(θ i

r + α′)

yi
r + d ′ sin(θ i

r + α′)

θ i
r + α′ + β ′

(9.18)

for each particle in the collection, where

α′ = α + α · norm(σ1) + d · norm(σ2)(9.19)

β ′ = β + β · norm(σ3) + d · norm(σ4)(9.20)

d ′ = d + d · norm(σ5) + (α + β) · norm(σ6).(9.21)

Here norm(σ) is a random number generator that outputs random numbers according
to a normal distribution with mean 0 and standard deviation σ . The standard deviations
σi are parameters that describe the influence of the translation d and the rotations α

and β on the potential errors. In this model the errors in all three values depend on the
rotations and the translation carried out. Note that the σi can be learned by generating a
statistic about typical deviations of the actual movements from the values α, β, and d.

Figure 9.6 illustrates an application of this motion model to a sample set in which
all samples are concentrated in a single state. The line depicts the path taken by
the robot and the sample sets illustrate the belief about the robot’s configurations at

Start

Figure 9.6 Sample-based approximation of the belief of the robot after repeatedly executing
motion commands. In this example, the robot did not perceive the environment while it was
updating the sample set.

Choset-79066 book February 22, 2005 18:29

320 9 Bayesian Methods

certain points in time. In this particular example we incorporated no observations
of the environment into the sample set. As can be seen from the figure, the robot’s
uncertainty grows indefinitely while it is moving, and the overall distribution is slightly
bent.

Note that the motion model described above does not incorporate any information
about the environment. Accordingly, samples might end up inside obstacles in the
map of the environment. One advantage of sample-based approaches, however, lies in
the fact that such environmental information can easily be incorporated. To avoid that
samples move through obstacles we can simply reject such values for α′, β ′, and d ′.

To extract the mean of a posterior represented by N samples, we can proceed in a
similar way as for the grid-based representation. We simply average over all samples
of the distribution. In the case that not all importance factors are equal we use the
normalized importance factors as weighting factors. When computing the mode, we
distinguish two different situations. If we compute the mode just before the resampling
step, we can simply select that sample with the highest importance factor, which
requires O(N) steps. After resampling, however, the mode cannot be computed as
easily, because the actual form of the posterior is only encoded in the density of the
samples. One popular approach to approximate the mode is to use kd-trees [44], which,
however, requires O(N log N) steps. Alternatively, one can compute a histogram
based on a coarse discretization of the state space. In this case, the space requirements
are similar to the grid-based approach, but the mode can be extracted in O(N) steps.

Figure 9.7 shows a particle filter in action. This example is based on the ultra-
sound and odometry data obtained while the robot traveled along the path depicted
in figure 8.1 in chapter 8. To achieve global localization we initialized the filter by
selecting the initial set of particles from a uniform distribution over the free space
in the environment (see left image of figure 9.7). After incorporating ten ultrasound

Figure 9.7 Global localization using a particle filter with 10,000 samples. The left image
shows the initial distribution. The middle image shows the distribution after incorporating ten
ultrasound beams. The right image shows a typical situation (here after 65 steps) when the
location of the robot has been identified.

Choset-79066 book February 22, 2005 18:29

9.1 Localization 321

Figure 9.8 Trajectory of the robot obtained by applying a particle filter for tracking the
configuration of the robot using the data gathered along the path depicted in figure 8.1 in
chapter 8.

measurements we obtain the particle set depicted in the middle image of figure 9.7.
After incorporating 65 measurements, the particle filter has converged to configura-
tions close to the true location of the robot. The resulting density is depicted in the
right image of figure 9.7.

Figure 9.8 shows the path of a robot as it is estimated by a particle filter. Here
the particle filter was initialized using a Gaussian distribution and therefore was just
tracking the location of the robot. Again, the odometry data used as input are shown
in figure 8.1. Additionally, the filter used the data of the 24 ultrasound sensors. As
can be seen, the particle filter can robustly track the position of the robot, although
ultrasound measurements are noisy and there are larger errors in odometry.

As the global localization example illustrates, particle filters typically converge
to the most likely estimate, i.e., after a certain period of time all of the particles
usually cluster around the true configuration of the system. While this is desired in
most situations, it also can be disadvantageous. This is especially true if a failure
occurs that is not modeled in the motion model. One typical scenario in which such
unpredicted localization errors frequently occur is the RoboCup environment [237].
There are certain conditions under which a referee removes a player from the soccer
field. After a short period of time the player is then placed back onto the field. The
problem that has to solved by the robot in such a case is usually denoted as the
“kidnapped robot problem” [145]. To deal with such situations, or more generally,
with situations in which the estimation process fails, the robot requires techniques
to detect localization failures and to initiate a global localization. One approach is to

Choset-79066 book February 22, 2005 18:29

322 9 Bayesian Methods

modify the motion model and to choose random configurations for a certain fraction of
the samples [156]. Alternatively, one can monitor the average observation likelihood
p̃ = N−1 ·∑N

j=1 P(y(i) | x j) of all samples. For example, Burgard et al. [82] restart a
global localization if this value falls below a certain threshold. Lenser and Veloso [275]
adjust the number of samples with randomly chosen locations according to the value
of p̃. Gutmann and Fox [176] additionally smooth p̃ to be more robust against short-
term changes of p̃.

9.1.5 Sensor Models

One of the crucial aspects of probabilistic localization is how the likelihood of the
robot’s sensor measurements is computed. In particular, we are interested in the quan-
tity P(y | x), which represents the likelihood of measuring y given x is the location
of the system. Throughout this chapter, we denote the way in which we compute this
quantity as the sensor model. Obviously, a good sensor model largely depends on
the type of sensor that is used for localization. Additionally, it also may depend on
the environment. For example, it might exploit particular features of the environment,
such as landmarks. Finally, it also depends on the way the environment is represented,
i.e., on the type of the map.

In this subsection we describe a sensor model that captures several of the physical
properties of frequently used proximity sensors such as ultrasound or laser range scan-
ners. To motivate this sensor model let us first investigate a typical scan obtained with
the 24 ultrasound sensors of a B21 robot. One such scan is shown in figure 9.9. In this
figure the objects in the environment are shown in light gray. The dark lines indicate
the central axis of 24 ultrasound beams as they are obtained at the corresponding loca-
tion in this environment. As can be seen from the figure, most of the measurements
are quite accurate. For example, the beams 0, 2, 3, 4, 10, 13, and 15 quite accurately
correspond to the distance to the nearest obstacle in the measurement direction. Other
beams, such as 1, 12, and 14, are shorter than the distance to the nearest obstacle.
In this particular situation, the measurement 1 resulted from a crosstalk: the sensor
received a sound signal emitted by another sensor [61]. The other two short measure-
ments (12 and 14) were caused by objects not contained in the map. Whereas beam
12 was reflected by a person entering the room, the cone of beam 14 was echoed by
a refrigerator installed in the niche. Furthermore, some of the measurements, such as
18, 19, and 20, appear to be quite random. They apparently pass through a bookshelf
and appear to be echoed by an unmodeled object behind it. Finally, the sensors 6, 8,
and 23 never received an echo and therefore report a maximum range reading.

The sensor model that we describe in the remainder of this subsection is designed to
capture the noise and error characteristics of many active range sensors. It can model

Choset-79066 book February 22, 2005 18:29

9.1 Localization 323

2
3

14
15

16
17

18

19

20

21
22

23

0

1

5
4

7
8

91112
13

6

10

Figure 9.9 Ultrasound scan perceived with a B21 robot in an office environment.

the accuracy of the sensor whenever the beam hits the nearest object in the direction
of the measurement. Additionally, it represents random measurements. It furthermore
provides means to model objects not contained in the map and to represent the effects
of crosstalk between different sensors. Finally, it incorporates a technique to deal
with detection errors in which the sensor reports a maximum range measurement.
The model has been applied successfully in the past for mobile robot localization
with proximity sensors such as ultrasound sensors and laser range finders. In 1997
and 1998 [81] the mobile robots Rhino and Minerva operated several weeks in pop-
ulated museum environments using the sensor model described here for localization
with laser range scanners.

Throughout this subsection we assume that range sensors have a limited numerical
resolution, i.e., the information they provide is discrete. Accordingly, we consider
a discrete set of distances d0, . . . , dn−1 where dn−1 corresponds to the maximum
distance that can be measured. We also assume that the size of the ranges � =
�i+1 = di+1 − di is the same for all i . In principle, the distribution P(y | x) that y
is observed given the state of the system is x can be specified by a histogram that
stores in each of its n bins the likelihood that y is di , i = 0, 1, . . . n − 1. Obviously,
storing an individual histogram for sufficiently large number of potential states would
consume too much space.

Choset-79066 book February 22, 2005 18:29

324 9 Bayesian Methods

The key idea of the model that we describe here is to compute P(y | x) based on
the distance d(x) to the closest obstacle in the map within the perceptual field of the
sensor. If the environment is represented geometrically, i.e., by an evidence grid or
by geometric primitives such as polygons or lines, the expected distance d(x) can be
computed efficiently using ray-casting. It is natural to assume that

P(y | x) = P(y | d(x)).(9.22)

Accordingly, it suffices to determine the expected distance d for the given measuring
direction at the current location of the vehicle and then compute P(y | d).

The quantity P(y | d) is calculated as follows. According to the different situa-
tions identified in the scan depicted in figure 9.9, we distinguish the following four
situations:

1. The nearest object in the direction of the beam is detected. The actual measurement
depends on the accuracy of the underlying sensor. Typically, the likelihood of the
measurement y is then well-approximated by a Gaussian distribution N (y, d, σ),
where d is the true distance to the object and the variance σ depends on the accuracy
of the sensor; it is higher for ultrasound sensors than for laser range scanners.

2. An object not contained in the map reflects the beam, or there is crosstalk. The
sensor will report a distance that is shorter than the expected distance. In our model,
we represent this by an exponential distribution, e.g., λe−λy .

3. The sensor produces a random measurement. As mentioned above, there are situa-
tions in which the sensor provides a random measurement that cannot be explained
given the current map. We model these types of measurements by a uniform
distribution over the possible distances reported by the sensor, represented by a
constant γ .

4. The sensor reports a maximum range reading. In some situations, time-of-flight
sensors such as ultrasounds or laser range scanners, or intensity-based sensors
such as those based on infrared light fail to detect the beam reflected by an object.
If no random measurement is obtained and if no crosstalk happens, the sensor may
report a maximum range measurement. The likelihood of this event is represented
by a constant δ.

Since we do not know which situation is given, our distribution needs to represent
all the different cases. Accordingly, the distribution P(y | d) is computed based on
a mixture of the four different densities that correspond to the individual situations.
Suppose di is the expected distance in a particular measurement direction at a given

Choset-79066 book February 22, 2005 18:29

9.1 Localization 325

position in the environment. Then we determine a complete histogram hi containing
in each bin hi, j the likelihood of each possible measurement d j the robot can obtain.
If j < n − 1, i.e., the actual measurement is not a maximum range measurement,
hi, j is computed based on a mixture of the three densities representing the situations
1, 2, and 3 described above. If, however, j = n − 1, then we have a single value
representing the likelihood of maximum range measurements.

hi, j =
{∫ d j + �

2

d j − �
2

αi · N (y, di , σi) + βi · λi e−λi y + γi dy if j < n − 1

δi if j = n − 1
(9.23)

The values of the parameters σi , αi , βi , γi and δi have to be chosen appropriately
such that each hi j reflects the correct likelihood. Thereby, we have to consider the
constraint that
n−1∑

j=0

hi, j = 1(9.24)

for each histogram hi . A typical approach to determine the optimal values for the
different parameters of each histogram is log-likelihood maximization. Given a set
of actual measurements for a given expected distance di this approach seeks to deter-
mine those values for the parameters that maximize the sum of the log likelihoods
log P(d | di) over all measurements in the data set.

Figures 9.10 and 9.11 show the resulting maximum-likelihood approximations
for two different expected distances. Whereas figure 9.10 plots the histograms for
ultrasound data, figure 9.11 plots the histograms obtained for laser range data. In all
plots, the data are shown as boxes and the approximation is shown as dots. As can

0

0.05

0.1

0.15

0.2

0

0.05

0.1

0.15

0.2
Data

Approximation
Data

Approximation

Figure 9.10 Histograms (data and maximum-likelihood approximation) for data sets obtained
with ultrasound sensors and for two different expected distances.

Choset-79066 book February 22, 2005 18:29

326 9 Bayesian Methods

0

0.05

0.1

0.15

0.2

0

0.05

0.1

0.15

0.2
Data

Approximation
Data

Approximation

Figure 9.11 Histograms (data and maximum-likelihood approximation) for data sets obtained
with a laser range finder and for two different expected distances.

be seen, our model is quite accurate and reflects well the properties of the real data. It
is furthermore obvious that the laser range finder yields much more accurate data than
the ultrasound sensor. This is represented by the fact that the Gaussians have a lower
variance in both histograms. Please also note that the variances of the Gaussians do
not depend solely on the accuracy of the sensor. They also encode the uncertainty of
the map. For example, if dynamic objects such as chairs or tables are slightly moved,
the error in the measurements increases, which results in a higher uncertainty of the
sensor model.

Range scans obtained with laser range scanners typically consist of multiple mea-
surements. Some robots are also equipped with arrays of ultrasound sensors which
provide several measurements y1, y2, . . . ym at a time. In practice it is often assumed
that these measurements are independent, i.e, that

P(y1, y2, . . . , ym | x) =
I∏

i=1

P(yi | x).(9.25)

In general, however, this assumption is not always justified, e.g., if the environment
contains objects that are not included in the map. In such a situation, the knowledge
that one measurement is shorter than expected raises the probability that a neighboring
beam of the same scan that intercepts a region close to the first measurement is also
shorter. A popular solution to this problem is to use only a subset of all beams of a
scan. For example, Fox et al. [158] typically used only 60 beams of the 181 beams of
a SICK PLS laser range scan.

Finally, we want to describe some aspects that might be important when imple-
menting this model. The first disadvantage of this model is that one has to perform a

Choset-79066 book February 22, 2005 18:29

9.1 Localization 327

ray-casting operation for every potential state of the system. In a grid-based represen-
tation of the state space this involves a ray-casting operation for every cell of the grid.
If a sample-based representation is used, the same operation has to be performed for
every sample in the sample set. One approach to reduce the computation time is to
precompute all expected distances and to store them in a large lookup table. Given
an appropriate discretization of the state space, the individual entries of this table
can be accessed in constant time. If, furthermore, one limits the resolution of the
range data such that each beam can have no more than 256 values, only one byte is
needed for each entry of the table. In this case, also, the number of histograms for
the computation of P(y | d) is limited. We only need 256 histograms with 256 bins
each.

A further disadvantage of this approach is that the likelihood function sometimes
lacks smoothness with respect to slight changes of the locations of the robot. For
example, consider a situation in which a laser range finder points into a doorway.
If we move the robot slightly, the beam might hit the adjacent wall. Alternatively,
consider a beam that hits a wall at a small angle. Slight changes in the orientation
of the robot in this case have a high influence on the measured distance. In contrast
to that, if the beam is almost perpendicular to a wall, slight changes of the orientation
of the robot have almost no influence on the measured distance. One way to solve this
problem is to also consider the variance of the expected measurement. This variance
can also be computed beforehand by integrating over the local neighborhood of the
state x . Given an appropriate discretization of the variances, the histograms then
have to be learned for each pair of expected distances and variance. Both techniques,
the compact representation of expected distances and the integration of the variance
of the expected distance with respect to slight changes in the location of the robot,
have been used successfully in Rhino and Minerva [81, 158, 414].

Note that several alternative models have been proposed in the past. The goal of all
these models is to provide robust and accurate estimates of the location of the robot.
For example, Moravec [324] and Elfes [143], who introduced occupancy grid maps,
also presented a probabilistic technique to compute the likelihood of ultrasound mea-
surements given such a map and the position of the robot. Yamauchi and Langley [430]
compared local maps built from the most recent measurements with a global map. The
sensor models proposed by Konolige [245] and Thrun [412] are more efficient than
the model presented here since they avoid the ray-casting operation and only consider
the endpoint of each beam. Finally, Simmons and Koenig [386] extracted doorways
and corridor junction types out of local grid maps and compared this information to
landmarks stored in a topological representation of the environment.

Choset-79066 book February 22, 2005 18:29

328 9 Bayesian Methods

9.2 Mapping

In chapter 8 we learned how to use a Kalman filter for acquiring a map of the envi-
ronment. The assumption there was that the robot can identify landmarks in the
environment and that the posterior about the location of the robot and the landmarks
can be represented by a Gaussian distribution. In this section we consider probabilistic
forms of mapping that—similarly to probabilistic localization—allow representation
of arbitrary posteriors about the state of the environment and the location of the robot
during mapping.

To map an environment, a robot has to cope with two types of sensor noise: noise in
perception (e.g., range measurements), and noise in odometry (e.g., wheel encoders).
Because of the latter, the problem of mapping creates an inherent localization problem.
The mobile robot mapping problem is therefore often referred to as the concurrent
mapping and localization problem (CML) [277], or as the simultaneous localization
and mapping problem [99, 128] (see also chapter 8). As in chapter 8 we will use the
acronym SLAM when referring to the latter. In fact, errors in odometry render the
errors of individual features in the map dependent even if the measurement noise is
independent, which suggests that SLAM is a high-dimensional statistical estimation
problem, often with tens of thousands of dimensions. In this chapter we approach this
problem in two steps. First we concentrate on the question of how to build maps given
the location of the robot is known. Afterward we relax this assumption and describe
a recently developed technique for SLAM.

9.2.1 Mapping with Known Locations of the Robot

A very popular, probabilistic approach to represent the environment is the so-called
occupancy probability grid pioneered by Elfes and Moravec in the 80s [325]. Occu-
pancy probability grids are approximative. Each cell ml of such a two-dimensional
grid m stores the probability P(ml | x(1 : k), y(1 : k)) that the place in the environment
corresponding to ml is occupied given the observations y(1 : k) = y(1), . . . , y(k)
and all locations of the robot x(1 : k) = x(1), . . . , x(k) at the corresponding points
in time. Because of their probabilistic nature, occupancy probability grids can be
updated easily based on sensory input.

Occupancy probability grids seek to find the map m that maximizes P(m | x(1 : k),
y(1 : k)). If we apply Bayes rule using x(1 : k) and y(1 : k − 1) as background knowl-
edge, we obtain

P(m | x(1 : k), y(1 : k))

= P(y(k) | m, x(1 : k), y(1 : k − 1)) P(m | x(1 : k), y(1 : k − 1))

P(y(k) | x(1 : k), y(1 : k − 1))
.(9.26)

Choset-79066 book February 22, 2005 18:29

9.2 Mapping 329

If we assume that y(k) is independent from x(1 : k − 1) and y(1 : k − 1) given we
know m, then the right side of this equation can be simplified to

P(m | x(1 : k), y(1 : k))

= P(y(k) | m, x(k)) P(m | x(1 : k), y(1 : k − 1))

P(y(k) | x(1 : k), y(1 : k − 1))
.(9.27)

We now again apply Bayes rule to determine

P(y(k) | m, x(k)) = P(m | x(k), y(k)) P(y(k) | x(k))

P(m | x(k))
.(9.28)

If we insert (9.28) into (9.27) and since x(k) does not carry any information about m
if there is no observation y(k), we obtain

P(m | x(1 : k), y(1 : k))

= P(m | x(k), y(k)) P(y(k) | x(k)) P(m | x(1 : k − 1), y(1 : k − 1))

P(m) P(y(k) | x(1 : k), y(1 : k − 1))
.(9.29)

If we exploit the fact that each ml is a binary variable, we derive the following equation
for the posterior probability that all cells of m are free in an analogous way.

P(¬m | x(1 : k), y(1 : k))

= P(¬m | x(k), y(k)) P(y(k) | x(k)) P(¬m | x(1 : k − 1), y(1 : k − 1))

P(¬m) P(y(k) | x(1 : k), y(1 : k − 1))
,(9.30)

where ¬m denotes the complement of m. By dividing (9.29) by (9.30), we obtain

P(m | x(1 : k), y(1 : k))

P(¬m | x(1 : k), y(1 : k))

= P(m | x(k), y(k)) P(¬m) P(m | x(1 : k − 1), y(1 : k − 1))

P(¬m | x(k), y(k)) P(m) P(¬m | x(1 : k − 1), y(1 : k − 1))
.(9.31)

Finally, we use the fact that P(¬A) = 1 − P(A) and obtain the following equation:

P(m | x(1 : k), y(1 : k))

1 − P(m | x(1 : k), y(1 : k))

= P(m | x(k), y(k))

1 − P(m | x(k), y(k))

1 − P(m)

P(m)

P(m | x(1 : k − 1), y(1 : k − 1))

1 − P(m | x(1 : k − 1), y(1 : k − 1))
(9.32)

If we define

Odds(x) = P(x)

1 − P(x)
,(9.33)

Choset-79066 book February 22, 2005 18:29

330 9 Bayesian Methods

(9.32) turns into

Odds(m | x(1 : k), y(1 : k))

= Odds(m | x(k), y(k)) Odds(m | x(1 : k − 1), y(1 : k − 1))

Odds(m)
.(9.34)

The corresponding log Odds representation of (9.34) is

log Odds(m | x(1 : k), y(1 : k))

= log Odds(m | x(k), y(k)) − log Odds(m)

+ log Odds(m | x(1 : k − 1), y(1 : k − 1)).(9.35)

Please note that this equation also has a recursive structure similar to that of the
recursive Bayesian filtering scheme described in Section 9.1. To incorporate a new
scan into a given map we multiply its Odds ratio with the Odds ratio of a local map
constructed from the most recent scan and divide it by the Odds ratio of the prior.
Often it is assumed that the prior probability of m is 0.5. In this case the prior can be
canceled so that (9.35) simplifies to

log Odds(m | x(1 : k), y(1 : k))

= log Odds(m | x(k), y(k))

+ log Odds(m | x(1 : k − 1), y(1 : k − 1)).(9.36)

To recover the occupancy probability from the Odds representation given in (9.34),
we use the following law which can easily be derived from (9.33).

P(x) = Odds(x)

1 + Odds(x)
(9.37)

=
[

1 + 1

Odds(x)

]−1

(9.38)

This leads to

P(m | x(1 : k), y(1 : k))

=
[

1 + Odds(m)

Odds(m | x(k), y(k)) Odds(m | x(1 : k − 1), y(1 : k − 1))

]−1

=
[

1 + 1 − P(m | x(k), y(k))

P(m | x(k), y(k))

P(m)

1 − P(m)

1 − P(m | x(1 : k − 1), y(1 : k − 1))

P(m | x(1 : k − 1), y(1 : k − 1))

]−1

.(9.39)

Choset-79066 book February 22, 2005 18:29

9.2 Mapping 331

Algorithm 19 Occupancy grid mapping with known locations
Input: Sequence of measurements y(1 : k) and corresponding positions x(1 : k)
and an initial belief P0(m) that the cells in the map are occupied
Output: Posterior Pm = P(m | x(1 : k), y(1 : k)) that the cells in the map are
occupied

1: Pm ← P0(m)
2: for i ← 1 to k do

3: Pm ←
[
1 + 1−P(m | x(i), y(i))

P(m | x(i), y(i))
P(m)

1−P(m)
1−Pm

Pm

]−1

4: end for

Algorithm 19 uses the recursive nature of (9.39) to compute the posterior
P(m | x(1 : k), y(1 : k)). It receives as input the sequence of measurements y(1 : k)
and the corresponding locations of the robot x(1 : k), as well as the initial probability
P0(m) about the occupancy probability of the cells in the map. Typically, P0(m) will
be initialized with the prior probability P(m). If one wants to apply Algorithm 19 to
multiple sequences of measurements, P0(m) can also be initialized with the output
obtained from the previous application of the algorithm.

It remains to describe how we actually compute P(m | x(k), y(k)). Several tech-
niques for determining this quantity have been presented. Whereas Moravec and
Elfes [144, 325] used a probabilistic model to compute this quantity for ultrasound
measurements, Thrun [411] applied a neural network to learn the appropriate inter-
pretation of the measurements obtained with sonar sensors. The map depicted in the
right image of figure 5.1 in chapter 5 has been computed with Thrun’s approach. In
this chapter we present a model that can be regarded as an approximate version of the
approach described by Elfes [144].

One key assumption of occupancy probability grid-mapping techniques is that the
individual cells of the map m can be considered independently. Accordingly, the
posterior probability of m is computed as

P(m) =
∏

l

P(ml).(9.40)

The advantage of this approach is that it suffices to describe how to update a single
cell upon sensory input. Given this assumption, all we need to specify is the quan-
tity P(ml | x(k), y(k)) which is the probability that cell ml is occupied given the
measurement y(k) and the state x(k) of the robot.

The model P(ml | x(k), y(k)) described here considers for each cell ml the differ-
ence between the measured distance y(k) and distance of ml from x(k). In the case of

Choset-79066 book February 22, 2005 18:29

332 9 Bayesian Methods

d

y(k)

x(k)

ml = md,q(x(k))

q

Figure 9.12 The occupancy probability of a cell ml = md,θ (x(k)) depends on the distance d
to x(k) and the angle θ to the optical axis of the cone.

ultrasound sensors the signal is typically emitted in a cone. To compute the occupancy
probability of a cell ml we therefore also consider the angle θ between the optical
axis of the sensor and the ray going through ml and x(k) (see figure 9.12). The
occupancy probability P(ml | x(k), y(k)) = P(md,θ (x(k)) | y(k), x(k)) of ml is then
computed using the following function, which can be regarded as an approximation
of the mixture of Gaussians and linear functions applied by Elfes [144].

P(md,θ (x(k)) | y(k), x(k)) = P(md,θ (x(k)))

+

−s(y(k), θ) d < y(k) − d1

−s(y(k), θ) + s(y(k),θ)
d1

(d − y(k) + d1) d < y(k) + d1

s(y(k), θ) d < y(k) + d2

s(y(k), θ) − s(y(k),θ)
d3−d2

(d − y(k) − d2) d < y(k) + d3

0 otherwise.

(9.41)

In this definition s(y(k), θ) is a function that computes the deviation of the occu-
pancy probability from the prior occupancy probability P(m) given the measured
distance y(k) and the angle θ between the cell, the sensor, and its optical axis. A com-
mon choice for s(y(k), θ) is a product of a linear function g(y(k)) and a Gaussian
N (0, σθ):

s(y(k), θ) = g(y(k)) N (0, σθ)(9.42)

figure 9.13 plots these two components as they are used in the examples shown in
this section. The variance σθ of the Gaussian is 0.05. Figure 9.14 plots s(y(k), θ)
for y(k) ∈ [0; 3m] and θ ∈ [− π

24 ; π

24]. This angular range is identical to the opening
angle of 15 degrees of the ultrasound sensors used to acquire the data of the examples
presented here.

Choset-79066 book February 22, 2005 18:29

9.2 Mapping 333

0

0.01

0.02

0.03

0.04

0.05

0.06

0 0.5 1 1.5 2 2.5 3

Measured distance [m]

0
1
2
3
4
5
6
7
8

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

Angle between cell and the optical
axis of the beam

Figure 9.13 Functions used to compute the function s(y(k), θ): linear function (left) and
Gaussian (right).

s

0
0.5

1
1.5

2
2.5

measured distance

-0.1
-0.05

0
0.05

0.1

theta

0.1
0.2
0.3
0.4

Figure 9.14 Function s(y(k), θ) used to model the deviation from the prior for cells in the
sensor cone.

The constants d1, d2, and d3 in (9.41) specify the interval in which the different
linear functions of the piecewise linear approximation are valid (see also figure 9.15).
The occupancy probability of cells lying between x(k) and the arc from which the
signal was reflected must be smaller than the prior probability for occupancy. In our
model the occupancy probability of cells with d < y(k) −d1 therefore is computed as
P(ml)−s(y(k), θ). The occupancy probability of cells whose distance to x(k) is close
to y(k), i.e., for which y(k) − d1 ≤ d < y(k) + d1, is computed by a linear function
that increases with d. If a beam ends in a cell it is commonly assumed that the world is
also occupied at least for a certain range behind that cell. In our model the occupancy
probability therefore stays at a high but constant level P(ml) + s(y(k), θ) for all cells
whose distance lies between y(k) + d1 and y(k) + d2. Accordingly, the constants

Choset-79066 book February 22, 2005 18:29

334 9 Bayesian Methods

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

p

distance

Occupancy probability

zt + d3zt

zt + d1

zt – d1

zt + d2

Figure 9.15 Probability P(md,θ (x(k)) that a cell on the optical axis of the sensor (θ = 0) is
occupied depending on the distance of that cell from the sensor. The measured distance is 2m.

d1 and d2 encode the average depth of obstacles. For distances d with y(k) + d2 ≤
d < y(k) + d3, we assume that the occupancy probability linearly decreases to the
prior occupancy probability P(ml). Finally, for cells ml = md,θ (x(k)) whose distance
from x(k) exceeds y(k) + d3 we can safely assume that P(md,θ (x(k)) | y(k), x(k))
equals the prior probability P(ml), since y(k) does not give us any information
about such cells. Figure 9.15 plots P(md,θ (x(k)) | y(k), x(k)) for d ranging from
0 m to 3 m given that y(k) is 2 m and that θ is 0 degrees. In this case, the value of
s(y(k), θ) is approximately 0.16. We additionally assume that the prior probability
P(ml) = P(md ,θ (x(k))) = 0.5 for all d, θ , and x(k).

Figure 9.16 shows three-dimensional plots of the resulting occupancy probabilities
for measurements of 2.0 m and 2.5 m. In both plots the optical axis of the sensor
cone is identical to the x-axis and the sensor is located in the origin of the coordinate
frame. As can be seen from the figure, the occupancy probability is high for cells
whose distance to x(k) is close to y(k). It decreases for cells with distance y(k) from
x(k) and with increasing values of θ . Furthermore, it stays constant for cells that are
immediately behind a cell that might have reflected the beam and linearly decreases
to the prior probability afterward. For cells that are covered by the beam but did not
reflect it, the occupancy probability is decreased.

Choset-79066 book February 22, 2005 18:29

9.2 Mapping 335

Occupancy probability

0
0.5

1
1.5

2
2.5x -0.4

-0.2
0

0.2
0.4

y

0.3
0.4
0.5
0.6
0.7

Occupancy probability

0
0.5

1
1.5

2
2.5x -0.4

-0.2
0

0.2
0.4

y

0.3
0.4
0.5
0.6
0.7

Figure 9.16 Local occupancy probability grids for a single ultrasound measurement of y(k) =
2.0m (left) and y(k) = 2.5m (right).

+ + +

+ + +

+ + +

+ + +

+ + +

+ + +

Figure 9.17 Incremental mapping in a corridor environment. The upper left image shows the
initial map and the lower right image contains the resulting map. The maps in the three middle
columns are the local maps built from the individual ultrasound scans perceived by the robot.
Throughout this process, measurements beyond a 2.5 m radius have not been considered.

Figure 9.17 shows our sensor model in action for a sequence of measurements
recorded with a B21r robot in a corridor environment. The upper-left corner shows
a map that has been built from a sequence of ultrasound scans. Afterward the robot
perceived a series of eighteen ultrasound scans each consisting of 24 measurements.

Choset-79066 book February 22, 2005 18:29

336 9 Bayesian Methods

Figure 9.18 Occupancy probability map for the corridor of the Autonomous Intelligent Sys-
tems Lab at the University of Freiburg (left) and the corresponding maximum-likelihood map
(right).

The occupancy probabilities for these eighteen scans are depicted in the three columns
in the center of this figure. Note that during mapping we did not use measurements
whose distance exceeded 2.5m. The occupancy probability grid obtained by integrat-
ing the individual observations into the initial map is shown in the lower-right corner
of this figure. As can be seen, the belief converges to an accurate representation of
the corridor structure although the individual measurements show a high amount of
uncertainty, as is usually the case for ultrasound sensors.

The left image of figure 9.18 shows the occupancy probabilities of the corridor
environment obtained after incorporating all measurements of the data set used here.
The map represents a 17 m long and 11 m wide part of a corridor environment
including three rooms. The right image shows the corresponding maximum-likelihood
map. This map is obtained from the occupancy probability grid by a simple clipping
operation with a threshold of 0.5. The gray areas of the maximum-likelihood map
correspond to cells that have not been sensed by the robot.

Let us briefly discuss some aspects that might be relevant to potential improvements
of the models described here. The strongest restriction results from the assumption
that all cells of the grid are considered independently. This independence assumption
decomposes the high-dimensional state estimation problem into a set of onedimen-
sional estimation problems. The independency of individual cells, however, is usually
not justified in practice. For example, if the robot detects a door, then particular cells
in the neighborhood need to be updated according to the specific shape of the door.
Accordingly, techniques considering the individual cells of a grid independently might
produce suboptimal solutions. One technique that addresses this problem has recently
been presented by Thrun [413].

Choset-79066 book February 22, 2005 18:29

9.2 Mapping 337

Additionally, occupancy probability grid maps assume that the environment has a
binary structure, i.e., that every cell is either occupied or free. Occupancy probabilities
cannot correctly represent situations in which a cell is only partly covered by an
obstacle. Finally, most of the techniques, as well as our model, assume that the
individual beams of the sensors can be considered independently when updating a
map. This assumption also is not justified in practice, since neighboring beams of
a scan often yield similar values. Accordingly, a robot ignoring this might become
overly confident of the state of the environment.

9.2.2 Bayesian Simultaneous Localization and Mapping

In the previous subsection, we assumed that the robot always knows its position while
it is mapping the environment. This assumption, however, is typically not justified,
especially when a robot has to rely on its onboard sensors to determine its position due
to the lack of a global positioning system, active beacons, or predefined landmarks. In
such a situation, mapping turns into the so-called chicken and egg problem. Without
a map the robot cannot determine its own position and without knowledge about its
own position the robot cannot compute what its environment looks like. This is why
this problem is often denoted as the SLAM problem (see also chapter 8).

In the past, research in the area of SLAM has led to two different types of
approaches, each of which has its advantages and disadvantages [412]. The first
class contains algorithms relying on the EKF to estimate joint posteriors over maps
and robot locations [100,128,277]. These approaches provide a sound mathematical
framework (see also chapter 8). However, they mainly have been applied in situations
in which the environment contains predefined landmarks.

The second class of techniques considers the SLAM problem as a global optimiza-
tion problem. For example, Lu and Milios [299] consider robot locations as random
variables and derive constraints between locations from distances between overlap-
ping range measurements and from odometry measurements. The constraints can be
regarded as links in a network of springs, whose energy is to be minimized. Other
approaches apply Dempster, Laird and Rubin’s expectation maximization, or EM algo-
rithm [127] to compute the maximum-likelihood estimate for the map and the locations
of the robot. Examples of these kind of techniques can be found in [84,126,382,417].
EM-based techniques have been applied successfully to mapping large cyclic environ-
ments with highly ambiguous features. However, they are inherently batch algorithms,
requiring multiple passes through the entire data set. As a consequence, they usually
cannot be applied when a robot has to map its environment online, i.e., while it is
exploring it.

In probabilistic terms the problem of SLAM is to find the map and the robot posi-
tions which yield the best interpretation of the data gathered by the robot. As in

Choset-79066 book February 22, 2005 18:29

338 9 Bayesian Methods

Section 9.1 the data consist of a stream of odometry measurements u(0 : k − 1)
and perceptions of the environment y(1 : k). According to Thrun [412], the map-
ping problem can be phrased as recursive Bayesian filtering for estimating the robot
positions along with a map of the environment:

P(x(1 : k), m| u(0 : k − 1), y(1 : k)) = α P(y(k) | x(k), m)
∫ (

P(x(k) | u(k − 1), x(k − 1))

P(x(1 : k − 1), m| u(0 : k − 2), y(1 : k − 1))

)

dx(1 : k − 1).(9.43)

As in probabilistic localization (see Section 9.1) we assume that the odometry mea-
surements are governed by a so-called probabilistic motion model P(x(k) | x(k − 1),
u(k − 1)) which specifies the likelihood that the robot is at x(k) given that it previ-
ously was at x(k − 1) and the motion u(k − 1) was measured. On the other hand,
the observations follow the sensor model P(y(k) | x(k), m), which defines for every
possible location x(k) in the environment the likelihood of the observation y(k) given
the map m.

Unfortunately, estimating the full posterior in (9.43) is not tractable in general. One
approach is to apply incremental scan matching [180,182,365,424]. The general idea
of such approaches can be summarized as follows. At any point k−1 in time, the robot
is given an estimate of its location x̂(k − 1) and a map m̂(x̂(1 : k − 1), y(1 : k − 1)).
After moving and taking a new measurement y(k), the robot determines the most
likely new location x̂(k) such that

x̂(k) = argmax
x(k)

{
P(y(k) | x(k), m̂(x̂(1 : k − 1), y(1 : k − 1)))

P(x(k) | u(k − 1), x̂(k − 1))
}
.(9.44)

It does this by trading off the consistency of the measurement with the map [first
term on the right-hand side in (9.44)] and the consistency of the new location with the
control action and the previous location [second term on the right-hand side in (9.44)].
The map is then extended by the new measurement y(k), using the location x̂(k) as
the location at which this measurement was taken. Popular techniques to determine
x̂(k) in the context of laser range scans are the iterative-closest-point algorithm [46]
or variants thereof.

The key limitation of scan-matching approaches lies in the greedy maximization
step. Once the location x(k) at time k has been computed it is not revised afterward
so that the robot cannot recover from registration errors. Although scan matching
techniques have been proven to be able to correct enormous errors in odometry, the
resulting maps often are globally inconsistent. As an example consider figure 9.19

Choset-79066 book February 22, 2005 18:29

9.2 Mapping 339

Figure 9.19 Map generated from raw odometry and laser range data gathered with a B21r
robot.

which shows a map generated from raw odometry and laser range data obtained with
a B21r robot. As can be seen from the figure, the robot suffers from serious errors
in odometry so that the resulting map is useless without any correction. The size of
this environment is 28 m × 28 m. When recording the data the robot traveled 491 m
with an average speed of 0.19 m/s. Figure 9.20 shows the map created with the scan
matching system presented by Hähnel, Schulz, and Burgard [182]. Although the local
structures of the map appear to be very accurate, the map is globally inconsistent. For
example, many structures like walls, doors, and such can be found several times and
with a small offset between them.

To overcome this problem, alternative approaches have been developed. The key
idea of these techniques is to maintain a posterior about the position of the vehicle.
Whereas Gutmann and Konolige [178] used a discrete and grid-based approximation
of the belief about the robots location, Thrun [412] applied a particle filter for this
purpose. However, both approaches only maintain a single map and revise previous
decisions whenever the robot closes a loop and returns to a previously visited place.

More recently, Murphy and coworkers [137,329] have proposed Rao-Blackwellized
particle filtering as an efficient means to maintain multiple hypotheses during map-
ping. The key idea of this approach can be understood more easily when one considers
the graphical model depicted in figure 9.21. If we know the map, the overall problem
is transformed into a localization problem where the task is to estimate the location

Choset-79066 book February 22, 2005 18:29

340 9 Bayesian Methods

Figure 9.20 Map obtained by applying a scan-matching approach to the same data used in
figure 9.19.

u u

x

u

x x

y1 y2 yt

m

x 10

10 k–1

2 ... t

Figure 9.21 Graphical model of incremental probabilistic SLAM.

Choset-79066 book February 22, 2005 18:29

9.2 Mapping 341

of the robot at each point in time. If, however, the locations are known, it remains
solely to compute the map. Note that the knowledge of x(1 : k) is sufficient to figure
out what the environment looks like, whereas x(0) only determines the location of
the map. Thus, if x(1 : k) is known but x(0) is unknown, the robot can estimate its
position relative to the map, but it cannot determine the location of the map.

The application of Rao-Blackwellized particle filtering to mapping is motivated
by the observation that once the path x(1 : k) of the robot is known, the maximum-
likelihood map can be computed analytically, e.g., using the method described in
subsection 9.2.1. Therefore, the goal of SLAM with Rao-Blackwellized particle
filters is to estimate the path of the robot using a particle filter and to analytically
compute the map corresponding to that path. In practice this means that we use a set
of particles to represent a posterior about potential paths of the robot. To each of these
paths we associate an individual map that is computed based on the hypothesis that
this path corresponds to the true path of the robot. The importance weight of a sample
is proportional to the likelihood of the most recent observation given the map, which
is computed based on the previous observations and the path of the robot according
to that particular particle.

Note that Rao-Blackwellized particle filtering [136, 137] is a general technique to
reduce the size of high-dimensional state estimation problems by marginalizing out
parts of the state space. In this section we use this technique to develop an efficient
solution to the SLAM problem.

Let us again consider the posterior P(x(1 : k), m | u(0 : k − 1), y(1 : k)) we want
to estimate. If we apply the chain rule of probability theory, we obtain

P(x(1 : k), m | u(0 : k − 1), y(1 : k))

= P(m | x(1 : k), y(1 : k), u(0 : k − 1))

P(x(1 : k) | y(1 : k), u(0 : k − 1)).(9.45)

Obviously, we can safely assume that m is independent of u(0 : k −1) once we know
the locations x(1 : k) of the robot, i.e.,

P(m | x(1 : k), y(1 : k), u(0 : k − 1)) = P(m | x(1 : k), y(1 : k)).(9.46)

This leads to

P(x(1 : k), m | u(0 : k − 1), y(1 : k))

= P(m | x(1 : k), y(1 : k)) P(x(1 : k) | y(1 : k), u(0 : k − 1)).(9.47)

In the previous section we saw that we can efficiently compute the posterior
P(m | x(1 : k), y(1 : k)) for m given we know x(1 : k) and y(1 : k). Thus, all
we need to do is to sample P(x(1 : k) | y(1 : k), u(0 : k − 1)) using a particle filter
and compute for each particle the map that is associated to it.

Choset-79066 book February 22, 2005 18:29

342 9 Bayesian Methods

We proceed as follows. Suppose M is a set of particles that represents the posterior
about potential paths of the robot. In the beginning we assume that each particle starts
at [0, 0, 0]T , i.e., the robot is located at the origin of the coordinate system and its
heading is 0. Let us furthermore denote the path associated with the j th particle by
h(j)(1 : k). As described above, once the path of the robot is known, we can directly
compute the most likely map for that particle:

m(j)(1 : k − 1) = argmax
m

P(m | h(j)(1 : k), y(1 : k − 1))(9.48)

Whenever an odometry measurement u(i −1) is obtained, we proceed in the same way
as we do in probabilistic localization. For each sample we compute the next location
x = x ′

j of its path by sampling from P(x | x j , u(i −1)). Note that—as in probabilistic
localization—we in principle had to sample from P(x | x j , u(i − 1), m(j)(1 : k − 1)),
i.e., we also had to consider the map m(j)(1 : k − 1) associated with each sample. In
practice, however, the map is often ignored for reasons of efficiency since computing
P(x | x j , u(i − 1), m(j)(1 : k − 1)) typically involves a time-consuming ray-casting
operation in m(j)(1 : k −1). Once we have computed for the j th particle both the map
m(j)(1 : k − 1) and the new location x ′

j , we are ready to compute the likelihood of
the observation y(k) and to use the resulting quantity as an importance weight during
the resampling step. As a sensor model we can, e.g., choose the model described in
section 9.1. The overall approach is realized by algorithm 20. Note that, according
to the recursive structure of the problem, this algorithm can easily be extended for
multiple sequences of sensory input. To do so, one simply has to ensure that the
initialization is carried out using the output obtained from the previous application of
the algorithm.

Please note that two aspects of this algorithm need to be implemented carefully to
obtain the desired efficiency and convergence. If the map m(j)(1 : k − 1) is computed
from scratch in every round, the resulting algorithm will be quadratic in k. On the other
hand, maintaining a complete map for each individual particle (which also needs to be
updated in each round) is inefficient with respect to memory. Additionally, it involves
a time-consuming operation if the map associated with a sample has to be copied once
for each of its successors in the resampling step. A popular approach to overcome
this problem is to use treelike structures such as those proposed by Montemerlo et al
[321], as well as by Parr and Eliazar [346]. Since typically many of the particles have
larger parts of their history in common, the maps associated with the particles can
efficiently be represented using trees.

An alternative although approximative approach to compute the maps associated
with the individual samples is based on the observation that, in order to compute
P(y(k) | x j , m(j)(1 : k − 1)), we only need to determine the part of the map m(j)(1 :
k − 1) that is covered by y(k). If we furthermore use only a limited number of

Choset-79066 book February 22, 2005 18:29

9.2 Mapping 343

Algorithm 20 Simultaneous localization and mapping using Rao-Blackwellized par-
ticle filtering
Input: Sequence of measurements y(1 : k) and movements u(0 : k − 1) and set M
of N samples (x j , ω j)
Output: Posterior P(x(1 : k), m | u(0 : k − 1), y(1 : k)) represented by M about
the path of the robot at time and the map

1: for j ← 1 to N do
2: x j ← (0, 0, 0)
3: end for
4: for i ← 1 to k do
5: for j ← 1 to N do
6: compute a new state x by sampling according to P(x | u(i − 1), x j).
7: x j ← x
8: end for
9: η ← 0

10: for j ← 1 to N do
11: w j = P(y(i) | x j , m(j)(1 : i − 1)))
12: η = η + w j

13: end for
14: for j ← 1 to N do
15: w j = η−1 · w j

16: end for
17: M = resample(M)
18: end for

measurements from the history h(j)(1 : k) we obtain an approximation of m(j)(1 :
k−1) that, if, additionally, spatial indices are used to compute the set of relevant scans
from h(j)(1 : k), can be computed in constant time. Thus, the overall complexity is
constant for each particle. This approach has been successfully applied by Hähnel,
Burgard, Fox, and Thrun [181] and has been used for the examples presented here.

A further aspect which turns out to be crucial to the success of the overall approach is
the limitation of the number of particles that are needed. Since each particle possesses
an individual map, the memory required by using Rao-Blackwellized filtering can
be quite high, especially if many samples are needed to appropriately represent the
posterior. One technique to reduce the number of necessary samples has recently been
developed by Hähnel et al. [181]. In their approach consecutive laser range scans are
converted into highly accurate odometry measurements. This way the uncertainty in
the location of the robot is reduced so that fewer samples are needed to represent the
posterior.

Choset-79066 book February 22, 2005 18:29

344 9 Bayesian Methods

(a) (b) (c)

(d) (e) (f)

Figure 9.22 Sequence of maps corresponding to the particle with the highest accumulated
importance weight during Rao-Blackwellized particle filtering of a large cyclic environment.

Figure 9.22 shows a Rao-Blackwellized particle filter for simultaneous localization
and mapping in action. The individual figures illustrate the posterior about the robot’s
location as well as the map associated with the particle with the maximum accumulated
importance factor. Image (a) shows the belief of the robot just before the robot is
closing a loop. The second image (b) depicts the belief some steps later after the
robot has closed the loop. As can be seen, the belief is more peaked due to the fact
that particles whose observations do not match to their maps quickly die out when
a loop is closed. Picture (c) shows a situation when the robot has moved around the
loop for a second time. Please note that all figures also show the paths of all particles.
A low number of different paths indicates that at the corresponding point in time,
already many particles have a common history. In the situation depicted in image (d)
the robot has visited all rooms in the building and enters a new corridor which imposes
the task of closing another loop. The belief shortly before the robot closes this second
loop is depicted in image (e). Image (f) shows the map and the particle histories after
the robot finished its task. The resulting map is illustrated in figure 9.23.

After they have been demonstrated to be an efficient means for SLAM [137, 329],
Rao-Blackwellized particle filters have been used with great success to learn large-
scale maps of different types of environments. For example, Montemerlo et al. [321]
have applied this technique to landmark-based mapping in which the locations of
the individual landmarks are represented by Gaussians. In a more recent work [320]
Montemerlo and Thrun extended this work to landmark-based mapping with uncertain

Choset-79066 book February 22, 2005 18:29

Problems 345

Figure 9.23 Resulting map obtained with Rao-Blackwellized particle filtering for SLAM.

data association. Additionally, this technique has been applied successfully to the
simultaneous estimation of states of dynamic objects and the robot’s locations
[32, 322]. As mentioned above, new results present optimizations of this technique
that allow the efficient application of Rao-Blackwellized particle filtering to SLAM
with raw laser range scans [181, 346].

Problems

1. Prove the following variant of Bayes rule with background knowledge E :

P(A | B, E) = P(B | A, E) P(A | E)

P(B | E)

2. Use (9.2) to rederive the equations for the Kalman filter.

3. Implement the sensor model for mobile robot localization using data from proximity
sensors described in Subsection 9.1.5. Proceed in the following steps.

(a) Generate a model of your robot’s environment and implement a function that takes as
input the location and sensing direction of a sensor and that generates as output the
expected distance to the next obstacle in the direction of the measurement.

Choset-79066 book February 22, 2005 18:29

346 9 Bayesian Methods

(b) Use (9.23) to generate for each of a discrete set of expected distances a histogram
whose values represent the likelihood of the corresponding measured distance given
that expected distance. Choose a discretization of 3 inches. To ensure that the values
hi, j of each histogram sum up to one over all j for each i , choose appropriate values
for δi .

4. Implement a motion model for sample-based mobile robot localization according to (9.19),
(9.20), and (9.21). Realize a procedure that continuously reads odometry measurements
from your robot and propagates a set of samples according to your motion model based on
this input. Your program should generate sample sets similar to those shown in figure 9.6.

5. Implement probabilistic localization based on a particle filter using Algorithms 17 and 18.
Combine the procedures developed in the previous two assignments and apply your algo-
rithm to data obtained from your robot’s odometry and from its proximity sensors.

6. Consider a robot that resides in a circular world consisting of ten different places that are
numbered counterclockwise. The robot is unable to sense the number of its present place
directly. However, places 0, 3, and 6 contain a distinct landmark, whereas all other places
do not. All three of these landmarks look alike. The likelihood that the robot observes
the landmark given it is in one of these places is 0.8. For all other places, the likelihood
of observing the landmark is 0.4. For each place on the circle compute the probability
that the robot is in that place given that the following sequence of actions is carried out
deterministically and the following sequence of observations is obtained: The robot detects
a landmark, moves 3 grid cells counterclockwise and detects a landmark, and then moves
4 grid cells counterclockwise and finally perceives no landmark.

7. Implement a program that simulates the world described in Question 6. Assume that the
actions are nondeterministic: When moving from one place to a neighboring place, the
robot succeeds with probability 0.8 but stays in the same place with probability 0.2. Run
your algorithm to calculate the posterior probability over places (a) under the deterministic
action model and (b) the non-deterministic action model.

8. Argue why, once the location x(k) of the robot and the map m is known, the measurement
y(k) is independent of all previous measurements y(1 : k−1). Show why this independence
does not hold if the map m is not given.

9. What happens if you apply the particle filter algorithm to a robot whose sensor is almost
perfect? For example, what happens when the robot uses (almost) noise-free range sensors?
Hint: For near-perfect sensors, the likelihood-function P(y | x) will be extremely peaked,
i.e., it will be almost zero for all measurements that are slightly off the correct noise-free
value. How does the accuracy of the sensor affect the number of particles needed?

10. Implement a motion model for the particle filter algorithm which takes into account that
the robot cannot move through obstacles. Run a simulation in which the robot starts in the
center of an empty and quadratic room without doors. Suppose the robot moves forward
d meters, then turns left and again moves d meters, where d is the width of the room.

Choset-79066 book February 22, 2005 18:29

Problems 347

11. Implement the circular world described in Question 6 using a particle filter algorithm.

12. Consider a robot that has to use its camera for localization. Discuss what models could be
used to compute the likelihood P(y | x) for vision-based robot localization.

13. Suppose the robot has only two kinds of observations y1 and y2. Furthermore, suppose
that the occupancy probability of a particular cell covered by an observation of type y1 is
0.8 and for observations of type y2 is 1/3. To which value will the occupancy probability
of mi converge if only one out of three measurements is y1 and all others are y2? Hint:
Use (9.35) and calculate to which value the occupancy probability of mi will converge if
the number of measurements goes to infinity.

14. Discuss how the sensor model for P(ml | x(k), y(k)) for occupancy grids changes if more
accurate sensors are used and if the opening angle of the sonar cone becomes smaller.

15. Consider an environment which has the shape of a snailshell as depicted below. What will
happen if you apply the Rao-Blackwellized particle filtering algorithm in such an environ-
ment? Consider robots with accurate/weak odometry and with accurate/noisy sensors.

Choset-79066 book February 23, 2005 11:52

10 Robot Dynamics

WE HAVE SEEN THAT A path specifies the set of configurations a robot achieves as
it moves from one configuration to another, and thus path planning (e.g., finding
collision-free paths) is a kinematic/geometric problem. A path is not a complete
description of the motion of a robot system, however, as the timing of the motion is
not specified. A trajectory is a path plus a specification of the time at which each con-
figuration is achieved. Trajectory planning is not only a geometric problem, but also a
dynamic problem. Finding feasible trajectories of a system obeying dynamics requires
knowledge of the masses and inertias of the system, actuator limits, and forces such as
gravity and friction. Since we are now dealing with system dynamics, we can pose opti-
mal control problems such as finding minimum-time or minimum-energy motions.

Since trajectory planning requires a full dynamic model of the robotic system,
in section 10.1 we review the Lagrangian approach to deriving equations of motion
for a mechanical system such as a robot arm. Section 10.2 explores the structure of
the equations of motion and gives standard forms for writing them. In section 10.3
we consider systems subject to velocity constraints, such as those imposed when
maintaining rolling and sliding contacts. Finally, section 10.4 studies the particular
case of a rotating and translating rigid body.

10.1 Lagrangian Dynamics

The equations of motion for a mechanical system can be generated in a variety of ways.
While all are equivalent (if correctly done!), the number of computations and the size
of the resulting expressions may vary. In this chapter we use a Lagrangian formulation,

Choset-79066 book February 23, 2005 11:52

350 10 Robot Dynamics

which is based on the kinetic and potential energy of the system. Lagrange’s equations
provide a straightforward recipe, amenable to computer implementation (using, e.g.,
Mathematica or Maple), for calculating equations of motion for many robotic systems.

Let q = [q1, . . . , qnQ]T ∈ R
nQ be a vector of generalized coordinates representing

the configuration of the system on the nQ-dimensional configuration space, and let u =
[u1, . . . , unQ]T ∈ R

nQ be the vector of generalized forces acting on the generalized
coordinates. For example, for a robot arm, the generalized coordinates would typically
be the joint angles for revolute joints and the joint translations for prismatic joints,
and the generalized forces would be torques about the joints and forces along the
joints, respectively.

The Lagrangian L of a mechanical system is written as the kinetic energy minus
the potential energy

L(q , q̇) = K (q, q̇) − V (q),

where K is the kinetic energy, a function of the configuration and the velocity, and V
is the potential energy, a function of the configuration only. The Lagrangian equations
of motion, also known as the Euler-Lagrange equations, can be written

d

dt

∂L

∂q̇ i
− ∂L

∂qi
= ui , i = 1 . . . nQ,

or simply

d

dt

∂L

∂q̇
− ∂L

∂q
= u.(10.1)

A derivation of these equations can be found in many dynamics textbooks.

EXAMPLE 10.1.1 Consider a planar body described by the generalized coordinates
q = [q1, q2, q3]T ∈ R

2 × S1, where (q1, q2) ∈ R
2 specify the location of the center

of mass of the body in the plane and q3 ∈ S1 specifies the orientation of the body
(figure 10.1). The generalized forces u = [u1, u2, u3]T ∈ R

3 are the linear forces
(u1, u2) through the center of mass and the torque u3 about the center of mass. A
gravitational acceleration ag ≥ 0 acts in the −q2 direction, [0, −ag , 0]T . The mass
of the planar body is m and I is the scalar inertia about an axis through the center
of mass and out of the page.

The Lagrangian for this system is

L = 1

2
m

(
q̇2

1 + q̇2
2

) + 1

2
I q̇2

3 − magq2,

Choset-79066 book February 23, 2005 11:52

10.1 Lagrangian Dynamics 351

q2

q1

ag

(q1, q2)

q3

Figure 10.1 A planar body.

q2

x2

ag

q1

x1

r1

Figure 10.2 The RP manipulator.

i.e., the sum of the linear and angular kinetic energies minus the potential energy.
Applying (10.1), we get

u1 = d

dt

∂L

∂q̇1
− ∂L

∂q1
= d

dt
(mq̇1) − 0 = mq̈1(10.2)

u2 = d

dt

∂L

∂q̇2
− ∂L

∂q2
= d

dt
(mq̇2) − mag = mq̈2 − mag(10.3)

u3 = d

dt

∂L

∂q̇3
− ∂L

∂q3
= d

dt
(I q̇3) − 0 = I q̈3.(10.4)

EXAMPLE 10.1.2 Figure 10.2 shows a robot arm consisting of one revolute joint and
one prismatic (translational) joint. This type of robot is called an RP manipulator.

Choset-79066 book February 23, 2005 11:52

352 10 Robot Dynamics

The configuration of the robot is [q1, q2]T , where q1 gives the angle of the first joint
from a world frame x1-axis, and q2 > 0 gives the distance of the center of mass of
the second link from the first joint. The center of mass of the first link is a distance
r1 from the first joint. The first link has mass m1 and inertia I1 about the center of
mass, and the second link has mass m2 with inertia I2 about the center of mass. A
gravitational acceleration ag ≥ 0 acts in the −x2 direction of a world frame. To
derive the Lagrangian for this RP arm, we will consider the two links’ contributions
independently.

The kinetic energy of the first link can be expressed as

K1(q , q̇) = 1

2
m1v

2
1 + 1

2
I1ω

2
1,

where v1 and ω1 are the linear velocity of the link center of mass and angular velocity
of the link, respectively. We have

v1 = r1q̇1

ω1 = q̇1

yielding the expression

K1(q , q̇) = 1

2
m1r 2

1 q̇2
1 + 1

2
I1q̇2

1.

The potential energy of the first link is

V1(q) = m1agr1 sin q1.

The kinetic energy of the second link can be expressed as

K2(q , q̇) = 1

2
m2v

2
2 + 1

2
I2ω

2
2,

where v2 and ω2 are the linear velocity of the link center of mass and angular velocity
of the link, respectively. We have

v2 =
√

q̇2
2 + (q2q̇1)2

ω2 = q̇1

yielding

K2(q , q̇) = 1

2
m2

(
q̇2

2 + (q2q̇1)2
) + 1

2
I2q̇2

1.

The potential energy of the second link is

V2(q) = m2agq2 sin q1.

Choset-79066 book February 23, 2005 11:52

10.2 Standard Forms for Dynamics 353

The Lagrangian for the system is L = K1 + K2 − V1 − V2:

L = 1

2

((
I1 + I2 + m1r 2

1 + m2q2
2

)
q̇2

1 + m2q̇2
2

) − ag sin q1(m1r1 + m2q2).

Applying Lagrange’s equations, we get

u1 = (
I1 + I2 + m1r 2

1 + m2q2
2

)
q̈1 + 2m2q2q̇1q̇2

+ag(m1r1 + m2q2) cos q1(10.5)

u2 = m2q̈2 − m2q2q̇2
1 + agm2 sin q1.(10.6)

10.2 Standard Forms for Dynamics

Let’s take a closer look at equations (10.5) and (10.6), since they display much of the
interesting structure of many second-order mechanical systems. On the right-hand
side of each equation, there is a term depending on the second derivatives of the
configuration variables, a term quadratic in the first derivatives of the configuration
variables, and a term depending only on the configuration variables. These terms can
be collected to write the dynamics in the following standard form:

u = M(q)q̈ + C(q, q̇)q̇ + g(q),(10.7)

where C(q , q̇)q̇ ∈ R
nQ is a vector of velocity product terms with the nQ × nQ matrix

C(q , q̇) linear in q̇, g(q) ∈ R
nQ is a vector of gravitational forces, and M(q) is an

nQ×nQ symmetric, positive definite mass or inertia matrix. A matrix M is symmetric
if Mi j = M ji , where Mi j is the entry in the i th row and j th column of M . A matrix
M is positive definite if vT Mv > 0 holds for any nonzero vector v. This is true if the
determinant and trace (the sum of diagonal elements) of M are positive.

Equations (10.5) and (10.6) for the RP manipulator can be written in the standard
form of equation (10.7), where

M(q) =
[

I1 + I2 + m1r 2
1 + m2q2

2 0
0 m2

]

,

C(q , q̇)q̇ =
[

2m2q2q̇1q̇2

−m2q2q̇2
1

]

, g(q) =
[

ag(m1r1 + m2q2) cos q1

agm2 sin q1

]

.

The standard form (10.7) is compact, but the term C(q, q̇)q̇ masks the fact that these
velocity product terms can be derived from the inertia matrix M(q). If we consider
the individual components of this vector, C(q, q̇)q̇ = [c1(q, q̇), . . . , cnQ(q, q̇)]T , we

Choset-79066 book February 23, 2005 11:52

354 10 Robot Dynamics

find that

ci (q , q̇) =
nQ∑

j=1

(
nQ∑

k=1

�i
jk(q)q̇ j q̇k

)

(10.8)

where

�i
jk(q) = 1

2

(
∂ Mi j (q)

∂qk
+ ∂ Mik(q)

∂q j
− ∂ Mkj (q)

∂qi

)

.(10.9)

The n3
Q scalars �i

jk(q) are known as the Christoffel symbols of the inertia matrix M(q).
In equation (10.8), squared velocity terms (where j = k) are known as centrifugal
terms, and velocity product terms where j �= k are known as Coriolis terms. For
example, the centrifugal term −m2q2q̇2

1 in the RP arm of example 10.1.2 indicates
that the linear actuator at the prismatic joint must apply a force to keep the joint
stationary as the revolute joint rotates. The Coriolis term 2m2q2q̇1q̇2 indicates that the
actuator at the revolute joint must apply a torque for the two joints to move at constant
velocities. This is because the inertia of the robot about the first joint is changing as the
second joint extends or retracts, so the angular momentum is also changing, implying
a torque at the first joint.

Although there are many ways to write the Coriolis matrix C(q, q̇) as a function
of the Christoffel symbols, one common choice is

Ci j (q , q̇) =
nQ∑

k=1

�k
i j (q)q̇k .

Velocity product terms arise due to the noninertial reference frames implicit in
the generalized coordinates q. The unforced motions (when u − g(q) = 0) are not
“straight lines” in this choice of coordinates, and the Christoffel symbols carry geo-
metric information on how unforced motions “bend” in this choice of coordinates.
For example, if we represent the configuration of a point mass m in the plane by stan-
dard Cartesian (x , y) coordinates, unforced motions are straight lines in these inertial
coordinates, and the Christoffel symbols are zero. If we represent the configuration
by polar coordinates [q1, q2]T = [r, θ]T , however, unforced motions are not straight
lines in this choice of coordinates, and we find �1

22 = −mq1, �2
12 = �2

21 = mq1 (see
problem 1). The geometry of the dynamics of mechanical systems is discussed further
in chapter 12.

The main point is that the equations of motion (10.7) depend on the choice of
coordinates q. For this reason, neither M(q)q̈ nor C(q, q̇)q̇ individually should be
thought of as a generalized force; only their sum is a force.

Choset-79066 book February 23, 2005 11:52

10.2 Standard Forms for Dynamics 355

When we wish to emphasize the dependence of the velocity product terms on the
Christoffel symbols, which in turn are determined by the inertia matrix, we write

u = M(q)q̈ +

q̇T �1(q)q̇
...

q̇T �nQ(q)q̇

 + g(q),

where �i (q) is the nQ × nQ symmetric matrix with elements �i
jk(q), j, k = 1 . . . nQ.

We write this more compactly as

u = M(q)q̈ + q̇T �(q)q̇ + g(q).(10.10)

Conceptually, �(q) ∈ R
nQ×nQ×nQ can be viewed as an nQ-dimensional column vector,

where each element of the “vector” is a matrix �i (q), as shown in the following
example.

EXAMPLE 10.2.1 For the RP arm of Example 10.1.2, there are n3
Q = 23 = 8

Christoffel symbols. The only nonzero Christoffel symbols are �1
12 = �1

21 = m2q2

and �2
11 = −m2q2. The Coriolis and centrifugal terms q̇T �(q)q̇ can be calculated

as follows:

q̇T �(q)q̇ = [q̇1 q̇2]

[
�1(q)
�2(q)

] [
q̇1

q̇2

]

= [q̇1 q̇2]

[
0 m2q2

m2q2 0

]

[−m2q2 0
0 0

]

[
q̇1

q̇2

]

=
[

2m2q2q̇1q̇2

−m2q2q̇2
1

]

.

The dynamics described by equation (10.7) are specific to mechanical systems
where the actuators act directly on the generalized coordinates. For example, a robot
arm typically has an actuator at each joint. A more general form of the dynamics of
second-order mechanical systems is

T (q) f = M(q)q̈ + C(q, q̇)q̇ + g(q),(10.11)

where f are the actuator forces and the nQ×nQ matrix T (q) specifies how the actuators
act on the generalized coordinates, as a function of the system configuration.

As an example, consider replacing the motors at the joints of our two-joint RP arm
of example 10.1.2 with two thrusters attached to the center of mass of the second
link. The location of the center of mass of the second link in the world frame is

Choset-79066 book February 23, 2005 11:52

356 10 Robot Dynamics

x = [x1, x2]T , and the thrusters provide a force f = [f1, f2]T expressed in the
world frame. To use the dynamic equations we have already derived, we would like
to express the generalized forces u at the joints as a function of f . To do this, let φ

be the forward kinematics (see section 3.8) mapping from q to x ,

x = φ(q) = [q2 cos q1, q2 sin q1]T .

The velocities are given by

ẋ = ∂φ

∂q
q̇ = J (q)q̇,

where J (q) is the manipulator Jacobian at the center of mass at the second link. Then
by the analysis in section 4.7, the generalized forces u and f are related by

u = T (q) f = J T (q) f
[

u1

u2

]

=
[−q2 sin q1 q2 cos q1

cos q1 sin q1

] [
f1

f2

]

.(10.12)

In other words, T (q) is simply the transpose of the manipulator Jacobian.
If T (q) is rank nQ, dynamics of the form of equation (10.11) can be put in the form

of equation (10.7) by defining “virtual” actuators u = T (q) f , and transforming any
actuator limits on f to limits on u. This is sometimes called a feedback transformation
since the transformation from f to u depends on q.

Finally, mechanical systems are often subject to dissipative forces such as dry
Coulomb friction or viscous damping. These can be treated as external forces to be
added after deriving the equations of motion using Lagrange’s equations. There are
many possible models of friction and damping, but in most cases these forces are a
function of q̇ and possibly q, so we write

u = M(q)q̈ + C(q, q̇)q̇ + g(q) + b(q, q̇).

Inertia Matrix

As we have seen, the inertia matrix M(q) determines the equations of motion, except
for gravitational and dissipative forces. Another way to see this is by observing that
the kinetic energy of a mechanical system is determined by its inertia matrix, and can
be written

K (q , q̇) = 1

2
q̇T M(q)q̇.(10.13)

The fact that M(q) is positive definite implies that the kinetic energy is positive for
any nonzero q̇.

Choset-79066 book February 23, 2005 11:52

10.3 Velocity Constraints 357

Equation (10.13) shows how the kinetic energy depends on the inertia matrix. We
can also derive the inertia matrix from the kinetic energy,

Mi j = ∂2 K (q, q̇)

∂q̇ i∂q̇ j
.(10.14)

In some cases, such as the planar body of example 10.1.1, the inertia matrix can be
written independent of the configuration q, and the Christoffel symbols are zero. This
means that the dynamics are invariant to the configuration—they “look” the same
from any configuration. For the planar body, the inertia matrix is

M(q) = M =

m 0 0
0 m 0
0 0 I

 .

For some robots, such as a mobile manipulator consisting of a robot arm mounted
on a cart, the dynamics are invariant to some configuration variables (such as the cart’s
position and orientation on the floor) but not others (such as the arm’s configuration).

10.3 Velocity Constraints

Suppose that the mechanical system is subject to a set of k linearly independent
constraints linear in velocity, i.e., of the form

A(q)q̇ = 0,(10.15)

where A(q) is a k × nQ matrix, and the k row vectors of A(q) are written
a j (q), j = 1 . . . k. Such constraints are called Pfaffian constraints. One source of
Pfaffian constraints is rolling without slipping, such as in a wheeled mobile robot; a
sliding constraint of this form is given in Example 10.3.1.

Since the constraints of equation (10.15) are satisfied throughout motion, we can
differentiate the left-hand side and set it equal to zero:

A(q)q̈ + Ȧ(q)q̇ = 0.

The constrained Lagrange’s equations can then be written

d

dt

∂L

∂q̇
− ∂L

∂q
= M(q)q̈ + C(q, q̇)q̇ + g(q) = u + AT (q)λ(10.16)

A(q)q̇ = Ȧ(q)q̇ + A(q)q̈ = 0,(10.17)

where λ = [λ1, . . . , λk]T are the Lagrange multipliers. The generalized force λ j a j (q)
is applied by constraint j to maintain the constraint. The constrained Lagrange’s
equations yield nQ + k equations to be solved for the nQ + k variables q̈ and λ.

Choset-79066 book February 23, 2005 11:52

358 10 Robot Dynamics

If we are not interested in calculating the k constraint forces, we can use equation
(10.17) to eliminate λ from equation (10.16). Solving equation (10.16) for q̈ and
plugging into equation (10.17), dropping the dependence of M , A, and g on q and C
on q , q̇ , we get

Ȧq̇ + AM−1(u + AT λ − Cq̇ − g) = 0.

Now solving for λ, we get

λ = (AM−1 AT)−1(− Ȧq̇ + AM−1(Cq̇ + g − u)).

Recognizing that − Ȧq̇ = Aq̈, plugging back into equation (10.16), and manipulating,
we get

(I − AT (AM−1 AT)−1 AM−1)(Mq̈ + Cq̇ + g − u) = 0,

where I is the identity matrix. If we define

Pu = I − AT (AM−1 AT)−1 AM−1,

then we get the form

Pu(Mq̈ + Cq̇ + g) = Puu.(10.18)

The nQ × nQ matrix Pu is only rank nQ − k, so we cannot premultiply both sides
of equation (10.18) by P−1

u ; if we could, we would be left with the unconstrained
dynamics. The projection matrix Pu projects generalized forces to the components
that do work on the system. The remaining forces, defined by the projection (I− Pu),
are the components resisted by the constraints. These two sets of forces are orthogonal
to each other with respect to the inertia matrix. In other words,

(Puu)T M−1(I − Pu)u = 0

for any u.
Defining the matrix

P = M−1 Pu M = I − M−1 AT (AM−1 AT)−1 A(10.19)

and rearranging equation (10.18), we get the equivalent form

Pq̈ = P M−1(u − Cq̇ − g).(10.20)

Here the rank nQ − k matrix P projects general motions to motions satisfying the
constraints of equation (10.17). The remaining motions, defined by the projection
(I − P), are the components in the constrained directions. The projections P and
(I − P) are orthogonal by the inertia matrix, i.e.,

(Pq̇)T M(I − P)q̇ = 0

for any q̇ .

Choset-79066 book February 23, 2005 11:52

10.3 Velocity Constraints 359

In the discussion above, we used the notion of orthogonality by the inertia matrix.
This notion of orthogonality is the appropriate one when discussing dynamics; the
inertia matrix captures the metric properties of the coordinates used in describing
the system, which may mix linear and angular coordinates. This is in contrast to
our usual notion of orthogonality, which says two vectors v1 and v2 are orthogonal
if vT

1 Iv2 = vT
1 v2 = 0. The identity matrix I indicates that space looks the same in

every direction. Further discussion of the geometry of mechanical systems is deferred
to chapter 12, and further discussion of the projections P and Pu can be found in
[60, 293, 308].

From equation (10.19) we know that M P = Pu M , so the matrices P and Pu satisfy
the identity

P = PT
u .

For this reason, we will only refer to the matrices P and PT .

EXAMPLE 10.3.1 A knife-edge can slide on a horizontal plane in the direction it
is pointing or spin about an axis through the contact point and orthogonal to the
plane, but it cannot slide perpendicular to its heading direction. Let q = [q1, q2, q3]T

represent the configuration of the knife-edge, where (q1, q2) denotes the contact point
on the plane and q3 denotes the heading direction (figure 10.3). If the mass of the
knife is m and its inertia is I about the axis of rotation, the Lagrangian is the kinetic
energy

L = 1

2
m

(
q̇2

1 + q̇2
2

) + 1

2
I q̇2

3.

q2

q1

q3

Figure 10.3 A knife-edge on a plane.

Choset-79066 book February 23, 2005 11:52

360 10 Robot Dynamics

The single constraint can be written

q̇1 sin q3 − q̇2 cos q3 = 0,

or A(q) = a1(q) = [sin q3, − cos q3, 0]. Differentiating this constraint, we get

q̈1 sin q3 + q̇1q̇3 cos q3 − q̈2 cos q3 + q̇2q̇3 sin q3 = 0.(10.21)

Applying Lagrange’s equations, we get

mq̈1 = u1 + λ1 sin q3(10.22)

mq̈2 = u2 − λ1 cos q3(10.23)

I q̈3 = u3.(10.24)

Solving equations (10.21) through (10.24), we get

q̈1 = 1

m

(
u1 cos2 q3 + (u2 − mq̇1q̇3) cos q3 sin q3 − mq̇2q̇3 sin2 q3

)
(10.25)

q̈2 = 1

m

(
u2 sin2 q3 + (u1 + mq̇2q̇3) cos q3 sin q3 + mq̇1q̇3 cos2 q3

)
(10.26)

q̈3 = u3

I
(10.27)

λ1 = (u2 − mq̇1q̇3) cos q3 − (u1 + mq̇2q̇3) sin q3,(10.28)

where (u1, u2) are the forces along the (q1, q2)-directions, and u3 is the torque about
an axis through the contact point and orthogonal to the plane.

Alternatively, we could study the projected dynamics. The inertia matrix M(q) is

M(q) =

m 0 0
0 m 0
0 0 I

and we calculate the projection matrix using (10.19):

P =

cos2 q3 sin q3 cos q3 0

sin q3 cos q3 sin2 q3 0
0 0 1

 .

Note that the first two rows (and columns) of P are linearly dependent, so rank(P) =
nQ − k = 2. In this example, C(q, q̇)q̇ and g(q) are zero, so the projected dynam-
ics (10.20) become

Pq̈ = P M−1u,

Choset-79066 book February 23, 2005 11:52

10.4 Dynamics of a Rigid Body 361

which yields the two independent equations of motion in the unconstrained directions

q̈1 cos q3 + q̈2 sin q3 = 1

m
(u1 cos q3 + u2 sin q3)

q̈3 = u3

I
.

The constraint equation (10.21) completes the system of three equations, and we solve
to get equations (10.25), (10.26), and (10.27) above.

As the previous example shows, even for very simple systems with constraints,
the expressions can quickly become unwieldy. When possible, it may be preferable
to choose a reduced set of generalized coordinates to eliminate the constraints. For
example, if a j (q) = ∂c(q)

∂q for some function c(q) = 0, then the velocity constraint is
actually the time derivative of a configuration constraint c(q) = 0, which reduces the
dimension of the configuration space by one. Therefore, it is possible to reduce the
number of generalized coordinates by one and eliminate the constraint. As an exam-
ple, the planar motion of a point on a circle centered at the origin can be represented
using coordinates (x , y) and the velocity constraint x ẋ + y ẏ = 0. This velocity con-
straint can be integrated to the configuration constraint x2 + y2 = R, however, where
the radius R is defined by the initial position of the point. This configuration constraint
allows an unconstrained description of the configuration using a single angle coordi-
nate θ . When a velocity constraint can be integrated to a configuration constraint, as
in this case, the constraint is called holonomic. Nonholonomic constraints are velocity
constraints that cannot be integrated to a configuration constraint. Motion planning
with nonholonomic constraints is left to chapter 12.

10.4 Dynamics of a Rigid Body

Until now, we have been using freely the concepts of “center of mass” and “inertia
about an axis” to get to the use of Lagrange’s equations as quickly as possible. We
now provide formal definitions of these quantities and apply them to the dynamics of
a translating and rotating rigid body.

Let B be a rigid body occupying a volume V ⊂ R
3, r be a vector from the origin to

a point in B, and ρ(r) be the mass density of B as a function of the location r . Then
the mass of B is the volume integral of the mass density

m =
∫

V
ρ(r)dV ,

Choset-79066 book February 23, 2005 11:52

362 10 Robot Dynamics

and the center of mass is the weighted average of the mass density

rcm = 1

m

∫

V
rρ(r)dV .

When a body moves freely in space, it is convenient to describe the translational
position of the body by the Cartesian coordinates q of the center of mass relative to a
stationary inertial frame. The translational kinetic energy of the body can be written
K = 1

2 q̇T mq̇ = 1
2 m‖q̇‖2. Applying Lagrange’s equations yields the familiar equation

f = mq̈ ,(10.29)

where f is the linear force applied to the body expressed in the inertial frame.

10.4.1 Planar Rotation

When a body moves in a plane, a single configuration variable q can be used to
describe its orientation. Such motion occurs, for example, when the body rotates
about a fixed axis, or when the body slides freely on a frictionless plane. In the former
case, it is convenient to to define a stationary x-y-z inertial frame with the z-axis
along the axis of rotation. In the latter case, it will be convenient to define an x-y-z
inertial frame at the center of mass of the body, with the z-axis orthogonal to the plane
of motion. (Since we are focusing on rotational motion only, the center of mass can
be assumed stationary.)

The kinetic energy of a body rotating in the plane is the integral over the body of
the differential kinetic energy at each point r = (x , y, z)T :

K =
∫

V

1

2
ρ(r)v2(r)dV ,

where q is the angle of the body, q̇ is the angular velocity, and v(r) = q̇
√

x2 + y2

is the linear velocity at r . Therefore we can write the kinetic energy in the form of
equation (10.13),

K = 1

2
q̇2

∫

V
ρ(r)(x2 + y2)dV = 1

2
q̇T Izzq̇,(10.30)

where

Izz =
∫

V
ρ(r)(x2 + y2)dV(10.31)

Choset-79066 book February 23, 2005 11:52

10.4 Dynamics of a Rigid Body 363

is the inertia of the body about the z-axis. If the body is uniform density, equation
(10.31) simplifies to

Izz = m
∫

V
(x2 + y2)dV ,

where m is the mass of the body. Applying Lagrange’s equations to equation (10.30),
we get

τz = Izzq̈ ,(10.32)

where τz is the torque about the z-axis.
If we choose a z-axis through the center of mass of the body and a parallel z′-axis

a distance d away, then the scalar inertias Izz and Iz′z′ are related by the parallel-axis
theorem for planar rotation:

Iz′z′ = Izz + md2(10.33)

The proof of this theorem is straightforward and in fact is implicit in our derivation
of the equations of motion of the RP arm.

10.4.2 Spatial Rotation

This section requires extra mathematical machinery, and can be safely skipped if the
reader is not interested in the dynamics of a rotating spatial body.

In our Lagrangian formulation, we first choose a set of coordinates q, express the
Lagrangian in terms of q and q̇, and derive the equations of motion. To do this for a
rotating spatial body, we can choose q to be three angles describing the orientation of
the body in a world frame. Then we can express the kinetic energy of the body as a func-
tion of q and q̇ and proceed as before. If we do this, however, the inertia matrix M(q)
will be extremely complex for any choice of q, providing little insight into the nature
of the motion. The equations of motion are rarely written this way. Another problem is
that no choice of three orientation variables can provide a smooth, global coordinati-
zation of the space of orientations. In the same way that latitude and longitude coordi-
nates for the Earth “go bad” at the poles, where the longitude changes discontinuously,
any choice of three coordinates to represent orientations will have singularities. (For
motions away from these bad orientations, however, three coordinates work just fine,
so this is not the most serious problem. In fact, we have a similar problem representing
a single angle by a real number, which requires the use of mod2π arithmetic.)

So we will not begin by choosing angular coordinates, and instead of defining the
angular velocity as the time-derivative of coordinates, we define ωs = [ωxs , ωys , ωzs]

T

to be the angular velocity of the body about the xs-ys-zs axes of a stationary inertial
frame at the center of mass of the body. The linear velocity at a point rs = (xs , ys , zs)T

Choset-79066 book February 23, 2005 11:52

364 10 Robot Dynamics

on the body is ωs × rs . The total kinetic energy of the body can be written

K = 1

2

∫

V
ρ(rs)(ωs × rs)

T (ωs × rs)dV ,(10.34)

which can be simplified to

K = 1

2
ωT

s

∫

V
ρ(rs)

y2

s + z2
s −xs ys −xs zs

−xs ys x2
s + z2

s −ys zs

−xs zs −ys zs x2
s + y2

s

 dV

 ωs ,(10.35)

or

K = 1

2
ωT

s Isωs .(10.36)

The matrix Is is the symmetric positive definite inertia matrix for the body written in
the inertial frame. Because Is is defined in the stationary world frame, it changes as
the body rotates.

The angular momentum of the body is P = Isωs , and the torque τs = [τxs , τys , τzs]T

acting on the body, expressed in the inertial frame, is the rate of change of P:

τs = d P

dt

= dIs

dt
ωs + Is

dωs

dt
.

The density of the body is not changing as it rotates, so the change of Is , dIs/dt , is
due only to the motion of the body in the world frame, giving dIs/dt = ωs × Is .
Plugging in, we get

τs = ωs × Isωs + Isω̇s .(10.37)

This is known as Euler’s equation in the inertial frame.
To turn equation (10.37) into a matrix equation, we define the skew-symmetric

matrix representation ω̂s of the vector ωs = [ωxs , ωys , ωzs]
T :

ω̂s =

0 −ωzs ωys

ωzs 0 −ωxs

−ωys ωxs 0

 .

We can now express equation (10.37) as the matrix equation

τs = ω̂sIsωs + Isω̇s .(10.38)

We still do not have a representation of the orientation of the body in the world
frame, however. We need an equation for the evolution of the body’s orientation (the

Choset-79066 book February 23, 2005 11:52

10.4 Dynamics of a Rigid Body 365

xs

ys

zs

z~

x~

y~

Figure 10.4 The rotation matrix for a body is obtained by expressing the unit vectors x̃ , ỹ,
and z̃ of the body x-y-z frame in the inertial frame xs-ys-zs .

kinematic equation) to go with equation (10.38) for the evolution of the velocity (the
dynamic equation).

To do this, define a frame x-y-z attached to the body at its center of mass. As
described in Chapter 3, our representation of the orientation of the body will be as a
3 × 3 rotation matrix

R =

x̃1 ỹ1 z̃1

x̃2 ỹ2 z̃2

x̃3 ỹ3 z̃3

 ∈ SO(3),

where x̃ = [x̃1, x̃2, x̃3]T is the unit vector in the body x-direction expressed in the
inertial coordinate frame. The vectors ỹ and z̃ are defined similarly (figure 10.4).

Each column vector of R moves according to the angular velocity ωs , so the kine-
matics of the rotating rigid body can be written

Ṙ = ωs × R = ω̂s R.(10.39)

Together, equations (10.39) and (10.38) describe the motion of a rotating rigid body
in a spatial frame. The use of the rotation matrix representation of the orientation
allows us to write the kinematics in a simple and globally correct fashion, which is
not possible with any choice of three coordinates.1

1. A globally correct representation of orientation can be achieved using only four numbers with quater-
nions (see appendix E). We use the matrix representation because it allows the convenient use of matrix
multiplications.

Choset-79066 book February 23, 2005 11:52

366 10 Robot Dynamics

One difficulty with the equations of motion in an inertial frame is that Is changes as
the body rotates. It would be more convenient and intuitive to define the equations of
motion in a frame fixed to the body, where a body inertia matrix I is unchanging. To do
so, we use the coordinate frame x-y-z attached to the body at its center of mass. The
angular velocity in this frame is written ω = [ωx , ωy , ωz]T and the external torque is
written τ = [τx , τy , τz]T . These are related to ωs and τs by the following equations:

ωs = Rω

τs = Rτ

The inertial frame coordinates rs = [xs , ys , zs]T of a point are related to its coordinates
in the body frame r = [x , y, z]T by

rs = Rr.

The kinematic equations in the two frames are related by

Ṙ = ω̂s R = Rω̂.

Plugging these relations into equation (10.34) and simplifying, we find

K = 1

2
ωT

Iω(10.40)

I = RT
Is R,(10.41)

where the symmetric positive definite body-fixed inertia matrix is given by

I =

Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 =
∫

V
ρ(r)

y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2

 dV .(10.42)

The (possibly non-unique) eigenvectors of I define orthogonal principal axes of inertia
of the body. If the body x-y-z frame is chosen so that the axes are aligned with
principal axes of inertia, then all off-diagonal terms of I are zero, and Ixx , Iyy , Izz are
the principal moments of inertia. In the general case, one principal axis is the axis
of maximum inertia, one principal axis is the axis of minimum inertia, and the third
principal axis (the intermediate axis of inertia) is orthogonal. Because of symmetries,
however, the inertia about two or three of the principal axes might be identical. Often
the principal axes of inertia of a body are evident from symmetries (figure 10.5).

To derive the dynamics in the body frame, we cannot simply take the time-derivative
of Iω, since this is not defined in an inertial frame. (The time-derivative of the
momentum Isωs is a generalized force, while the time-derivative of Iω is not.) Instead,

Choset-79066 book February 23, 2005 11:52

10.4 Dynamics of a Rigid Body 367

x

z
z

x

z

x

z

x

a
b

c

R

h R
b

c
a

Right Circular Cylinder
Volume = phR2

Ixx = m(3R2+h2)/12
Izz = mR2/2

Rectangular Parallelepiped
Volume = abc
Ixx = m(b2+c2)/12
Izz = m(a2+c2)/12

Sphere
Volume = 4pR3/3
Ixx = 2mR2/5
Izz = 2mR2/5

Ellipsoid
Volume = 4pabc/3
Ixx = m(b2+c2)/5
Izz = m(a2+c2)/5

Figure 10.5 Inertias about principal axes of inertia for four different uniform density volumes.
Note that the principal axes of inertia are not unique for the sphere and cylinder.

we begin with equation (10.38),

τs = ω̂sIsωs + Isω̇s ,

and plug in τs = Rτ , ωs = Rω, Is = RIRT , and ω̂s = Ṙ RT to get

Rτ = Ṙ RT RIRT Rω + RIRT
(d

dt
(Rω)

)

= Ṙ RT RIRT Rω + RIRT (Ṙω + Rω̇).

Choset-79066 book February 23, 2005 11:52

368 10 Robot Dynamics

Recognizing from our identities that Ṙω = Rω̂ω = 0, and premultiplying both
sides by R−1 = RT , we get

τ = RT Ṙ RT RIRT Rω + RT RIRT Rω̇.

Plugging in ω̂ = RT Ṙ and noticing that RT R is the identity matrix, this simplifies to

τ = ω̂Iω + Iω̇.

This is Euler’s equation in the body frame. Note that it has the same form as Euler’s
equation in the spatial frame. Collecting together the kinematics and dynamics in one
place, the equations of motion in the body frame are written

Ṙ = Rω̂(10.43)

τ = ω̂Iω + Iω̇.(10.44)

The big advantage of this form over the spatial equations is that I is constant.
If the body x-y-z frame is aligned with the principal axes, making all off-diagonal

terms of I zero, equation (10.44) simplifies to

τx

τy

τz

 =

Ixx ω̇x + (Izz − Iyy)ωyωz

Iyyω̇y + (Ixx − Izz)ωxωz

Izzω̇z + (Iyy − Ixx)ωxωy

 .(10.45)

One key implication of equations (10.44) and (10.45) is that ω̇ may not be zero even
if τ is zero. Although the angular momentum and kinetic energy of a rotating body
are constant when no external torques are applied, the angular velocity of the body
may not be constant. For further interpretation of equation (10.45), see the mechanics
textbooks by Symon [407] and Marsden and Ratiu [308] or the robotic manipulation
textbook by Mason [312].

When it is difficult to solve the integrals of equation (10.42) directly to find I, it
may be possible to split the body into simpler components and solve for (or look up in
a table) the inertia matrix at the center of mass of each component separately. If we then
transform these inertia matrices to a common frame, we can simply add them to get
the inertia matrix for the composite body in that common frame. This transformation
can be accomplished by a translation followed by a rotation, as outlined below (see
figure 10.6).

Let Ii be the inertia matrix of the i th component, expressed in its own local coor-
dinate frame xi -yi -zi at its center of mass. Let ri be the vector from the origin of the
local frame to the origin of the common frame x-y-z, expressed in the local frame.
The inertia Ii can be expressed in a frame aligned with xi -yi -zi , but located at the

Choset-79066 book February 23, 2005 11:52

10.4 Dynamics of a Rigid Body 369

yx'i

xi

x y'i

yi

z'i

zi

z

ri

Figure 10.6 The inertia matrix of body Bi , expressed in a frame xi -yi -zi at the center of mass
of the body, can be expressed in another frame x-y-z by a translation and rotation.

origin of the common frame, using the parallel-axis theorem

I
′
i = Ii + mi

(‖ri‖2I − rir
T
i

)
,(10.46)

where mi is the mass of the i th component and I is the 3 × 3 identity matrix. Now let
Ri denote the rotation matrix describing the orientation of this translated local frame
relative to the common frame. Rotating the inertia matrix into the common frame, we
get

I
′′
i = RiI

′
i RT

i .

The matrix I
′′
i is the inertia of the i th component expressed in the common frame.

Performing this translation and rotation for all k components of the body, the total
inertia of the body in the common frame is I = I

′′
1 + · · · + I

′′
k .

Lagrange’s Equations Revisited

We have gone to great lengths to avoid choosing three generalized coordinates and
using Lagrange’s equations! Now that we have done this work and developed some
understanding of the body inertia matrix I, it will be easier to see how Lagrange’s
equations could be applied.

Figure 10.7 shows a choice of coordinates q = [q1, q2, q3]T due to Euler. The body
x-y plane intersects the spatial xs-ys plane along a line called the line of nodes. The
coordinate q1 is the angle from the xs-axis to the line of nodes, q2 is the angle from
the line of nodes to the body x-axis, and q3 is the angle from the zs-axis to the body
z-axis. With some work, the angular velocity ω = [ωx , ωy , ωz]T can be expressed in

Choset-79066 book February 23, 2005 11:52

370 10 Robot Dynamics

z

y

x

xs

q3

q1

q2 ys

zs

Figure 10.7 Euler angles for a rotating body.

terms of these coordinates:

ωx = q̇3 cos q2 + q̇1 sin q2 sin q3(10.47)

ωy = −q̇3 sin q2 + q̇1 cos q2 sin q3(10.48)

ωz = q̇2 + q̇1 cos q3.(10.49)

Plugging these into the kinetic energy K = 1
2ω

T
Iω, we get the kinetic energy in

the form K = 1
2 q̇T M(q)q̇, as we are used to. From there we can apply Lagrange’s

equations as before to get the dynamic equations of motion for generalized torques
acting along the coordinates.

A good thing about this formulation is that we have used the fewest possible num-
bers to represent the orientation, and the kinematics are trivial. Significant drawbacks
are the complexity of the equations, as well as the singularities in the coordinate
representation.

Problems

1. Represent the configuration of a point mass in a plane by polar coordinates q = [r, θ]T

and use Lagrange’s equations to find the equations of motion. Then write the inertia matrix
M(q), derive the Christoffel symbols, and show that the dynamics of equation (10.10) are
equivalent to the equations you derived using the Lagrangian method.

2. Use Lagrange’s equations to derive the equations of motion of a 2R (two revolute joints)
robot arm operating in a vertical plane. The first link has length L1, mass m1, and inertia
I1 about the center of mass, and the center of mass is a distance r1 from the first joint.

Choset-79066 book February 23, 2005 11:52

Problems 371

q1

q2

r2

ag

L1

r1

Figure 10.8 The 2R robot arm.

For the second link, m2, I2, and r2 are defined similarly (figure 10.8). Put the equations of
motion in the standard form of equation (10.7).

3. Find the eight Christoffel symbols for the mass matrix of problem 2.

4. Use Lagrange’s equations to find the equations of motion of a PR robot arm. Provide your
own drawing and parameters and solve with these parameters. Put the equations in the
standard form of equation (10.7).

5. Find the inertia matrix of a round tube of length L , inner diameter d1, outer diameter d2,
and density ρ. Choose a frame aligned with the principal axes of inertia. Remember that
inertia matrices in a common frame can be added and subtracted.

6. The inertia matrix of a body in a coordinate frame x1-y1-z1 at the center of mass of the
body is I1. The orientation of this coordinate frame is R1 relative to a frame x-y-z. The
origin of x-y-z is at r1 in the frame x1-y1-z1. Transform the inertia matrix I1 to an inertia
matrix I expressed in the x-y-z frame, where

I1 =

1 0 0
0 2 0
0 0 3

 , r1 =

3
0
2

 , R1 =

0 −1 0
1 0 0
0 0 1

 .

Also provide a drawing of the two frames showing their position and orientation relative
to each other.

7. Consider a barbell constructed of two spheres of radius 10 cm welded to the ends of a
right circular cylinder bar of length 20 cm and radius 2 cm. Each body is a solid volume
constructed of steel, with a mass density of 7850 kg/m3. Find the approximate inertia
matrix in a principal-axis frame at the center of mass.

Choset-79066 book February 23, 2005 11:52

372 10 Robot Dynamics

8. Prove the parallel-axis theorem [equation (10.46)].

9. Derive equations (10.47), (10.48), and (10.49).

10. Write a program to simulate the tumbling motion of a rigid body in space.

11. A point of mass m moves in three-dimensional space R
3, actuated by three orthogonal

thrusters, with equations of motion u = mq̈ (no gravity). Now imagine that the mass
(still with three thrusters) is constrained to move on a sphere of radius 1 centered at the
origin of the inertial frame. Write the Pfaffian constraint and solve for q̈ and the Lagrange
multiplier λ.

12. Find the projection matrix P for problem 11 and write the constrained equations of motion
in the form of equation (10.20).

13. In problem 11, it is possible to reduce the number of generalized coordinates from three
to two and eliminate the Lagrange multiplier. Choose latitude (q1) and longitude (q2)
coordinates to describe the position of the point on the sphere, and use Lagrange’s equations
to solve for the dynamics in these coordinates. Explain what the generalized forces are.
Give the Christoffel symbols in these coordinates.

Choset-79066 book February 23, 2005 11:57

11 Trajectory Planning

IN CHAPTER 10 we described dynamic models for robot systems. Equipped with such
a dynamic model, the trajectory planning problem is to find control (force) inputs
u(t) yielding a trajectory q(t) that avoids obstacles, takes the system to the desired
goal state, and perhaps optimizes some objective function while doing so. This can be
considered a complete “motion-planning” problem, as opposed to a “path-planning”
problem that only asks for a feasible curve q(s) in the configuration space, without
reference to the speed of execution.

In this chapter we study two approaches to trajectory planning for a dynamic sys-
tem: the decoupled approach, which involves first searching for a path in the config-
uration space and then finding a time-optimal time scaling for the path subject to the
actuator limits; and the direct approach, where the search takes place in the system’s
state space. Examples of the latter approach include optimal control and numerical
optimization, grid-based searches, and randomized probabilistic methods. In this
chapter we focus on fully actuated systems—systems where there is an actuator for
each degree of freedom.

In section 11.1 we provide some definitions used throughout the chapter. In sec-
tion 11.2 we describe an algorithm for finding the time-optimal execution of a path
subject to actuator limits, and describe how this can be used in a decoupled trajectory
planner. In section 11.3 we outline several approaches to trajectory planning directly
in the system state space, including optimal control, gradient-based numerical meth-
ods, and dynamic programming. Other methods, such as rapidly-exploring random
trees (RRTs), are described in chapter 7.

Choset-79066 book February 23, 2005 11:57

374 11 Trajectory Planning

11.1 Preliminaries

In this chapter a path q(s) is assumed to be a twice-differentiable curve on the config-
uration space Q, q : [0, 1] →Q. A time scaling s(t) is a function s : [0, tf] → [0, 1]
assigning an s value to each time t ∈ [0, tf]. Together, a path and a time scaling
specify a trajectory q(s(t)), or q(t) for short. The time scaling s(t) should be twice-
differentiable and monotonic (ṡ(t) > 0 for all t ∈ (0, tf)). The twice-differentiability
of s(t) ensures that the acceleration q̈(t) is well defined and bounded. Note that uni-
form time scalings s(t) = kt are a subset of the more general time-scaling functions
considered here.

Configurations q and forces u are both nQ-dimensional vectors.

11.2 Decoupled Trajectory Planning

Given a collision-free path q(s) for a robot system, what is the fastest feasible tra-
jectory that follows this path? In other words, what is the time-optimal time scaling
s(t) subject to actuator constraints? This question is of considerable importance for
maximizing the productivity of robot systems when a path has been given by task
specifications or found by a path planner. This problem has been solved elegantly by
Shin and McKay [385] and Bobrow, Dubowsky, and Gibson [51], with subsequent
enhancements by Pfeiffer and Johanni [348], Slotine and Yang [388], and Shiller and
Lu [384].

Let us assume that the equations of motion of our system are in the standard form
of equation (10.7) or equation (10.10) from chapter 10. The robot is subject to the
actuator limits

umin
i (q , q̇) ≤ ui ≤ umax

i (q, q̇).(11.1)

In general, the actuator limits may be functions of the system configuration and
velocity. For example, the torque available to accelerate a DC motor decreases as its
angular velocity increases. The simplest example of actuator limits are the symmetric,
state-independent bounds

|ui | ≤ umax
i .

For a given path q(s), we can substitute

dq

ds
ṡ = q̇(11.2)

d2q

ds2
ṡ2 + dq

ds
s̈ = q̈(11.3)

Choset-79066 book February 23, 2005 11:57

11.2 Decoupled Trajectory Planning 375

into equation (10.10) to get

M(q(s))

(
d2q

ds2
ṡ2 + dq

ds
s̈

)

+
(

dq

ds
ṡ

)T

�(q(s))

(
dq

ds
ṡ

)

+ g(q(s)) = u(11.4)

or
(

M(q(s))
dq

ds

)

s̈ +
(

M(q(s))
d2q

ds2
+

(
dq

ds

)T

�(q(s))
dq

ds

)

ṡ2 + g(q(s)) = u.(11.5)

These equations can be expressed compactly as the vector equation

a(s)s̈ + b(s)ṡ2 + c(s) = u(11.6)

defining the dynamics constrained to the path q(s). The vector functions a(s), b(s),
and c(s) are inertial, velocity product, and gravitational terms in terms of s, respec-
tively.

As the robot travels along the path q(s), its state at any time is identified by
(s, ṡ). Actuator limits can be expressed as a function of the path state by substituting
equation (11.2) into equation (11.1), yielding umin(s, ṡ) and umax(s, ṡ). Therefore, at
all times the system must satisfy the constraints

umin(s, ṡ) ≤ a(s)s̈ + b(s)ṡ2 + c(s) ≤ umax(s, ṡ).(11.7)

Let Li (s, ṡ) and Ui (s, ṡ) be the minimum and maximum accelerations s̈ satisfying
the i th component of equation (11.7), and define

αi (s, ṡ) = umax
i (s, ṡ) − bi (s)ṡ2 − ci (s)

ai (s)
, βi (s, ṡ) = umin

i (s, ṡ) − bi (s)ṡ2 − ci (s)

ai (s)
.(11.8)

Then Ui (s, ṡ) = αi (s, ṡ), Li (s, ṡ) = βi (s, ṡ) if ai (s) > 0, and Ui (s, ṡ) = βi (s, ṡ),
Li (s, ṡ) = αi (s, ṡ) if ai (s) < 0. (If ai (s) = 0 for any i , the system is at a zero inertia
point, and we will set aside this possibility until subsection 11.2.1.) We define

L(s, ṡ) = max
i∈1...nQ

Li (s, ṡ), U (s, ṡ) = min
i∈1...nQ

Ui (s, ṡ).

The actuator limits (11.7) can then be expressed as

L(s, ṡ) ≤ s̈ ≤ U (s, ṡ).(11.9)

The problem can now be stated:

Given a path q : [0, 1] → Q, an initial state (0, ṡ0), and a final state (1, ṡ f),
ṡ0, ṡ f ≥ 0, find a monotonically increasing twice-differentiable time scaling
s : [0, tf] → [0, 1] that (1) satisfies s(0) = 0, ṡ(0) = ṡ0, s(tf) = 1, ṡ(tf) = ṡ f ,
and (2) minimizes the total travel time tf along the path while respecting the
actuator constraints (11.9) for all time t ∈ [0, tf].

Choset-79066 book February 23, 2005 11:57

376 11 Trajectory Planning

s0.0 1.0
max accel min accel max accel min accel

velocity
limit curve

s
.

L(s,s)
.

U(s,s)
.

Figure 11.1 At each point (s, ṡ) in the phase plane we can draw a motion cone defined by
the maximum and minimum accelerations s̈ satisfying the actuator limits. The time-optimal
trajectory from (0, ṡ0) to (1, ṡ f) is the curve that maximizes the area underneath it while
remaining on the boundary of the motion cones. In this example, the trajectory switches between
maximum and minimum acceleration three times. The velocity limit curve indicates the states
where the cone collapses to a single tangent vector, and the gray region represents inadmissible
states where the cone disappears—no feasible actuation will keep the system on the path.

We can conveniently visualize this problem in the (s, ṡ) state space. At any state
(s, ṡ), the constraints (11.9) specify a range of feasible accelerations along the path,
L(s, ṡ) ≤ s̈ ≤ U (s, ṡ). This range can be interpreted as a cone of tangent vectors
in the state space, as illustrated in figure 11.1. The problem is to find a curve from
(0, ṡ0) to (1, ṡ f) such that ṡ ≥ 0 everywhere and the tangent at each state is inside
the cone at that state. Further, the curve should maximize the speed ṡ at each s to
minimize the time of motion. A consequence of this is that the curve always follows
the upper or lower bound of the cone (maximum or minimum acceleration) at each
state.1 This kind of trajectory is called a “bang-bang” trajectory, and at least one of
the actuators is always saturated. The heart of the time-scaling problem is to find the
switching points between maximum and minimum acceleration.

At some states (s, ṡ), the actuation constraints (11.9) indicate that there is no
feasible acceleration that will allow the system to continue to follow the path. Such
regions of the state space are shown in gray in figure 11.1. We will call these regions
inadmissible regions. At any inadmissible state, the robot is doomed to leave the path
immediately. At admissible states, the robot may still be doomed to eventually leave

1. Except perhaps at zero inertia points, as described in subsection 11.2.1.

Choset-79066 book February 23, 2005 11:57

11.2 Decoupled Trajectory Planning 377

s

s
.

Figure 11.2 Beginning from the (s, ṡ) state represented by the dot, the system is doomed to
leave the path. The set of all trajectories tangent to the motion cones is bounded by the two
integral curves shown, showing that all feasible trajectories penetrate the velocity limit curve.

the path. This happens if any integral curve originating from the state, with tangents
remaining inside the tangent cones, eventually must reach the inadmissible region
(figure 11.2).

We will assume that, for any s, the robot is strong enough to maintain its config-
uration statically, so all ṡ = 0 states are admissible and the path can be executed
arbitrarily slowly. We will also assume that as ṡ increases from zero for a given s,
there will be at most one switch from admissible to inadmissible. This occurs at the
velocity limit curve v(s), consisting of states (s, ṡ) satisfying

L(s, ṡ) = U (s, ṡ).(11.10)

The velocity limit v(s) is obtained by equating Li (s, ṡ) = U j (s, ṡ) for all i, j =
1 . . . nQ and solving each equation for ṡ (if a solution exists). Call the solution ṡi j (s).
For all i, j , keep the minimum value: v(s) = mini, j ṡi j (s).2

Note that because of the max(·) and min(·) functions used in calculating L(s, ṡ),
U (s, ṡ), and v(s), these functions are generally not smooth.

As mentioned earlier, the problem is to find the switches between maximum and
minimum acceleration. The following algorithm uses numerical integration to find
the set of switches, expressed as the s values at which the switches occur.

2. In general, equation (11.10) may be satisfied for multiple values of ṡ for a single value of s. This may
occur due to friction in the system, weak actuators that cannot hold each configuration statically, or the form
of the actuation limit functions. In this case, there may be inadmissible “islands” in the phase plane. This
significantly complicates the problem of finding an optimal time scaling, and we ignore this possibility.
See [385] for a time-scaling algorithm for this case.

Choset-79066 book February 23, 2005 11:57

378 11 Trajectory Planning

Time-Scaling Algorithm

1. Initialize an empty list of switches S = {} and a switch counter i = 0. Set
(si , ṡi) = (0, ṡ0).

2. Integrate the equation s̈ = L(s, ṡ) backward in time from (1, ṡ f) until the velocity
limit curve is penetrated (reached transversally, not tangentially), s = 0, or ṡ = 0
at s < 1. There is no solution to the problem if ṡ = 0 is reached. Otherwise, call
this phase plane curve F and proceed to the next step.

3. Integrate the equation s̈ = U (s, ṡ) forward in time from (si , ṡi). Call this curve
Ai . Continue integrating until either Ai crosses F or Ai penetrates the velocity
limit curve. (If Ai crosses s = 1 or ṡ = 0 before either of these two cases occurs,
there is no solution to the problem.) If Ai crosses F , then increment i , let si be
the s value at which the crossing occurs, and append si to the list of switches S.
The problem is solved and S is the solution. If instead the velocity limit curve is
penetrated, let (slim, ṡ lim) be the point of penetration and proceed to the next step.

4. Search the velocity limit curve v(s) forward in s from (slim, ṡ lim) until finding the
first point where the feasible acceleration (L = U on the velocity limit curve)
is tangent to the velocity limit curve. If the velocity limit is v(s), then a point
(s0, v(s0)) satisfies the tangency condition if dv

ds |s=s0 = U (s0, v(s0))/v(s0). Call
the first tangent point reached (stan, ṡ tan).3 From (stan, ṡ tan), integrate the curve
s̈ = L(s, ṡ) backward in time until it intersects Ai . Increment i and call this new
curve Ai . Let si be the s value of the intersection point. This is a switch point from
maximum to minimum acceleration. Append si to the list S.

5. Increment i and set (si , ṡi) = (stan, ṡ tan). This is a switch point from minimum to
maximum acceleration. Append si to the list S. Go to step 3.

An illustration of the time-scaling algorithm is shown in figure 11.3.

11.2.1 Zero Inertia Points

Until now, we have been making the assumption that each ai (s) in (11.8) is always
nonzero. In this usual case, the velocity limit occurs when L(s, ṡ) = U (s, ṡ). If

3. An alternative approach to finding (stan, ṡ tan) is to choose a point (slim, ṡ ′), where ṡ ′ < ṡ lim, integrate L
forward from there, and check if the solution penetrates the velocity limit curve. If so, choose ṡ ′′ < ṡ ′; if
not, choose ṡ ′′ > ṡ ′. Perform the integration of L from (slim, ṡ ′′). Repeat the binary search until the forward
integration just touches the velocity limit curve tangentially. The tangent point is (stan, ṡ tan).

Choset-79066 book February 23, 2005 11:57

11.2 Decoupled Trajectory Planning 379

s

Fs
.

0.0 1.0

velocity
limit curve v(s)

max min max mins1 s2 s3

A0 A1

A2

.
(0,s0)

.
(1,sf)

.
(slim,slim)

.
(stan,stan)

Figure 11.3 An illustration of the time-scaling algorithm. (Step 2) Beginning from (1, ṡ f),
the minimum acceleration is integrated backward until the velocity limit curve is reached.
The resulting phase plane curve is denoted F . (Step 3) Beginning from (0, ṡ0), the maximum
acceleration is integrated forward until the velocity limit curve is reached at (slim, ṡ lim). This
phase plane curve is denoted A0. (Step 4) The velocity limit curve v(s) is searched forward
from slim until a point is found where the feasible acceleration is tangent to the limit curve.
The figure shows the feasible accelerations at points on the velocity limit curve as arrows. An
arrow becomes tangent to the velocity limit curve at (stan, ṡ tan). From (stan, ṡ tan), the minimum
acceleration is integrated backward until it reaches A0. This curve is called A1. The s value
of the intersection is s1 and is added to the switch list, S = {s1}. (Step 5) The point (s2, ṡ2)
is set equal to (stan, ṡ tan), and s2 is added to the switch list, S = {s1, s2}. (Step 2) Maximum
acceleration is integrated forward from (s2, ṡ2) until it hits F . This curve is denoted A2, and
the s value of the intersection, s3, is added to the switch list, yielding S = {s1, s2, s3}. The
algorithm terminates.

ai (s) = 0, however, the force at the i th actuator is independent of s̈, and therefore the
i th actuator defines no acceleration constraints Li (s, ṡ), Ui (s, ṡ). Instead, it defines
directly a velocity constraint using (11.7):

umin
i (s, ṡ) ≤ bi (s)ṡ2 + ci (s) ≤ umax

i (s, ṡ).(11.11)

In the case of a zero inertia point where k of the ai (s) are zero, let ṡmax
zip (s)

be the maximum velocity satisfying all k constraints (11.11), and let ṡmax(s) =
min(v(s), ṡmax

zip (s)). Then ṡmax(s) is the true velocity limit curve, generalizing the
curve v(s) by allowing for the possibility of zero inertia points.

If a point on the velocity limit curve ṡmax(s) is determined by a zero inertia point
velocity constraint, then L(s, ṡ) < U (s, ṡ) at this point. This point is called a critical
point. If, in addition, either U (s, ṡ) integrated forward from this point, or L(s, ṡ)

Choset-79066 book February 23, 2005 11:57

380 11 Trajectory Planning

L

U

L

U

critical

singular

tangent

velocity limit curve smax(s)
.

L=U

L=U

Figure 11.4 At critical and singular points, U (s, ṡ) �= L(s, ṡ). At a singular point, following
U forward or L backward results in penetration of the velocity limit curve.

integrated backward from this point, would result in immediate penetration of the
velocity limit curve, then the point is called singular (figure 11.4).

At a singular point (ss , ṡmax(ss)), let

s̈ tangent = ṡmax(ss)
dṡmax

ds
|s=ss

be the acceleration defined by the tangent to the velocity limit curve. If the velocity
limit curve is not differentiable at the singular point (as is often the case), then define

s̈+
tangent = ṡmax(ss)

dṡmax

ds
|s=s+

s

s̈−
tangent = ṡmax(ss)

dṡmax

ds
|s=s−

s

to be the right and left limits, respectively. Then, to prevent penetration of the velocity
limit curve, the maximum feasible acceleration at (ss , ṡmax(ss)) is

s̈max = min(s̈+
tangent, U).

Similarly, the minimum feasible acceleration is

s̈min = max(s̈−
tangent, L).

This is shown graphically in figure 11.5.
Critical points occur on a lower-dimensional subset of the robot’s configuration

space where M(q) is not full rank. If the path passes through this subset transver-
sally, the path will have isolated critical points. If the path travels along this lower-
dimensional subset, however, we may have a continuous critical arc of critical points.
Similarly, we may have singular arcs.

Choset-79066 book February 23, 2005 11:57

11.2 Decoupled Trajectory Planning 381

L

U

L

U

smin..

smax..

Figure 11.5 At this singular point on the velocity limit curve, integrating L(s, ṡ) backward
in time would result in penetration of the velocity limit curve. The true minimum feasible
acceleration at this point is s̈min, defined by the left tangent of the velocity limit curve at the
singularity. Similarly, integrating U (s, ṡ) forward results in penetration. The true maximum
feasible acceleration is s̈max, defined by the right tangent at the singularity.

We can now modify the time-scaling algorithm to properly account for zero inertia
points. At singular points, we integrate s̈min(s, ṡ) and s̈max(s, ṡ) instead of L(s, ṡ) and
U (s, ṡ), respectively. This will also allow the algorithm to “slide” along singular arcs
using an acceleration between L(s, ṡ) and U (s, ṡ), instead of switching rapidly back
and forth between them. In step 4, we search the velocity limit curve ṡmax(s, ṡ) for
any critical or tangent point, not just tangent points.

EXAMPLE 11.2.1 Consider the two-joint RP robot arm with the dynamics derived in
chapter 10. We have planned a path to follow the straight line shown in figure 11.6,
and we wish to find the time-optimal time scaling of the path. Let x = [x1, x2]T be
the Cartesian coordinates of the center of mass of the second link, as shown in the
figure. The path we wish to follow, parameterized by s, is expressed as

x(s) = [x1(s), x2(s)]T = [2s − 1, 1]T , s ∈ [0, 1].(11.12)

The first thing we will do is express this path in the generalized coordinates
q = [q1, q2]T of figure 10.2 in chapter 10. To do this, we can define the forward
kinematics of the robot arm to be the mapping φ from joint coordinates q to Cartesian
coordinates x:

x = φ(q)(11.13)

[x1, x2]T = [q2 cos q1, q2 sin q1]T

The inverse kinematics φ−1 gives the joint coordinates q as a function of the Cartesian
coordinates x. For the RP arm, the inverse kinematics are unique within the reachable

Choset-79066 book February 23, 2005 11:57

382 11 Trajectory Planning

x2

ag

x1

s = 0 s = 1

(-1,1) (1,1)

Figure 11.6 The path followed by the RP manipulator.

workspace of the robot (where q2 ≥ 0):

q = φ−1(x)

[q1, q2]T =
[

atan2(x2, x1),
√

x2
1 + x2

2

]T

(11.14)

where atan2(x2, x1) is the two argument arctangent returning the unique angle in
[−π, π) of the Cartesian point (x1, x2) (where x2

1 + x2
2 �= 0). Plugging equa-

tion (11.12) into equation (11.14), we find the parameterized path in joint coordinates

q(s) =
[
atan2(1, 2s − 1),

√
4s2 − 4s + 2

]T
.(11.15)

Differentiating, we get the velocity and acceleration

q̇ =

−ṡ
2s2−2s+1
(4s−2)ṡ√
4s2−4s+2

(11.16)

q̈ =

(4s−2)ṡ2+(−2s2+2s−1)s̈

(2s2−2s+1)2

√
2(ṡ2+(4s3−6s2+4s−1)s̈)

(2s2−2s+1)3/2

 .(11.17)

In chapter 10 we derived the equations of motion:

u1 = (
I1 + I2 + m1r 2

1 + m2q2
2

)
q̈1 + 2m2q2q̇1q̇2

+ ag(m1r1 + m2q2) cos q1(11.18)

u2 = m2q̈2 − m2q2q̇2
1 + agm2 sin q1(11.19)

Choset-79066 book February 23, 2005 11:57

11.2 Decoupled Trajectory Planning 383

Substituting in equations (11.15), (11.16), and (11.17), we get

a(s)s̈ + b(s)ṡ2 + c(s) = u,

where

a(s) =

I1+I2+2m2+m1r2
1 −4m2s+4m2s2

−2s2+2s−1
√

2m2(2s−1)√
2s2−2s+1

(11.20)

b(s) =
[

2(I1+I2+m1r2
1)(2s−1)

(2s2−2s+1)2

0

]

(11.21)

c(s) =
[

(m1r1 + m2

√
4s2 − 4s + 2)ag cos(atan2(1, 2s − 1))

m2ag sin(atan2(1, 2s − 1))

]

.(11.22)

Note that s = 1
2 defines a zero inertia point, as a2(1

2) = 0. (Understand this intuitively
by considering the s = 1

2 point in figure 11.6.) In this case there is no velocity
constraint due to the second actuator, since b2 = 0 (see problem 5).

We now choose the following parameters for the robot arm: m1 = 5 kg, I1 =
0.1 kg-m2, r1 = 0.2 m, m2 = 3 kg, and I2 = 0.05 kg-m2. The actuator limits are
taken to be ±20 N-m for joint 1 and ±40 N for joint 2, and gravity is ag = 9.8 m/s2.
Figure 11.7 shows the time-optimal trajectory along the path for these choices. The
minimum-time execution of the path is approximately 0.888 s. Note that one of the
actuators is saturated at all times. In this example, the velocity limit curve is never
reached, so there is just one switch between maximum and minimum acceleration.

50

40

30

20

10

0

-10

-20

-30

-40

-50

Input (N-m, N) vs Time (s) Joint positions (rad, m) vs Time (s)

u2

u1 q2

q1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.10 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.10

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

Figure 11.7 The time-optimal actuator histories and trajectory of the RP manipulator along
the straight-line path of example 11.2.1.

Choset-79066 book February 23, 2005 11:57

384 11 Trajectory Planning

11.2.2 Global Time-Optimal Trajectory Planning

The time-scaling algorithm finds the time-optimal trajectory along a given path. What
if our real goal is to find the time-optimal trajectory between two states when we are
free to choose any collision-free path? Can we use the time-scaling algorithm in
conjunction with a collision-free path planner? Conceptually, imagine running the
time-scaling algorithm on all possible paths between the start and goal states. Then
the fastest of these is the global time-optimal trajectory.

Naturally, the problem is how to efficiently test a large number of possible paths.
One approach to this problem for robot manipulators was proposed by Shiller and
Dubowsky [383]. The approach is quite involved, and we only sketch it here. The first
step is to define a grid on the workspace and construct all collision-free paths (without
sharp turns) between the start and goal states moving along edges or diagonals of the
grid. The next step is to quickly compute rough lower-bound estimates of the traveling
times of these paths using a maximum velocity limit during the motion. The fastest
paths are selected and smoothed by using the grid points as control points for cubic
splines. The best of these paths is then submitted to the full time-scaling algorithm,
generating an upper bound on the optimal travel time. All paths with lower bounds
above this upper bound can be pruned. Of the remaining paths, the lower bounds
are more carefully calculated, and the process continues, using increasingly accurate
estimates of the lower bounds as the number of candidate paths is reduced. When the
pruning process has ended, only the best path in each path-neighborhood is considered
further. These best paths are submitted to a local optimization that may locally alter
the paths to allow them to be executed more quickly. This process uses the travel
times returned by the time-scaling algorithm as the objective function.

This approach combines collision-free path planning and time scaling in an iterative
fashion to arrive at a global near-time-optimal trajectory. In the next section, we discuss
methods that do not separate the path-planning and time-scaling problems, but solve
directly in the state space.

11.3 Direct Trajectory Planning

In section 11.2, trajectory planning is decoupled into collision-free path planning
followed by time scaling. In this section, we study methods for planning the trajectory
directly in the state space. If we are interested in finding trajectories that optimize
some cost function, such as motion time or expended energy, optimal control theory
provides necessary conditions on the trajectories. Unfortunately, these conditions are
complex for almost any robot system and cannot be solved analytically. Because of

Choset-79066 book February 23, 2005 11:57

11.3 Direct Trajectory Planning 385

this, we consider two numerical approaches: nonlinear optimization and grid-based
search.

First we describe how to transform the optimal control problem to a finite-
dimensional parameter optimization problem, allowing nonlinear optimization to be
used to numerically solve the optimality conditions. If the problem is well formu-
lated (e.g., the objective and constraint functions are sufficiently smooth), nonlinear
optimization may result in rapid convergence to a locally optimal trajectory. The
drawbacks of this approach are that the method requires an initial guess (possibly
provided by a grid-based search method), and the locally optimal solution reached
generally depends heavily on this guess. Also, evaluation of constraint and objective
functions, and their gradients, may be computationally costly.

We then introduce a grid-based search method that allows the user to specify how
near to time-optimal the motion plan should be, while meeting “safety” requirements
on obstacle avoidance. The planned motions are approximate in that the goal state
may not be exactly reached, but the user has control over how large the final error can
be. An advantage is that this is a global approach, unlike gradient-based nonlinear
optimization. A drawback of grid-based search is that the size of the grid grows
exponentially in the dimension of the state space, making the approach impractical
for high-dimensional systems.

A third approach is to use RRT’s, as described in chapter 7. This approach trades off
optimality for planner run-time—it may be able to quickly find a feasible trajectory
that is in no sense optimal.

Finally, a fourth approach is based on artificial potential fields (see chapter 4).
An artificial potential field is constructed to make obstacles repulsive and the goal
configuration attractive. The robot senses its current configuration, calculates the gra-
dient of the artificial potential at this configuration, and applies the gradient forces at
the actuators. (Damping forces may be included to stabilize the goal configuration.)
A potential field, therefore, implicitly defines a trajectory to the goal from all ini-
tial states. This approach is fundamentally different from the previous “open-loop”
approaches in that a feedback law is specified for all robot states.

11.3.1 Optimal Control

Given a dynamic system

M(q)q̈ + C(q, q̇)q̇ + g(q) = u,(11.23)

we would like to find a solution (q(t), u(t)), t ∈ [0, tf] to equation (11.23) that avoids
obstacles and joint limits, respects actuator limits, and takes the system from the initial
state (qstart, q̇ start) at time t = 0 to the final state (qgoal, q̇ goal) at time t = tf . Of all

Choset-79066 book February 23, 2005 11:57

386 11 Trajectory Planning

the trajectories that accomplish this, we might want to find one that minimizes some
objective function J . In general, J might be a function of the controls, the trajectory,
and the total motion time tf , i.e., J = J (u(t), q(t), tf).

Before proceeding further, let’s express the state of the system as x = [qT , q̇T]T

and rewrite the equations of motion in the general form

ẋ(t) = f (x(t), u(t), t),(11.24)

where f is the vector differential equation describing the kinematics and dynam-
ics of the system. In our case, the state equations do not change with time, so
f (x , u, t) = f (x , u). The state equations (11.24) can be viewed as constraints defin-
ing the relationship between x(t) and u(t). Let the objective function J be written

J =
∫ tf

0
L(x(t), u(t), t)dt ,(11.25)

where the integrandL is called the Lagrangian. (The LagrangianL for optimal control
is actually a generalization of the Lagrangian L for dynamics.) A typical choice of L
is “effort,” modeled as a quadratic function of the control, e.g., L = uT W u, where
W is a positive definite weighting matrix, e.g., the identity matrix. Another common
choice is to leave tf free and choose L = 1, implying J = tf , a minimum-time
problem.

For now, let us ignore the issues of actuator limits and obstacles, and assume that
the final time tf is fixed. The problem then is to find a state and control history
(x(t), u(t)), t ∈ [0, tf] that satisfies the constraints of equation (11.24), satisfies the
terminal conditions x(tf) = xf , and minimizes the cost in equation (11.25). To write
a necessary condition for optimality, we define the Hamiltonian H

H(x(t), u(t), λ(t), t) = L(x(t), u(t), t) + λT f (x(t), u(t)),(11.26)

where λ(t) is a vector of Lagrange multipliers.4 Then the Pontryagin minimum prin-
ciple5 says that at an optimal solution (x∗(t), u∗(t), λ∗(t)),

H∗(t) = H(x∗(t), u∗(t), λ∗(t), t) ≤ H(x∗(t), u(t), λ∗(t), t).(11.27)

In other words, if the control history u∗(t) is optimal, then at any time t , any other
feasible control u(t) will give an H(t) greater than or equal to that of the optimal
H∗(t). In the absence of any other constraints on the state and control, then, a necessary

4. These Lagrange multipliers play a similar role to those in dynamics with constraints—they are used to
enforce constraints, here the state equation constraints.
5. Often known as the Pontryagin maximum principle. In our case, we are minimizing a cost function; we
could equivalently maximize a utility function, or the negative of the cost function.

Choset-79066 book February 23, 2005 11:57

11.3 Direct Trajectory Planning 387

condition for optimality can be written

∂H
∂u

= 0.(11.28)

This says that the linear sensitivity of the Hamiltonian to changes in u is zero, meaning
that the control is extremal, but not necessarily optimal. A sufficient condition for local
optimality of a solution is that equation (11.28) is satisfied and the Hessian of the
Hamiltonian is positive definite along the trajectory of the solution:

∂2H
∂u2

> 0(11.29)

This is known as the convexity or Legendre-Clebsch condition. The Lagrange multi-
pliers evolve according to the adjoint equation

λ̇ = −∂H
∂x

.(11.30)

Equation (11.28) can sometimes be used to write u as a function of x and λ. In this
case, optimization boils down to choosing initial conditions for equation (11.30) to
ensure that the goal is reached.

EXAMPLE 11.3.1 Consider a simple double-integrator system with one degree of
freedom, q̈ = u, such as a point mass on a line actuated by a force. Let x = [x1, x2]T =
[q , q̇]T , so the equations of motion can be written in the form

ẋ = f (x , u),

[
ẋ1

ẋ2

]

=
[

x2

u

]

.

Choose the objective function

J =
∫ tf

0
u2dt.

Then the Hamiltonian is

H = u2 + λ1x2 + λ2u

and the necessary condition (11.28) is written

∂H
∂u

= 2u + λ2 = 0.(11.31)

The adjoint equation (11.30) is written

λ̇ = −∂H
∂x

,

[
λ̇1

λ̇2

]

= −
[

0
λ1

]

.(11.32)

Choset-79066 book February 23, 2005 11:57

388 11 Trajectory Planning

Equation (11.32) shows that λ1 is constant and λ2 is a linear function of time, so by
equation (11.31), u is also a linear function of time, e.g., u(t) = c0 + c1t .

Now we can specify the initial and final state for the system to solve for the control
and state history. Let x(0) = [0, 0]T and x(tf) = [d , 0]T , i.e., the system starts at
rest and ends at rest having moved a distance d in time tf . Then we have the stopping
conditions that the first and second integral of u(t) evaluated over [0, tf] be zero and
d, respectively:

x2(tf) =
∫ tf

0
u(t)dt = 0

x1(tf) =
∫ tf

0

∫ t

0
u(η)dη dt = d.

Solving, we get c0 = 6d/t2
f , c1 = −12d/t3

f defining the extremal control history. The
extremal state history is obtained by integration of the control.

To check if this extremal solution is a minimizer, we can use the convexity condition.
In this case, the Hessian is the scalar ∂2H/∂u2 = 2 > 0, indicating that the solution
is indeed (locally) optimal.

In the previous example, the convexity condition is satisfied. However, if an
extremum is achieved (∂H/∂u = 0) but convexity is not (∂2H/∂u2 is only positive
semidefinite), it does not mean that the control is not optimal. In this case, auxiliary
conditions have to be satisfied to ensure optimality. An optimal control of this type is
an example of a singular optimal control, as in the previous section with time-optimal
control at zero inertia points.

What if there are actuator limits or obstacles? At an optimal solution, the minimum
principle (11.27) will always be satisfied, but the control or state history may bump up
against limits preventing equation (11.28) from being satisfied. The optimal solution
may be constrained by these limits rather than the extremality condition (11.28).
Consider the one-degree-of-freedom double integrator above, with the actuator limits
|u | < umax, and choose the minimum-time objective function

J =
∫ tf

0
1dt ,

where the time tf is left free. The Hamiltonian is H= 1 + λ1x2 + λ2u, and ∂H/∂u =
λ2 does not contain the control variable. Therefore, it provides no information on the
choice of u(t). Further, ∂2H/∂u2 is zero, so H is not convex. We know, however, that
the optimal solution for this problem is a bang-bang trajectory, just like the bang-bang
trajectories found by the time-scaling algorithm.

Choset-79066 book February 23, 2005 11:57

11.3 Direct Trajectory Planning 389

We can recover the bang-bang solution using the minimum principle (11.27). We
write

H∗(t) = H(x∗(t), u∗(t), λ∗(t)) ≤ H(x∗(t), u(t), λ∗(t))

1 + λ∗
1(t)x∗

2 (t) + λ∗
2(t)u∗(t) ≤ 1 + λ∗

1(t)x∗
2 (t) + λ∗

2(t)u(t)

λ∗
2(t)u∗(t) ≤ λ∗

2(t)u(t).

Therefore, u∗(t) is the maximum feasible value umax when λ∗
2(t) < 0 and the minimum

feasible value −umax when λ∗
2(t) > 0. As before, λ2 is a linear function of time, and

the terminal state conditions allow us to find the complete solution.
Only for very simple systems is it possible to solve the extremality conditions

analytically. In most cases it is necessary to resort to numerical methods to solve
the conditions approximately. One such method is called shooting. The user guesses
initial values for the Lagrange multipliers λ(0), which then are numerically integrated
according to the adjoint equation λ̇ = −∂H/∂x , while the control vector u evolves
according to ∂H/∂u = 0. After integrating for time tf (for fixed-time problems), if
the final state is not equal to the desired final state, the initial guess of the Lagrange
multipliers is modified in some reasonable way and the process repeats. In other
words, by modifying the initial conditions, we “shoot” at the goal until we hit it.
Typically the initial conditions are modified using an approximation of the gradient
of the map taking the initial conditions to the final state.

Other numerical methods for approximately solving for optimal controls include
dynamic programming and gradient-based nonlinear optimization. In the next subsec-
tion we discuss a nonlinear optimization approach to finding the optimal parameters
of a finite parameterization of the system’s trajectory or controls. In subsection 11.3.3
we introduce a grid-based search method for finding near-time-optimal trajectories.

For more on optimal control, see the books by Bryson and Ho [72], Bryson [71],
Kirk [236], Lewis and Syrmos [287], Stengel [396], and Pontryagin, Boltyanskii,
Gamkrelidze, and Mishchenko [354].

11.3.2 Nonlinear Optimization

The general problem can be stated

find tf , q(t), u(t)(11.33)

minimizing J (u(t), q(t), tf)(11.34)

subject to M(q(t))q̈(t) + C(q(t), q̇(t))q̇ + g(q(t)) = u(t), 0 ≤ t ≤ tf(11.35)

umin(q(t), q̇(t)) ≤ u(t) ≤ umax(q(t), q̇(t)), 0 ≤ t ≤ tf(11.36)

h(q(t)) ≤ 0, 0 ≤ t ≤ tf(11.37)

Choset-79066 book February 23, 2005 11:57

390 11 Trajectory Planning

q(0) = qstart, q̇(0) = q̇ start(11.38)

q(tf) = qgoal, q̇(tf) = q̇ goal,(11.39)

where h(q) ≤ 0 are configuration inequality constraints representing obstacles and
joint limits.

To approximately solve this problem by nonlinear optimization, we approximate
the continuous constraints (11.36) and (11.37) by a finite number of constraints. This is
typically done by ensuring that the constraints are satisfied at a fixed number of points
distributed evenly over the interval [0, tf]. We also choose a finite-parameter repre-
sentation of the state and control histories. We have three choices of how to do this:

1. Parameterize the trajectory q(t). In this case, we solve for the parameterized
trajectory directly. The control forces u at any time are calculated using equa-
tion (11.35).

2. Parameterize the control u(t). We solve for u(t) directly, and calculating the state
(q(t), q̇(t)) requires integrating the equations of motion (11.35).

3. Parameterize both q(t) and u(t). We have a larger number of variables, since we are
parameterizing both q(t) and u(t). Also, we have a larger number of constraints,
as q(t) and u(t) must satisfy the dynamic equations (11.35) explicitly, typically
at a fixed number of points distributed evenly over the interval [0, tf]. We must be
careful to choose the parameterizations of q(t) and u(t) to be consistent with each
other, so that the dynamic equations can be satisfied at these points.

A trajectory or control history can be parameterized in any number of ways. The
parameters can be the coefficients of a polynomial in time, the coefficients of a
truncated Fourier series, spline coefficients, wavelet coefficients, piecewise constant
acceleration or force segments, etc. For example, the control ui (t) could be represented
by p + 1 coefficients a j of a polynomial in time:

ui (t) =
p∑

j=0

a j t
j

In addition to the parameters for the state or control history, the total time tf may
be another control parameter. The choice of parameterization has implications for
the efficiency of the calculation of q(t) and u(t) at a given time t . The choice of
parameterization also determines the sensitivity of the state and control to the param-
eters, and whether each parameter affects the profiles at all times [0, tf] or just on a
finite-time support base. These are important factors in the stability and efficiency of
the numerical optimization.

Choset-79066 book February 23, 2005 11:57

11.3 Direct Trajectory Planning 391

Let X be the vector of the control parameters to be solved. Assuming that either
q(t) or u(t) has been parameterized (but not both), and that the k + 1 constraint
checks are spaced at 	t = tf /k intervals, the constrained nonlinear optimization can
be written

find X(11.40)

minimizing J (X)(11.41)

subject to umin(X, j	t) ≤ u(X, j	t) ≤ umax(X, j	t), j = 0 . . . k(11.42)

h(X, j	t) ≤ 0, j = 0 . . . k(11.43)

q(X, 0) = qstart, q̇(X, 0) = q̇ start(11.44)

q(X, tf) = qgoal, q̇(X, tf) = q̇ goal.(11.45)

A variant of this formulation approximately represents the constraints (11.42)–(11.45)
by penalty functions in the objective function, allowing the use of unconstrained
optimization.

A nonlinear program of this type can be solved by a number of methods, including
sequential quadratic programming (SQP). Any solver will require the user to provide
functions to take a guess X and calculate the objective function J (X) and the con-
straints (11.42)–(11.45). Often the objective function will have to be calculated by
numerical integration. All solvers also need the gradients of the objective function
and the constraints with respect to X . These can be calculated numerically by finite
differences, or, if possible, analytically. Finally, most solvers make use of Hessians
of the objective function and constraint functions with respect to X . Most solvers
update a numerical approximation to these Hessians rather than requesting the user to
provide these. Details on different methods for nonlinear optimization can be found
in [164, 326, 338]. Code for nonlinear optimization includes FSQP and CFSQP [4],
NPSOL [5], and routines in the IMSL [6], NAG [7], and MATLAB Optimization
Toolbox libraries.

The most important point is that for any of these solvers to work, the objective
and constraints must be sufficiently smooth with respect to the control parameters
X . They must be at least C1, but usually C2 so that Hessian information can be
used to speed convergence. A key part of the problem formulation is ensuring this
smoothness. When possible, the gradients, and even the Hessians, should be calculated
analytically. This will minimize the possibility of the solver failing to converge due
to numerical problems, a very real practical concern! Even if the objective function
is calculated approximately by numerical integration, it may be possible to calculate
the exact gradient of this approximation analytically.

Since nonlinear optimization uses local gradient information, it will converge to
a locally optimal solution. For some problems, the control parameter space will be

Choset-79066 book February 23, 2005 11:57

392 11 Trajectory Planning

littered with many local optima. Therefore, the solution achieved will depend heavily
on the initial guess. To ensure a good solution, the process can be started from several
initial guesses, keeping the best local optimum. Nonlinear optimization can also be
used as a final step to locally improve a trajectory found by some other global search
method. A survey of nonlinear optimization methods for trajectory generation can be
found in [49].

11.3.3 Grid-Based Search

An alternative approach, specifically for time-optimal trajectory planning, uses grid
search. As motivation, consider the simple double-integrator system

q̈ = a

|a| ≤ amax,

where a is the acceleration control. Let q be one-dimensional, so the system can
be viewed as a point mass moving on a line with a control force. The time-optimal
control from an initial state (qstart, q̇ start) to a goal state (qgoal, q̇ goal) is bang-bang—the
actuator is saturated at all times.

Things will not be so simple when we deal with multidimensional problems with
obstacles and velocity limits, so let’s consider a grid-based approach that we will be
able to generalize to more dimensions. First, we discretize the control set to {−amax,
0, amax}. Next, we choose a timestep h. Now, beginning from (qstart, q̇ start), we integrate
the three controls forward in time by h to obtain three new states. Think of the initial
state (qstart, q̇ start) as the root of a tree, and the three new states as children of the root
(figure 11.8). From each of these three, we integrate the controls forward to obtain
a new level of the tree. We continue in a breadth-first fashion. If the trajectory to a
new node in the tree passes through an obstacle or exceeds a velocity limit, this node

0

level 2

level 1

root

amax–amax

(qstart, qstart)
.

Figure 11.8 The search tree for three controls.

Choset-79066 book February 23, 2005 11:57

11.3 Direct Trajectory Planning 393

q

amaxh

q
.(amaxh2)/2

Figure 11.9 The search tree of figure 11.8 shown on the state space grid. The search begins
at (0, 0). The actual trajectories between vertices are not straight lines, but quadratics.

is pruned from the tree. The search continues until a trajectory reaches a state in a
specified goal region. The trajectory is specified by the piecewise-constant controls
to traverse the tree from the root node to this final node. Since the search is breadth-
first, exploring all reachable states at time kh before moving on to time (k + 1)h, the
trajectory is time-optimal for the chosen discretization of time and controls.

We call this a grid-based search because each of the nodes reached during the
growth of the tree lies on a regular grid on the (q, q̇) state space. From any state,
the new state obtained by integrating one of the discretized accelerations for time h
will involve a change in q̇ equal to an integral multiple of amaxh and a change in
q equal to an integral multiple of 1

2 amaxh2. An example of such a grid is shown in
figure 11.9. The search tree shown on this grid is two levels deep, beginning at (0, 0).
The key point here is that, given some bounds on q and q̇, the size of the grid is easily
computed, so an upper bound on the computational complexity of the search of this
grid is also easily computed.

Let us now consider a more general problem statement. The system is described
by q ∈ D ⊂ R

nQ , where D is a bounded subset of R
nQ , and velocity and acceleration

bounds of the form

|q̇ i | ≤ vmax, i = 1 . . . nQ

|q̈ i | ≤ amax, i = 1 . . . nQ.

Note that this is a very limited class of systems, as the maximum feasible q̈ i ’s are
constant and independent of the state (q, q̇). An example of such a system might
be a point in nQ-dimensional Euclidean space with a thruster for each degree of

Choset-79066 book February 23, 2005 11:57

394 11 Trajectory Planning

(-amax, -amax) (amax, -amax)

(amax, amax)(-amax, amax)
q2
..

q1
..

Figure 11.10 The control discretization for nQ = 2.

freedom, or a Cartesian robot arm consisting of all prismatic joints and actuators with
state-independent bounds. The problem is to find a collision-free, approximately time-
optimal trajectory from (q ∗

start, q̇ ∗
start) [at or near the desired start state (qstart, q̇ start)] to

a goal state near the desired goal state (qgoal, q̇ goal).
The algorithm uses a discretized control set A consisting of the cross products

of {−amax, 0, amax} for each degree of freedom, yielding 3nQ distinct controls (fig-
ure 11.10). These controls result in a regular grid on 2nQ-dimensional state space,
similar to figure 11.9. Algorithm 21, GRID SEARCH, is described in pseudocode below.

This algorithm is straightforward, except for one twist: the algorithm prunes a node
if the trajectory passes close to an obstacle, not just if it passes through an obstacle.
Thus the algorithm will only return trajectories that are safe. We define a trajectory to
be δv(c0, c1)-safe if there exists a speed-dependent ball of free configurations about
each q in the trajectory, where the radius of the ball is c0 + c1‖q̇ ‖. The parameters
c0 and c1 are safety parameters.

Since the algorithm uses a finite timestep h, any trajectory it finds will only be an
approximately time-optimal safe trajectory. Instead of directly choosing h, the user
could have control over a parameter ε, 0 < ε < 1, which defines the crudeness of
the approximation. Larger values of ε correspond to cruder approximations, and the
timestep h goes to zero as ε goes to zero. As we will see, ε may be viewed as a measure
of how much we will allow δv(c0, c1)-safety to be violated, giving (1 − ε)δv(c0, c1)-
safety.

Choset-79066 book February 23, 2005 11:57

11.3 Direct Trajectory Planning 395

Algorithm 21 GRID SEARCH

Input: Start node (q ∗
start, q̇ ∗

start), goal region G
Output: A trajectory to G or FAILURE

1: Place (q ∗
start, q̇ ∗

start) at root of tree T (level 0)
2: level ← 0, solved ← FALSE, ANS ← ∅
3: while not solved do
4: if no nodes in level level of T then
5: return FAILURE
6: end if
7: for each node in level level of T do
8: for each control in A do
9: Integrate control for time h from node, getting newnode

10: if newnode has not been previously reached, and trajectory does not pass close
to an obstacle nor exceed vmax then

11: add newnode to T as child of node
12: end if
13: if trajectory enters G then
14: solved ← TRUE, store newnode in list AN S
15: end if
16: end for
17: end for
18: level ← level + 1
19: end while
20: For each node in ANS, find the trajectory that reaches G first

Although the algorithm itself is straightforward, analysis of the algorithm is quite
involved. Given a desired safety margin and ε, we would like to know how to choose h
to guarantee completeness of the algorithm, and how ε and the safety margin relate to
the algorithm’s running time. This is the problem that was studied in detail by Donald
and Xavier [135], building on work by Canny, Donald, Reif, and Xavier [94, 133].
Their analysis holds for a point robot with nQ = 2 or 3 moving among polygonal or
polyhedral obstacles. They give us the following result.

THEOREM 11.3.2 Let � be the diameter of the robot configuration space, c0 and
c1 be safety parameters, and vmax and amax be the velocity and acceleration limits.
Let 0 < ε < 1. Assume there exists a δv(c0, c1)-safe trajectory from (qstart, q̇ start) to
(qgoal, q̇ goal) taking time Topt by some control function with |q̈ i | ≤ amax for all i and

Choset-79066 book February 23, 2005 11:57

396 11 Trajectory Planning

t ∈ [0, Topt]. Choose the largest h so that

h ≤ vmax

amax
, h ≤ c0ε

2amaxc1(1 − ε) + 5vmax
,

and vmax is an integral multiple of amaxh. Choose an approximate starting state
(q ∗

start, q̇ ∗
start) where, for each coordinate i ,

q̇ ∗
start,i = the multiple of amaxh closest to q̇ start,i

q ∗
start,i = q start,i − h2

2
(q̇ start,i − q̇ ∗

start,i).

Define the goal neighborhood to be all points within (5amaxh2

2 , 2amaxh) of (qgoal, q̇ goal).
[Note that the distance from (q ∗

start, q̇ ∗
start) to (qstart, q̇ start), and the distance from any

point in the goal neighborhood to (qgoal, q̇ goal), is O(ε).] Then the algorithm outlined
above is guaranteed to find a (1− ε)δv(c0, c1)-safe trajectory taking at most time Topt

from (q ∗
start, q̇ ∗

start) to the goal neighborhood. The running time of the algorithm is

O

(

cnQ N

(
vmax(amaxc1 + vmax)3�

a2
maxc3

0ε
3

)nQ)

,

where nQ = 2 or 3, c is a constant, and N is the number of faces in the obstacles. In
terms of the dimension nQ and the approximation variable ε, the running time goes
as O((1

ε
)3nQ), i.e., polynomial in ε and exponential in nQ.

The proof of this theorem is beyond the scope of this chapter, and it depends on
efficient goal and safety checking between grid vertices. One important property of
the algorithm is that the (1 − ε)δv(c0, c1)-safe trajectory found by the algorithm may
be quite different from the time-optimal δv(c0, c1)-safe trajectory. The only guarantee
is that the running time of the approximate trajectory will be no greater than Topt, the
time for a time-optimal δv(c0, c1)-safe trajectory.

Figure 11.11 shows a cartoon example of different kinds of optimal paths for a point
in the plane. The true time-optimal trajectory, with no consideration for safety, is a
straight-line motion between the start and the goal. In this example, the time-optimal
δv(c0, c1)-safe trajectory avoids the narrow passage, as it would require unacceptably
slow speeds to be safe. Finally, the algorithm outlined above finds the approximately
time-optimal (1 − ε)δv(c0, c1)-safe trajectory from an approximate start state to an
approximate goal state.

We would like to generalize the grid-search algorithm to handle more general
dynamic systems of the form of equation (10.7), such as open-chain robot manipu-
lators. Unlike the previous case, the dynamics are not decoupled generally, and the

Choset-79066 book February 23, 2005 11:57

11.3 Direct Trajectory Planning 397

true time-optimal,
no safety

true time-optimal,
dv(c0,c1)-safe (q*start, q*start)

(qstart, qstart)

(qgoal, qgoal)

approximate start and goal,
approximate time-optimal,
(1-)dv(c0, c1)-safe

Figure 11.11 A time-optimal motion, a δv(c0, c1)-safe time-optimal motion, and a solution
found by the algorithm. The dashed box at the goal is the the goal neighborhood projected to
the configuration space.

current state of the system affects the feasible q̈:

q̈ = M−1(q)(u − C(q, q̇)q̇ − g(q))(11.46)

To simplify matters somewhat, we will assume constant bounds on the available
controls, possibly different for each i :

|ui | ≤ umax
i(11.47)

At a given state (q, q̇), equation (11.46) transforms the rectangular parallelepiped
of feasible controls u implied by the constraints (11.47) to a parallelepiped in the q̈
space, as shown in figure 11.12. Let A(q, q̇) denote the state-dependent parallelepiped
of feasible q̈ . We assume that A(q, 0) contains the origin of the q̈ space in its interior
for all q ∈ Q, i.e., the actuators are strong enough to hold the robot stationary at any
configuration.

To apply the algorithm from before, imagine placing a constant grid on the q̈
space, as shown in figure 11.12, discretizing the feasible accelerations. For a fixed
time interval h, these controls will again create a regular grid of reachable points on
the state space. For the current state, we use the q̈ grid points inside A(q, q̇) as our set
of actions A. One problem is that A(q, q̇) changes during the time interval h, so that
a q̈ that is feasible at the beginning of the timestep may no longer be feasible at the

Choset-79066 book February 23, 2005 11:57

398 11 Trajectory Planning

A(q,q) q2

q1

u2

u1

Figure 11.12 The equations of motion turn the feasible controls u into a parallelepiped
A(q , q̇) of feasible accelerations q̈.

end. Another problem is that it might happen that there is no grid point that is feasible
at both the beginning and end of the timestep. Worse yet, if M−1(q) ever loses rank,
then A(q , q̇) collapses to zero volume, and no point on a fixed grid is likely to lie
in it.

To prevent A(q, q̇) from collapsing, we assume an upper bound on the largest eigen-
value of M(q) during any motion. This tells us how “skinny” A(q, q̇) can become,
providing information on how to choose the q̈ grid spacing so that there are always
grid points inside the region. For a given timestep h, we also have to choose a conser-
vative approximation Â(q, q̇) ⊂ A(q, q̇) such that any q̈ inside Â(q(t), q̇(t)) stays
inside A(q(t + δt), q̇(t + δt)) for all δt ∈ [0, h] (figure 11.13). To construct the con-
servative approximation Â(q, q̇), we need to know how quickly M(q) can change,
which can be bounded by global bounds on the derivatives of M(q) with respect to
time. In other words, properties of M(q) and its derivatives must be used to avoid the
problems outlined in the previous paragraph. Details can be found in [186].

The idea is to choose the q̈ grid spacing (which may be different for each q̈ i , i =
1 . . . n) and the timestep h so that any feasible trajectory of the system using the
full acceleration capabilities A(q, q̇) can be approximately tracked by trajectories
using the discretized controls A, chosen to be the q̈ grid points lying inside Â(q, q̇).6

The allowable tracking error depends on a user-defined approximation parameter
ε, 0 < ε < 1, where the allowable tracking error goes to zero as ε goes to zero.

As before, we can define a trajectory to be δv(c0, c1)-safe if all real-space obstacles
are avoided by a distance of at least c0 + c1‖q̇‖ at all points along the trajectory.
It has been shown that if there exists a δv(c0, c1)-safe trajectory from (qstart, q̇ start)

6. Alternatively, A could consist only of q̈ grid points near the boundary of Â(q, q̇).

Choset-79066 book February 23, 2005 11:57

11.3 Direct Trajectory Planning 399

A(q,q)

q2

q1

A(q,q)^

Figure 11.13 The parallelepiped A(q, q̇) represents instantaneously feasible accelerations
and Â(q , q̇) is a conservative approximation to the set of accelerations that are feasible over
the entire timestep of duration h.

to (qgoal, q̇ goal) taking time Topt, then the procedure GRID SEARCH outlined in algo-
rithm 21 will find a (1− ε)δv(c0, c1)-safe trajectory from (q ∗

start, q̇ ∗
start) to (q ∗

goal, q̇ ∗
goal)

[where the errors from the desired initial and final states are O(ε)] taking no more
than time (1 + ε)Topt. The timestep h and q̈ grid-spacing are polynomial in ε, and
the choice of these parameters involves lengthy calculations. The running time of the
algorithm has been shown to be polynomial in ε and exponential in the degrees of
freedom nQ [134, 185, 205, 206].

The grid-search algorithm is attractive because it is possible to prove its complete-
ness (using the concept of safe trajectories) and to understand how the running time
depends on an approximation parameter ε. This allows the user to trade off compu-
tation time against the quality of the trajectory. There have been no implementations
of the algorithm for more than a few degrees of freedom, however, because in prac-
tice the computation time and memory requirements grow quickly with the number
of degrees of freedom.

The running time of the algorithm can be improved by using nonuniform dis-
cretization of the state space [362] or search heuristics that favor first exploring from
nodes close to the goal state. The RRT and EST (see chapter 7) are methods for tra-
jectory planning based on a heuristic that biases the search to evenly explore the
state space. Like the grid-based algorithm, they discretize the controls and choose a

Choset-79066 book February 23, 2005 11:57

400 11 Trajectory Planning

constant, finite timestep. Unlike the grid-based algorithm, they give up on any notion
of optimality and settle for probabilistic completeness, attempting to quickly find any
feasible trajectory.

Problems

1. For the RP manipulator of example 11.2.1, write a program that accepts a straight-line path
and draws the velocity limit curve.

2. Implement the time-scaling algorithm for the RP arm of example 11.2.1 following a straight
line path specified by the user. Try to write the program in a modular fashion, so systems
with different dynamics can use many of the same routines.

3. In step 2 of the time-scaling algorithm, explain why there is no solution to the time-scaling
problem if ṡ = 0 is reached. Give a simple example of this case.

4. In step 3 of the time-scaling algorithm, explain why there is no solution to the time-scaling
problem if the forward integration reaches s = 1 or ṡ = 0 before crossing the velocity limit
curve or the curve F . Give a simple example of this case.

5. In example 11.2.1, explain intuitively why b1(s) �= 0 but b2(s) = 0, in terms of the arm
dynamics and the manipulator path.

6. At a zero inertia point s, at least one term ai (s) is equal to zero. Explain the implications if
bi (s) is also zero. Should the algorithm be modified to handle this case? Remember, we are
assuming the robot is strong enough to maintain any configuration statically. Does it matter
if the actuator limits are state-dependent?

7. We would like to find optimal motions for the RP robot arm of example 11.2.1. The
Lagrangian defining the objective function is L = w1u2

1 + w2u2
2, where w1 and w2 are

positive weights. For a fixed time of motion tf , write the Hamiltonian, the necessary condi-
tion for optimality (11.28), and the adjoint equation (11.30).

8. For the previous problem, choose a parameterization of the joint trajectories and use a
nonlinear programming package to find optimal point-to-point trajectories for the RP arm.
A good initial guess for the joint trajectories would be one that exactly satisfies the start
and goal state constraints. Comment on any difficulties you encounter using nonlinear
programming.

9. Implement the procedure GRID SEARCH (algorithm 21) for a point moving in a planar world
with polygonal obstacles.

Choset-79066 book February 23, 2005 12:3

12 Nonholonomic and Underactuated Systems

EVERY ROBOT system is subject to a variety of motion constraints, but not all of
these can be expressed as configuration constraints. A familiar example of such a
system is a car. At low speeds, the rear wheels of the car roll freely in the direction
they are pointing, but they prevent slipping motion in the perpendicular direction.
This constraint implies that the car cannot translate directly to the side. We know
by experience, however, that this velocity constraint does not imply a constraint on
configurations; the car can reach any position and orientation in the obstacle-free
plane. In fact, the prevented sideways translation can be approximated by parallel-
parking maneuvers.

This no-slip constraint is a nonholonomic constraint, a constraint on the velocity. In
addition to rolling without slipping, conservation of angular momentum is a common
source of nonholonomic constraints in mechanical systems.

If, instead of viewing the car as a system subject to a motion constraint, we con-
sidered the fact that there are only two inputs (speed and steering angle) to control
the car’s three degrees of freedom, we might call the system underactuated. Under-
actuated systems have fewer controls than degrees of freedom. For second-order
mechanical systems, such as those described in the previous chapter, underactuation
implies equality constraints on the possible accelerations of the system.

In this section we study motion planning for systems that are underactuated or
subject to motion constraints. Our first task is to determine if the constraints actually
limit the reachable states of the robot system. This is a controllability question. The
next problem is to construct algorithms that find motion plans that satisfy the motion

Choset-79066 book February 23, 2005 12:3

402 12 Nonholonomic and Underactuated Systems

constraints. A last problem, not addressed in this chapter, is feedback stabilization of
the motion plans during execution.

We begin in section 12.1 by providing some background information on vector
fields and their Lie (pronounced “lee”) algebras. Section 12.2 defines the class of
control systems we will consider. Section 12.3 describes different controllability
notions and tests for these nonlinear systems. Section 12.4 specializes the discussion
to second-order mechanical systems. Finally, section 12.5 describes a number of
methods for motion planning for nonholonomic and underactuated systems.

12.1 Preliminaries

First we must decide how generally to define the state spaces of the robotic systems we
will consider. For example, we could treat a very general case, allowing the state space
of the system to be any smooth manifold. This would allow us to study, e.g., the motion
of a spherical pendulum. The configuration space of this system is the sphere S2. Or
we could limit our treatment to systems evolving on Lie groups, particularly matrix
Lie groups. This would allow us to model the orientation of a satellite as a point in
SO(3).

In this chapter, we restrict our attention even further to systems evolving on vector
spaces M = R

n . This allows us to get to the main results as quickly as possible. Also,
any n-dimensional manifold is locally “similar” (diffeomorphic) to R

n , so, equipped
with a proper set of local coordinates, any n-dimensional manifold can be treated
locally as R

n . By making this simplification, we require the use of a local coordinate
system in our computations, and we may lose information about the global structure
of the space. As examples, the true configuration space of a 2R robot arm is the torus
T 2 = S1 × S1, which is doughnut-shaped while R

2 is not; and a global representation
of the orientation of a satellite is SO(3), which is different from a local representation
using three Euler angles (R3). See figure 12.1 for another example.

Although we focus on vector state spaces, most of the ideas in this chapter generalize
immediately to general manifolds.

In this chapter, q ∈ Q denotes the configuration of the system and x ∈ M denotes
the state of the system. If the system is kinematic, then the state is simply the con-
figuration (M = Q), and the controls are velocities. If the system is a second-order
mechanical system, then x includes both configurations q and velocities q̇, and the
controls are forces (accelerations). The dimension of the configuration space Q is nQ,
and the dimension of the state space M is n.

We will carry two examples throughout the chapter: a unicycle, a kinematic system;
and a model of a planar spacecraft, a second-order mechanical system. We will treat

Choset-79066 book February 23, 2005 12:3

12.1 Preliminaries 403

Figure 12.1 Latitude and longitude coordinates allow us to treat a patch of the sphere S2 as
a section of the plane R

2.

(q1,q2) q3

Figure 12.2 The unicycle system. The position of the point of contact is given by (q1, q2),
and the heading direction is given by q3.

all systems uniformly, as systems with state x on a state spaceM. Only in section 12.4
and subsection 12.5.7 will we specialize our study to second-order mechanical systems
such as the spacecraft model.

EXAMPLE 12.1.1 Unicycle example. The unicycle is a wheel that rolls upright on
a horizontal plane (figure 12.2). The configuration of the wheel is q = [q1, q2, q3]T ,
describing the contact point of the wheel on the plane (q1, q2) and the steering angle
q3 of the wheel. (We could also include the rolling angle of the wheel, i.e., the location
of the air nozzle on the tire, in the description of the configuration, but we will ignore
this for now.) The system is kinematic, so x = [x1, x2, x3]T = q, M = Q = R

3, and
nQ = n = 3. (Since we are dealing with local coordinates, we are ignoring the fact
that the global structure of the space is R

2 × S1. This will not affect the equations
of motion, but requires the use of mod2π arithmetic on the third coordinate.) The

Choset-79066 book February 23, 2005 12:3

404 12 Nonholonomic and Underactuated Systems

(q1,q2)
d

q1

q2

q3

u2

u1

ag

Figure 12.3 The planar body with thrusters (PBWT).

controls are the rolling speed of the wheel and the rate of change of the steering angle.
Sideways translation of the wheel is prevented by the no-slip constraint imposed by
the wheel. This example is sometimes known as the rolling penny, or the pizza cutter,
and it is similar to a model for a car.

EXAMPLE 12.1.2 Planar body with thrusters (PBWT) example. The body moves in
a frictionless, inviscid plane by means of two thrusters fixed to the body (figure 12.3).
The mass and inertia of the body (about the center of mass) are unit. The line of action
of the thrust u1 is through the center of mass, and the line of action of the thrust u2

is perpendicular and a distance d from the center of mass. The configuration is
q = [q1, q2, q3]T , describing the location of the center of mass (q1, q2) and the angle
q3 of the line of action of the first thruster relative to the world q1-axis. The system
is second-order, so x = [x1, x2, x3, x4, x5, x6]T = [q1, q2, q3, q̇1, q̇2, q̇3]T , M= R

6,
nQ = 3, and n = 2nQ = 6. Gravitational acceleration ag acts in the −q2-direction,
and ag may be zero.

The rest of section 12.1 introduces concepts from differential geometry that will
be useful in understanding underactuated systems. For the unicycle, e.g., we will
see that its instantaneous motions can be described in terms of two “vector fields”
associated with the controls to drive and steer the unicycle. Linear combinations of
these two vector fields define a “distribution” describing all possible instantaneous
motions of the unicycle. The “integral manifold” describes all the states the system
can reach by following vector fields in the distribution. We use the “Lie bracket” to
show that two vector fields in the distribution can generate a parallel-parking motion
for the unicycle, effectively giving it a sideways motion, meaning that the integral

Choset-79066 book February 23, 2005 12:3

12.1 Preliminaries 405

M

TxM

x

Figure 12.4 A curve on the sphere M, a tangent vector to the curve at x , and the tangent
space TxM it lives in.

manifold is the entire configuration space—the velocity constraint does not reduce
the reachable space.

Section 12.2 describes how a robot system can be expressed as a system of vector
fields and controls, and section 12.3 uses the concepts developed in this section to
study the set of states reachable by the controls.

12.1.1 Tangent Spaces and Vector Fields

Let x : R → M be a smooth curve on M parameterized by s. Then dx/ds, evaluated
at x0 = x(s0), is tangent to the curve at x0. Call this vector V . The vector V is a tangent
vector that is tangent to M at x0. The tangent vector V lives in Tx0M, the tangent
space of M at x0. This space is an n-dimensional vector space R

n consisting of the
tangents of all possible curves passing through x0 (figure 12.4). The tangent spaces
at different points of M are different spaces.

The tangent bundle of M, written TM, is the 2n-dimensional manifold that is the
union of tangent spaces at all points in M,

TM =
⋃

x∈M
TxM.

For the systems we study, TM = M × R
n = R

2n .1

A smooth vector field g : M → TM is a smooth map from points x ∈ M to
tangent vectors g(x) ∈ TxM. It is possible to define Ck vector fields, but we will

1. We note that if M is a more general manifold, and it is parallelizable (e.g., a Lie group), then TM =
M×R

n . The reader should be careful not to generalize improperly, however. For example, T S2 �= S2 ×R
2,

for reasons beyond the scope of this chapter. For an intuitive discussion of this issue, see [372].

Choset-79066 book February 23, 2005 12:3

406 12 Nonholonomic and Underactuated Systems

x1

x2

Figure 12.5 The vector field 1
2 [−x2, x1]T .

assume that all vector fields are infinitely differentiable. (For example, the vector field
g(x) = [x2

1 , sin x3, x1x2]T is infinitely differentiable, but [|x1|, x2, x3]T is only C0.) A
picture of the vector field 1

2 [−x2, x1]T on R
2 is shown in figure 12.5. Tangent vectors

are written as column vectors.
In the case of a kinematic system, M is the configuration space Q, and Tx0M =

Tq0Q is the set of all possible velocities of the system at x0 = q0. In the case of
a second-order system, M is the state space TQ, and Tx0M = Tx0 TQ is the set
of all possible velocities and accelerations of the system at x0 = [qT

0 , q̇T
0]T . In this

case, however, the state x0 already specifies the velocity portion q̇0 of the tangent
vector [q̇T

0 , q̈T
0]T . This implies drift in second-order systems, as shown in the PBWT

example below.

EXAMPLE 12.1.3 Unicycle (cont.) A tangent vector for the unicycle is given by
ẋ = [ẋ1, ẋ2, ẋ3]T = [q̇1, q̇2, q̇3]T . The unicycle is capable of rolling forward and
backward and spinning in place. These two vector fields can be written guni

1 (x) =
[cos x3, sin x3, 0]T , rolling forward at unit speed, and guni

2 (x) = [0, 0, 1]T , spinning
counterclockwise at unit speed. The vector fields can also be written as guni

1 (x) =
(cos x3)∂/∂x1 + (sin x3)∂/∂x2 and guni

2 (x) = ∂/∂x3, where ∂/∂x1, ∂/∂x2, and ∂/∂x3

are the canonical unit basis vectors of the tangent space, i.e., unit speed tangent
vectors along the coordinates (see figure 12.6).

EXAMPLE 12.1.4 PBWT (cont.) A tangent vector for the PBWT is given by
ẋ = [ẋ1, ẋ2, ẋ3, ẋ4, ẋ5, ẋ6]T = [q̇1, q̇2, q̇3, q̈1, q̈2, q̈3]T . For this system, we can
define three vector fields: the drift vector field gpbwt

0 (x) corresponding to the
motion of the body when no thrusters are activated, and the control vector fields

Choset-79066 book February 23, 2005 12:3

12.1 Preliminaries 407

x3 x3

x1 x2 x1 x2

Figure 12.6 The vector fields guni
1 = [cos x3, sin x3, 0]T (shown in constant x3 layers) and

guni
2 = [0, 0, 1]T .

gpbwt
1 (x) and gpbwt

2 (x) corresponding to the acceleration when thrusters 1 and 2
are fired with unit thrust, respectively. Verify that gpbwt

0 (x) = [x4, x5, x6, 0, ag , 0]T ,
gpbwt

1 (x) = [0, 0, 0, cos x3, sin x3, 0]T , and gpbwt
2 (x) = [0, 0, 0, − sin x3, cos x3, −d]T,

and write these vector fields in the canonical basis {∂/∂x1, ∂/∂x2, ∂/∂x3, ∂/∂x4,
∂/∂x5, ∂/∂x6}. Notice if thruster 1 is fired with thrust u1, the system follows the
vector field gpbwt

0 (x) + u1gpbwt
1 (x).

Let φg denote the flow of the vector field g, where φ
g
t (x) gives the system state

after following the flow φg from x for a time t . The flow satisfies the equation

d

dt
φg

t (x) = g
(
φg

t (x)
)
.

The vector field is complete if its flow is defined for all x and t .
The curve {φg

t (x) | t ∈ R} is the integral curve of g containing x . The integral
curve describes the set of reachable points of M from x by following the vector field
forward and backward in time (figure 12.7). This notion can be generalized to the
integral manifold of a set of vector fields G, a topic for subsection 12.1.3.

12.1.2 Distributions and Constraints

Let G be a set of vector fields, and let span(G) be the linear span of vector fields
in G, given by all linear combinations of vector fields in G. At each point x ∈ M,
these vector fields span a linear subspace of TxM. The set of vector fields G is

Choset-79066 book February 23, 2005 12:3

408 12 Nonholonomic and Underactuated Systems

Figure 12.7 An integral curve of a vector field.

said to generate a distribution D ⊆ TM, which is a smooth assignment of a linear
subspace of TxM for each x ∈ M. A distribution is regular if the dimension of the
linear subspace is the same at all x . If the dimension is m, then we say that it is an
m-dimensional distribution.

Consider the two-dimensional regular distribution for the unicycle D=
span({guni

1 , guni
2 }) = u1guni

1 (x) + u2guni
2 (x), u1, u2 ∈ R. We might think of this as

the “positive” form of the distribution—feasible motions are generated by linear
combinations of the vector fields. A “negative” form of the distribution would start
with all motions being feasible, then eliminate those that violate motion constraints.
For instance, the unicycle distribution could be written

D(x) = {ẋ ∈ TxM | ω(x) ẋ = 0}, ω(x) = [− sin x3, cos x3, 0],(12.1)

where D(x) is the linear subspace of TxM defined by the distribution D. A row
vector ω(x) is called a covector and lives in the cotangent space T ∗

x M = R
n , the

dual of TxM consisting of all linear functionals of elements of TxM. In other words,
a covector field ω pairs with a vector field g to yield a real value, ω(x)g(x) ∈ R.
This is sometimes called the “natural pairing” of a tangent vector and covector. The
canonical basis of covector fields is {dx1, . . . , dxn}, so that the constraint ω(x) in
equation (12.1) can be written as − sin x3dx1 + cos x3dx2.

A covector field ω is sometimes known as a one-form, because it takes a single
element of TxM and produces a real number, linear in the tangent vector. A two-form,
as we will see in section 12.4, takes two elements of TxM and produces a real number,
linear in each of the arguments.

The cotangent bundle T ∗M is the union of cotangent spaces T ∗
x M for all x ∈ M. A

set of covector fields {ω1(x), . . . , ωk(x)} is said to define a codistribution � ⊆ T ∗M.
If the covector fields ωi (x), i = 1 . . . k, correspond to motion constraints ωi (x) ẋ = 0,
then � is called a constraint codistribution, and it is said to annihilate the distribution
D of feasible motions, and vice versa.

Of special interest are velocity constraints of the form

f (q , q̇) = 0(12.2)

Choset-79066 book February 23, 2005 12:3

12.1 Preliminaries 409

that cannot be integrated to yield equivalent configuration constraints. Such con-
straints are called nonholonomic. Nonholonomic constraints of the form

a(q)q̇ = 0

are sometimes called Pfaffian constraints, as discussed in chapter 10. Pfaffian con-
straints arise from rolling without slip [e.g., see equation (12.1)] and conservation of
angular momentum. In mechanical systems, the covector field a(q) can be interpreted
as a generalized force, so a(q)q̇ has units of power, and the constraint a(q)q̇ = 0 is
passive—it does no work on the system.

In second-order underactuated systems, the underactuation implies the existence
of acceleration constraints of the form

f (q , q̇ , q̈) = 0.

Constraints of this form that cannot be integrated to equivalent velocity constraints
are sometimes referred to as “second-order nonholonomic” constraints, but this ter-
minology is not standard.

In general, it is not easy to determine if an acceleration constraint can be integrated
to yield an equivalent velocity constraint, or if a velocity constraint can be integrated
to yield an equivalent configuration constraint. In the rest of this chapter, we use the
“positive” form of the distribution and study the reachable set by vector fields in G.

12.1.3 Lie Brackets

Let G be a set of vector fields and D be the distribution defined by span(G). We
would like to know the reachable set of M by following vector fields in D. While this
is generally difficult globally, it is possible to learn something about the reachable
set locally by looking at the Lie brackets of vector fields in D. Given two vector
fields belonging to D, the Lie bracket tells us if infinitesimal motions along these
vector fields can be used to locally generate motion in a direction not contained in D.
Perhaps the best-known example is the parallel-parking maneuver for a car or, in our
case, a unicycle. Direct sideways motion is prohibited by the no-slip constraint, but
sideways motion can be approximated by a series of forward-backward and turning
maneuvers. The implication of this is that the locally reachable set of M is not two-
dimensional, as the two-dimensional distribution D might seem to indicate, but fully
three-dimensional. The no-slip velocity constraint does not imply a constraint on
reachable configurations.

For two vector fields g1, g2 ∈ G, consider the state reached from x0 = x(0) by first
following g1 for a small time ε � 1, then following g2 for time ε, then following −g1

for time ε, then following −g2 for time ε. This is expressed mathematically as

x(4ε) = φ−g2
ε

(
φ−g1

ε

(
φg2

ε

(
φg1

ε (x0)
)))

.(12.3)

Choset-79066 book February 23, 2005 12:3

410 12 Nonholonomic and Underactuated Systems

We can take a Taylor series in ε to solve the differential equation (12.3) approximately
(see, e.g., [330] and problem 29), yielding

x(4ε) = x0 + ε2

(
∂g2

∂x
g1(x0) − ∂g1

∂x
g2(x0)

)

+ O(ε3),(12.4)

where the partial derivatives are evaluated at x0 and O(ε3) indicates terms of order
ε3, which are dominated by the term of order ε2 when ε is small. Note there are no
O(ε) terms. The ε2 term represents the approximate net motion of the system, and
the term inside the parentheses is the Lie bracket of g1 and g2.

The Lie bracket of g1 and g2 is written [g1, g2] and is given in local coordinates by

[g1, g2] = ∂g2

∂x
g1 − ∂g1

∂x
g2.(12.5)

The Lie bracket [g1, g2] defines a new vector field, and if it is not contained in span(G),
then it represents a new motion direction that can be followed approximately. Locally
generating motion in this direction is “slower” than following the vector field g1 or g2

directly, as the net motion is only O(ε2) for time O(ε), where ε � 1. Again, parallel
parking is a well-known example, as approximately generating sideways motion by
forward-backward and turning motions is tedious and time-consuming. If [g1, g2] =
0, then no new motion is created, and the two vector fields are said to commute.

Since [g1, g2] is a vector field, we can calculate its Lie bracket with another vector
field. A Lie product of degree k is a bracket term where the original vector fields
appear k times. For instance, [[[g1, g2], g1], g2] is a Lie product of degree 4.

EXAMPLE 12.1.5 Unicycle (cont.) The rolling and turning vector fields for the uni-
cycle are guni

1 = [cos x3, sin x3, 0]T and guni
2 = [0, 0, 1]T , respectively. So

[guni
1 , guni

2] = ∂guni
2

∂x
guni

1 − ∂guni
1

∂x
guni

2

=
[
∂guni

2

∂x1

∂guni
2

∂x2

∂guni
2

∂x3

]

guni
1 −

[
∂guni

1

∂x1

∂guni
1

∂x2

∂guni
1

∂x3

]

guni
2

=

0 0 0
0 0 0
0 0 0

cos x3

sin x3

0

 −

0 0 −sin x3

0 0 cos x3

0 0 0

0
0
1

=

sin x3

−cos x3

0

 .

Note that the Lie bracket motion is to the side, in the direction prevented by the no-slip
constraint (see figure 12.8).

Choset-79066 book February 23, 2005 12:3

12.1 Preliminaries 411

{

Top View of Unicycle

x2

x2

x3

x1

x1

O(3)

- g1 - g2

g1
g2

2[g1, g2]

Figure 12.8 Generating a Lie bracket motion for the unicycle, starting from the origin. The
net motion is approximately to the side, the Lie bracket direction. It is not exactly to the side,
however, due to higher-order terms in ε.

The Lie algebra of a set of vector fields G, written Lie(G), is the linear span of all
Lie products, of all degrees, of vector fields in G. To determine the Lie algebra, define
G1 = G, and the series

Gi+1 = Gi ∪ {[g j , gk] | ∀g j ∈ G1, gk ∈ Gi }.
Then Lie(G) is given by the distribution span(G∞). For example, the series for G =
{g1, g2} begins

G1 = {g1, g2}
G2 = G1 ∪ {g3 = [g1, g2]}
G3 = G2 ∪ {g4 = [g1, g3], g5 = [g2, g3]}
G4 = G3 ∪ {g6 = [g1, g4], g7 = [g1, g5], g8 = [g2, g4], g9 = [g2, g5]}

...

The corresponding series D1 = span(G1), D2 = span(G2), . . . is called the filtration
of the distribution D1. The filtration is regular if each distribution in the filtration
is regular. If the filtration is regular, then the dimension of the distribution grows
at each step of the construction, or else the construction terminates. (Of course,

Choset-79066 book February 23, 2005 12:3

412 12 Nonholonomic and Underactuated Systems

dim(Di) ≤ n = dim(M) for all i .) If the filtration is regular, we are guaranteed a
finite value of k such that Dk = Dk+1 = · · · = D∞. This distribution is the involutive
closure D of D, and a distribution D is involutive if D = D.

If the filtration is not regular, then in general there is no way to know a priori a
degree k at which Dk = D. If there is a degree k at which all Lie products become
zero, then the Lie algebra is called nilpotent of order k.

The integral manifold of D containing x0 is the set of M that can be reached from
x0 by vector fields inD, andD(x) is the tangent space of the integral manifold at x . By
the well known Frobenius theorem, an m-dimensional regular distribution D can be
integrated to yield an m-dimensional integral manifold if and only if D is involutive.

If a distribution D does not have the entire space M as an integral manifold, then
D is said to generate a foliation of M, and each distinct integral manifold is called
a leaf of the foliation. Consider, e.g., the one-dimensional distribution generated by
guni

2 = [0, 0, 1]T (turning motion) for the unicycle (see figure 12.6). The distribution
is one-dimensional, regular, and involutive, and the integral manifolds are lines in x3

(wrapping around at 2π) with fixed position (x1, x2). The unicycle is confined to the
same leaf of the foliation for all time if it can only follow this vector field. A more
interesting example of a foliation is given in example 12.1.7 below.

The existence of integral manifolds smaller than the whole state space M indicates
that the motion constraints actually limit the reachable state space. For example,
velocity constraints on a kinematic system might be integrated to yield configuration
constraints, indicating that the original constraints are actually holonomic. Similarly,
acceleration constraints on a mechanical system might be integrated to yield velocity
or even configuration constraints.

Lie brackets satisfy the following properties:

1. Skew-symmetry:

[g1, g2] = −[g2, g1]

2. Jacobi identity:

[g1, [g2, g3]] + [g3, [g1, g2]] + [g2, [g3, g1]] = 0

Taking these properties into account, the Philip Hall basis gives a way to choose the
smallest number of Lie products that must be considered at each degree k to generate
a basis for the distribution Dk . See the book by Serre [380] for details.

EXAMPLE 12.1.6 Unicycle (cont.) From before, we have guni
1 = [cos x3, sin x3, 0]T ,

guni
2 = [0, 0, 1]T , and guni

3 = [guni
1 , guni

2] = [sin x3, −cos x3, 0]T . The dimension of
the distribution defined by {guni

1 , guni
2 , guni

3 } is three at all x ∈ M, implying that the
distribution is regular. It is also certainly involutive, since the dimension of M is

Choset-79066 book February 23, 2005 12:3

12.1 Preliminaries 413

three. To see that the three vector fields are indeed linearly independent, we define
the 3 × 3 matrix [guni

1 guni
2 guni

3] obtained by placing the column vectors side by side.
The rank of the matrix is 3 at all x ∈ M, which can be verified by the determinant

det
[
guni

1 guni
2 guni

3

] = det

cos x3 0 sin x3

sin x3 0 − cos x3

0 1 0

 = 1.

Since the distribution is regular and involutive, it has a three-dimensional integral
manifold, which is the entire space M. The distribution D2 is the involutive closure
of D1. The filtration is regular.

EXAMPLE 12.1.7 Define the vector fields g1(x) = [x1 cos x3, x2 sin x3, 0]T and
g2(x) = [0, 0, 1]T on R

3. The vector field g2 by itself defines a regular one-
dimensional involutive distribution. The vector field g1 does not, however, as it
vanishes at x1 = x2 = 0. The Lie bracket of these vector fields is [g1, g2] =
[x1 sin x3, −x2 cos x3, 0]T , and

det[g1 g2 [g1, g2]] = x1x2.

This means that the distribution span({g1, g2, [g1, g2]}) is rank 3 at points where
both x1 and x2 are nonzero. It is not regular, as the rank is less at points where
either x1 or x2 is zero. In fact, it is not hard to see that the integral manifold of this
distribution is one-dimensional from points [0, 0, x3]T , two-dimensional from points
[x1 �= 0, 0, x3]T and [0, x2 �= 0, x3]T , and three-dimensional from all other points.
The foliation is pictured in figure 12.9.

EXAMPLE 12.1.8 PBWT (cont.) As derived previously, we have gpbwt
0 = [x4, x5, x6,

0, ag , 0]T , gpbwt
1 = [0, 0, 0, cos x3, sin x3, 0]T , and gpbwt

2 = [0, 0, 0, −sin x3, cos x3,
−d]T . Lie bracket computations show that

gpbwt
3 = [

gpbwt
0 , gpbwt

1

]

= [−cos x3, −sin x3, 0, −x6 sin x3, x6 cos x3, 0]T

gpbwt
4 = [

gpbwt
0 , gpbwt

2

]

= [sin x3, −cos x3, d, −x6 cos x3, −x6 sin x3, 0]T

gpbwt
5 = [

gpbwt
1 ,

[
gpbwt

0 , gpbwt
2

]]

= [0, 0, 0, d sin x3, −d cos x3, 0]T

gpbwt
6 = [

gpbwt
0 ,

[
gpbwt

1 ,
[
gpbwt

0 , gpbwt
2

]]]

= [−d sin x3, d cos x3, 0, dx6 cos x3, dx6 sin x3, 0]T .

Choset-79066 book February 23, 2005 12:3

414 12 Nonholonomic and Underactuated Systems

x2

x3

x1

Figure 12.9 The distribution span({g1, g2, [g1, g2]}) in example 12.1.7 foliates the state space
into nine separate leaves: the line defined by x1 = x2 = 0, four half-planes, and four three-
dimensional quadrants.

A computation shows that

det
[
gpbwt

1 gpbwt
2 gpbwt

3 gpbwt
4 gpbwt

5 gpbwt
6

] = d4.

The dimension of the distribution defined by these vector fields is six at all x ∈ M
(provided d �= 0), so the distribution is both regular and involutive. The integral
manifold is the entire space M. The distribution D4 is the involutive closure of D1.

We now apply the ideas of this section to study controllability of underactuated
systems, taking into account the fact that controls determine how the system vector
fields are followed. It may not be possible to follow arbitrary linear combinations
of system vector fields. For example, the drift vector field gpbwt

0 of the PBWT is
fundamentally different from the control vector fields gpbwt

1 and gpbwt
2 .

12.2 Control Systems

A family of vector fieldsG on a manifoldM is sometimes called a dynamical polysys-
tem. The system is symmetric if for every g ∈ G, −g is also in G.

Choset-79066 book February 23, 2005 12:3

12.2 Control Systems 415

The family of dynamical polysystems we will study are control affine nonlinear
control systems, written

ẋ = g0(x) +
m∑

i=1

gi (x)ui , u ∈ U ⊂ R
m .(12.6)

The vector field g0 is called the drift vector field, defining the natural unforced motion
of the system, and the gi , i = 1 . . . m, are linearly independent control vector fields.
The control vector u belongs to the control set U , and u(t) is piecewise continuous.
If g0 = 0, the system is called drift-free or driftless. Kinematic systems (such as the
unicycle) may be drift-free, but second-order systems (such as the PBWT) are not.

EXAMPLE 12.2.1 Unicycle (cont.) The control system for the unicycle is written
ẋ = guni

1 (x)u1 + guni
2 (x)u2, where u1 is the driving speed and u2 is the steering

control.

EXAMPLE 12.2.2 PBWT (cont.) The control system for the PBWT is written ẋ =
gpbwt

0 (x) + gpbwt
1 (x)u1 + gpbwt

2 (x)u2, where u1 is the thrust force at thruster 1 and u2

is the force at thruster 2.

We will consider two classes of control sets:

U±: This class of control sets includes any control set U containing the origin
of R

m in the interior of its convex hull. In other words, the control set positively
spans R

m—any point in R
m can be generated by a positive linear combination of

elements of U . An example of such a control set is the cube centered at the origin
of R

m , −1 ≤ ui ≤ 1, i = 1, . . . , m. Another example consists of only the vertices
of this cube.

U+: This class of control sets includes U± as a subset and includes any control
set U that spans R

m—any point in R
m can be generated by a linear combination

of elements of U . An example of such a control set is the non-negative controls
0 ≤ ui ≤ 1, i = 1, . . . , m.

Examples of the control sets are shown in figure 12.10.
The system (12.6) is symmetric if it is drift-free and the control set is symmetric

about the origin, e.g., a cube centered at the origin. We will abuse the term slightly
and say that a drift-free system is symmetric for any positive-spanning control set
U ∈ U±, since the controllability properties we discuss in this chapter are the same
for any U ∈ U±.

If a system has drift but g0 ∈ span({g1, . . . , gm}), then we may be able to choose
controls w(x) ∈ R

m to always cancel the drift, thereby symmetrizing the system by

Choset-79066 book February 23, 2005 12:3

416 12 Nonholonomic and Underactuated Systems

u2u2u2u2

u1 u1 u1 u1

Figure 12.10 For m = 2 controls, the two control sets on the left belong to U± and the two
control sets on the right belong to U+.

the controls. In this case, the pseudocontrol u ∈ U ∈ U± can be added on top of the
drift-canceling control w(x), so the total control vector is w(x) + u, and the system
is equivalent to the driftless system

ẋ =
m∑

i=1

gi (x)ui , u ∈ U ∈ U±.

As an intuitive example, imagine your motion as you walk on a conveyor. The drift
vector field carries you at a constant speed in one direction. You can control your
own walking speed, however, to cancel the drift and make progress in the opposite
direction.

12.3 Controllability

Let V be a neighborhood of a point x ∈ M (i.e., an n-dimensional open set of
M containing x). Let RV (x , T) indicate the set of reachable points at time T by
trajectories remaining inside V and satisfying equation (12.6), and let

RV (x , ≤ T) =
⋃

0<t≤T

RV (x , t).

We define the following four versions of nonlinear controllability (see figure 12.11):

The system is controllable from x if, for any x goal ∈ M, there exists a T > 0 such
that x goal ∈ RM(x , ≤ T). In other words, any goal state is reachable from x in
finite time.

The system is accessible from x if RM(x , ≤ T) contains a full n-dimensional
subset of M for some T > 0. See figure 12.11(a).

The system is small-time locally accessible (STLA) from x if RV (x , ≤ T) contains
a full n-dimensional subset of M for all neighborhoods V and all T > 0. See
figure 12.11(b).

Choset-79066 book February 23, 2005 12:3

12.3 Controllability 417

(a) (c)

x

V

x

V

x

V

(b)

RV(x, ≤ T) RV(x, ≤ T)

Figure 12.11 Reachable spaces for three systems on R
2. (a) This system is accessible from x ,

but neither small-time locally accessible (STLA) nor small-time locally controllable (STLC).
The reachable set is two-dimensional, but not while confined to the neighborhood V . (b) This
system is STLA from x , but not STLC. The reachable set without leaving V does not contain
a neighborhood of x . (c) This system is STLC from x .

if manifold is connected
and STLC everywhere

if all vector fields analytic

accessible

controllableif
 s

ym
m

et
ri

c

small-time locally
accessible

small-time locally
controllable

Figure 12.12 Implications among the controllability properties. Dashed arrows are
conditional.

The system is small-time locally controllable (STLC) from x if RV (x , ≤ T)
contains a neighborhood of x for all neighborhoods V and all T > 0. See fig-
ure 12.11(c).

The phrase “small-time” indicates that the property holds for any time T > 0, and
“locally” indicates that the property holds for arbitrarily small (but full-dimensional)
wiggle room around the initial state. For practical systems, it might take finite time
to switch between controls (e.g., putting a car in reverse gear). In this case, we might
say a system is locally, but not small-time, controllable. Here we ignore the switch
time and retain the standard “small-time locally” terms.

If a property holds for all x ∈ M, the phrase “from x” can be eliminated. Fig-
ure 12.12 shows the implications among the properties. If the vector fields are all
analytic, then accessibility implies STLA.

Choset-79066 book February 23, 2005 12:3

418 12 Nonholonomic and Underactuated Systems

Small-time local controllability is of special interest. STLC implies that the system
can locally maneuver in any direction, and if the system is STLC at all x ∈ M, then
the system can follow any curve on M arbitrarily closely. This allows the system
to maneuver through cluttered spaces, since any motion of a system with no motion
constraints can be approximated by a system that is STLC everywhere. Also, if M
is connected, then the system is controllable if it is STLC everywhere.

STLA and STLC are local concepts that can be established by looking at the
behavior of the system in a neighborhood of a state. Accessibility and controllability,
on the other hand, are global concepts. As a result, they may depend on things such
as the topology of the space and nonlocal behavior of the system vector fields.

Some physical examples of the various properties:

Imagine setting the minute and hour hands on a watch by turning a knob that can
spin in only one direction. The configuration space of the hands is one-dimensional,
since the motion of the hour hand is coupled to the motion of the minute hand. Show
that this system is accessible, controllable, and STLA on the configuration space,
but not STLC.

Consider the system on R
2 described by the drift vector field g0 = [x2

2 , 0]T and
the single control vector field g1 = [0, 1]T , where u = u1 ∈ [−1, 1]. Show that
the system is accessible and STLA from any x but neither controllable nor STLC.

Consider the system on R
2 described by the drift vector field g0 = [x2, 0]T and

the single control vector field g1 = [0, 1]T , where u = u1 ∈ [−1, 1]. This is the
linear double-integrator q̈ = u written in the first-order form ẋ1 = x2, ẋ2 = u.
Convince yourself that the system is STLC only from zero-velocity states [∗, 0]T

(see figure 12.13).

The unicycle satisfies all the controllability properties if U ∈ U±.

Show that the unicycle is accessible, STLA, and controllable in the obstacle-free
plane, but not STLC, if U belongs to the class U+ but not U±.

Any system confined to a k-dimensional integral manifold, k < n, satisfies none
of the controllability properties.

As hinted at in the linear double-integrator example, for second-order systems
with velocity variables in the state vector, STLC can only hold at zero velocity.
States with nonzero velocity result in drift in the configuration variables that cannot
be instantaneously compensated by finite actuation forces. Therefore, when we talk
about STLC for second-order systems, we implicitly mean STLC at zero velocity.

Choset-79066 book February 23, 2005 12:3

12.3 Controllability 419

x2 = x1
.

x1

Figure 12.13 Two initial states and neighborhoods for the linear double-integrator with
bounded control. The reachable sets from each initial state, by trajectories remaining in the
neighborhood, are shaded, and example trajectories are shown. The system is STLC from the
initial state where ẋ1 = x2 = 0, but not STLC from the initial state where ẋ1 = x2 �= 0.
Reaching a point left of this initial state (i.e., decreasing the x1 value) requires ẋ1 to become
negative—the x2 coordinate must leave the neighborhood.

For linear systems of the form ẋ = Ax + Bu, there is a single notion of con-
trollability (see appendix J). For nonlinear systems, such as those we study, there
are a number of notions of controllability, including the four we have defined here.
A key point is that the linearizations of systems of interest to us are generally not
controllable, meaning that their controllability is inherently a nonlinear phenomenon.

12.3.1 Local Accessibility and Controllability

Of the controllability properties, STLA can be checked by studying the Lie algebra
of the vector fields g0, . . . , gm .

THEOREM 12.3.1 The system (12.6) is STLA from x if (and only if for analytic vector
fields) it satisfies the Lie algebra rank condition (LARC)— the Lie algebra of the vector
fields, evaluated at x, is the tangent space at x, or Lie({g0, . . . , gm})(x) = TxM. This
holds for any U ∈ U+. If the system is symmetric (drift-free and U ∈ U±), then the
LARC also implies small-time local controllability.

An early version of this result is due to W.-L. Chow [112], and it is sometimes called
Chow’s theorem.

EXAMPLE 12.3.2 Unicycle (cont.) As shown previously, the rank of the unicycle Lie
algebra is three at all states, so the LARC is satisfied. Therefore, for both U ∈ U+

Choset-79066 book February 23, 2005 12:3

420 12 Nonholonomic and Underactuated Systems

and U ∈ U±, the unicycle is STLA. For a control set U ∈ U±, the system is also
STLC everywhere, and therefore controllable because of the connectedness of its
state manifold. It is also true that the unicycle is controllable (but not STLC) for any
U ∈ U+, though this cannot be shown by theorem 12.3.1. (The reader may wish to
verify controllability by describing a constructive procedure to drive the unicycle to
any goal location in an obstacle-free space.)

If we eliminate one vector field from the unicycle example, allowing it only to roll
forward and backward (guni

1) or spin in place (guni
2), the unicycle is confined to an

integral curve of the vector field, and none of the controllability properties is satisfied.

Second-order systems with nonzero drift, such as the PBWT, are not symmetric for
any control set. The system may still be STLC at zero velocity states, however, since
symmetry plus the LARC is sufficient but not necessary for STLC. Sussmann [401]
provided a more general sufficient condition for STLC that includes the symmetric
case (g0 = 0 and U ∈U±) as a special case. To understand it, we first define a Lie
product term to be a bad bracket if the drift term g0 appears an odd number of times
in the product and each control vector field gi , i = 1 . . . m, appears an even number of
times (including zero). A good bracket is any Lie product that is not bad. For example,
[g1, [g0, g1]] is a bad bracket and [g2, [g1, [g0, g1]]] and [g1, [g2, [g1, g2]]] are good
brackets. With these definitions, we can state a version of Sussmann’s theorem:

THEOREM 12.3.3 The system (12.6) is STLC at x if

1. g0(x) = 0,

2. U ∈ U±,

3. the LARC is satisfied by good Lie bracket terms up to degree k, and

4. any bad bracket of degree j ≤ k can be expressed as a linear combination of good
brackets of degree less than j .

The intuition behind the theorem is the following. Bad brackets are called bad
because, after generating the net motion obtained by following the Lie bracket motion
prescription, we find that the controls ui only appear in the net motion with even
exponents, meaning that the vector field can only be followed in one direction. In this
sense, a bad bracket is similar to a drift field, and we must be able to compensate
for it. Since motions in Lie product directions of high degree are essentially “slower”
than those in directions with a lower degree, we should only try to compensate for
bad bracket motions by good bracket motions of lower degree. If a bad bracket of

Choset-79066 book February 23, 2005 12:3

12.3 Controllability 421

degree j can be expressed as a linear combination of good brackets of degree less
than j , the good brackets are said to neutralize the bad bracket. For the bad bracket of
degree 1 (the drift vector field g0) there are no lower degree brackets that can be used
to neutralize it, so we require g0(x) = 0. Therefore, this result only holds at states x
where the drift vanishes, i.e., equilibrium states.

EXAMPLE 12.3.4 PBWT (cont.) Assume that the PBWT moves in a horizontal plane,
so ag = 0. As before, we define gpbwt

3 = [gpbwt
0 , gpbwt

1], gpbwt
4 = [gpbwt

0 , gpbwt
2], gpbwt

5 =
[gpbwt

1 , [gpbwt
0 , gpbwt

2]], and gpbwt
6 = [gpbwt

0 , [gpbwt
1 , [gpbwt

0 , gpbwt
2]]]. Again as before, a

computation shows that

det
[
gpbwt

1 gpbwt
2 gpbwt

3 gpbwt
4 gpbwt

5 gpbwt
6

] = d4.

The LARC is satisfied, so the system is STLA at all states for either control set. If
U ∈ U±, we would like to know if the system satisfies Sussmann’s sufficient condition
for STLC at equilibrium states x = [q1, q2, q3, 0, 0, 0]T , where gpbwt

0 (x) = 0. Because
we use bracket terms up to degree 4 to demonstrate LARC, we must be able to
neutralize all bad bracket terms of degree 4 or less. The only such bad bracket terms
are the degree 3 terms
[
gpbwt

1 ,
[
gpbwt

0 , gpbwt
1

]] = [0, 0, 0, 0, 0, 0]T

[
gpbwt

2 ,
[
gpbwt

0 , gpbwt
2

]] = [0, 0, 0, 2d cos x3, 2d sin x3, 0]T = 2dgpbwt
1 .

The second term is neutralized by gpbwt
1 . Therefore, by Sussmann’s theorem, the system

is STLC at equilibrium states.
Note that in gravity, ag �= 0, so gpbwt

0 (x) �= 0 at any state and Sussmann’s theorem
does not allow us to prove or disprove STLC.

Now consider the case where the PBWT is equipped with a single thruster. If the
single thruster corresponds to the vector field gpbwt

1 , the thrust always passes through
the body center of mass, and the angular velocity of the body cannot be changed. The
system is not accessible. If the single thruster corresponds to the vector field gpbwt

2 ,
however, we can define the vector fields
[
gpbwt

0 , gpbwt
2

]
,

[
gpbwt

2 ,
[
gpbwt

0 , gpbwt
2

]]
,

[
gpbwt

2 ,
[
gpbwt

0 ,
[
gpbwt

0 , gpbwt
2

]]]
,

[
gpbwt

2 ,
[
gpbwt

2 ,
[
gpbwt

0 ,
[
gpbwt

0 , gpbwt
2

]]]]
,

[
gpbwt

0 ,
[
gpbwt

2 ,
[
gpbwt

2 ,
[
gpbwt

0 ,
[
gpbwt

0 , gpbwt
2

]]]]]

and see that the determinant of the matrix formed by these columns is −16d8, indi-
cating that the system is STLA for either U ∈ U+ or U ∈ U±. Bad brackets cannot
be neutralized, so theorem 12.3.3 cannot be used to show STLC. Note, however, that

Choset-79066 book February 23, 2005 12:3

422 12 Nonholonomic and Underactuated Systems

u1 u1

u2u2 u2

u3

linearly controllable not linearly controllable,
but STLC at zero velocity

not STLC, but STLA
and controllable

Figure 12.14 The PBWT in zero gravity with different numbers of thrusters. The PBWT
on the left has three thrusters that can generate any force and torque combination, and it is
controllable by linear control theory. Eliminating one thruster, we get the PBWT in the middle,
which is no longer linearly controllable but is STLC at zero velocity. Finally, reducing the
thruster count to one, we get the PBWT on the right, which is no longer STLC but remains
STLA and controllable in a global sense. (Note that the PBWT with only u1 thrust is not STLA.)
All thrusters are bidirectional.

reducing to a single control vector field does not reduce the dimension of the reach-
able space, as it did for the kinematic unicycle case. This is because the second-order
system provides a drift field with which Lie bracket terms can be generated.

Finally, the PBWT with the single control vector field gpbwt
2 , a control set U ∈ U±,

and ag = 0 turns out to be (globally) controllable — any state is reachable in
finite time from any other state [303]. Thus the PBWT in zero gravity provides a
simple example of different controllability properties (figure 12.14). If we equip it
with three independent control vector fields, e.g., a control for each coordinate, the
PBWT is a linear system of three double-integrators and it is controllable by linear
control theory (see appendix J). If we equip it with the two control vector fields gpbwt

1

and gpbwt
2 , it is no longer linearly controllable, but remains STLC at zero velocity. If

we equip it with just the single control vector field gpbwt
2 , it is no longer STLC at zero

velocity, but remains STLA and globally controllable.

12.3.2 Global Controllability

For kinematic systems that are STLC everywhere on a connected manifold, (global)
controllability follows easily. In general, however, controllability is not easy to decide,
as it may depend on nonlocal features of the control system. In the special case of a
control system (12.6) with U ∈ U± and a drift vector field that repeatedly returns the
system to a neighborhood of its initial state, however, demonstrating controllability
is as easy as demonstrating the LARC.

Choset-79066 book February 23, 2005 12:3

12.3 Controllability 423

First, some definitions. Consider the flow φg0 of the drift vector field. A point
x ∈ M is called positively Poisson stable (PPS) for g0 if for all T > 0 and any
neighborhood V of x , there exists a time t > T such that the flow of the vector field
returns the system to V , i.e., φ

g0
t (x) ∈ V . The drift vector field g0 is called positively

Poisson stable if the set of PPS points for g0 is dense in M.
A point x ∈ M is called a nonwandering point of g0 if for all time T > 0 and

any neighborhood V of x there exists a time t > T such that φ
g0
t (V) ∩ V �= ∅,

where φ
g0
t (V) = {φg0

t (x) | x ∈ V }. (A positively Poisson stable point is necessarily
a nonwandering point.) The nonwandering set of g0 is the set of all nonwandering
points of g0. Finally, we say that the drift vector field g0 is weakly positively Poisson
stable (WPPS) if its nonwandering set is M.

We now state the main theorem, taken from Lian, Wang, and Fu [289]. Related
results can be found in (Jurdjevic and Sussmann [212]; Lobry [295]; Brockett [65];
Bonnard [58]; and Jurdjevic [211]).

THEOREM 12.3.5 Assume that the drift vector field g0 is WPPS. Then the sys-
tem (12.6) with U ∈ U± is controllable on M if the LARC is satisfied.

As an example, consider the system on R
2 described by ẋ = g0(x) +g1(x)u1, u1 ∈

[−1, 1] ∈ U±, where g0(x) = 1
2 [−x2, x1]T and g1(x) = [1, 0]T . The drift vec-

tor field (shown in figure 12.15) is WPPS, as its orbits are closed. We find that
[g0, g1] = [0, − 1

2]T and det[g1 [g0, g1]] = − 1
2 , so the LARC is satisfied at all x . By

theorem 12.3.5, every state is reachable from every other state. Intuitively, u1 is used
to control x1 and (waiting) time is used to “control” x2. (In fact, in this example, it is

x2

x1

Figure 12.15 The integral curves of the WPPS drift vector field 1
2 [−x2, x1]T are closed

(circles).

Choset-79066 book February 23, 2005 12:3

424 12 Nonholonomic and Underactuated Systems

not hard to see that controllability also holds for u1 ∈ U ∈ U+.) This system is only
STLC at the origin.

Theorem 12.3.5 is a powerful tool for establishing the global controllability of
systems with drift. Systems with periodic natural unforced dynamics (such as an
undamped planar pendulum or the example of figure 12.15) or energy-conserving
drift on compact configuration spaces are examples of systems with WPPS drift vector
fields. The latter follows from an application of Poincaré’s recurrence theorem; see,
e.g., the discussion by Arnold [26]. As an example, a rotating satellite moves on
the compact configuration space SO(3), and its natural unforced motion conserves
energy. Therefore, the drift is WPPS. The LARC can be satisfied by a single body-
fixed control torque, meaning that the satellite can be driven to any orientation and
angular velocity with a single control vector field.

For systems with non-WPPS drift, it may be possible to construct feedback laws that
always keep the system in a periodic orbit. If the system is always controllable about
these periodic trajectories, i.e., if the system can reach neighborhoods of the controlled
periodic trajectories, then similar reasoning can be used to demonstrate controllability
of the system [87, 304].

12.4 Simple Mechanical Control Systems

This section discusses second-order mechanical control systems in greater depth,
leading to simplified controllability tests and ideas that lead to reduced-complexity
motion planning. We introduce the minimal set of ideas from Riemannian geometry
that allows us to do this. We do not attempt to be rigorous or thorough in our treatment
of mechanical systems from a geometric viewpoint. The motivated reader is instead
referred to the books by Abraham and Marsden [10], do Carmo [131], Marsden and
Ratiu [308], Bloch [50], Bullo and Lewis [77], and Boothby [60] for further study of
differential geometry in mechanics and control. The results of this section are used
in subsection 12.5.7, but otherwise this section can be skipped without affecting the
reading of the rest of the chapter.

In chapter 10 we derived equations of motion of the form

M(q)q̈ + C(q, q̇)q̇ + g(q) = T (q) f,(12.7)

where f is a generalized force vector, T (q) defines the action of f on the coordi-
nates, M(q) is the inertia matrix, C(q, q̇)q̇ are Coriolis and centrifugal terms, and
g(q) are potential terms. Recall that C(q, q̇)q̇ = q̇T �(q)q̇, where �(q) is the set of
n3
Q Christoffel symbols of the inertia matrix M(q), and the computation q̇T �(q)q̇ is

Choset-79066 book February 23, 2005 12:3

12.4 Simple Mechanical Control Systems 425

described in chapter 10.2 We restrict our discussion in this section to simple mechan-
ical control systems of this form with g(q) = 0.

Since we are considering underactuated systems, we can write f = [uT , 0T]T ,
where u ∈ R

m is the control vector and 0 is an (nQ − m)-vector of zeros. In this case,
T (q) can be written as an nQ × m matrix, and the equations are

M(q)q̈ + C(q, q̇)q̇ = T (q)u.(12.8)

Premultiplying both sides by M−1(q) (assuming full rank) and rearranging, we get

q̈ = −M−1(q)C(q, q̇)q̇ + M−1(q)T (q)u.(12.9)

Writing the m columns of M−1(q)T (q) as Yi (q), i = 1 . . . m, we get

q̈ = −M−1(q)C(q, q̇)q̇ +
m∑

i=1

Yi (q)ui .(12.10)

In other words, q̈ is the sum of a drift term due to Coriolis and centrifugal effects and
a term due to the controls. According to the development so far, the control system
can be expressed in the form of equation (12.6) by writing the state, drift vector field,
and control vector fields as

x =
[

q
q̇

]

, g0(x) =
[

q̇
−M−1(q)C(q, q̇)q̇

]

, gi (x) =
[

0
Yi (q)

]

and expressing the control system as

ẋ = g0(x) +
m∑

i=1

gi (x)ui .(12.11)

We can then apply controllability tests as previously described.

12.4.1 Simplified Controllability Tests

The approach described above, while correct, ignores some structure of the equations
of motion of a simple mechanical control system. Lewis and Murray [285,286] have
studied the Lie bracket structure of simple mechanical control systems to derive sim-
plified controllability tests at equilibrium states. These tests take advantage of the Lie
bracket structure to reduce the number of computations. In the rest of this section, we
will assume the control set U belongs to the class U±.

2. Most works in the differential geometry literature define a slightly different set of Christoffel symbols
�∗ that have the inverse of the inertia matrix embedded in them, such that q̇T �∗q̇ = M−1q̇T �q̇. We instead
use the same definition used in chapter 10.

Choset-79066 book February 23, 2005 12:3

426 12 Nonholonomic and Underactuated Systems

The key simplification is that we will study vector fields only on the configuration
space Q, not the full state space TQ = M. This will be possible because M(q),
�(q), and T (q) all depend on q only, not q̇. To study dynamics, however, we must
be able to define derivatives (accelerations) of vector fields on Q. In particular, we
need a definition of how a vector field Y2(q) on Q is changing (accelerating) along
the direction of another vector field Y1(q). This is called the covariant derivative of
Y2(q) with respect to Y1(q), and it is also a vector field on Q.

To define the covariant derivative, we need to define the acceleration of a curve
q(t). Often we think of q̈(t) as the “coordinate” acceleration, but by this definition,
whether the system is accelerating or not depends on the choice of coordinates, as
we will see shortly. The vector q̈(t) is not generally contained in the tangent space
Tq(t)Q, and the misalignment is caused by nonzero Christoffel symbols of M(q),
which define how the configuration space “curves” in the coordinates q. To express
the acceleration as an element of the tangent space, so that an observer living on Q
can “see” it in the tangent space, we use the Christoffel symbols (i.e., the Coriolis
terms) to project the coordinate acceleration q̈ back to the tangent space:

acceleration = q̈ + M−1(q)C(q, q̇)q̇ = q̈ + M−1(q)q̇T �(q)q̇ ∈ Tq(t)Q(12.12)

This is an “intrinsic” definition of acceleration independent of the coordinates chosen.
As a first example, imagine a point mass moving in a one-dimensional configuration

space Q = S1, visualized as a unit circle in R
2. If the position is described by

q = [x , y]T in Cartesian coordinates and θ in polar coordinates, we have

q =
[

x
y

]

=
[

cos θ

sin θ

]

,

with second derivative

q̈ =
[

ẍ
ÿ

]

= θ̈

[− sin θ

cos θ

]

+ θ̇2

[− cos θ

− sin θ

]

.

The θ̇2 term in q̈ enforces the constraint that the point mass stays on the unit circle.
The θ̈ term expresses the change in speed tangent to the circle, and this is the only
acceleration visible to an observer in Q who cannot see the R

2 space it is embedded
in. The θ̈ term is the intrinsic definition of acceleration we are looking for. We subtract
the θ̇2 term [the centripetal acceleration, corresponding to the negative of the velocity
product term in equation (12.12)] from q̈ to project q̈ to the tangent space (see
figure 12.16).

For an example that does not use a manifold embedded in a higher-dimensional
space, consider a point mass m moving in the plane with no forces applied to it.
We can write the equations of motion in either Cartesian coordinates (x , y) or polar

Choset-79066 book February 23, 2005 12:3

12.4 Simple Mechanical Control Systems 427

q

q
q

q2

negative of
centripetal acceleration

acceleration projected
to tangent space

centripetal
acceleration

Figure 12.16 Subtracting the centripetal acceleration vector (pointing toward the center of
the circle) from q̈ = [ẍ , ÿ]T of a point mass moving around a circle gives an acceleration
tangent to the circle.

coordinates (r, θ):
[

m 0
0 m

] [
ẍ
ÿ

]

=
[

0
0

]

,

[
m 0
0 m r2

] [
r̈
θ̈

]

+
[−m r θ̇ 2

2m rṙ θ̇

]

=
[

0
0

]

In Cartesian coordinates q = [x , y]T , the mass moves such that ẍ = ÿ = 0. If we
represent the configuration with polar coordinates q = [r, θ]T , however, the same
motions of the mass will have r̈ �= 0, θ̈ �= 0. So is the mass accelerating or not?
The answer is that we should not think of q̈ as an acceleration; instead, we should
think of the acceleration as being the inverse of the inertia matrix M−1(q) times the
force. In both cases, then, since the force is zero, the acceleration is zero. The second
time-derivatives r̈ and θ̈ are not zero due to the nonzero Christoffel symbols of the
inertia matrix in this choice of coordinates, as discussed in chapter 10.

Figure 12.17 shows paths of the point mass as it moves with zero force applied to
it, shown in both Cartesian coordinates and polar coordinates. We say that each path
in figure 12.17 is a shortest path, and the tangent vectors to these paths are orthogonal
to each other at any intersection point. The notions of shortest paths (straight lines)
and orthogonality are clear in our usual understanding of Euclidean geometry for the
Cartesian coordinate case, but less clear in the polar coordinate case. In the polar
coordinate case we need an inner product so we can define orthogonality. The inner

Choset-79066 book February 23, 2005 12:3

428 12 Nonholonomic and Underactuated Systems

0 1 2 3 4 5 6
rx

y

0 4
-4

-4

0

4

x

y

r

p

p/2

0

-p/2

-p

q

q

Figure 12.17 Example unforced motions of a point mass in the plane, represented in Cartesian
coordinates (x , y) and polar coordinates (r, θ).

product also defines the distance metric, allowing us to talk about shortest paths
between two points. For example, the length of each side of each grid “box” in the
Cartesian plot of figure 12.17 is equivalent, just as the length of each side of a “box”
in the polar plot is equivalent by its distance metric. Also, the “areas” of the “boxes”
in the polar coordinate plot of figure 12.17 are equivalent, just as they are equivalent
for each box in the Cartesian coordinate plot.

An inner product maps two tangent vectors v1, v2 ∈ TqQ to R. We write this inner
product 〈v1, v2〉, and v1 and v2 are orthogonal if 〈v1, v2〉 = 0. The inner product
is associated with a metric d : Q × Q → R measuring the distance between two
points. The metric and the inner product are related by the fact that the shortest path
or geodesic between q0 and q f occurs for trajectories q(t) minimizing the path length
∫ t f

t0

〈q̇(t), q̇(t)〉1/2 dt

out of all possible trajectories connecting q(t0) = q0 and q(t f) = q f . This relation
allows us to call the inner product itself a metric.

Choset-79066 book February 23, 2005 12:3

12.4 Simple Mechanical Control Systems 429

As an example, the familiar Euclidean metric states that geodesics are straight lines,
and the familiar inner product or “dot product” associated with the Euclidean metric
is 〈v1, v2〉 = v1 ·v2 = vT

1 v2. In the Euclidean metric, the rate of change of Y2(q) along
the direction of Y1(q), i.e., the covariant derivative of Y2(q) with respect to Y1(q), is
simply (∂Y2/∂q)Y1, i.e., the partial of Y2 projected to the direction Y1.

The Euclidean metric is natural for thinking about the motion of a point in space
with standard Cartesian coordinates. Appropriate metrics for other systems are less
obvious. For example, for a 2R robot arm, what does it mean for two velocities to
be orthogonal? At a particular configuration of the arm, if v1 and v2 are Cartesian
velocity vectors at the end-effector and w1 and w2 are the corresponding joint velocity
vectors, then the condition vT

1 v2 = 0 is not the same as w T
1 w2 = 0. These conditions

imply different and somewhat arbitrary metrics.
For the second-order mechanical systems we are interested in, the inertia matrix

M(q) defines a physically meaningful metric and inner product. This is some-
times called the kinetic energy metric, since it is associated with the kinetic energy
1
2 q̇T M(q)q̇ . The inner product defined by M(q) is

〈v1, v2〉 = vT
1 M(q)v2, v1, v2 ∈ TqQ.

The result has units of energy, which is physically meaningful and independent of
the choice of coordinates. This metric is an example of a Riemannian metric, as it
is bilinear (linear in each of v1 and v2) and symmetric and positive definite (because
M(q) is symmetric and positive definite). The kinetic energy metric defines a two-
form, as it takes two elements of TqQ and returns a real number linear in each
of the two elements. When M(q) is the identity matrix, the Euclidean metric is
obtained.

The metric defines an affine connection ∇, which allows us to define the derivatives
of vector fields in non-Euclidean spaces. For the affine connection ∇ associated with
M(q), the covariant derivative of Y2(q) with respect to Y1(q) is the vector field
∇Y1(q)Y2(q),

∇Y1(q)Y2(q) = ∂Y2(q)

∂q
Y1(q) + M−1(q)Y T

1 (q)�(q)Y2(q),

where the Christoffel symbols �(q) describe how geodesics of the mechanical system
“bend” in this choice of coordinates. For the Euclidean metric, the Christoffel symbols
are zero.

The covariant derivative allows us to write the acceleration as an element of the tan-
gent space to the configuration space, ∇q̇(t)q̇(t) ∈ Tq(t)Q. We can write the equations

Choset-79066 book February 23, 2005 12:3

430 12 Nonholonomic and Underactuated Systems

of motion (12.10) in the following equivalent form:

∇q̇ q̇ = ∂q̇

∂q
q̇ + M−1(q)q̇T �(q)q̇

∇q̇ q̇ = q̈ + M−1(q)C(q, q̇)q̇

∇q̇ q̇ =
m∑

i=1

Yi (q)ui , u ∈ U ∈ U±(12.13)

Equation (12.13) is the familiar a = M−1 f —acceleration is equal to the inverse of
the mass times the force. Here, however, the acceleration a is not just the second
derivative of the coordinates q̈, but q̈ + M−1q̇T �q̇, accounting for the noninertial
coordinates. We have a = q̈ only if the Christoffel symbols are zero, which is the
case if the inertia matrix has no dependence on the configuration q.

Unforced motions q(t), i.e., motions satisfying

∇q̇(t)q̇(t) = 0,

are geodesics of ∇.
The covariant derivative also allows us to define the symmetric product of Y1 and

Y2, the vector field

〈Y1 : Y2〉 = ∇Y1 Y2 + ∇Y2 Y1,

which is useful in controllability calculations. But why should this be so? After all, we
have already seen in equation (12.11) that a Yi (q) from equation (12.10) can be turned
into a control vector field gi (x) on the full state space M = TQ, and that the drift can
be expressed as g0(x), allowing us to take Lie brackets as before to test controllability.
If we assume the system begins from rest, however, we notice that symmetric products
of the Yi (q) appear again and again in the bracket terms. In particular, we can identify
the following patterns in the calculations for i, j = 1, . . . , m:

[gi , g j] =
[[

0
Yi

]

,

[
0
Y j

]]

= 0,

[g0, gi] =
[−Yi

0

]

,

[gi , [g0, g j]] =
[

0
〈Yi : Y j 〉

]

The first shows that no new motion directions will be created if the drift field
is not included in the Lie bracket. The second shows that Lie bracketing the drift
with a control vector field has the effect of taking the “acceleration” direction of
the control vector field to a velocity direction (this only holds at zero velocity). The

Choset-79066 book February 23, 2005 12:3

12.4 Simple Mechanical Control Systems 431

last shows that iterated Lie brackets including the drift field can be evaluated by
calculating lower-degree symmetric products of the Yi (q). An added benefit is that
the symmetric product operates on vector fields with half as many elements.

The key point is, for controllability computations for simple mechanical control
systems beginning from rest, the symmetric product allows us to think of Yi (q) as
a control vector field on the system configuration space Q, without constructing
a higher-dimensional vector field gi (q) on the full state manifold M = TQ. The
symmetric product captures the effect of drift in the controllability computations.

For a control system (12.13) consisting of a set of control vector fields Y =
{Y1, . . . , Ym}, let the symmetric closure Sym(Y) be the distribution defined by Y and
the iterated symmetric products of these vector fields. In this sense, the symmetric
closure by the symmetric product is defined similarly to the involutive closure by the
Lie bracket. Also, we can define the degree of a symmetric product to be the number of
the original vector fields Yi appearing in the expression. A symmetric product is bad
if each of the vector fields appears an even number of times, and is good otherwise.
With these definitions, Lewis and Murray [285, 286] proved the following theorem,
building on theorem 12.3.3.

THEOREM 12.4.1 Beginning from an equilibrium state x = [qT , 0T]T , the sys-
tem (12.13) is

1. STLA from x if and only if Sym(Y)(q) = TqQ, and

2. STLC from x if Sym(Y)(q) = TqQ and every bad symmetric product can be
expressed as a linear combination of good symmetric products of lower degree.

Beginning from an equilibrium state x = [qT , 0T]T , it is sometimes of interest to
understand the locally reachable set of configurations irrespective of the velocities at
those configurations. Lewis and Murray define a system to be small-time locally con-
figuration accessible (STLCA) from q if the locally reachable set is full-dimensional
onQ, and small-time locally configuration controllable (STLCC) from q if the locally
reachable set on Q contains q in the interior. A stronger condition than STLCC is
small-time local equilibrium controllability (STLEC) from q if the locally reach-
able set contains zero velocity states forming a neighborhood of q on Q. STLEC is
stronger than STLCC, as STLEC demands that nearby configurations be reachable
at zero velocity, while STLCC says nothing about the velocity. Finally, the system is
equilibrium controllable if the system can reach any equilibrium state from any other
equilibrium state.

Note that STLEC is a weaker property than STLC, as STLC requires that the locally
reachable states contain a neighborhood of x on TQ, while STLEC only requires that

Choset-79066 book February 23, 2005 12:3

432 12 Nonholonomic and Underactuated Systems

the locally reachable configurations (at zero velocity) contain a neighborhood of
q on Q. STLEC is particularly relevant to systems subject to velocity constraints,
which may be equilibrium controllable despite being confined to a reachable space
of dimension less than n.

The following theorem, due to Lewis and Murray [285, 286], provides tests for
STLCA, STLCC, STLEC, and equilibrium controllability.

THEOREM 12.4.2 Beginning from an equilibrium state x = [qT , 0T]T , the sys-
tem (12.13) is

1. STLCA from q if and only if Lie(Sym(Y))(q) = TqQ, and

2. both STLCC and STLEC from q if Lie(Sym(Y))(q) = TqQ and if every bad
symmetric product can be expressed as a linear combination of good symmetric
products of lower degree. If these conditions are satisfied at all q ∈ Q, then the
system is equilibrium controllable.

Roughly speaking, Sym(Y)(q) corresponds to the reachable velocity directions
from [qT , 0T]T , and Lie(Sym(Y))(q) corresponds to the reachable configuration
directions from [qT , 0T]T .

EXAMPLE 12.4.3 PBWT (cont.) The dynamics of the PBWT can be written

q̈ = −M−1(q)C(q, q̇)q̇ + M−1(q)T (q)u,

where M−1(q) is the 3×3 identity matrix, C(q, q̇)q̇ = 0 (the Christoffel symbols are
all zero), u = [u1, u2]T , and

T (q) =

cos q3 − sin q3

sin q3 cos q3

0 −d

 .

The control vector fields Y = {Y1(q), Y2(q)} are the two columns of M−1(q)T (q) =
T (q). Calculating the symmetric product of Y1(q) and Y2(q), we get

〈Y1 : Y2〉 = ∇Y1 Y2 + ∇Y2 Y1 =

d sin q3

−d cos q3

0

 .

We see that rank(Y1 Y2 〈Y1 : Y2〉) = 3 for all q, so Sym(Y) = TqQ for all q,
and the system is STLA by theorem 12.4.1. The bad products are 〈Y1 : Y1〉 = 0 and
〈Y2 : Y2〉 = [d cos q3, d sin q3, 0]T , which is neutralized by Y1, so the system is also
STLC by theorem 12.4.1. This confirms our previous result.

Choset-79066 book February 23, 2005 12:3

12.4 Simple Mechanical Control Systems 433

q3

q2

q1

Figure 12.18 A simple single-leg hopping robot.

The reader may also wish to verify that rank(Y2 〈Y2 : Y2〉 〈Y2 : 〈Y2 : Y2〉〉) = 3, so
the PBWT is STLA with the single thruster u2 by theorem 12.4.1. This also confirms
our previous result.

EXAMPLE 12.4.4 Hopper example. Consider a simple model of a planar single-leg
hopping robot in flight, ignoring the translational motion of the body. We will model
the body of the hopper as a rigid body pinned to a wall by a revolute joint at its center
of mass. The inertia of the body is I about its center of mass. An extensible massless
leg is attached to the center of mass of the body, and the foot of the leg is a point
mass m. The configuration of the system is q = [q1, q2, q3]T , where q1 is the angle of
the body relative to an inertial frame, q2 is the angle of the leg relative to the inertial
frame, and q3 > 0 is the extension of the leg (figure 12.18). The leg has two actuators,
one providing a torque to control the orientation of the leg relative to the body, and
the other providing a force to control the extension of the leg. We would like to know
if it is possible to control the configuration q using only these two actuators.

This system is subject to a velocity constraint: the total angular momentum of the
system is zero throughout the motion (problem 27). This constraint implies that the
dimension of the reachable state space can be no more than five, while n = 2nQ = 6.
This rules out the possibility of STLA and STLC, so instead we focus on the reachable
configurations.

The system mass matrix and its inverse are

M(q) =

I 0 0
0 mq2

3 0
0 0 m

 , M−1(q) =

1
I 0 0
0 1

mq2
3

0

0 0 1
m

 ,

Choset-79066 book February 23, 2005 12:3

434 12 Nonholonomic and Underactuated Systems

and the only nonzero Christoffel symbols are �2
23 = �2

32 = mq3 and �3
22 = −mq3.

The matrix T (q) describing the generalized forces from the actuators is

T (q) =

1 0

−1 0
0 1

 ,

and Y1(q) = [1/I , −1/mq2
3 , 0]T , Y2(q) = [0, 0, 1/m]T . Calculations show that

〈Y1 : Y1〉 =

0
0

− 2
m2q3

3

 , 〈Y1 : Y2〉 = 〈Y2 : Y2〉 = 0, [Y1, Y2] =

0
− 2

m2q3
3

0

 .

We see that Y1, Y2, and [Y1, Y2] span TqQ for all q with q3 > 0. Also, the bad symmetric
product 〈Y1 : Y1〉 is neutralized by Y2 and the bad symmetric product 〈Y2 : Y2〉 is
zero. Therefore, by theorem 12.4.2, the system is STLEC at all q and equilibrium
controllable. We also see that the distribution Sym(Y) is only two-dimensional, so
the system is not STLA by theorem 12.4.1.

12.4.2 Kinematic Reductions for Motion Planning

In the controllability tests above, the symmetric product essentially allows us to treat
the Yi like velocity vector fields on a configuration space, thus halving the dimension
of the vector fields in our controllability calculations. It is also sometimes possible
to plan trajectories for underactuated mechanical systems as if they were kinematic
systems. This reduction decreases the dimension of the search space by a factor of
two. Since many search algorithms run in time exponential in the dimension of the
search space, this reduction can greatly speed up motion planning.

Consider the original second-order mechanical system

∇q̇ q̇ =
m∑

i=1

Yi (q)ui , u ∈ R
m ,(12.14)

and a first-order driftless kinematic system

q̇ =
	∑

i=1

Vi (q)wi , w ∈ R
	, w(t) continuous,(12.15)

where the set of control (velocity) vector fields is written V = {V1, . . . , V	}. We make
the extra stipulation that w(t) be continuous because discontinuous velocities would
require infinite forces. Also, in this section on kinematic reductions, the control sets
are taken to be unbounded for simplicity.

Choset-79066 book February 23, 2005 12:3

12.4 Simple Mechanical Control Systems 435

A kinematic system (12.15) is a kinematic reduction of a mechanical system (12.14)
if all feasible trajectories for the kinematic system are also feasible for the second-
order system. We further say that a mechanical system (12.14) is maximally reducible
to a kinematic system if there exists a kinematic reduction such that all feasible trajec-
tories of the mechanical system, starting with an initial velocity in span(Y), are also
trajectories of the kinematic reduction. For example, all fully actuated mechanical
systems are maximally reducible to kinematic systems—we can equivalently assume
the controls are either (continuous) velocities or forces.

Some underactuated mechanical systems are also maximally reducible to kinematic
systems. The test is given by the following theorem due to Lewis [283].

THEOREM 12.4.5 A second-order mechanical system (12.14) is maximally reducible
to a kinematic system if and only if Sym(Y) = span(Y).

EXAMPLE 12.4.6 Hopper (cont.) Our previous calculations showed that 〈Y1 : Y2〉 =
〈Y2 : Y2〉 = 0 and 〈Y1 : Y1〉 ∈ span(Y2). Therefore Sym(Y) = span(Y) and the
hopper is maximally reducible to a kinematic system with V = Y . Intuitively, this is
because the underactuation constraint of the hopper can be integrated to a velocity
constraint: conservation of angular momentum. Therefore, any motion possible by
controlling force on the leg extension and torque on the leg rotation is also possible
by driving the kinematic reduction with Y1 and Y2 as velocity vector fields.

A maximal kinematic reduction that generates all trajectories of the mechanical
system [with initial velocity in span(Y)] could be called a rank m kinematic reduction,
as the controlled velocities of the reduction form an m-dimensional distribution V
with span(V) = span(Y). The class of underactuated systems admitting rank m kine-
matic reductions is relatively small, however, so we would like to explore kinematic
reductions for more general underactuated systems. In particular, a system that is not
maximally reducible to a kinematic system may nonetheless admit a rank 1 kinematic
reduction q̇ = V1(q)w1(t). A rank 1 kinematic reduction has a single control vector
field V1, also known as a decoupling vector field. (The word “decoupling” stems from
the fact that trajectory planning for the second-order system along an integral curve
of such a vector field can be decoupled into choosing the distance traveled along the
integral curve, followed by time-scaling the path according to actuator limits. This
brings to mind the decoupled trajectory planning approach for fully actuated systems
in the previous chapter.)

An underactuated mechanical system can follow the integral curve of a decou-
pling vector field V1(q) at any speed and acceleration, i.e., for any continuous w1(t).
A second-order mechanical system (12.14) can have no more than m linearly

Choset-79066 book February 23, 2005 12:3

436 12 Nonholonomic and Underactuated Systems

independent decoupling vector fields at any q. For a maximally reducible mechanical
system, every vector field in span(Y) is a decoupling vector field.

How do we know if a proposed decoupling vector field V ∈ span(Y) is actually
decoupling? The following theorem provides the answer (Bullo and Lynch [79]).

THEOREM 12.4.7 A vector field V is a decoupling vector field of the second-order
mechanical system (12.14) if and only if V ∈ span(Y) and ∇V V ∈ span(Y).

Stated another way, from the definition of the kinematic reduction (12.15) for the
single control vector field V (q), we have

q̇ = V (q)w(12.16)

q̈ = V (q)ẇ + ∂V

∂q
V (q)w2,(12.17)

and plugging these into the equations of motion (12.8), we see that V (q) is decoupling
if and only if there exists a u ∈ R

m satisfying the equations of motion (12.8) for all
w , ẇ ∈ R.

EXAMPLE 12.4.8 PBWT (cont.) Decoupling vector fields for the PBWT are V1 =
[cos q3, sin q3, 0]T and V2 = [− sin q3, cos q3, −d]T . To verify this by theorem 12.4.7,
we see that V1 = Y1, V2 = Y2, ∇V1 V1 = 0, and ∇V2 V2 = [d cos q3, d sin q3, 0]T ∈
span(Y1). Note, however, that 〈Y1 : Y2〉 �∈ span(Y), so the PBWT is not maximally
reducible to a kinematic system; i.e., linear combinations of V1 and V2 are not decou-
pling vector fields.

Consider the physical meaning of these decoupling vector fields (figure 12.19).
The vector field V1 is pure translation of the PBWT along the line of action of the
thruster u1. It is clear that translation in this direction is possible at any speed and
acceleration by proper choice of the thrust. The vector field V2 corresponds to rotation
of the PBWT about a point fixed relative to the body, the center of percussion or center
of oscillation of the PBWT relative to the line of action of thruster u2. The center of
percussion is the instantaneously unaccelerated point for nonzero thrust u2. This
point is a distance 1/d from the center of mass on a line through the center of mass
and perpendicular to the line of action of u2. (In the case that the PBWT has nonunit
mass m and nonunit inertia I , the center of percussion is a distance I/md from the
center of mass.) Rotation about this point is possible at any speed and acceleration
by using u2 to provide the torque to rotate the PBWT and using u1 to keep the center
of percussion stationary.

In some cases the decoupling vector fields for a second-order system are apparent
by inspection. In other cases it is possible to calculate the decoupling vector fields by

Choset-79066 book February 23, 2005 12:3

12.4 Simple Mechanical Control Systems 437

d

center of percussion

V2

V1
u1

u2

1/d

Figure 12.19 The decoupling vector fields V1 and V2 for the PBWT: translation along the
line of action of u1, and rotation about the center of percussion with respect to u2. An example
motion following these decoupling vector fields is shown.

solving a system of quadratic equations. To see this, recognize that any decoupling
vector field V (q) is contained in span(Y), so can be written in the form

V (q) = h1(q)Y1(q) + · · · + hm(q)Ym(q), hi (q) ∈ R.

The problem is to solve for functions hi (q) such that 〈Xc, ∇V V 〉 = 0 at all q, where
the Xc(q), c = 1 . . . nQ − m, are linearly independent basis vectors of R

nQ that are
orthogonal [according to M(q)] to Y(q) at all q.

Kinematic reductions allow us to plan a path using a kinematic system, then “lift”
this path to a trajectory for the full second-order system. One important issue is to
understand the locally reachable configurations of the kinematic reductions. Begin-
ning from an equilibrium state [qT , 0T]T , we say that a second-order mechanical sys-
tem (12.14) is small-time locally kinematically controllable (STLKC) from q if there
exists a set of decoupling vector fields V1, . . . , Vp such that Lie({V1, . . . , Vp})(q) =
TqQ. This means that a kinematic system that can only move along these decoupling
vector fields is STLC at q. If this holds for all q ∈ Q, the second-order system is
kinematically controllable, meaning that it is equilibrium controllable by using only
decoupling vector fields. These decoupling vector fields can therefore be used as
primitives in a kinematic motion planner, reducing the complexity of the search for a
feasible trajectory. A planned path would then consist of the concatenation of integral
curves of the decoupling vector fields. Switches between decoupling vector fields
must occur at zero velocity. Note that both STLC and STLKC imply STLEC, but no
other implications hold generally.

The reader may easily verify that both the PBWT and the hopper are STLKC by
two decoupling vector fields. For the PBWT, e.g., any configuration is reachable by
concatenating integral curves of V2, V1, and V2 (rotation, translation, and rotation).

Choset-79066 book February 23, 2005 12:3

438 12 Nonholonomic and Underactuated Systems

12.4.3 Simple Mechanical Systems with Nonholonomic Constraints

The ideas discussed here also apply to second-order mechanical systems subject to
nonholonomic constraints, such as rolling without slipping [78]. Such systems can
be expressed as

M(q)q̈ + q̇T �(q)q̇ = T (q)u + AT (q)λ(12.18)

A(q)q̇ = 0,(12.19)

where A(q) is a k × nQ matrix describing the k Pfaffian constraints A(q)q̇ = 0
and therefore the distribution of feasible velocities D, and AT (q)λ ∈ R

nQ is a set of
constraint forces, where λ ∈ R

k is a vector of Lagrange multipliers. As described in
chapter 10, we can eliminate λ from equation (12.18) using the matrix

P = I − M−1 AT (AM−1 AT)−1 A

to project general motions to motions satisfying the nonholonomic constraints. We
replace equation (12.18) with the nQ − k independent equations

P(q̈ + M−1q̇T �q̇) = P M−1T u.(12.20)

In the notation of equation (12.13), we equivalently write

P(q)∇q̇ q̇ =
m∑

i=1

P(q)Yi (q)ui , u ∈ R
m .(12.21)

For the constrained system of equations (12.19) and (12.20), we can define the
constrained affine connection ∇̃, and rewrite (12.21) as

∇̃q̇ q̇ =
m∑

i=1

Ỹ i (q)ui , u ∈ R
m ,(12.22)

where Ỹ i = PYi . For vector fields Ỹ 1, Ỹ 2 ∈ D, the constrained affine connection ∇̃
is defined

∇̃
Ỹ 1

Ỹ 2 = P∇
Ỹ 1

Ỹ 2.

Using the constrained affine connection ∇̃ and the constrained vector fields Ỹ =
{Ỹ 1, . . . , Ỹ m} instead of ∇ and Y , we can use the same simplified controllability tests
and conditions for kinematic reductions that we used for unconstrained systems. Keep
in mind that reachable velocities are confined to an (nQ −k)-dimensional distribution
D due to the k velocity constraints. Therefore, the most we can hope for is STLEC
and Sym(Ỹ) = D.

Although we will not use these here, a formula for calculating the Christoffel
symbols �̃ of ∇̃ is given by Lewis [284], which also holds for vector fields not

Choset-79066 book February 23, 2005 12:3

12.4 Simple Mechanical Control Systems 439

restricted to D. Bullo and Zefran [80] give a computationally simpler formulation
for vector fields restricted to D. Their formulation uses an orthogonal basis of vector
fields of the distribution D to construct modified Christoffel symbols. Choosing a
basis of vector fields for the free motions of a nonholonomically constrained system
is analogous to choosing a coordinate basis for the reachable configuration space of
a holonomically constrained system, as discussed in chapter 10.

EXAMPLE 12.4.9 In chapter 10 we considered the example of a knife-edge sliding
on a plane. For this system, the inertia matrix M(q) and the constraint matrix A(q)
are given by

M(q) =

m 0 0
0 m 0
0 0 I

 , A(q) = [sin q3, − cos q3, 0].

Assume that the available controls are u1, a force in the q1 direction, and u3, a torque
along q3. Then

T (q) =

1 0
0 0
0 1

 , M−1(q)T (q) =

1
m 0
0 0
0 1

I

 ,

and Y1 = [1/m, 0, 0]T , Y2 = [0, 0, 1/I]T . Using the projection matrix P defined by
A and M,

P =

cos2 q3 sin q3 cos q3 0

sin q3 cos q3 sin2 q3 0
0 0 1

 ,

we get

Ỹ 1 = PY1 =
[

cos2 q3

m
,

sin q3 cos q3

m
, 0

]T

, Ỹ 2 = PY2 =
[

0, 0,
1

I

]T

,

〈Ỹ 1 : Ỹ 1〉 = 〈Ỹ 2 : Ỹ 2〉 = 0,

〈Ỹ 1 : Ỹ 2〉 =
[

− sin q3 cos q3

m I
, − sin2 q3

m I
, 0

]T

= − tan q3

I
Ỹ 1,

[Ỹ 1, Ỹ 2] =
[

sin 2q3

m I
, −cos 2q3

m I
, 0

]T

,

[Ỹ 2, [Ỹ 1, Ỹ 2]] =
[

2
cos 2q3

m I 2
, 2

sin 2q3

m I 2
, 0

]T

.

Choset-79066 book February 23, 2005 12:3

440 12 Nonholonomic and Underactuated Systems

We see that Sym({Ỹ 1, Ỹ 2}) = span({Ỹ 1, Ỹ 2}), so the system is maximally reducible
to a kinematic system by theorem 12.4.5. The control (velocity) vector fields of the
kinematic reduction are Ỹ 1, motion along straight lines (when q3 �= ±π/2), and Ỹ 2,
spinning in place.

The distribution and filtration defined by {Ỹ 1, Ỹ 2} are not regular, as Ỹ 1 vanishes
at q3 = ±π/2. We also see that

det[Ỹ 1 Ỹ 2 [Ỹ 1, Ỹ 2]] = cos2 q3

m2 I 2
,

so we cannot conclude STLCA at all q until we construct [Ỹ 2, [Ỹ 1, Ỹ 2]] and see

det[Ỹ 2 [Ỹ 1, Ỹ 2] [Ỹ 2, [Ỹ 1, Ỹ 2]]] = 2

m2 I 4
,

so the system is STLCA and STLEC at all q by theorem 12.4.2.

12.5 Motion Planning

Motion planning for nonholonomic and underactuated systems has been the subject
of a great deal of recent research, and the results could easily fill several books (see,
e.g., the books edited by Li and Canny [288] and Laumond [266]). In this section we
summarize a few useful approaches. The approaches can be classified by the type of
robot to which they apply (e.g., the structure of the equations of motion, and with
or without control constraints or drift) or the nature of the problem (with or without
obstacles or cost function to be minimized). Motion-planning approaches with roots
in control theory tend to apply to systems with particular structure and no obstacles,
while approaches based on search algorithms are computationally intensive and are
suited to finding collision-free trajectories among obstacles. Some approaches attempt
to combine the benefits of control-theoretic and search-based methods.

The problem is to find a motion (x(t), u(t)), t ∈ [0, t f] satisfying the equations
of motion (12.6) such that x(0) = x start, x(t f) = x goal. In the presence of obstacles,
where Qfree represents the free configuration space, we also require q(t) ∈ Qfree, t ∈
[0, t f].

12.5.1 Optimal Control

For some simple underactuated systems, it is possible to solve analytically for optimal
controls transferring the system from one state to another using the ideas developed
in the previous chapter. Consider, e.g., a driftless system with m = 2 controls and

Choset-79066 book February 23, 2005 12:3

12.5 Motion Planning 441

n = 3 states and the control vector fields g1 = [1, 0, x2]T and g2 = [0, 1, 0]T .
Optimal control for such a system was first studied by Brockett [66]. The system can
be written

ẋ1

ẋ2

ẋ3

 =

1 0
0 1
x2 0

[

u1

u2

]

.(12.23)

Assume the time of motion is fixed, t f = 1, and the objective is to minimize a measure
of the control input energy:

J = 1

2

∫ t f

0
uT u dt.(12.24)

Then the Hamiltonian is written

H = 1

2

(
u2

1 + u2
2

) + λ1u1 + λ2u2 + λ3x2u1.

Solving the necessary condition ∂H/∂u = 0, we get

u1 = −λ1 − λ3x2, u2 = −λ2.(12.25)

The adjoint equation λ̇ = −∂H/∂x indicates that λ1 and λ3 are constant, and λ̇2 =
−λ3u1. Differentiating equation (12.25) with respect to time, we get

u̇1 = −λ̇1 − λ̇3x2 − λ3 ẋ2 = −λ3u2

u̇2 = −λ̇2 = λ3u1.

These differential equations imply that optimal controls u1(t) and u2(t) are 90-degree
out-of-phase sinusoids of the same amplitude and frequency, i.e.,

u1(t) = u1(0) cos(λ3t) − u2(0) sin(λ3t)(12.26)

u2(t) = u1(0) sin(λ3t) + u2(0) cos(λ3t).(12.27)

Given x(0) and x(1), the integrals of the equations of motion (12.23) define three
equations to solve for λ3, the frequency of the sinusoids, and the constants u1(0) and
u2(0), defining the amplitude and phase.

These equations may be difficult to solve generally, but one simple case is of
particular interest. We will choose controls so that at the end of the motion, x1 and
x2 have returned to their initial values, while x3 has changed from x3(0) = 0 to
x3(1) = x3,goal. In this case, λ3 = 2kπ , where k is any nonzero integer. This assures
that
∫ 1

0
u1(t)dt =

∫ 1

0
u2(t)dt = 0,

Choset-79066 book February 23, 2005 12:3

442 12 Nonholonomic and Underactuated Systems

so x1 and x2 return to their initial values. Plugging λ3 = 2kπ into the the controls
[equations (12.26) and (12.27)], and putting the controls into the objective function
(12.24), we find that

J = 1

2
(u1(0)2 + u2(0)2).

The cost of the motion is independent of the choice of k, so we choose k = ±1.
Integrating the equation of motion for x3, we find that

x3(1) = −u1(0)2 + u2(0)2

4π

for k = 1, and

x3(1) = u1(0)2 + u2(0)2

4π

for k = −1. Therefore, if x3,goal > 0, we choose k = −1 and any choice of u1(0)
and u2(0) satisfying the condition x3(1) = x3,goal (all choices have the same cost).
If x3,goal < 0, we choose k = 1 and proceed similarly. Notice that there is a one-
dimensional set of solutions in the two-dimensional (u1(0), u2(0)) space, as we only
need to satisfy the single equation x3(1) = x3,goal.

The motion described above suggests a strategy for motion planning for a more
general class of systems. First, use the controls to drive m state variables directly to
their goal values. Then perform motions that return these state variables to their goal
values, but cause a desired net motion in the other state variables.

As an example, beginning from rest, a free-floating astronaut in space can control
the orientation of his body by moving his arms in a cyclic pattern. At the end of a
cycle, the shape (arm joint angles) of the astronaut is restored, but the orientation of
his body has changed. (Keep in mind that the astronaut’s total angular momentum is
zero throughout the motion since there are no external forces.) We can decompose the
astronaut’s configuration into shape variables (also called base variables), describing
the variables over which he has direct control (the arm joint angles), and fiber variables
(the orientation of his body), which are coupled to the controls in a state-dependent
manner.3 In the example system (12.23), the shape variables are x1 and x2 and the fiber
variable is x3. In the single-leg hopper system of example 12.4.4, the shape variables
are the leg angle q2 and leg extension q3, and the fiber variable is the body angle q1

(see figure 12.20).

3. Fiber controllability, a weaker concept than complete controllability, concerns the controllability of the
fiber variables without concern for the evolution of the shape variables. See [120, 233].

Choset-79066 book February 23, 2005 12:3

12.5 Motion Planning 443

shape or
base space

fiber variable

net fiber displacement

Figure 12.20 A closed loop in shape variables producing a net displacement in the fiber
variable.

Many driftless systems can be transformed to a form similar to equation (12.23),
allowing the control strategy of directly steering the shape variables to their goal con-
figurations, and then performing closed loops (e.g., sinusoids) in the shape variables
to achieve desired motions in the fiber variables. For example, the unicycle can be
converted to this form by performing a coordinate transformation and an input feed-
back transformation. Define new coordinates z = A(x)x and transformed controls
v = B(x)u, where

A(x) =

0 0 1

cos x3 sin x3 0
sin x3 − cos x3 0

 B(x) =
[

0 1
1 x2 cos x3 − x1 sin x3

]

.

Then the original unicycle system is transformed to an equivalent system of the form
(12.23):

ẋ1

ẋ2

ẋ3

 =

cos x3 0
sin x3 0

0 1

[

u1

u2

]

⇐⇒

ż1

ż2

ż3

 =

1 0
0 1
z2 0

[

v1

v2

]

A system like this is an example of a broader class of chained-form systems, which
are the topic of the following subsection.

The motion strategy of driving the shape variables to their goal values and then
performing closed loops generally results in suboptimal motions, but it is rarely
possible to solve the optimality conditions analytically. In any case, the quadratic
“energy-like” objective function (12.24) may not have much physical meaning for
an input-transformed system such as the unicycle above. Section 12.5.3 discusses
numerical methods for finding approximately optimal motion plans.

Choset-79066 book February 23, 2005 12:3

444 12 Nonholonomic and Underactuated Systems

12.5.2 Steering Chained-Form Systems Using Sinusoids

Consider the following system with m = 2 controls and n ≥ 3 states, generalizing
the system with n = 3 described above:

ẋ = u1g1(x) + u2g2(x), g1(x) =

1
0
x2

x3
...

xn−1

, g2(x) =

0
1
0
0
...

0

(12.28)

Such a system is said to be in chained form. Considering a Lie product of the form
[g1, [g1, . . . [g1, [g1, g2]]]], where g1 appears k times, we find that the Lie product
has a value (−1)k in the k + 2 component of the vector field, and zeros in all other
components. Therefore, the Lie algebra Lie({g1, g2}) is full rank, and the system is
STLC at all x for U ∈ U±.

To steer such a system, we can generalize the approach presented previously. First,
drive x1 and x2 to their final values. Then choose controls u1(t) and u2(t) to be
sinusoids at integrally related frequencies. For example, let

u1(t) = a sin 2π t(12.29)

u2(t) = b cos 2k π t ,(12.30)

where k is a positive integer. Then ẋ3 has components at frequency 2π(k − 1), ẋ4

has components at 2π(k − 2), etc. Applying the controls for t f = 1 will return
the x1, . . . , xk +1 variables to their initial values—the nonzero frequency means
that ẋ1, . . . , ẋ k+1 integrate to zero net change over the cycle. For the variables
xk +2, . . . , xn , however, the periodic controls will result in a nonzero DC (zero fre-
quency) component in their time-derivatives, meaning that they will be changed over
the cycle. The net change to xk +2 can be computed to be

xk +2(1) − xk +2(0) =
(a

4π

)k b

k !
.(12.31)

Therefore, an algorithm to drive the system to the goal state is the following:

1. Drive the variables x1 and x2 directly to their goal values.

2. For each k = 1 . . . n − 2, in ascending order, apply the controls (12.29) and (12.30)
for time t f = 1 with a and b selected according to equation (12.31) to drive xk +2

to its desired value, leaving all x1, . . . , xk +1 unchanged.

Choset-79066 book February 23, 2005 12:3

12.5 Motion Planning 445

A number of n-state 2-input systems can be transformed to the chained form (12.28),
including tractor-trailer systems with multiple trailers [393]. There are also other
forms similar to the chained form presented here, including forms with more than
two inputs; see, e.g., [85, 330, 332, 419].

Many motion-planning algorithms based on series expansions and averaging of the
equations of motion use sinusoidal inputs at appropriately chosen frequencies and
phases to “tickle” the system in desired Lie bracket directions (see, e.g., [34, 50, 74–
76, 175, 279, 280, 327, 328, 333, 342, 422, 423]). This idea also applies to mechanical
systems with drift. For a locomotion system where motions of the shape variables
induce motion of the fiber variables, these sinusoidal inputs generate “gaits” for the
system.

12.5.3 Nonlinear Optimization

The previous chapter outlined a method for using gradient-based nonlinear optimiza-
tion to find locally optimal trajectories for fully actuated dynamic systems. A similar
approach can be applied to underactuated systems [147,148,343]. We typically choose
a finite parameterization of the control history u(t), since any a priori parameteriza-
tion of the trajectory q(t) will likely describe trajectories that are infeasible for the
system due to the underactuation constraints. Alternatively, we could solve for q(t)
and enforce equality constraints at time instants throughout the trajectory to ensure
that there exists a feasible u(t) for the given q(t).

Two features of this approach are (1) it is very general—motion planning prob-
lems for many underactuated systems, including those with drift, can be encoded as
nonlinear programs; and (2) the ability to minimize an objective function may result
in motions that are “efficient” in some way. Significant drawbacks, however, are as
outlined in the previous chapter: (1) a good initial guess must be provided to the
solver, as the solver will find only a locally optimal solution; and (2) numerical dif-
ficulties, singularities, and nonconvexity may prevent the solver from converging to
a solution. The generality of the approach means that it uses little information about
the particular structure of the system to ensure convergence.

For convex systems, systems with particular structure [314], or particular choices of
the control parameterization, it may be possible to demonstrate favorable convergence
properties for nonlinear optimization. In general, however, there are no guarantees
that nonlinear optimization will be able to find any solution, let alone a good solution,
to a particular problem.

Choset-79066 book February 23, 2005 12:3

446 12 Nonholonomic and Underactuated Systems

12.5.4 Gradient Methods for Driftless Systems

To improve the convergence properties of gradient-based motion planning, we focus
on the class of driftless systems and give up on finding optimal motions. Let u p =
[u p

1 , . . . , u p
r]T ∈ R

r be a finite parameterization of the control history u(t), e.g., the
coefficients of truncated Fourier series for the control inputs. Let the time of motion
be t f = 1, and define an end-state map f that maps the initial state x start and the
control u p to a final state of the system x f :

x f = f (x start, u p)

The end-state map f is typically obtained numerically.
Now the problem is to find a u p so that the desired goal state x goal is reached. Define

the end-state error vector e = [e1, . . . , en]T to be

e = f (x start, u p) − x goal.

We would like to know the direction to change u p to move x f in the direction −e, to
reduce the error. This direction in the u p space is v ∈ R

r , where

vT = −eT

[
∂ f (x start, u p)

∂u p

]

= −[e1, . . . , en]

∂ f1

∂u p
1

. . . ∂ f1

∂u p
r

...
...

∂ fn

∂u p
1

. . . ∂ fn

∂u p
r

,

where the partial derivatives are evaluated at the current guess for u p. Given a current
guess u p(i), we can update it as follows:

u p(i + 1) = u p(i) + αv(i),

where α is a small positive constant, perhaps chosen by a line search to maximally
decrease the error. We then calculate the new vector v(i + 1) for u p(i + 1) and iterate
until we reach an iteration k such that ‖ f (x start, u p(k)) − x goal‖ < ε for a small
constant ε.

This algorithm is guaranteed to converge to a solution for a sufficiently small
α if there are no state or control constraints and if ∂ f/∂u p is rank n everywhere.
The rank condition means that any point in a sufficiently small neighborhood of
x f = f (x start, u p) is reachable by a small change to u p, indicating that it is possible to
move the error vector e in any direction. Generically, if the system is STLC everywhere
and we have a rich enough control parameterization u p, the matrix ∂ f/∂u p will have
rank n (figure 12.21).

If ∂ f/∂u p loses rank at u p(i), then there are one or more directions in which
we cannot move the error vector e. Such a u p(i) is a singular control and could cause
the algorithm to get stuck. In this case, we add a control to the end of the motion, where

Choset-79066 book February 23, 2005 12:3

12.5 Motion Planning 447

e

xstart

xgoal

xf = f (xstart, up)

Figure 12.21 The initial state x start, the state x f reached after applying the control u p , and
the end-state error vector e. The full-rank condition on ∂ f/∂u p ensures that a neighborhood of
x f can be reached by a small variation in the control vector u p .

the control is chosen randomly from the set of controls that result in no net motion of
the system. Such a control is easy to generate because the system is driftless. Because
such a control is generically nonsingular, it is said to generate a generic loop for the sys-
tem. If we append the random control to the control u p and treat the entire thing as the
new control, the control vector is no longer singular, and the algorithm can continue.

There are many possible variants of this basic approach [129, 130, 391, 392, 400,
425]. For example, we could define a path on the error space from e(0) to the origin,
then choose the iterates u p(i) to force the error to track this path. We could use a
metric on the error coordinates other than the standard metric implicit in the approach
above. We could also perform a more sophisticated search, perhaps using the Hessian
∂2 f/(∂u p)2, to achieve faster convergence. Certain obstacle constraints can also be
incorporated. This motion-planning method has been applied to find paths for a truck
pulling trailers [129, 130, 425].

12.5.5 Differentially Flat Systems

Differentially flat systems [152,153,309] have a structure that makes motion planning
(in the absence of control and configuration constraints such as obstacles) particularly
simple. For a differentially flat system with x ∈ R

n and u ∈ R
m , there exists a set of

m functions yi , i = 1 . . . m, of the state, the control, and its derivatives,

yi

(
x , u, u̇, . . . , u(r)

)
, i = 1 . . . m,

such that the states and control inputs can be expressed as functions of y and its
time-derivatives:

x = φ
(

y, ẏ, . . . , y(p)
)

u = ψ
(

y, ẏ, . . . , y(p)
)

The functions yi are known as the flat outputs. Armed with a set of flat outputs, the
problem of finding a feasible trajectory (x(t), u(t)), x(0) = x start, x(t f) = x goal, t ∈
[0, t f] for the underactuated system is transformed to the problem of finding a curve

Choset-79066 book February 23, 2005 12:3

448 12 Nonholonomic and Underactuated Systems

y(t) satisfying constraints on y(0), ẏ(0), . . . , y(p)(0) and y(t f), ẏ(t f), . . . , y(p)(t f)
specified by x start and x goal. In other words, the problem of finding a trajectory satisfy-
ing the underactuation constraints becomes the relatively simple algebraic problem of
finding a curve to fit the start and end constraints on y. Any curve y(t) maps directly
to a consistent pair of state and control histories x(t) and u(t).

The flat outputs for mechanical systems are often a function of configuration vari-
ables only, and sometimes are just the location of particular points on the system.
Unfortunately, there is no systematic way to determine if a system is differentially
flat, or what the flat outputs for a system are. Many important systems have been shown
to be differentially flat, however. These systems include the unicycle, the PBWT, and
chained-form systems.

EXAMPLE 12.5.1 Unicycle (cont.) The flat outputs for the unicycle are y1 = x1 and
y2 = x2. The state x and controls u can be derived from the flat outputs and their
derivatives as follows:

[x1, x2, x3]T =
[

y1, y2, tan−1 ẏ2

ẏ1

]T

(12.32)

[u1, u2]T =
[

±
√

ẏ2
1 + ẏ2

2,
ẏ1 ÿ2 − ÿ1 ẏ2

ẏ2
1 + ẏ2

2

]T

.(12.33)

The orientation x3 and the turning control u2 are not well defined as a function of the
flat outputs when the unicycle is not translating. Also, because x3 will be 45 degrees
for both ẏ1 = ẏ2 = 1 and ẏ1 = ẏ2 = −1, the sign of the forward-backward speed u1

should be consistent with the angle x3.
Now we would like to find a feasible trajectory from x start = [0, 0, 0]T to x goal =

[1, 1, 0]T . Since there are six state variables in the specification of the start and goal
points, there are six constraints on the flat outputs y and their derivatives at the
beginning and end of motion. These constraints can be written

y1(0) = 0 y2(0) = 0
y1(t f) = 1 y2(t f) = 1

ẏ2(0) = 0
ẏ2(t f) = 0,

where the last two constraints indicate that the initial and final motion of the unicycle
must be along the x-axis, indicating that the wheel is oriented with the x-axis. The
simplest polynomial functions of time that have enough free coefficients to satisfy
these constraints are

y1(t) = a0 + a1t

y2(t) = b0 + b1t + b2t2 + b3t3.

Choset-79066 book February 23, 2005 12:3

12.5 Motion Planning 449

t

10

0

20

-10

2

1

0

-1
1.0

u1

u1

u2

u2

0.50

Figure 12.22 A feasible path for the unicycle from [0, 0, 0]T to [1, 1, 0]T and the controls.

Setting the time of motion t f = 1 and using the constraints to solve for the polynomial
coefficients, we get

y1(t) = t

y2(t) = 3t2 − 2t3.

The state x(t) and control u(t) can be obtained from equations (12.32) and (12.33).
The unicycle motion is shown in figure 12.22.

In fitting a curve y(t), we must choose a family of curves with enough degrees of
freedom to satisfy the initial and terminal constraints. We may choose a family of
curves with more degrees of freedom, however, and use the extra degrees of freedom
to, individually or severally, (1) satisfy bounds on the control u(t), (2) avoid obstacles
in the configuration space, or (3) minimize a cost function. Incorporating these condi-
tions in the calculation of y(t) typically requires resorting to numerical optimization
methods, and is a topic of current research. A good way to generate an initial guess
for the optimization is to solve exactly for a minimal number of coefficients to satisfy
the initial and terminal constraints, setting the other coefficients to zero.

For the PBWT, the flat outputs are

y1 = x1 + 1

d
cos x3

y2 = x2 + 1

d
sin x3.

The flat outputs (y1, y2) define a point fixed to the PBWT, at the PBWT’s center of
percussion with respect to the location of the thrusters.

Choset-79066 book February 23, 2005 12:3

450 12 Nonholonomic and Underactuated Systems

For a car with steerable front wheels and parallel, fixed-orientation rear wheels,
the flat outputs are the Cartesian coordinates of the point halfway between the rear
wheels. If the car is towing a two-wheel trailer hitched midway between the rear
wheels of the car, the flat outputs are the coordinates midway between the wheels
of the trailer. If there are more trailers, all hitched midway between the wheels of
the trailer in front, the coordinates of the midpoint of the wheels of the last trailer
are flat outputs for the entire system. The orientation of the car and each trailer can
be determined from sufficiently high time-derivatives of the evolution of these two
coordinates.

The paper by Martin et al. [309] provides a catalog of systems known to be flat.
Some notable results include the following. A system of the form (12.6) with n states
and m = n − 1 inputs is flat if it is STLC. A driftless system (12.6) with n states and
m = n − 2 inputs is flat if it is STLC. All chained-form systems are flat with the first and
last states x1 and xn as the flat outputs. Other example flat systems are given in [331].

12.5.6 Cars and Cars Pulling Trailers

From a motion-planning perspective, easily the most heavily studied examples of
nonholonomic systems are the kinematic car and the car pulling one or more trailers.
Because of the obvious applications of automatic motion planning to systems like
these, a great deal of effort has been spent in deriving efficient and complete motion
planners for these systems moving in cluttered environments. The excellent book
edited by Laumond [266] is focused entirely on these systems. In this subsection, we
provide a brief review of important concepts and approaches to motion planning for
cars and cars pulling trailers.

Cars

We focus on driftless kinematic models of cars, where the inputs are velocities and
the state x is simply the configuration q. Alternatively, we could consider dynamic
extensions of these models, where the inputs are accelerations.

A kinematic model of a standard car is shown in figure 12.23. The location of the
point midway between the rear wheels is (x1, x2), the steering angle is x3, and the
orientation of the car is x4. To ensure that the wheels do not slip, each of the front
wheels must be perpendicular to the line through the wheel and the rotation center of
the car. Therefore, x3 is measured at a “virtual” wheel midway between the two front
wheels. The wheelbase is L .

If the control u2 is the rate of change of the steering angle x3 and u1 is the driving
speed of the car, measured at the point midway between the rear wheels, the control

Choset-79066 book February 23, 2005 12:3

12.5 Motion Planning 451

L

rotation center

(x1, x2)

x3

x4

rmin

Figure 12.23 A model of a car turning at its minimum turning radius.

system can be written

ẋ = g1(x)u1 + g2(x)u2, g1(x) =

cos x4

sin x4

0
1
L tan x3

 , g2(x) =

0
0
1
0

 .(12.34)

Typically the steering angle is limited to −γ < x3 < γ , γ ∈ (0, π/2), giving the
car a minimum turning radius rmin = L/ tan−1 γ . The control set for this system is
U ∈ U±, and this symmetric system can be shown to be STLC by the LARC. Since the
car is STLC at all configurations, the steering angle limits do not affect the reachable
positions and orientations of the car. Interestingly, this means that a car that cannot
turn right, for instance, can reach any position and orientation among obstacles that
a fully functional car can.

Since we are primarily concerned with the position and orientation of the body of
the car, we could decide to eliminate the steering angle x3 from the representation
of the configuration and treat the steering angle as part of the control. Consider the
modified control inputs (v, ω), where v is the linear speed of the car and ω is the
angular velocity of the body of the car. In this case, the control system becomes

ẋ1

ẋ2

ẋ4

 =

cos x4

sin x4

0

 v +

0
0
1

ω,(12.35)

Choset-79066 book February 23, 2005 12:3

452 12 Nonholonomic and Underactuated Systems

which is identical to the unicycle, except that the control set satisfies the turning radius
constraint |ω| < |v/rmin|. This does not affect the symmetry of the system, however,
so it is still STLC.

As with the unicycle, if the car is limited to driving forward only, then it is globally
controllable (in the absence of obstacles) but not STLC. In this section we will focus
only on STLC models of cars.

Another car model of interest is the differential-drive car. In this case, the front
wheels are replaced by casters that roll freely in any direction. The rear wheels are
parallel and their speeds are controlled independently. If the speeds of the two rear
wheels are u1 and u2, and the configuration of the car is [x1, x2, x4]T as in figure 12.23,
the control system can be written

ẋ1

ẋ2

ẋ4

 =

1
2 cos x4
1
2 sin x4

1
L

 u1 +

1
2 cos x4
1
2 sin x4

−1
L

 u2.

With the input transformation v = (u1 + u2)/2 and ω = (u1 − u2)/L , the system
again becomes the unicycle. The major difference from the standard car model is the
lack of a turning radius constraint.

Small-time local controllability for these car models implies the following impor-
tant consequence: if there is a free path from qstart to qgoal for the car body moving
without any nonholonomic motion constraint, i.e., moving as a free-flying planar
body, and if there is an open set of free space about each configuration in the path,
then there is a free path for the car with the motion constraint. Stated equivalently, if
Qfree is connected and open so that every q ∈ Qfree has a neighborhood of free space,
then there exists a path for the car from any qstart ∈ Qfree to any qgoal ∈ Qfree. This
implies that it is possible to parallel-park your car into any parking space ε > 0 longer
than your car. However, the number of direction reversals in your parking maneuver
grows proportionally to 1/ε2 [266], so you could be there a while if ε is small!

Let’s turn our focus to the simplified standard car model [equation (12.35)] with
a limited turning radius. One question that has received considerable attention is the
following: Given a start and goal configuration for the car moving in an obstacle-
free space, find the path that minimizes the arclength traveled by the point midway
between the rear wheels. If we assume a bound on the linear velocity |v| < vmax , and
no acceleration limits, then this path also corresponds to the minimum-time motion.
This problem has been solved owing in large part to contributions by Reeds and
Shepp [360], Sussmann and Tang [402], and Souères and Laumond [395]. See also
the chapter by Souères and Boissonnat [394].

Reeds and Shepp [360] showed that the optimal path must be one of a discrete
and computable set of paths. It turns out that each member of this set consists of a

Choset-79066 book February 23, 2005 12:3

12.5 Motion Planning 453

C |C |C CSC CC |C

Figure 12.24 Three Reeds-Shepp curves.

concatenation of straight-line segments and circular arcs at the car’s minimum turning
radius. If C indicates a circular arc segment, S indicates a straight-line segment, and
| indicates a cusp in the motion where the linear velocity v changes sign, the optimal
path is guaranteed to be contained in the following set of path types:

{C | C | C, CC | C, C | CC, CCa|CaC, C | CaCa | C,

C | Cπ/2SC, C SCπ/2 | C, C | Cπ/2SCπ/2 | C, C SC}
The subscript a indicates an arc of angle a. One or more of the segments may be zero
length. Figure 12.24 illustrates three Reeds-Shepp curves.

In the absence of obstacles, we can simply look up the optimal path from the set
above using a map indexed by the goal configuration relative to the initial configura-
tion [394,395]. Shortest paths may not be unique. Analogous results for time-optimal
motions of a differential-drive car with wheel velocity limits were derived by Balkcom
and Mason [35].

The following motion-planning methods apply to the case of carlike robots in the
presence of obstacles.

Grid Search

Barraquand and Latombe [41] developed a simple planner for cars moving in a
bounded (typically rectangular) subset of the plane. Define six actions for the car
to be L±, R±, and S±, for the steering wheels turned all the way to the left, turned all
the way to the right, or pointed straight ahead, with the subscripts “+” and “−” indi-
cating forward and reverse velocity, respectively. Pseudocode is given in algorithm 22,
CAR GRID SEARCH.

Choset-79066 book February 23, 2005 12:3

454 12 Nonholonomic and Underactuated Systems

Algorithm 22 CAR GRID SEARCH

Input: Start configuration qstart, goal region G(qgoal)
Output: A path from qstart to G(qgoal) or FAILURE

1: Initialize search tree T and list OPEN with start configuration qstart

2: while OPEN not empty and si ze(T) < MAXTREESIZE do
3: q ← first in OPEN, remove from OPEN
4: if q ∈ G(qgoal) then
5: Report SUCCESS, return path
6: end if
7: if q is not near a previously occupied configuration then
8: Mark q occupied
9: for all actions in {L±, R±, S±} do

10: Integrate forward a fixed time to qnew

11: if path to qnew is collision-free then
12: Make qnew a successor to q in T
13: Compute cost of path to new configuration qnew

14: Place qnew in OPEN, sorted by cost
15: end if
16: end for
17: end if
18: end while
19: Report FAILURE

Conceptually, the planner keeps a tree T of configurations reached in the search
and a list OPEN of pointers to configurations in T whose successors have not yet
been generated. The pointers in the list OPEN are sorted by the costs of the paths
to the associated configurations. The planner begins by making the car’s initial con-
figuration qstart the root of the tree T and initializing the list OPEN with a pointer
to this configuration. The main loop of the planner is a simple best-first search. The
planner sets the current configuration to that indicated by the minimum-cost pointer
in OPEN, and it removes this pointer from OPEN. Subsequent configurations are gen-
erated by integrating each motion forward a short time, and each new collision-free
configuration is added to the tree T with a record of the motion taking it there as well
as a pointer to the previous configuration. Pointers to these new configurations are
then inserted into the sorted list OPEN. This continues until one of the termination
conditions is satisfied: (1) the list OPEN becomes empty, or the number of nodes in
the tree T exceeds some user-specified value, indicating failure of the search; or (2)
the planner reaches a configuration in a user-specified neighborhood G(qgoal) of the

Choset-79066 book February 23, 2005 12:3

12.5 Motion Planning 455

goal configuration qgoal. Note that the planner is not exact, as it only finds a path to a
goal neighborhood.

The cost of a path is a function of the number of motion steps, the number of
changes in the steering direction, and the number of cusps (switches between forward
and reverse linear velocity). For example, for positive weighting factors a, b, and c,
the cost could be a times the number of motion steps plus b times the number of
steering changes plus c times the number of reversals. For b = c = 0, the planner
will find short paths, and for a = b = 0, the planner will minimize the number of
cusps (see figure 12.25).

By choosing the weighting factors a, b, c to be non-negative integers, inserting
pointers into the sorted list OPEN can be done in constant time. This is accomplished
by defining a one-dimensional array with cost as the index. The configurations of cost
C , then, are stored in a linked list pointed at by element C of the array. To insert a
configuration of cost C into OPEN, we simply append it to the end of the linked list
pointed at by element C of the array.

The planner discards paths that are not collision-free. For a polygonal car and
obstacles, collision detection can be done exactly by recognizing that all points on

T

OPEN = {q7, q4, q5, q6, q8}
q7 q8

q3 q4

q1

q0

q2

q5 q6

L+

L+

S+

S+

S+

S+

L+

L+

R+

R+R+

R+

Figure 12.25 An example search tree T and list OPEN. (To keep the tree size reasonable,
this search uses only the actions L+, S+, R+.) If the path to a configuration is not free, the node
is marked gray. In this example, the cost of each motion is 1, and the cost of changing steering
direction is 5, to penalize excessive steering. This explains the ordering of the nodes in the
sorted list OPEN. The cost of the path to q7 is 3, the cost of paths to q4, q5, and q6 is 7, and the
cost of the path to q8 is 8. Therefore, the planner will next remove q7 from OPEN and generate
its children in T . The configuration q8 lies in the goal region, but the planner will not check
this until q8 pops off the front of the list OPEN. This is to ensure finding the minimum-cost
path.

Choset-79066 book February 23, 2005 12:3

456 12 Nonholonomic and Underactuated Systems

the car move in circular arcs or straight lines. Obstacle intersection then becomes a
problem of intersecting arcs or line segments with line segments. A simpler approach
is to surround the car by a disk and to only check for collision of the disk at the
end of a motion step. The disk should be chosen large enough to guarantee that
collision detection is conservative—only feasible plans will be found, but feasible
paths through tight spaces could be rejected.

The planner also discards any configuration that is sufficiently close to a config-
uration from which the children have already been generated. Two configurations
are considered sufficiently close if they occupy the same cell of a predefined grid on
the configuration space. The car is assumed to be confined to a rectangular region
of the plane, so q ∈ (0, xmax) × (0, ymax) × [0, 2π), and the configuration space
grid contains d3 boxes, where d is the number of partitions of each dimension of the
configuration space.

The user must specify the parameters defining the size of the goal neighborhood
G(qgoal), the integration time of the control steps, and the resolution of the configu-
ration space grid used to check for prior occupancy. These parameters are interde-
pendent. The resolution of the grid should be sufficiently fine that the application
of any control step will always move the configuration to a new grid cell, and the
goal neighborhood should be large enough that the car will not easily jump over it.
In practice, the user should decide how much configuration error is acceptable along
each dimension at the goal configuration, choose d so that each grid box is no larger
(and usually somewhat smaller) than the goal region, and then choose the control step
to be just long enough to guarantee that the car will exit its current grid box.

This planner is resolution complete, meaning that if the step size is sufficiently
small, the planner will find a path if one exists. Because the planner uses a best-first
search, the path found will be optimal for the user’s cost function and the given step
size. This planner actually runs faster in cluttered spaces because the obstacles prune
the search tree.

One important property of the approach is that any path with p cusps (linear speed
reversals) using the full motion capabilities of the car can be followed arbitrarily
closely by a path with only p cusps using only motions with the steering wheel turned
all the way to the left or right. This means that the discretization of the car’s possible
motion directions does not preclude the possibility of finding minimum-cusp motions.

A drawback to this planner is that it is not exact; paths found by the planner go
to a neighborhood of the goal, not exactly to the goal. It can also be slow in open
spaces due to the exponential growth of the search tree T . The maximum number of
configurations that will be marked “occupied” is upper-bounded by the d3 boxes of
the occupancy grid, however, which may not be too large considering the system has
only three degrees of freedom.

Examples of planner output are shown in figures 12.26 and 12.27.

Choset-79066 book February 23, 2005 12:3

12.5 Motion Planning 457

Figure 12.26 The classic parallel-parking problem.

GOALSTART

Figure 12.27 The same planning problem solved with two different cost functions. On the
left, a = 1 and b = c = 0, meaning that the planner looks for the shortest path. On the right,
a = 1, b = 0, and c = 300, meaning that the planner heavily penalizes cusps.

Omnidirectional to Nonholonomic Path Transformation

The following approach to motion planning for a car was proposed in [267]:

1. Use a path planner to find a path for a car with no motion constraints (i.e., a
free-flying body).

2. Transform the path into a path satisfying the nonholonomic constraint.

3. Optimize the path.

Choset-79066 book February 23, 2005 12:3

458 12 Nonholonomic and Underactuated Systems

Because the car is STLC, the path transformation in the second step is always possible
if the path found in the first step does not touch any obstacles.

Step 2 proceeds as follows. Parameterize the original path returned in the first step
by s ∈ [0, 1], where q(0) is the initial configuration and q(1) is the final configuration.
Using the lookup table of Reeds-Shepp curves, find the shortest path connecting q(0)
and q(1). If this path is collision-free, then we have found the shortest path, and
we are done. If it is not collision-free, divide the s interval [0, 1] into two equal
pieces, and calculate the shortest paths between q(0) and q(1

2), and between q(1
2) and

q(1). If either of these paths is in collision, subdivide that interval again, and continue
recursively until a free path is found. This procedure is guaranteed to terminate if the
path found in the first step touches no obstacles. This guarantee relies on a topological
property that says for any open ball Bδ(q) of radius δ > 0 about a configuration q,
there exists another ball Bε(q) such that for any q ′ ∈ Bε(q), the local path planner
(Reeds-Shepp curves in this case) finds a path between q and q ′ that is contained in
Bδ(q) (figure 12.28).

We now have a feasible path for the car, but it may be unnecessarily long. In the
final step, we choose two randomly selected points along the path and replace the path
in between by the shortest Reeds-Shepp path, if it is collision-free. We iterate this
procedure, stopping when it fails to shorten the path a prespecified number of times
in a row.

Randomized Methods

Probabilistic roadmap methods, as discussed in chapter 7, can also be applied to carlike
robots. All that is required is the specification of a local planner that quickly finds
a path connecting two configurations in the absence of obstacles. For example, the
local planner could use Reeds-Shepp curves as described in [394,395] to quickly find
a shortest path. Two configurations are connected in the “roadmap” representation of

q
d

e

Figure 12.28 For a given open ball Bδ(q), there exists an open ball Bε(q) such that paths
found by the local planner from q to any point in Bε(q) are completely contained in Bδ(q).

Choset-79066 book February 23, 2005 12:3

12.5 Motion Planning 459

the free space if the path returned by the local planner is collision-free. This approach
is probabilistically complete—the probability of finding a solution, if one exists,
approaches 100% as the running time goes to infinity.

Smooth Paths

A drawback to using Reeds-Shepp curves, and in using the CAR GRID SEARCH plan-
ner (algorithm 22), is that the curvature of the paths is discontinuous at the transitions
between straight and curved segments, even where there is no cusp. This means that
either the steering angle must change instantaneously, the car must come to a stop
at the transitions, or we must be willing to accept the error in execution that comes
from ignoring this problem. To overcome this problem, several approaches have been
proposed to planning paths with continuous steering angles. For example, a postpro-
cessing step could be used to smooth the transitions (e.g., see [151]). A problem with
this approach is that the new, smoothed path might collide with obstacles. Instead,
smooth primitives can be used directly in the local planner, perhaps based on the car’s
differential flatness properties [159, 258, 351, 370].

Cars Pulling Trailers

Figure 12.29 shows a car pulling two trailers, with each trailer hitched between the
rear wheels of the body in front. For a car pulling p trailers, the configuration of
the system is written x = [x1, . . . , x p+4]T , where xi+4 = θi gives the orientation of
the i th trailer relative to the body in front. The controls for this system are still u1,
the forward speed of the car, and u2, the rate of change of the steering angle.

To derive the equations of motion for this system, let’s start by looking at a single
trailer (see figure 12.30). The trailer is being pulled with a linear velocity w at an

L

x5 = q1

x6 = q2 x4

x3
d2

d1

(x1, x2)

Figure 12.29 A car pulling two trailers.

Choset-79066 book February 23, 2005 12:3

460 12 Nonholonomic and Underactuated Systems

w
d

q

Figure 12.30 A single trailer.

angle θ at the hitch a distance d from the trailer wheels. The trailer’s linear velocity
is v and the angular velocity is ω. The trailer velocity (v, ω) is related to the pulling
velocity w at the hitch by

v = w cos θ(12.36)

ω = w

d
sin θ.(12.37)

The linear velocity v becomes the hitch velocity w for the trailer behind this trailer,
and equation (12.36) shows that the linear velocity is nonincreasing as we move back
in the trailer chain.

Extending the reasoning above, the car and trailer system can be written

ẋ = g1(x)u1 + g2(x)u2,

where

g1(x) =

cos x4

sin x4

0
1
L tan x3

1
d1

sin θ1

1
d2

sin θ2 cos θ1

1
d3

sin θ3 cos θ1 cos θ2

...

1
dp

sin θp
∏p−1

i=1 cos θi

, g2 =

0
0
1
0
0
0
0
...

0

.(12.38)

Constructing Lie brackets of g1 and g2 shows that the tractor-trailer system is STLC
at any x for a symmetric control set [265].

To plan motions for a tractor-trailer system among obstacles, we could extend the
grid search approach of Barraquand and Latombe [41]. For example, if the car is

Choset-79066 book February 23, 2005 12:3

12.5 Motion Planning 461

pulling a single trailer, we can add a dimension to the configuration space grid and
proceed as before with the six motion primitives L±, S±, and R±. The only difference
is that the equations of motion must be numerically integrated to determine the net
change of the trailer orientation at the end of the motion step. Alternatively, this
computation can be done offline and stored in a lookup table.

The path transformation and randomized approaches can also be extended to tractor-
trailer systems by using local planners based on exact closed-form motion plans in
the absence of obstacles [378, 406]. Such local planners may take advantage of the
fact that all trailer systems of the form described above can be converted to chained
form, allowing the use of sinusoidal controls [377, 393].

The path transformation method first finds a free path ignoring the nonholonomic
constraints, and then transforms the path into one respecting the constraints. For the
path transformation method to work, the local planner must satisfy the topological
property discussed earlier for cars [259,378]. A generalization of this approach turns
this single transformation step into a sequence of steps, each one introducing one more
nonholonomic constraint to be satisfied by the transformation [379]. This multilevel
approach can lead to increased computational efficiency and shorter paths. Finally, a
path can be turned into a trajectory by a time scaling s(t) respecting actuator limits,
as discussed in chapter 11 [259].

Figure 12.31, taken from [378], shows two paths found for a two-trailer system
using a path transformation planner. The local planner used to transform the original
path to a feasible path uses sinusoidal inputs and the two-trailer system’s chained-form
equations.

Figure 12.31 Two paths for a two-trailer system found using an omnidirectional-to-
nonholonomic path transformation planner. (From Sekhavat and Laumond [378], c©1998
IEEE.)

Choset-79066 book February 23, 2005 12:3

462 12 Nonholonomic and Underactuated Systems

12.5.7 Kinematic Reductions of Mechanical Systems

Subsection 12.4.2 described a class of underactuated second-order mechanical sys-
tems, called kinematically controllable systems, for which trajectory planning can be
decoupled into path planning followed by time scaling according to actuator limits.
The big advantage of this is that the search for a feasible motion plan can occur
in the system’s nQ-dimensional configuration space instead of the 2nQ-dimensional
state space. Since many search algorithms run in time exponential in the dimension
of the search space, this reduction can greatly speed up motion planning.

We focus on systems that are not maximally reducible to kinematic systems but pos-
sess p decoupling vector fields V1, . . . , Vp satisfying . . . Lie({V1, . . . , Vp}) (q) = TqQ
at all q . . . , meaning that the system is STLKC. The path-planning problem is to find
a concatenation of integral curve segments of these vector fields to take the system
from the initial configuration qstart to the goal configuration qgoal. Because the velocity
must be brought to zero at switches between vector fields, in the interest of minimiz-
ing execution time, it is reasonable to design the planner to minimize the number of
switches. This implicitly minimizes the use of slow Lie bracket motions. Because the
second step of the procedure time-optimally time-scales the motion along the planned
path, the approach produces fast trajectories in a computationally efficient manner.
(Global time-optimality is precluded because of our decoupling of the problem.)

An example of a kinematically controllable system is a 3R robot arm moving in
a horizontal plane with the third joint unactuated and frictionless (figure 12.32). It

center of
percussion

fixed base

q1

u1

r1L1

q2

r2

u2

L2

q3

r3

Figure 12.32 A 3R robot arm in a horizontal plane with an unactuated third joint.

Choset-79066 book February 23, 2005 12:3

12.5 Motion Planning 463

is not hard to see that the third link of the arm is equivalent to the PBWT in zero
gravity, except the “thruster” forces at the third joint are generated by the actuators at
the first two joints. As long as the second joint is not completely extended, the arm
can apply a force in any direction at the third joint. Because there is no actuator there,
however, the arm cannot generate torque about this joint. The two decoupling vector
fields for this system are translation along the length of the third link and rotation
about the center of percussion of the third link with respect to the joint. Small-time
local kinematic controllability of the PBWT implies STLKC of the 3R arm away
from q2 = 0 and q2 = π .

To find motion plans minimizing the number of switches between these vector
fields, we can adapt the grid search motion planner for cars, “driving” the third link
around. In this problem, the four motion primitives are forward and backward trans-
lation and clockwise and counterclockwise rotation (about the center of percussion).
We choose the path cost function to be the number of switches between the primitives.
Inverse kinematics is used to calculate the robot’s entire configuration as the third link
moves, and collisions must be checked along the entire robot arm, not just at the third
link. Apart from these modifications, the algorithm is the same as for carlike robots.

Once a path is found using the decoupling vector fields, the path can be time-scaled
arbitrarily while respecting the underactuation constraint (zero torque at the third
joint). To perform the time-optimal time scaling, we use the manipulator dynamics

M(q)q̈ + q̇T �(q)q̇ = u =

u1

u2

0

in the time-scaling algorithm described in the previous chapter. For the 3R arm, the
inertia matrix M(q) is given by

M11 = I1 + I2 + I3 + m1r 2
1 + m2

(
L2

1 + r 2
2 + 2L1r2 cos q2

)

+ m3

(
L2

1 + L2
2 + r 2

3 + 2L1 L2 cos q2 + 2L2r3 cos q3 + 2L1r3 cos(q2 + q3)
)

M12 = I2 + I3 + m2

(
r 2

2 + L1r2 cos q2

)

+ m3

(
L2

2 + r 2
3 + L1 L2 cos q2 + L2r3 cos q3 + L1r3 cos(q2 + q3)

)

M13 = I3 + m3

(
r 2

3 + L2r3 cos q3 + L1r3 cos(q2 + q3)
)

M22 = I2 + I3 + m2r 2
2 + m3

(
L2

2 + r 2
3 + 2L2r3 cos q3

)

M23 = I3 + m3

(
r 2

3 + L2r3 cos q3

)

M33 = I3 + m3r 2
3 ,

where mi is the mass of link i , Ii is the inertia of link i about its center of mass, and ri

and Li are defined in figure 12.32. Recall that M21 = M12, M31 = M13, M32 = M23.
The Christoffel symbols �i

jk(q) are derived from M(q).

Choset-79066 book February 23, 2005 12:3

464 12 Nonholonomic and Underactuated Systems

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.1 0.2 0.3

0.1 0.2 0.3

0.1 0.2 0.3

0.2 0.3

10

8

6

4

2

0

12

10

8

6

4

2

0

20

16

12

8

4

0

14
12
10
8
6
4
2
0

20

10

0

-10

-20

20

10

0

-10

-20

20

10

0

-10

-20

20

10

0

-10

-20

0.1

u2

u1

u2

u1

u2

u1

u2

u1

u1 and u2 (N-m) vs. time (sec)path s vs. s
.

Figure 12.33 A collision-free trajectory for the 3R robot with an unactuated third joint. The
left column shows the path and the right column shows the actuator profiles. One of the actuators
is always saturated. The middle column illustrates the speed along the path segment vs. a path
parameter (normalized rotation angle or translation distance), as described in chapter 11.

Choset-79066 book February 23, 2005 12:3

12.5 Motion Planning 465

Joint Li ri mi Ii τmax
i τmin

i

i (m) (m) (kg) (kg-m2) (N-m) (N-m)

1 0.3 0.15 2.0 0.02 20 −20

2 0.3 0.15 1.0 0.01 10 −10

3 0.15 0.5 0.004125 0 0

Table 12.1 Kinematic parameters, inertial parameters, and actuator limits for the simulated
robot.

Figure 12.33 shows a trajectory planned for the robot arm with the kinematic
parameters, inertial parameters, and actuator limits given in table 12.1. The path
consists of four separate motions along decoupling vector fields, and the motion must
come to a halt at the switches. Therefore, the time-scaling problem becomes four
separate problems. The complete time-optimal trajectory along the path takes 0.890 s.

This planner has been successfully implemented on an experimental underactuated
3R arm, though not using the time-optimal motions along the paths [305].

A brute-force best-first search along decoupling vector fields can be applied to
any STLKC mechanical system. For systems with more degrees of freedom, how-
ever, the computational expense may be prohibitive. In this case we might give up
on finding motion plans that minimize switches between decoupling vector fields.
Possible approaches are multiresolution grid-search methods, probabilistic roadmap
methods, or transformation of omnidirectional paths (as described for cars in subsec-
tion 12.5.6) using exact local planners based on the decoupling vector fields [200,310],
and rapidly-exploring random trees (RRT’s) modified to reduce the number of vector
field switches [111].

12.5.8 Other Approaches

Fictitious Inputs for Drift-Free Systems

Lafferriere and Sussmann proposed a general method for steering drift-free STLC
systems [253, 254]. If the original system is

ẋ =
m∑

i=1

gi (x)ui ,

then an extended system is defined to be

ẋ =
r∑

i=1

gi (x)vi , r ≥ n,

Choset-79066 book February 23, 2005 12:3

466 12 Nonholonomic and Underactuated Systems

where the vector fields gm+1, . . . , gr correspond to Lie product motions of the system.
These vector fields are chosen so that span({g1, . . . , gr }) (x) = TxM at all x , and
vm+1, . . . , vr are called fictitious inputs.

There are no nonholonomic constraints for the extended system, so motion planning
for this system is identical to motion planning for an unconstrained system. Once we
have found a path for the unconstrained system using the controls v, we transform
it to a path for the original system with controls u. This transformation uses the
Campbell-Baker-Hausdorff formula [330, 369] describing the motion generated by
composing motions along two different vector fields, and is beyond the scope of this
chapter. If the vector fields g1, . . . , gm are nilpotent, or nilpotentizable by a feedback
transformation, the transformation provides an exact expression for the motion of
the system with a finite number of Lie products of the two vector fields, and the
transformation produces an exact motion plan. Otherwise, small errors are introduced
due to higher-order terms in the Lie bracket motion prescription. These errors can be
arbitrarily reduced by iterating the procedure.

This approach applies to any STLC drift-free system. The quality of the solution
depends on the initial path chosen for the system, and it is in no sense optimal. For
more details, see the original papers by Lafferriere and Sussmann [253, 254] or the
summaries in the textbooks [330, 368].

Motion Libraries

A motion library consists of a set of canonical motions or primitives that are feasible
for the underactuated system, along with a set of conditions (or transition maneuvers)
for concatenating these primitives. A search for a feasible trajectory is then restricted
to compositions of these primitives. The decoupling vector fields of kinematically
controllable systems are examples of motion primitives that are concatenable at any
configuration q. As another example, a set of primitives for an airplane might include
flying level, a steady dive, and a constant climbing turn. Symmetries in the system
dynamics can be exploited to minimize the number of primitives; e.g., the dynamics
of flying level (in the absence of wind) are invariant to the airplane’s position and
orientation in a horizontal plane. The library should consist of a sufficient number of
primitives to ensure controllability of the system. One formalization of these ideas is
given by the Maneuver Automaton of Frazzoli, Dahleh, and Feron [160].

Rapidly Exploring Random Trees and Expansive Space Trees

RRTs and ESTs, as described in chapter 7, apply to a broad class of systems, including
nonholonomic and underactuated systems. All that is required is a state equation

Choset-79066 book February 23, 2005 12:3

Problems 467

ẋ = f (x , u) and a distance metric appropriate to the problem. Because no particular
structure of the system is utilized, motion plans may be inefficient. The planning time
may be sensitive to the chosen distance metric. (See also chapter 7, section 7.5.1.)

Problems

1. Choose a grid of points on R
2 and sketch the tangent vectors of the vector field [x2, x2

1]T

at those points. You may draw these with a computer if you wish. Sketch by hand or use
a computer to draw a few integral curves of this vector field. Does this vector field define
a regular one-dimensional distribution?

2. For the vector fields g1 = [x1 + x2, 0]T and g2 = [0, 1 + x2]T on R
2, sketch the integral

manifolds, or foliation, defined by the distribution span({g1, g2}). (See figure 12.9 for a
drawing of a foliation.) Is the distribution regular?

3. For the vector fields g1 = [1, 0, 0]T and g2 = [0, 1, 0]T on R
3, sketch the foliation defined

by the distribution span({g1, g2}). Is the distribution regular? Is it involutive?

4. For the vector fields g1 = [x3, 0, 0]T and g2 = [0, 1, 0]T on R
3, sketch the foliation defined

by the distribution span({g1, g2}). Is the distribution regular? Is it involutive?

5. For the vector fields g1 = [1+x3, 1−x2, 0]T and g2 = [0, 0, 1]T on R
3, sketch the foliation

defined by the distribution span({g1, g2}). Is the distribution regular? Is it involutive?

6. For the vector fields g1 = [1+x3, 1−x3, 0]T and g2 = [0, 0, 1]T on R
3, sketch the foliation

defined by the distribution span({g1, g2}). Is the distribution regular? Is it involutive?

7. Describe physical systems with the following properties, not using the examples discussed
in the chapter: accessible but not STLA; accessible but not controllable; controllable but
not STLA; STLA but not STLC; STLC but not controllable.

8. For vector fields that are linear in the state, e.g., g1(x) = Ax and g2(x) = Bx , the Lie
bracket has the particularly simple form

[g1, g2](x) = (AB − B A)x ,(12.39)

called the matrix commutator of A and B. For such vector fields, the Lie bracket can be
calculated without differentiation. As an example, let x = [x1, x2, x3]T and

A =

0 1 0

−1 0 0
0 0 0

 , B =

0 0 0
0 0 1
0 −1 0

 ,

and let g1 = Ax and g2 = Bx . Use equation (12.5) to show [g1, g2](x) = (B A − AB)x ,
the negative of the expression in equation (12.39). (Note that the sign of the Lie bracket is
immaterial in generating the distribution.)

Choset-79066 book February 23, 2005 12:3

468 12 Nonholonomic and Underactuated Systems

x

y
z

R

Figure 12.34 A wheel in space, then constrained to stand upright on the z = 0 plane. The
notch on the wheel is used to keep track of the wheel’s rolling angle.

9. Write Mathematica (or other symbolic software) code to take two vector fields and calculate
their Lie bracket.

10. The configuration of a wheel of radius R has six degrees of freedom in three-dimensional
space, described globally as SE(3) or locally using x-y-z and roll-pitch-yaw coordinates.
Choose six coordinates to describe the wheel’s configuration in space, where the x-y-z
coordinates describe the position of the center of the wheel. With these six coordinates,
write two holonomic constraints that constrain the wheel to stand upright on a plane
at z = 0 (figure 12.34). If you choose your coordinates properly, this will leave you
with four coordinates to describe the configuration of the wheel on the plane. Using the
time-derivatives of these coordinates, write the two nonholonomic constraints that prevent
slipping at the contact between the plane and the wheel as it moves.

This system is identical to the unicycle example in this chapter, except the configuration
space is four-dimensional (the rolling angle of the wheel is included). If the two controls
are the rolling angular velocity of the wheel and the turning-in-place angular velocity of
the wheel, write the two control vector fields, and write the system as a control-affine
nonlinear control system. Using Lie brackets of the vector fields, show that the system is
STLC at any configuration if the control set belongs to U±.

11. For the wheel of problem 10, describe a four-step motion-planning algorithm to take the
unicycle to an arbitrary configuration in its obstacle-free four-dimensional configuration
space. The final step of the algorithm should drive the wheel around a circle to achieve the
desired rolling angle. Your algorithm should take the final configuration as input (assuming
the wheel starts from the origin configuration [0, 0, 0, 0]T) and return a sequence of control
values u1 and u2 and the times they are applied.

Choset-79066 book February 23, 2005 12:3

Problems 469

12. Transform the control system of problem 10 to chained form. This may be challenging!

13. Prove that the standard car model of equation (12.34) is STLC.

14. Derive the drift and control vector fields for the PBWT, assuming that it has mass m and
inertia I about the center of mass. Then set m = I = 1 and verify that your vector fields
match those given in the text.

15. Because the PBWT has three degrees of freedom but only two controls, there is a constraint
on its possible accelerations. Derive this constraint, and show that it can be written in the
form ω(x) ẋ = 0 in the absence of gravity.

16. Imagine a PBWT where the control u2 is a pure torque about the center of mass. Write
the two control vector fields, put the system in the control-affine form (12.6), and use
theorem 12.3.3 to show that it is STLC at zero velocity in the absence of gravity. Then
put the system in the covariant derivative form of equation (12.13) and use theorem 12.4.1
to prove the same thing.

17. Flat outputs for the PBWT are y1 = x1 + 1
d cos x3 and y2 = x2 + 1

d sin x3. Find the maps
φ and ψ to recover the states x(t) and control inputs u(t) as a function of the trajectory of
the flat outputs y(t).

18. Flat outputs for the car pulling trailers, described in subsection 12.5.6, are the two coor-
dinates describing the planar location of the point midway between the two wheels of the
last trailer. Find the maps φ and ψ to recover the states x(t) and control inputs u(t) as a
function of the trajectory of the flat outputs.

19. Let u1 and u2 be the torques at the two joints of a 2R robot arm in a horizontal plane
(figure 12.35). Write the dynamics of the 2R arm in the form of equation (12.6), where the
masses of the first and second links are m1 and m2, and the inertias of the links about their
centers of mass are I1 and I2. Because the drift vector field g0 is energy-conserving and the
arm configuration space S1×S1 = T 2 is compact, the drift vector field is WPPS. If possible,
use theorem 12.3.5 to show that the robot arm is (globally) controllable with u2 = 0; in
other words, any state is reachable from any other state by using only torques at the first
joint. If you cannot, explain whether you believe the arm is controllable or not, and how
you might demonstrate your belief. Why is the arm not controllable if u2 ∈ R but u1 = 0?

20. Let [u1, u2, u3]T be the torques at the three joints of the 3R robot arm of figure 12.32 in a
horizontal plane. Write the dynamics of the 3R arm in the form of equation (12.6).

In subsection 12.5.7, a motion planner is described for the underactuated 3R arm with
u3 = 0. In this case, there are two decoupling vector fields, or two rank 1 kinematic reduc-
tions. If instead only the first actuator is missing, so u1 = 0, there is a rank 2 kinematic
reduction—the system is maximally reducible to a kinematic system. This means that the
acceleration constraint due to u1 = 0 can actually be integrated to a velocity constraint:
the total angular momentum about the first joint is conserved. Assuming that the 3R robot
arm begins at rest, write this velocity constraint and give the rank 2 kinematic reduction
in the form of equation (12.15).

Choset-79066 book February 23, 2005 12:3

470 12 Nonholonomic and Underactuated Systems

q2

r2

r1

q1

L1

Figure 12.35 A 2R robot arm.

x

y

l rotation center

qf

y

f < 0

Figure 12.36 The snakeboard model.

21. The dynamics of an RP manipulator are derived at the beginning of chapter 10. Set gravity
ag to zero, and assume that the robot is missing the actuator at the prismatic joint, so u2 = 0.
Find the input vector field Y1(q) and use theorem 12.4.1 to show that the system is STLA
when q2 > 0 using only the actuator at the revolute joint. Also, provide an argument either
supporting or rejecting the hypothesis that the arm is globally controllable on its state space.

22. The snakeboard is a commercial toy whose concept is derived from the well known skate-
board. It is composed of two steerable wheeled platforms joined by a coupling bar, and the
rider propels herself forward without touching the ground by steering the wheels and twist-
ing her body back and forth. A simple model of the snakeboard is shown in figure 12.36.
Here a momentum rotor simulates the rider by spinning back and forth, and by conservation
of angular momentum about the rotation center chosen by the wheels, the snakeboard body

Choset-79066 book February 23, 2005 12:3

Problems 471

moves. The snakeboard model is an underactuated mechanical system with nonholonomic
constraints, which we will write in the form of equations (12.18) and (12.19).

Let the configuration of the snakeboard be represented by q = [x , y, θ , ψ, φ]T , where
(x , y) represents the Cartesian position of the center of the snakeboard coupler, θ is
its angle, and ψ and φ are the angle of the rotor and the steering angle of the wheels,
respectively, expressed in the body frame. The inertia matrix for the snakeboard is given by

M =

m 0 0 0 0
0 m 0 0 0
0 0 I + Ir + Iw Ir 0
0 0 Ir Ir 0
0 0 0 0 Iw

,

where m is the total mass of the snakeboard, I is the inertia of the coupler about its center
of mass, Ir is the rotor inertia, and 1

2 Iw is the inertia of each set of wheels about its pivot
point. (Note that because the inertia matrix is invariant to the configuration, the Christoffel
symbols are zero.) The system is subject to two control inputs: a torque uψ that controls the
rotor angle ψ , and a torque uφ controlling the steering angle φ. Therefore u = [uψ , uφ]T

and T (q) can be written

T (q) =

0 0
0 0
0 0
1 0
0 1

.

The wheels are assumed to roll without lateral slipping, and the wheel angle chooses a
rotation center along a line perpendicular to the body of the snakeboard and through its
center. The no-slip constraints can be manipulated into the form

A(q) =
[

sin φ 0 −l cos θ cos φ 0 0
0 sin φ −l sin θ cos φ 0 0

]

.

Write the equations of motion in the form of equations (12.18) and (12.19). Find the pro-
jection matrix P(q) and the two input vector fields Ỹ 1(q) and Ỹ 2(q). Show that these two
vector fields are decoupling vector fields and that the system is STLKC by these two decou-
pling vector fields. Explain what this means in terms of motion planning for this system.

23. Implement the grid search path planner CAR GRID SEARCH (algorithm 22).

24. For a differential-drive car, include the drive wheel angles in the description of the con-
figuration, giving the car a five-dimensional configuration space (position and orientation
of the body and two wheel orientations). Write out the control system and prove that this
system is or is not STLC on this five-dimensional space.

25. Prove that all chained-form systems are differentially flat with the first and last states x1

and xn as flat outputs, and describe a method for finding the mappings φ and ψ from the
flat outputs and their derivatives to the state x and the control u, respectively.

Choset-79066 book February 23, 2005 12:3

472 12 Nonholonomic and Underactuated Systems

26. In example 12.4.4, perform the calculations to verify 〈Y1 : Y1〉, 〈Y2 : Y2〉, 〈Y1 : Y2〉, and
[Y1, Y2]. You may write symbolic manipulation code (e.g., in Mathematica) to do these
computations for you.

27. Derive the equations of motion of the hopper in example 12.4.4 in the form of equa-
tion 12.7, and show that the underactuation implies an acceleration constraint that can be
integrated to give a conservation of angular momentum constraint.

28. Write the Pfaffian constraint for the hopper in example 12.4.4 and give a driftless kinematic
model of the system (the rank 2 kinematic reduction).

29. Derive the formula for the Lie bracket

[g1, g2] = ∂g2

∂q
g1 − ∂g1

∂q
g2.

In other words, show that the net motion obtained by following g1 for time ε, g2 for time
ε, −g1 for time ε, and −g2 for time ε is

ε2

(
∂g2

∂x
g1 − ∂g1

∂x
g2

)

+ O(ε3),

where ε is small. To do this, perform a Taylor expansion to express the net motion, throwing
away terms of higher order than ε2. For example, after following g1 for time ε, we have

x(ε) = x(0) + ε ẋ(0) + 1

2
ε2 ẍ(0) + O(ε3).

Subsituting g1(x(0)) = ẋ(0) and ∂g1
∂x g1(x(0)) = ẍ(0), where ∂g1

∂x is evaluated at x(0), we
get

x(ε) = x(0) + εg1(x(0)) + 1

2
ε2 ∂g1

∂x
g1(x(0)) + O(ε3).

After following g2 for time ε, we have

x(2ε) = x(ε) + εg2(x(ε)) + 1

2
ε2 ∂g2

∂x
g2(x(ε)) + . . .

Leaving out terms of higher order than ε2, this becomes

x(2ε) ≈ x(0) + εg1(x(0)) + 1

2
ε2 ∂g1

∂x
g1(x(0))

+ εg2(x(0) + εg1(x(0))) + 1

2
ε2 ∂g2

∂x
g2(x(0)).

This expands to

x(2ε) ≈ x(0) + εg1(x(0)) + 1

2
ε2 ∂g1

∂x
g1(x(0))

+ εg2(x(0)) + ε2 ∂g2

∂x
g1(x(0)) + 1

2
ε2 ∂g2

∂x
g2(x(0)).

Now continue by finding x(3ε) and x(4ε) to arrive at the result.

Choset-79066 book February 23, 2005 12:15

A Mathematical Notation

Symbol Meaning

· dot product
∃ there exists
∀ for all
∞ infinity
∈ element
�∈ not in
s.t. such that
R real numbers
R

m m-dimensioned real numbers
⋃

union
⋂

intersection
\ set difference
⇒ implies. p ⇒ q is p implies q
⇐⇒ if and only if
S1 a circle
∇ gradient
D differential or distance to closest obstacle (depending on

context)
di distance to obstacle i in either the workspace or

configuration space (depending on context)
d(x , y) distance between the two points x and y
Null null space

Choset-79066 book February 23, 2005 12:15

474 A Mathematical Notation

O(n) order of n
J Jacobian
� Christoffel symbol
RM roadmap
W workspace
Q configuration space
Qfree free space
x(k) state at time k
||x || norm of x
⊆ subset of
⊂ strict subset of
cl(A) closure of A
T n n-dimensional torus
Sn n-dimensional sphere in R

n+1

SO(n) special orthogonal group
SE(n) special Euclidean group
Bε(q) open ball of radius ε centered at q
D f differential of f
∇ f gradient of f
∇ affine connection
∇Y1 Y2 covariant derivative of Y2 with respect to Y1

C0 continuous
Cn n times differentiable
〈x , y〉 inner product of x and y
I identity matrix
atan2(y, x) returns angle to (x , y) in the plane in range [−π, π)
TxM tangent space of M at x
TM tangent bundle of M
[f, g] Lie bracket of vector fields f, g
Lie(G) the Lie algebra of a set of vector fields G
D involutive closure of the distribution D
U± control set positively spanning R

m

U+ control set spanning R
m

〈Y1 : Y2〉 the symmetric product of vector fields Y1 and Y2

Sym(Y) the symmetric closure of the distribution Y
span({x1, . . . , xn}) the linear span of {x1, . . . , xn}

Choset-79066 book February 23, 2005 12:17

B Basic Set Definitions

CONSIDER A collection of elements called a set. The plane is a set; the real line is
a set; a point is a set; the unit interval is a set. Sets can also be listed as collections
of elements, e.g., S1 = {1, 4, 9} and S2 = {cow, chicken, pig} are both sets. The
collection of these sets is also a set, i.e., {R2, R, [0, 1]} is a set. Given two sets A and
B, A is said to be a subset of B (denoted A ⊂ B) if every element of A is also an
element of B. Of the two examples above, S1 is a subset of the set of positive integers
and S2 is a subset of the set of animals.

Given A ⊂ B, the complement of A in B (denoted B\A) is defined to be all of the
elements of B that are not in A, i.e.,

B\A = {x | x ∈ B, x /∈ A} .

The union of A and B (denoted A ∪ B) is to be the set of points that is in either A or
B, i.e.,

A ∪ B = {x | x ∈ A or x ∈ B}.
The intersection of A and B (denoted A ∩ B) is defined to be the set of all points that
are in both A and B, i.e.,

A ∩ B = {x | x ∈ A and x ∈ B}.
For the remainder of this appendix we restrict the discussion to sets that are subsets

of R
n for some n. Consider a point x ∈ R

n , and define an ε-neighborhood of x to be
the set

Bε(x) = {y ∈ R
n | d(x , y) < ε} .

Choset-79066 book February 23, 2005 12:17

476 B Basic Set Definitions

The set Bε(x) is also sometimes called an open ball of radius ε around the point x .
We also sometime use the word neighborhood to refer to an ε-neighborhood with ε

arbitrarily small.
A set A ⊂ R

n is said to be open if, for every point x in A, there is some ε so
that Bε(x) is also contained in A. A set A is said to be closed if its complement is
open. Note that the concept of closure depends on the the ambient space. The set R

m

considered by itself is open. But if m < n and we consider R
m as a subset of the

ambient space R
n , then R

m is closed since its complement R
n\R

m is open. By the
same token, when considered as a subset of the plane, the interval (0, 1) is neither
closed nor open.

The following definitions derive from open and closed sets for ACS:

DEFINITION B.0.2 (Closure/Interior/Boundary)

Closure of A, denoted cl(A), is the intersection of all closed sets containing A.

Interior of A, denoted int(A), is the union of all open sets contained in A.

Boundary of A, denoted ∂A, is cl(A)
⋂

cl(S\A).

EXAMPLE B.0.3 Consider [0, 1] as a subset of R
1.

cl([0, 1]) = [0, 1]

int([0, 1]) = (0, 1)

∂[0, 1] = [0, 1]
⋂

cl
(

(−∞, 0)
⋃

((1, ∞))
)

= [0, 1]
⋂

((−∞, 0]
⋃

[1, ∞))

= {0, 1}

The following demonstrate how union and intersection operate on closures and
interiors:

A ⊂ B ⇒ int(A) ⊂ int(B) and cl(A) ⊂ cl(B)

A ⊂ S ⇒ S\cl(A) = int(S\A), S\int(A) = cl(S\A).

A ⊂ S ⇒ cl(∅) = int(∅) = ∅, cl(S) = int(S) = S

cl(cl(A)) = cl(A)

cl(A
⋃

B) = cl(A)
⋃

cl(B), int(A)
⋃

int(B) ⊂ int(A
⋃

B)

cl(A
⋂

B) ⊂ cl(A)
⋂

cl(B), int(A
⋂

B) = int(A)
⋂

int(B).

Choset-79066 book February 23, 2005 12:17

B Basic Set Definitions 477

A subset A of B is dense if cl(A) = B. So (0, 1) is dense in [0, 1] because cl(0, 1) =
[0, 1]. Intuitively, a subset A of B is dense if A is “almost as big” as B. The open inter-
val and closed interval both have length 1. The set [0, 1]\{.5} is dense in [0, 1]. Intu-
itively, this means that taking away one point from an interval does not affect the size
of the interval. The set of rational numbers, i.e., the set of real numbers that can be
written as a fraction of two integers, is dense in the real line. A line is not dense in
the plane. The plane, with a line removed from it, is dense in the plane.

We can also define a notion of subtraction and addition of sets. The Minkowski sum
of A and B is

A ⊕ B = {x | x = a + b, a ∈ A, b ∈ B}.
The Minkowski difference is

A 	 B = {x | x = a − b, a ∈ A, b ∈ B}.
Two points in a set A are said to be within line of sight of each other if the straight

line segment connecting them is completely contained in A. Line of sight is related
to convexity. A set A is convex if for every x , y ∈ A, the line segment

{t x + (1 − t)y | t ∈ [0, 1]}
is contained in A. The convex hull of a set A is denoted as Co(A) and is defined to
be the smallest convex set that contains A. If A ⊂ R

n is a finite set with m elements
{x1, x2, . . . , xm}, we can express

Co(A) =
{

y =
m∑

i=1

ai xi

∣
∣
∣
∣
∣
ai ≥ 0 for all i ;

m∑

i=1

ai = 1

}

.

A set A is said to be star-shaped if there exists an x ∈ A such that for every y ∈ A
the line segment {t x + (1 − t)y | t ∈ [0, 1]} is contained in A. In other words, all
points in A are within line of sight of at least one common point. All convex sets are
star-shaped, but the converse is not true.

Choset-79066 book February 23, 2005 12:19

C Topology and Metric Spaces

C.1 Topology

OPERATORS act on elements of sets. In appendix B, the set complement operator was
defined with respect to a superset S. Furthermore, the definitions of open and closed
sets were predicated on one definition: the open neighborhood. Now we are going
to reverse things. An open neighborhood will be defined in terms of open sets, and
a topological space will be defined in terms of its set of elements and its open sets.
This appendix is meant to be introductory. See, e.g., [9] for a complete discussion of
these topics.

DEFINITION C.1.1 (Topology) A topological space is a set S together with a collec-
tion O of subsets called open sets such that

∅ ∈ O and S ∈ O,

if U1, U2 ∈ O, then U1
⋂

U2 ∈ O,

the union of any collection of open sets is an open set.

Open sets can be arbitrarily designed as long as they satisfy the above three prop-
erties. The standard topology on R

m has S = R
m with O containing R

m , the empty
set ∅, all open rectangles, and their unions. An example is the real line with open
intervals, i.e., S = R, with O consisting of any open interval, the union of open

Choset-79066 book February 23, 2005 12:19

C.2 Metric Spaces 479

intervals, R, and ∅. To show this we look to the three conditions in definition C.1.1:

R, ∅ ∈ O by definition,

(a, b) ∈ O and (c, d) ∈ O , so

(a, b)
⋂

(c, d) =
(c, b) ∈ O or,
(a, d) ∈ O or,

∅ ∈ O ,

any finite or infinite union of open intervals is an open interval.

The trivial topology on a set S consists of O = {∅, S}. The discrete topology of a
set S is defined by O = {A | A ⊂ S}. That is, the open sets are everything.

Now the definition of the open neighborhood stems from the definition of open
sets. The definitions of closed sets, closure, boundary, interior, and denseness remain
the same.

DEFINITION C.1.2 A neighborhood of a point x, denoted nbhd(x), is an open set that
contains x.

C.2 Metric Spaces

The open sets of a topological space can be constructed using a distance function. In
R

m , the standard Euclidean distance function

d (x , y) =
(

m∑

i=1

(xi − yi)
2

) 1
2

defines open sets that are open balls. More generally,

DEFINITION C.2.1 (Metric Space) Let M be a set. A metric on M is a function
d : M × M → R

≥0 such that for all m1, m 2, m 3 ∈ M,

1. (Definiteness) d (m1, m 2) = 0 if and only if m1 = m 2

2. (Symmetry) d (m1, m 2) = d (m 2, m1), and

3. (Triangle inequality) d (m1, m 3) ≤ d (m1, m 2) + d (m 2, m 3).

A metric space is the pair (M, d).

Choset-79066 book February 23, 2005 12:19

480 C Topology and Metric Spaces

Note that the intuitive notion that distance must be non-negative follows directly from
the three conditions above. Specifically, condition 3 allows us to write d (m1, m1) ≤
d (m1, m 2) + d (m 2, m1). The left-hand side of this expression is zero by condition 1
and the right-hand side is 2d (m1, m 2) by condition 2, yielding d (m1, m 2) ≥ 0.

For ε > 0 and m ∈ M , the open ball centered at m is defined to be

Bε(m) = {n ∈ M | d (m , n) < ε}.
The set of all open balls and the union of open balls forms the metric topology on the
metric space (M, d).

There are many distance functions other than the standard Euclidean metric. For
example, the Manhattan distance metric is defined to be

d (x , y) =
m∑

i=1

|xi − yi |.

This metric is so named because it measures how far a taxicab must drive in a city
grid to get from one location to another. Different metrics can be used to induce
the same topology. The Manhattan and standard Euclidean metrics induce the same
topology. Two metrics induce the same topology if, for any open ball at x by the first
metric, there is an open ball by the second metric contained completely in the first
ball, and vice versa.

C.3 Normed and Inner Product Spaces

A metric space is a special case of a topological space. Next we introduce a normed
space, which is a special case of a metric space. We also introduce an inner product
space, which is a special case of a normed space.

DEFINITION C.3.1 A normed space E is a subset of a metric space M that has an
operator ‖ · ‖ : E → R such that

‖e‖ ≥ 0 for all e ∈ E, and ‖e‖ = 0 if and only if e is the zero vector (positive
definiteness),

‖λe‖ = |λ|‖e‖ for all e ∈ E and λ ∈ R (homogeneity),

‖e1 + e2‖ ≤ ‖e1‖ + ‖e2‖ for all e1, e2 ∈ E (triangle inequality).

The norm can be used to define the open sets and induce a metric. A sequence
{x1, x2, x3, . . .} is said to be a Cauchy sequence if for any ε > 0 there exists an

Choset-79066 book February 23, 2005 12:19

C.4 Continuous Functions 481

integer k such that ‖xi − x j‖ < ε for all i, j > k. When a normed space has a
corresponding metric for which every Cauchy sequence converges to a point in the
space, we term this space a Banach space.

DEFINITION C.3.2 An inner product on a real vector space E is a mapping 〈·, ·〉 :
E × E → R such that

〈e, e1 + e2〉 = 〈e, e1〉 + 〈e, e2〉,

〈e, αe1〉 = α〈e, e1〉,

〈e2, αe1〉 = 〈e1, αe2〉,

〈e, e〉 ≥ 0 and 〈e, e〉 = 0 if and only if e is zero.

An inner product induces the norm ‖e‖ = 〈e, e〉, and a norm in turn induces a
metric. When an inner product space has a corresponding metric for which every
Cauchy sequence converges, we call this space a Hilbert space.

C.4 Continuous Functions

Paths are defined in terms of a continuous function. Let f : S → T be a mapping
from the domain S to the range T . The points f (s) are the values of f , where s ∈ S.
If U ⊂ S, then the image of U under f is denoted f (U) = {f (x) ∈ T | x ∈ U }. If
V ⊂ T , then the preimage of V under f is denoted f −1(V) = {x ∈ S | f (x) ∈ V }.
First, we introduce an abstract notion of a continuous function and then specialize it
for metric spaces.

DEFINITION C.4.1 Let S and T be topological spaces and f : S → T be a mapping.
f is continuous at u ∈ S if for every V = nbhd(f (u)) there is a U = nbhd(u) such
that f (U) ⊂ V . The mapping f is continuous if for every open subset V ⊂ T ,
f −1(V) = {u ∈ S | f (u) ∈ V } is open in S.

Essentially, a continuous function is a function where the preimage of an open set
is an open set. Now we introduce the standard “delta-epsilon” method for defining
continuous functions on metric spaces: The function f is continuous at s if for every
ε > 0 there exists a δ > 0 where

d (x , s) < δ implies d (f (x), f (s)) < ε.(C.1)

Choset-79066 book February 23, 2005 12:19

482 C Topology and Metric Spaces

EXAMPLE C.4.2 (Continuous Function) Let f : R → R be defined as f (x) = x2. In
order to show that f is continuous at a point s, we must find a δ > 0 such that
d (f (x), f (s)) < ε for arbitrarily small ε > 0. Note that in R the distance function
is d (x , s) = |x − s|. First, we study the quantity |f (x) − f (s)|:
|f (x) − f (s)| = |x2 − s2|

= |x − s||x + s|
= |x − s||x − s + 2s|

Using the triangle inequality, we get

|f (x) − f (s)| ≤ |x − s|(|x − s| + 2|s|).
Now we can subsitute |x − s| < δ to see that |f (x) − f (s)| will be less than ε if

δ(δ + 2|s|) < ε.

Using the quadratic formula, we see that this inequality can be satisfied for

δ < −|s| +
√

s2 + ε.

The term on the right-hand side of this inequality is positive, so we can find a suitable
δ. This proves that the function f (x) = x2 is continuous at any point s ∈ R. Note the
that choice of δ depends on both s and ε.

The set of continuous functions is denoted C0. If the derivative of a continuous
function f is continuous, then f is said to be differentiable and belongs to a set denoted
C1. If c is k-wise differentiable, then it belongs to a set denoted Ck . If all derivatives of
f exist, then f belongs to C∞ and f is said to be smooth. While a path is only required
to be of class C0, a trajectory must belong to Ck , k > 0, to allow the definition of
velocity, acceleration, etc., at all points where the system is moving.

The following are equivalent statements:

f : S → T is continuous. ⇐⇒ f (cl(A)) ⊂ cl(f (A)) for A ⊂ S
⇐⇒ f −1(int(B)) ⊂ int(f −1(B)) for B ⊂ T

Finally, another useful property of continuous functions is that things “change”
continuously. Specifically, if the scalar functions f and g are continuous at x and
f (x) < g(x), then there exists a nbhd(x) such that for all y ∈ nbhd(x), f (y) < g(y).

Choset-79066 book February 23, 2005 12:19

C.5 Jacobians and Gradients 483

C.5 Jacobians and Gradients

Consider a vector-valued function f : R
m → R

n where f can be written

f (x) =

f1(x)
f2(x)

...

fn(x)

,

where fi : R
m → R for i ∈ {1, 2, . . . , n}.

We define the differential of f to be the matrix1

D f =

∂ f1

∂x1

∂ f1

∂x2
· · · ∂ f1

∂xm

∂ f2

∂x1

∂ f2

∂x2
· · · ∂ f2

∂xm

...
...

. . .
...

∂ fn

∂x1

∂ fn

∂x2
· · · ∂ fn

∂xm

.

The matrix D f is denoted in a number of different ways. It is sometimes called the
Jacobian of f and denoted J (see chapter 3). It is sometimes called the tangent map
of f and denoted T f . Sometimes it is necessary to specify which variables are used in
the differentiation. Hence the differential can also be denoted ∂ f

∂x . Putting the variable
name in the subscript serves a similar purpose. The symbols Dx f , Jx , and Tx f all
denote the differential of f with respect to the variable x .

Given a function g : R
n → R, the gradient of g is defined to be

∇g =

∂g
∂x1

∂g
∂x2

...
∂g
∂xn

.

As in the case of the differential, the notation ∇x g is sometimes used to make explicit
the fact that g is differentiated with respect to x . The vector ∇g(x) points in the
direction that maximally increases the function at the point x . Note that by this
defintition ∇ f (x) = D f T . The decision as to whether the gradient should be a row
vector or a column vector is somewhat arbitrary. In this book we define it as a column
vector because that is the convention commonly used in the robotics community when
discussing planning algorithms based on artificial potential fields.

1. To be technically accurate, the differential is actually a map from the tangent space of R
m (which happens

to also be R
m) to the tangent space of R

n (which is R
n). For the purposes of this appendix, we simply

represent D f as an n × m matrix.

Choset-79066 book February 23, 2005 12:19

484 C Topology and Metric Spaces

Let c(t) be a smooth curve in R
n , i.e., c is a C∞, vector-valued map c : R → R

n .
If t is time, the derivative

ċ(t) = dc

dt
(t) =

dc1
dt (t)

dc2
dt (t)

...
dcn
dt (t)

can be thought of as the velocity of a point moving along c(t).
For a real-valued function g : R

n → R, one is often interested in how the value of
the function g changes as the state follows the trajectory c(t). This is the same as find-
ing the derivative of g(c(t)) with respect to t , ġ(t) = d

dt (g ◦ c)(t), where (g ◦ c)(t) =
g(c(t)) is called the composition of g and c. To calculate ġ we can use the chain rule,
which can be stated in a number of different ways:

d

dt
(g ◦ c)(t) =

n∑

i=1

∂g

∂ci

dc

dt
(t)

= ∂g

∂c
ċ(t)

= Dcgċ(t)

Note here that ∂g
∂ci

denotes the partial derivative of g with respect to xi evaluated
at xi = ci (t). Likewise, ∂g

∂c and Dcg denote the differential of g with respect to
x evaluated at x = c(t). When it is necessary to be explicit, these quantities are
sometimes denoted as ∂g

∂x |x=c(t) or Dx g|x=c(t) .
Sometimes it is useful to be able to see how g changes when the curve c is repre-

sented in different coordinates than those for which g is defined. Let h : R
n → R

n

be the smooth change of coordinates that maps from the coordinates in which c is
defined (y-coordinates) into the x-coordinates required by g, i.e., x = g(y). So we
are interested in seeing how g(h (c(t))) = (g ◦ h ◦ c)(t) evolves with t . Again, the
chain rule allows us to express this quantity in a number of different ways:

d

dt
(g ◦ h ◦ c)(t) = ∂g

∂x

∣
∣
∣
∣

x=(h◦c)(t)

∂h

∂y

∣
∣
∣
∣

y=c(t)

ċ(t)

= ∂g

∂h︸︷︷︸
(1×n)

∂h

∂c︸︷︷︸
(n×n)

ċ(t)
︸︷︷︸
(n×1)

= Dh gDchċ(t)

= Dc(f ◦ g)ċ(t)

Choset-79066 book February 23, 2005 12:19

C.5 Jacobians and Gradients 485

In the second of these expressions the dimension of each of the three objects on
the right-hand side is written below the underbrace. This is to make it clear that the
dimensions are suitable for matrix multiplication and that the resulting product is
indeed a scalar.

EXAMPLE C.5.1 Consider the curve c : R → R
2 defined in polar coordinates

c(t) =
[

r (t)
θ (t)

]

=
[

2
2π t

]

.

Note that this curve corresponds to a point moving around a circle of constant radius
2 at a velocity of 4π , i.e., the point travels around the circle once every second. Now
consider a function g : R

2 → R defined in Cartesian coordinates

g(x) = x1.

In order to compute ġ, we introduce a coordinate change h : R
2 → R

2 that maps
the vector y = [y1, y2]T = [r, θ]T in polar coordinates into Cartesian coordinates:

h(y) =
[

y1 cos(y2)
y1 sin(y2)

]

Using the chain rule we get

d

dt
(g ◦ h ◦ c)(t) = ∂g

∂h

∂h

∂c
ċ(t)

= [
1 0

]
[

cos(y2) −y1 sin(y2)
sin(y2) y1 cos(y2)

]

y=[2,2π t]T

[
0

2π

]

(C.2)

= [
1 0

]
[

cos(2π t) −2 sin(2π t)
sin(2π t) 2 cos(2π t)

] [
0

2π

]

= −4π sin(2π t).

This can be checked by differentiating (g ◦ h ◦ c)(t) = 2 cos(2π t) directly to get the
same answer.

The chain rule can be used in a similar manner to differentiate compositions of
functions of any compatible dimension. For example, if we redefine the functions
h and g so that h : R

n → R
m and g : R

m → R
p, then the chain rule gives the

derivative of the composition

d

dt
(g ◦ h ◦ c)(t)

︸ ︷︷ ︸
(p×1)

= ∂g

∂h︸︷︷︸
(p×m)

∂h

∂c︸︷︷︸
(m×n)

ċ(t)
︸︷︷︸
(n×1)

.

Choset-79066 book February 23, 2005 12:19

486 C Topology and Metric Spaces

A remark about rows and columns: In mechanics, a force vector F is usually
represented by a row vector as it is a member of the cotangent space (see chapter 12).
Velocity vectors belong to the tangent space and are usually represented as column
vectors, e.g., v. This allows us to easily take the product Fv to get power, which is
a scalar value. Many mechanics texts use up-down indicial notation to facilitate this,
but such notation is not required for this book.

Choset-79066 book February 23, 2005 12:21

D Curve Tracing

MANY sensor-based techniques, such as those in sections 2.3.3 and 5.2.5, are essen-
tially curve-tracing algorithms. In both cases, the robot is, in a sense, “determining”
the curve as it is being traced. Such techniques relied on two fundamental princi-
ples: the curve being traced exists and under the “right conditions,” the curve can be
traced with simple predictor-corrector techniques. These principles rested on two the-
orems, the implicit function theorem, and the Newton-Raphson convergence theorem,
described below.

D.1 Implicit Function Theorem

Consider a smooth function of multiple variables, f (x , y), and consider the surface
that is defined by the equation f (x , y) = z0 for some fixed z0. Under certain con-
ditions, this surface can be used to write a new function that defines the y variables
in terms of the x variables, i.e., y = g(x , z0). The theorem that states these conditions
is called the implicit function theorem.

THEOREM D.1.1 (Implicit Function Theorem) Let f : R
m× R

n → R
n be a smooth

vector-valued function, f (x , y). Assume that Dy f (x0, y0) is invertible for some
x0 ∈ R

m, y0 ∈ R
n. Then there exist neighborhoods X0 of x0 and Z0 of f (x0, y0)

and a unique, smooth map g : X0 × Z0 → R
n such that

f (x , g(x , z)) = z

for all x ∈ X0, z ∈ Z0.

Choset-79066 book February 23, 2005 12:21

488 D Curve Tracing

D.2 Newton-Raphson Convergence Theorem

By numerically following the set of points where f (x , y) = 0, we can locally con-
struct a curve. While there are a number of curve tracing techniques [232], consider an
adaptation of a common predictor-corrector scheme. Moving in the tangent direction
can serve as a prediction. However, if there is curvature, then the tangent prediction is
not correct. Therefore, a correction method is used. The correction procedure occurs
on a plane orthogonal to the tangent; this plane is called a correcting plane. The cor-
rection step finds the location where the curve being traced intersects the correcting
plane and is an application of the Newton Convergence Theorem [232].

THEOREM D.2.1 (Newton-Raphson Convergence Theorem) Let f : R
n → R

n and
f (y∗) = 0. For some ρ > 0, let f satisfy

D f (y∗) is nonsingular with bounded inverse, i.e., ‖(D f (y∗))−1‖ ≤ β

‖D f (x) − D f (y)‖ ≤ γ ‖x − y‖ for all x , y ∈ Bρ(y∗), where γ ≤ 2
ρβ

Now consider the sequence {yh} defined by

yh+1 = yh − (D f (yh))−1 f (yh),

for any y0 ∈ Bρ(y∗). Then yh ∈ Bρ(y∗) for all h > 0, and the sequence {yh}
quadratically converges onto y∗, i.e.,

‖yh+1 − y∗‖ ≤ a‖yh − y∗‖2

where a = βγ

2(1−ρβγ) < 1
ρ

.

Choset-79066 book February 23, 2005 12:22

E Representations of Orientation

IN CHAPTER 3, we represent orientation by matrices in SO(3), which can be parame-
terized using three parameters. In this appendix, we describe some of the most popular
methods of doing so, including Euler angles and angles with respect to a fixed frame.
We also describe how orientation can be described as rotation about an arbitrary axis
and by quaternions.

E.1 Euler Angles

Recall that the Euler angles φ , θ , ψ in chapter 3 correspond to successive rotations
about body Z-Y-Z axes, and that the corresponding rotation matrix is obtained as

R =

cφcθcψ − sφsψ −cφcθ sψ − sφcψ cφsθ

sφcθcψ + cφsψ −sφcθ sψ + cφcψ sφsθ

−sθcψ sθ sψ cθ

(E.1)

in which sθ and cθ denote sin θ and cos θ respectively.
Consider now the problem of using Euler angles to define a chart on some open

set U ⊂ SO(3). It is easy to see that a single chart cannot cover all of SO(3). For
example, if R33 = 1, it must be the case that θ = 0, and the rotation matrix is given by

R11 R12 0
R21 R22 0
0 0 1

 =

cφ+ψ −sφ+ψ 0
sφ+ψ cφ+ψ 0

0 0 1

 .(E.2)

Choset-79066 book February 23, 2005 12:22

490 E Representations of Orientation

In this case, it is not possible to uniquely define φ and ψ , since only their sum is
represented in R. A similar case occurs when R33 = −1.

To define a chart using Euler angles, we begin by defining the open set

U = {R ∈ SO(3) | R33 /∈ {−1, 1}},
and defining the chart � such that

�(R) �→ [φ(R), θ (R), ψ(R)]T ∈ R
3.

For any R ∈ U , not both of R13, R23 are zero. Then the above equations show that
sθ �= 0. Since not both R13 and R23 are zero, then R33 �= ±1, and we have cθ = R33,
sθ = ±

√
1 − R2

33 so

θ = atan2

(√
1 − R2

33, R33

)

(E.3)

or

θ = atan2

(

−
√

1 − R2
33, R33

)

.(E.4)

The function θ = atan2(y, x) computes the arc tangent function, where x and y
are the cosine and sine, respectively, of the angle θ . This function uses the signs of x
and y to select the appropriate quadrant for the angle θ . Note that if both x and y are
zero, atan2 is undefined.

If we choose the value for θ given by (E.3), then sθ > 0, and

φ = atan2(R23, R13)(E.5)

ψ = atan2(R32, −R31).(E.6)

If we choose the value for θ given by (E.4), then sθ < 0, and

φ = atan2(−R23, −R13)(E.7)

ψ = atan2(−R32, R31).(E.8)

Thus there are two solutions depending on the sign chosen for θ .
As described above, when R33 = ±1, only the sum φ ± ψ can be determined. For

R33 = 1

φ + ψ = atan2(R21, R11)(E.9)

= atan2(−R12, R11).

Choset-79066 book February 23, 2005 12:22

E.2 Roll, Pitch, and Yaw Angles 491

In this case there are infinitely many solutions. We may take φ = 0 by convention. If
R33 = −1, then cθ = −1 and sθ = 0, so that θ = π . In this case (E.1) becomes

−cφ−ψ −sφ−ψ 0
sφ−ψ cφ−ψ 0

0 0 1

 =

R11 R12 0
R21 R22 0
0 0 −1

 .(E.10)

The solution is thus

φ − ψ = atan2(−R12, −R11) = atan2(−R22, −R21).(E.11)

As before there are infinitely many solutions.
There is nothing special about the choice of axes we used to define Euler angles.

We could just as easily have used successive rotations about, say, the x , y, and z axes.
In fact, it is easy to see that there are twelve possible ways to define Euler angles: any
sequence of three axes, such that no two successive axes are the same, generates a set
of Euler angles.

E.2 Roll, Pitch, and Yaw Angles

A rotation matrix R can also be described as a product of successive rotations about
the world coordinate axes. These rotations define the roll, pitch, and yaw angles, and
they are illustrated in figure E.1. Typically, the order of rotation is taken to be x-y-z:
first a yaw about the world x-axis by an angle ψ , then pitch about the world y-axis
by an angle θ , and finally a roll about the world z-axis by an angle φ1. Since the
successive rotations are relative to the world coordinate frame, the resulting rotation
matrix is given by

R = Rz,φ Ry,θ Rx ,ψ

=

cφ −sφ 0
sφ cφ 0
0 0 1

cθ 0 sθ

0 1 0
−sθ 0 cθ

1 0 0
0 cψ −sψ

0 sψ cψ

=

cφcθ −sφcψ + cφsθ sψ sφsψ + cφsθcψ

sφcθ cφcψ + sφsθ sψ −cφsψ + sφsθcψ

−sθ cθ sψ cθcψ

 .(E.12)

1. As with Euler angles, one can choose a different ordering for the rotations to obtain different fixed axis
representations of orientation. The term fixed axis refers to the fact that successive rotations are taken with
respect to axes of the fixed coordinate frame.

Choset-79066 book February 23, 2005 12:22

492 E Representations of Orientation

x

z

Roll

y

Yaw

Pitch

Figure E.1 Roll, pitch, and yaw angles.

The three angles, φ , θ , ψ , can be obtained for a given rotation matrix using a
method that is similar to that used to derive the Euler angles above.

E.3 Axis-Angle Parameterization

Above we described a rotation matrix by decomposing a rotation into three successive
rotations about the coordinate axes. An alternative to this is to specify a rotation matrix
in terms of a rotation about an arbitrary axis in space. This provides both a convenient
way to describe rotations, and an alternative parameterization for rotation matrices.

Let k = [kx , ky , kz]T be a unit vector defining an axis expressed in the world
frame. To determine the parameterization, we need to derive the rotation matrix Rk,θ

representing a rotation of θ degrees about this axis. A simple way to derive this
rotation matrix is to rotate the vector k into one of the coordinate axes, say the z-axis,
then rotate about this axis by θ , and finally, rotate k back to its original position. As
can be seen in figure E.2 we can rotate k into the world z-axis by first rotating about
the world z-axis −α, then rotating about the world y-axis by −β. Since all rotations
are performed relative to the world frame, the matrix Rk,θ is obtained as

Rk,θ = Rz,α Ry,β Rz,θ Ry,−β Rz,−α.(E.13)

Choset-79066 book February 23, 2005 12:22

E.3 Axis-Angle Parameterization 493

x0

y0

z0

kx

kz

ky

b

q

a

Figure E.2 Rotation about an arbitrary axis.

As can be seen in figure E.2,

sin α = ky
√

k2
x + k2

y

(E.14)

cos α = kx
√

k2
x + k2

y

(E.15)

sin β =
√

k2
x + k2

y(E.16)

cos β = kz.(E.17)

The final two equations follow from the fact that k is a unit vector. Substituting (E.14)
through (E.17) into (E.13) we can obtain

Rk,θ =

k2

xvθ + cθ kx kyvθ − kzsθ kx kzvθ + kysθ

kx kyvθ + kzsθ k2
yvθ + cθ kykzvθ − kx sθ

kx kzvθ − kysθ kykzvθ + kx sθ k2
z vθ + cθ

 ,(E.18)

in which vθ = 1 − cθ .
We can use this parameterization to derive a chart on SO(3) as follows. Let R be an

arbitrary rotation matrix with components (Ri j). Let U = {R | Tr (R) �= ±1} where

Choset-79066 book February 23, 2005 12:22

494 E Representations of Orientation

Tr denotes the trace of R. By direct calculation using (E.18) we obtain

θ = cos−1

(
R11 + R22 + R33 − 1

2

)

= cos−1

(
Tr(R) − 1

2

)

, and

k = 1

2 sin θ

R32 − R23

R13 − R31

R21 − R12

 .

This representation is not unique since a rotation of −θ about −k is the same as a
rotation of θ about k, that is,

Rk,θ = R−k,−θ .(E.19)

We can now define the mapping φ using k and θ . Since the axis k is a unit vector, only
two of its components are independent. Therefore, only three independent quantities
are required in this representation of a rotation. Thus, we can define φ as

φ(R) = [θkx , θky , θkz]
T .(E.20)

Using this convention, we can recover k and θ as

k = φ(R)

||φ(R)|| and θ = ||φ(R)||.(E.21)

The angle θ is a good distance measure between two elements of SO(3).

E.4 Quaternions

The axis-angle parameterization described above parameterizes a rotation matrix by
three parameters (given by (E.21)). Quaternions, which are closely related to the
axis-angle parameterization, can be used to define a rotation by four numbers. It is
straightforward to use quaternions to define an atlas for SO(3) using only four charts.
Furthermore quaternion representations are very convenient for operations such as
composition of rotations and coordinate transformations. For these reasons, quater-
nions are a popular choice for the representation of rotations in three dimensions.

Quaternions are a generalization of the complex numbers to a four-dimensional
space. For this reason, we begin with a quick review of how complex numbers can
be used to represent orientation in the plane. A first introduction to complex numbers
often uses the example of representing orientation in the plane using unit magnitude
complex numbers of the form a + ib, in which i = √−1. In this case, the angle θ

from the real axis to the vector (a + ib) ∈ C is given by atan2(b, a), and it is easy

Choset-79066 book February 23, 2005 12:22

E.4 Quaternions 495

to see that cos θ = a and sin θ = b. Since a, b ∈ R, we can consider this as an
embedding of S1 in the plane.

Using this representation, multiplication of two complex numbers corresponds to
addition of the corresponding angles. This can be verified by direct calculation as

(a1 + ib1)(a2 + ib2) = a1a2 + ib1a2 + ia1b2 − b1b2

= (a1a2 − b1b2) + i(b1a2 + a1b2)

= cos θ1 cos θ2 − sin θ1 sin θ2

+i(sin θ1 cos θ2 − cos θ1 sin θ2)

= cos(θ1 + θ2) + i sin(θ1 + θ2).

While a complex number a + ib defines a point in the complex plane, a quaternion
defines a point in a four-dimensional complex space, q0 + iq1 + jq2 + kq3. Here, i ,
j , and k represent independent square roots of negative one. They are independent in
the sense that they do not combine using the normal rules of scalar multiplication. In
particular, we have

−1 = i2 = j2 = k2,(E.22)

i = jk = −k j,(E.23)

j = ki = −ik,(E.24)

k = i j = − j i.(E.25)

It is not a coincidence that multiplication of i , j , and k is similar to the vector cross
product for the orthogonal unit basis vectors, i = [1, 0, 0]T , j = [0, 1, 0]T , and
k = [0, 0, 1]T .

Complex numbers with unit magnitude can be used to represent orientation in the
plane simply by using their representation in polar coordinates. Likewise, quaternions
can be used to represent rotations in 3D. In particular, for a rotation about an axis
n = [nx , ny , nz]T by angle θ , the corresponding quaternion, Q, is defined as

Q =
(

cos
θ

2
, nx sin

θ

2
, ny sin

θ

2
, nz sin

θ

2

)

.(E.26)

When we define the axis of rotation to be a unit vector, the corresponding quaternion
has unit norm, since

||Q|| = cos2 θ

2
+ n2

x sin2 θ

2
+ n2

y sin2 θ

2
+ n2

z sin2 θ

2

= cos2 θ

2
+ sin2 θ

2

(
n2

x + n2
y + n2

z

)
(E.27)

= 1.

Quaternions with unit norm are sometimes referred to as rotation quaternions.

Choset-79066 book February 23, 2005 12:22

496 E Representations of Orientation

It is straightforward to apply the results from section E.3 to determine the rotation
matrix R ∈ SO(3) that corresponds to the rotation represented by a rotation quater-
nion. For the quaternion Q = (q0, q1, q2, q3) we have

R(Q) =

2
(
q2

0 + q2
1

) − 1 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) 2
(
q2

0 + q2
2

) − 1 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) 2
(
q2

0 + q2
3

) − 1

 .(E.28)

Quaternions can be used to define an atlas for SO(3) comprising four charts,
(Ui , φi), with φi : Ui → R

3. This is most easily done by using two steps. First, for
a rotation matrix R, we determine the corresponding quaternion Q. Then, we use Q
to determine which chart applies (i.e., we implicitly define the neighborhoods Ui in
terms of Q), and use the appropriate φi to define the local coordinates.

Determining the quaternion that correponds to a rotation matrix amounts to solving
the inverse of (E.28), and this can be done by a method similar to that given for the
axis-angle parameterization of section E.3. In particular, for rotation matrices R such
that Tr(R) �= ±1 we have

q0 = 1

2

√
1 + Tr(R)(E.29)

q1

q2

q3

 = 1

4q0

R32 − R23

R13 − R31

R21 − R12

 .(E.30)

To define the four charts, we first define the four neighborhoods

U0 = {Q = (q0, q1, q2, q3) | q0 ≥ q1, q2, q3}
U1 = {Q = (q0, q1, q2, q3) | q1 ≥ q0, q2, q3}
U2 = {Q = (q0, q1, q2, q3) | q2 ≥ q0, q1, q3}
U3 = {Q = (q0, q1, q2, q3) | q3 ≥ q0, q1, q2}.
These are not actually open sets (due to the nonstrict inequality in the set definitions),
but they can be used to define open sets using their interiors. Now we define the
coordinate maps φi as

φ0(q0, q1, q2, q3) =
(

q1

|q0| ,
q2

|q0| ,
q3

|q0|
)

φ1(q0, q1, q2, q3) =
(

q0

|q1| ,
q2

|q1| ,
q3

|q1|
)

Choset-79066 book February 23, 2005 12:22

E.4 Quaternions 497

φ2(q0, q1, q2, q3) =
(

q0

|q2| ,
q1

|q2| ,
q3

|q2|
)

φ3(q0, q1, q2, q3) =
(

q0

|q3| ,
q1

|q3| ,
q2

|q3|
)

As we have seen above, Ri ∈ SO(3) represents a rotation, and the composition of
successive rotations, say R1 and R2, is represented by the rotation matrix R = R1 R2.
Likewise, multiplication of quaternions corresponds to the composition of successive
rotations. In particular, if Q1 and Q2 are two quaternions representing a rotation by
θ1 about axis n1 and a rotation by θ2 about axis n2, respectively, then the result of
performing these two rotations in succession is represented by the quaternion Q =
Q1 Q2. Using (E.22) through (E.25) it is straightforward to determine the quaternion
product. In particular, for two quaternions, X and Y , we compute their product,
Z = XY , as

z0 + i z1 + j z2 + kz3 = (x0 + i x1 + j x2 + kx3)(y0 + iy1 + yx2 + yx3)

= x0 y0 − x1 y1 − x2 y2 − x3 y3

+ i(x0 y1 + x1 y0 + x2 y3 − x3 y2)

+ j (x0 y2 + x2 y0 + x3 y1 − x1 y3)

+ k(x0 y3 + x3 y0 + x1 y2 − x2 y1).

By equating the real parts on both sides of the final equality, and by equating the
coefficients of i , j , and k on both sides of the final equality, we obtain

z0 = x0 y0 − x1 y1 − x2 y2 − x3 y3

z1 = x0 y1 + x1 y0 + x2 y3 − x3 y2

z2 = x0 y2 + x2 y0 + x3 y1 − x1 y3

z3 = x0 y3 + x3 y0 + x1 y2 − x2 y1.

The quaternion Q = (q0, q1, q2, q3) can be thought of as having the scalar compo-
nent q0 and the vector component q = [q1, q2, q3]T . Therefore, one often represents
a quaternion by a pair, Q = (q0, q). Using this notation, q0 represents the real part
of Q, and q represents the imaginary part of Q. Using this notation, the quaternion
product Z = XY can be represented more compactly as

z0 = x0 y0 − x T y

z = x0 y + y0x + x × y,

in which × denotes the vector cross product operator.

Choset-79066 book February 23, 2005 12:22

498 E Representations of Orientation

For complex numbers, the conjugate of a + ib is defined by a − ib. Similarly, for
quaternions we denote by Q∗ the conjugate of the quaternion Q, and define

Q∗ = (q0, −q1, −q2, −q3).(E.31)

With regard to rotation, if the quaternion Q represents a rotation by θ about the axis
n, then its conjugate Q∗ represents a rotation by θ about the axis −n. It is easy to see
that

Q Q∗ = (
q2

0 + ||q||2, 0, 0, 0
)

(E.32)

and that

||Q Q∗|| = ∣
∣
∣
∣
(
q2

0 + q2
1 + q2

2 + q2
3 , 0, 0, 0

)∣
∣
∣
∣ =

∑
q2

i = ||Q||2.(E.33)

A quaternion, Q, with its conjugate, Q∗, can be used to perform coordinate trans-
formations. Let the point p be rigidly attached to a coordinate frame F , with local
coordinates (x , y, z). If Q specifies the orientation ofF with respect to the base frame,
and T is the vector from the world frame to the origin of F , then the coordinates of
p with respect to the world frame are given by

Q(0, x , y, z)Q∗ + T ,(E.34)

in which (0, x , y, z) is a quaternion with zero as its real component. Quaternions can
also be used to transform vectors. For example, if n = (nx , ny , nz) is the normal
vector to the face of a polyhedron, then if the polyhedron is rotated by Q, the new
direction of the normal is given by

Q(0, nx , ny , nz)Q∗.(E.35)

Choset-79066 book February 23, 2005 12:24

F Polyhedral Robots in Polyhedral Worlds

LINEAR REPRESENTATIONS are concise. In this appendix we consider the special
case in which both the robot and all obstacles in the workspace are polygons (for
two-dimensional worlds) or polyhedra (for three-dimensional worlds). Since poly-
hedra are three-dimensional solids whose faces are polygons, we begin by developing
representations and computational methods for dealing with polygons. Although the
restriction to polygonal obstacle may seem to be unrealistic, nearly all modern motion
planning systems use polygonal models to represent obstacles (e.g., facet models that
are common in computer graphics and so-called polygon soup models that are used
in many CAD applications).

We begin the appendix by describing the representation of polygons in two dimen-
sions. Following this, we describe an algorithm for determining whether two polygons
intersect. This is the fundamental operation used by collision detection algorithms.
We then describe an efficient algorithm that constructs a boundary representation for
the configuration space obstacle region for the special case of Q = R

2 and discuss
configuration space obstacles for the case of Q = SE(2).

F.1 Representing Polygons in Two Dimensions

A straight line in the plane divides the plane into three disjoint regions: the line itself,
and the two regions that lie on either side of the line. To make this more precise,
consider the line given by

h(x , y) = ax + by − c = 0.(F.1)

Choset-79066 book February 23, 2005 12:24

500 F Polyhedral Robots in Polyhedral Worlds

h(x,y) = x + y – 1 = 0

x + y – 1< 0

x + y – 1 > 0

x

y

Figure F.1 Half-planes defined by h(x , y) = x + y − 1.

This equation implicitly defines a line to be the set of points whose projection onto
the vector (a, b) is given by c. Thus, the vector (a, b) defines the normal to the line
and c gives the signed perpendicular distance from the origin to the line. We can
evaluate h for any point in the plane. Those points such that h(x , y) ≥ 0 are said to
lie in the positive half plane, represented by h+. Points in h+ are those points whose
projection onto the normal is greater than the signed distance to the line. Those points
such that h(x , y) ≤ 0 are said to lie in the negative half plane, represented by h−.
The line itself is the intersection h− ∩ h+. Figure F.1 shows an example for which
the points (0, 5), (3, 5) lie in the negative half plane, while points (0, 0), (2, 2) lie in
the positive half plane. Note that we can easily change the sense of the half planes by
multiplying h by −1.

We can use half planes to construct polygons. In particular, we define a convex
polygonal region in R

2 to be the intersection of a finite number of half planes. For
example, the three lines

h1(x , y) = −x + y − 3

h2(x , y) = −y

h3(x , y) = x

can be used to construct a convex polygonal region by taking the intersection of the
three half planes h−

1 , h−
2 , and h−

3 , as shown in figure F.2. For consistency, we will

Choset-79066 book February 23, 2005 12:24

F.1 Representing Polygons in Two Dimensions 501

x

y

x = 0

–x + y = 3

–y = 0

Figure F.2 A convex polygonal region constructed from the half planes h−
1 , h−

2 , and h−
3 .

always define convex polygonal regions as the intersection of negative half planes.
If hi (x , y) ≤ 0 for each line that defines the convex polygonal region, then the point
(x , y) lies inside the corresponding polygonal region. If hi (x , y) > 0 for any line
that defines the convex polygonal region, then the point lies outside the corresponding
polygonal region. Note that a convex polygonal region need not be finite. For example,
by our definition, the half space x + y−1 ≤ 0 is a valid convex polygonal region, even
though it is unbounded (recall that a region is said to be convex if for all pairs of points
in the region, the line segment connecting those points lies entirely within the region).

We define a polygonal region (possibly nonconvex) to be any subset of R
2 obtained

by taking the union of a finite number of convex polygonal regions. Polygonal regions
need not be bounded or connected, and connected polygonal regions need not be
simply connected (e.g., the union of two disjoint convex polygons is a polygonal
region, but it is not connected). Finally, a polygon is any closed, simply connected
polygonal region (alternatively, a polygonal region that is homeomorphic to a closed
unit disk in the plane).

Choset-79066 book February 23, 2005 12:24

502 F Polyhedral Robots in Polyhedral Worlds

It is often convenient to represent a polygon by listing its vertices, e.g., in counter-
clockwise order (it is straightforward to determine the hi given the set of vertices).
This approach is used in sections F.2 and F.3, where we discuss how to construct the
configuration space obstacle and then how to determine if a robot intersects it.

F.2 Intersection Tests for Polygons

In this section, we develop an algorithm for determining whether two polygons have
a nonempty intersection. Such intersection tests are the essential primitive operations
for collision detection algorithms used by most all modern path planners. Furthermore,
for the specific case of Q = R

2 with polygonal obstacles, the intersection test that
we develop here provides useful insight for developing an algorithm to explicitly
construct the configuration space obstacle region, as described below in section F.3.
We begin by considering the specific problem of testing for the intersection of a
convex, polygonal robot with a specific convex, polygonal obstacle.

We will assume that the configuration of the robot is specified by q = (x , y, θ)
and that the obstacle polygon is specified by a list of its vertices. It will also be
convenient to explicitly represent the normal vectors for each edge of both the robot
and the obstacle. We denote these normal vectors by nR

i for the normal to edge i of
the robot and nW

j for the normal to edge j of obstacle W . Note that the normals for
the robot edges depend on the orientation (but not the x , y-coordinates) of the robot;
we will often explicitly represent this dependence by the notation nR

i (θ). We denote
the vertices of the robot by ri , and the edges by E R

i . Similarly, we will denote the
vertices of obstacle W by o j and edges EW

j . Figure F.3 illustrates the notation.
Under these conditions, the problem of determining whether the robot intersects the

obstacle is equivalent to determining whether the robot configuration lies within the
configuration space obstacle region. The approach that we develop here identifies
the defining half spaces for the configuration space obstacle region for a fixed robot
orientation, θ . If the robot configuration is contained in each of these half spaces,
then it lies in the configuration space obstacle polygon (since this polygon is merely
the intersection of the half spaces), and the robot and obstacle intersect.

The problem of identifying these defining half spaces is equivalent to determining
the boundary of the configuration space obstacle polygon. Recall that for a fixed value
of θ , the boundary of this polygon corresponds to the set of configurations in which the
robot and obstacle touch, but do not overlap. (If the robot and obstacle overlap, then
we can move the robot to any configuration in a neighborhood and remain within the
obstacle polygon.) For the kth obstacle, this condition can be expressed by

R(q) ∩ W �= ∅ and int (R(q)) ∩ int (W) = ∅.(F.2)

Choset-79066 book February 23, 2005 12:24

F.2 Intersection Tests for Polygons 503

nj

Ej

oj+1ri+1

ri

Ei
R

ni
R oj

Figure F.3 Notation used to define vertices, normals and edges of the robot and obstacle
polygon.

R

R

R

(a) (b) (c)

Figure F.4 (a) Type A contact, (b) Type B contact, (c) Both Type A and Type B contact.

For configurations that satisfy (F.2), there are only two possible kinds of contacts:

Type A Contact: an edge of R, say E R
i , contains a vertex, o j , of W .

Type B Contact: an edge of W , say EW
j , contains a vertex, ri , of R.

Each possible type A or type B contact defines one half space that defines the config-
uration space obstacle polygon. Type A and B contacts are illustrated in figure F.4.
Note that in figure F.4(c), both type A and B contacts occur simultaneously.

Choset-79066 book February 23, 2005 12:24

504 F Polyhedral Robots in Polyhedral Worlds

We begin with the case of type A contact. Type A contact between edge E R
i and

vertex o j is possible only for certain orientations θ . In particular, such contact can
occur only when θ satisfies

(o j−1 − o j) · nR
i (θ) ≥ 0 and (o j+1 − o j) · nR

i (θ) ≥ 0.(F.3)

This condition is sometimes referred to as an applicability condition. Note that the
normals for the edges of R are a function of configuration, but only of θ , and not of
the x , y coordinates. The condition in (F.3) can also be expressed as the condition that
a negated edge normal of the robot lies between the normals of an adjacent obstacle
edge. This latter formulation of the condition is used below in section F.3. Note that
(F.3) is satisfied with equality when an edge of the obstacle is coincident with an edge
of the robot.

Each pair, E R
i and o j , that satisfies (F.3), defines a half space that contains the

configuration space obstacle polygon. This half space is defined by

f R
i j (x , y, θ) = nR

i (q) · (o j − ri (x , y, θ)) ≤ 0.(F.4)

This is illustrated in figure F.5.

R

y

x

Figure F.5 The half space defined by this contact is below the thick black line that passes
through the origin of the robot’s coordinate frame.

Choset-79066 book February 23, 2005 12:24

F.2 Intersection Tests for Polygons 505

E2
R

E1
R

E3
R

r3

r2

o4o3 E3

E1

E2 E4

o1o2

r1

Figure F.6 The obstacle is shown on the left, and the robot on the right.

Type B contact is analogous to type A contact, but the roles of robot and obstacle
are reversed. In particular, type B contact can occur between obstacle edge EW

j and
robot vertex ri when

(ri−1(θ) − ri (θ)) · nW
j ≥ 0 AND (ri+1(θ) − ri (θ)) · nW

j ≥ 0.(F.5)

The corresponding half space is defined by

f W
i j (x , y, θ) = nW

j · (ri (x , y, θ) − o j) ≤ 0.(F.6)

Each type A or B contact defines one half space that contains the configuration
space obstacle polygon. The configuration (x , y, θ) causes a collision only if it lies in
each of these half spaces. Therefore, determining collision amounts to determining
which i, j satisfy (F.3) or (F.5), and then verifying (F.4) or (F.6), respectively.

As an example, consider the robot and obstacle shown in figure F.6. Figure F.7(a)
shows a case in which the robot and obstacle have a nonempty intersection. The
following table shows the possible type A and B contacts (the first three entries of the
table are the type A contacts), the definitions of the corresponding half spaces, and
whether or not the half space constraints are satisfied. As can be seen, each applicable
half space constraint is satisfied, and thus it is determined that the robot and obstacle
are in collision.

Choset-79066 book February 23, 2005 12:24

506 F Polyhedral Robots in Polyhedral Worlds

(a) (b)

r3

r2 r2

r3

r1 r1

o2

o3 o4

o1

o2

o3 o4

o1

Figure F.7 The applicability conditions and half spaces for these two cases are shown in the
table below.

Contact pair half space inequality satisfied?

E R
1 , ok

4 nR
1 (θ) · (ok

4 − r1(x , y, θ) ≤ 0 yes
E R

2 , ok
1 nR

2 (θ) · (ok
1 − r2(x , y, θ) ≤ 0 yes

E R
3 , ok

3 nR
3 (θ) · (ok

3 − r3(x , y, θ) ≤ 0 yes

EWk
1 , r3 nWk

1 · (r3(x , y, θ) − ok
1 ≤ 0 yes

EWk
2 , r3 nWk

2 · (r3(x , y, θ) − ok
2 ≤ 0 yes

EWk
3 , r1 nWk

3 · (r1(x , y, θ) − ok
3 ≤ 0 yes

EWk
4 , r2 nWk

4 · (r2(x , y, θ) − ok
4 ≤ 0 yes

Figure F.7(b) shows a case in which the robot and obstacle do not intersect. The
following table shows the possible type A and B contacts, the definitions of the
corresponding half spaces, and whether or not the half space constraints are satisfied.
As can be seen, one of the applicable half space constraints is not satisfied, and thus
it is determined that the robot and obstacle are not in collision.

Choset-79066 book February 23, 2005 12:24

F.3 Configuration Space Obstacles in Q = R
2: The Star Algorithm 507

Contact pair half space inequality satisfied?

E R
1 , ok

4 nR
1 (θ) · (

ok
4 − r1(x , y, θ)

) ≤ 0 no
E R

2 , ok
1 nR

2 (θ) · (
ok

1 − r2(x , y, θ)
) ≤ 0 yes

E R
3 , ok

3 nR
3 (θ) · (

ok
3 − r3(x , y, θ)

) ≤ 0 yes

EWk
1 , r3 nWk

1 · (
r3(x , y, θ) − ok

1

) ≤ 0 yes
EWk

2 , r3 nWk
2 · (

r3(x , y, θ) − ok
2

) ≤ 0 yes
EWk

3 , r1 nWk
3 · (

r1(x , y, θ) − ok
3

) ≤ 0 yes
EWk

4 , r2 nWk
4 · (

r2(x , y, θ) − ok
4

) ≤ 0 yes

Suppose the robot and obstacles are not convex (note, the case of a nonconvex
obstacle includes the case of multiple disconnected obstacle regions in the workspace).
In this case, one can always partition the robot and obstacle into collections of convex
polygons, {Rl} and {Wk}, respectively. To determine if the robot and obstacle are in
collision, we merely check to see if any pair Rl and Wk are in collision, using the
method described above.

F.3 Configuration Space Obstacles in Q = R
2: The Star Algorithm

It is sometimes convenient to explicitly represent the configuration space obstacle
region in the special case of Q = R

2 (e.g., when using the visibility graph approach
described in section 5.1). For a convex robot and obstacle, it is straightforward to
derive a boundary representation for the configuration space obstacle region using
the ideas developed in the preceding section.

As described above, for each satisfied applicability condition, (F.3) or (F.5), one half
space is defined by (F.4) or (F.6), respectively. To construct the representation of the
boundary of the configuration space obstacle region, we need only find the vertices
that are defined by the intersections of the lines that define these half spaces. The
algorithm that we develop here, sometimes called the star algorithm, is a particularly
efficient way to do so.

The heart of the algorithm lies in the following observations. When the applicability
condition

(o j−1 − o j) · nR
i (θ) ≥ 0 and (o j+1 − o j) · nR

i (θ) ≥ 0

is satisfied and there is a contact between E R
i and vertex o j , of W , this contact will

be maintained as the robot translates, maintaining contact with the vertex. At one
extreme of this motion, the vertices o j and ri coincide, while at the other extreme,
vertices o j and ri+1 coincide. These extremes define two vertices of the configuration

Choset-79066 book February 23, 2005 12:24

508 F Polyhedral Robots in Polyhedral Worlds

space obstacle region

o j − ri (0, 0, θ), and o j − ri+1(0, 0, θ).

Analogously, when the applicability condition

(ri−1(θ) − ri (θ)) · nW
j ≥ 0 and (ri+1(θ) − ri (θ)) · nW

j ≥ 0

is satisfied and there is a contact between obstacle edge EW
j and robot vertex ri , this

contact will be maintained as the robot translates, maintaining contact with the edge.
At one extreme of this motion, the vertices o j and ri coincide, while at the other
extreme, vertices o j+1 and ri coincide. These extremes define two vertices of the
configuration space obstacle region

o j − ri (0, 0, θ), and o j+1 − ri (0, 0, θ).

The enumeration of satisfied applicability conditions can be made particularly
efficient by recalling that these conditions can be expressed in terms of the orientations
of the robot and obstacle edge normals. We first negate the edge normals of the robot,
then sort the merged list of obstacle and negated robot edge normals by orientation.
We then scan this sorted list, and construct the appropriate vertices each time a negated
robot edge normal lies between adjacent obstacle edge normals, or vice versa.

We note here that the algorithm described above is an implementation of the
Minkowski difference, a useful operation in many computational geometry applica-
tions. The Minkowski difference between the robot and a convex obstacle is defined by

WO � R(q) = {q ∈ Q : q = c − r where r ∈ R(q) and c ∈ WO}(F.7)

where � is the Minkowski difference operator [124].

F.4 Configuration Space Obstacles in Q = SE(2)

As we have seen in chapter 3, a polygon in the plane has three degrees of freedom,
two for translation and one for rotation, and its configuration space is Q = SE(2).
Consider a polygonal robot in a workspace that contains a single obstacle. For a fixed
orientation, the configuration space of the polygon is reduced to R

2. Thus, one way to
visualize this configuration space is to “stack” a set of two-dimensional configuration
spaces, where each slice in the stack corresponds to the (x , y) configurations of the
robot at a fixed orientation θ and the vertical axis represents the orientation of the
robot. An example is shown in figure F.8.

Choset-79066 book February 23, 2005 12:24

F.5 Computing Distances between Polytopes in R
2 and R

3 509

x y

q

Figure F.8 The configuration space obstacle for a triangle-shaped robot in a workspace that
contains a single, five-sided obstacle [69, 70].

F.5 Computing Distances between Polytopes in R
2 and R

3

In many applications, it is useful to know the minimum distance between two objects
in addition to knowing whether or not they are in contact. We have seen in chapter 2
that knowledge of distance is essential for implementing the Bug family of algorithms.
Moreover, minimum distance calculations are essential for collision detection, which
is merely a special case of minimum distance calculations: if the minimum distance
between two objects is zero, then they are in contact. In this section, we present
an algorithm originally described by Gilbert, Johnson and Keerthi for computing
the distance between convex polytopes, commonly referred to as the GJK distance
computation algorithm [163].

We define the distance between polytopes A and B as

d(A, B) = min
a∈A,b∈B

‖a − b‖.(F.8)

We reformulate (F.8) in terms of the Minkowski difference of two polytopes, i.e.,

A � B = {z | z = a − b, a ∈ A, b ∈ B} = Z .(F.9)

Using (F.9) we can rewrite (F.8) as

d(A, B) = min
a∈A,b∈B

‖a − b‖ = min
z∈A�B

‖z‖,(F.10)

Choset-79066 book February 23, 2005 12:24

510 F Polyhedral Robots in Polyhedral Worlds

and we have reduced the problem of computing the distance between two polytopes
to the problem of computing the minimum distance from one polytope to the origin.

In section F.3 we have seen an implementation of the Minkowski difference to
construct the configuration space obstacle region. From this, it is easy to see that
the Minkowski difference of two convex polytopes is itself a convex polytope. Since
Z = A � B is a convex set, and since the norm, ‖z‖, is a convex function, z∗ =
arg minz∈Z ‖z‖ is unique. Thus, there is a unique solution to (F.10). Note that the
values of a and b that achieve this minimum are not necessarily unique.

Although finding the distance from Z to the origin may seem simpler than comput-
ing the distance between A and B, it should be noted that this is actually the case only
if the necessary computations to determine minz∈Z ‖z‖ are simpler than the computa-
tions required to compute d(A, B) directly. This turns out to be the case for the GJK
algorithm. Before we examine how this algorithm can be applied to the Minkowski
difference of A and B, we first describe the algorithm for the case of computing the
distance from Z to the origin, for Z any convex polytope.

Suppose Z is a polytope in R
n (i.e., n = 2 for polygons, and n = 3 for polyhedra).

The GJK algorithm iteratively constructs a sequence of polytopes, each of which
is the convex hull of some subset of the vertices of Z , such that at each iteration
the distance from the origin to the new polytope decreases. Before describing the
algorithm more formally, we define some useful terminology and notation.

The convex hull of a set of points in R
n is the smallest convex set in
n that

contains those points. Efficient algorithms exist for computing the convex hull of
general point sets, but for our purposes, we will not require such algorithms, since
the GJK algorithm only deals with point sets of size three for polygons and size four
for polyhedra. The convex hull of a set of three (noncollinear) points is the triangle
defined by those points, and the convex hull of a set of four (noncoplanar) points is
the tetrahedron defined by those points.

The GJK algorithm relies heavily on the notion of projection. In particular, for a
convex set Z and a point x , the GJK algorithm computes the point z ∈ Z with maximal
projection onto x . The value of this projection operation is defined by

hZ (x) = max{z · x | z ∈ Z}.(F.11)

and the point z∗ that achieves this maximum is defined by

sZ (x) = z∗ s.t. z∗ · x = hZ (x).(F.12)

The GJK algorithm for polygons is given as Algorithm 23 below. In the first step,
the working vertex set V0 is initialized to contain three arbitrarily selected vertices of
the polygon, Z . At iteration k, the point xk is determined as the point in the convex
hull of the vertices in Vk that is nearest to the origin. Once xk has been determined,

Choset-79066 book February 23, 2005 12:24

F.5 Computing Distances between Polytopes in R
2 and R

3 511

Algorithm 23 GJK Algorithm

Input: A polytope, Z ⊂
2.
Output: Minimal ‖z‖, for z ∈ Z ⊂
2

1: V0 ← {y1, y2, y3} with yi vertices of Z
2: k ← 0
3: Compute xk , the point in the convex hull of Vk that is nearest the origin, i.e., xk =

arg minx∈hull(Vk) ‖x‖.
4: Compute hZ (−xk), and terminate if ‖xk‖ = hZ (−xk).
5: zk ← sZ (−xk), i.e., the projection of zk onto xk is nearer the origin than the projection

onto xk of any other point in Z .
6: xk is contained in an edge of the convex hull of Vk . Let Vk+1 contain the two vertices

that bound this edge and the point zk .
7: k ← k + 1
8: Go to 3.

in step 5 a new vertex zk is chosen as the vertex of the original polygon, Z , whose
projection onto −xk is maximal. The point zk then replaces a vertex in the current
working vertex set to obtain a new working vertex set, Vk+1. The algorithm terminates
(step 4) when xk is itself the closest point in Z to the origin.

It is a fairly simple matter to extend the GJK algorithm (Algorithm 23) to the case
in which Z = A � B. Note that in the GJK algorithm, we never need an explicit
representation of Z . We only need to compute two functions of Z : hZ (x) and sZ (x).
Each of these can be computed without explicitly constructing Z . Let Z = A � B.
We can compute h A�B(x) as follows,

h A�B(x) = max{z · x | z ∈ Z}
= max{z · x | z ∈ A � B}
= max{(a − b) · x | a ∈ A, b ∈ B}
= max{a · x − b · x | a ∈ A, b ∈ B}
= max{a · x | a ∈ A} − min{b · x | b ∈ B}
= max{a · x | a ∈ A} + max{b · (−x) | b ∈ B}
= h A(x) + hB(−x).(F.13)

Now, suppose that a∗ achieves the value h A(x) and b∗ achieves the value hB(−x).
Then z∗ = a∗ − b∗, and therefore we have

sA�B(x) = sA(x) − sB(−x).(F.14)

Choset-79066 book February 23, 2005 12:24

512 F Polyhedral Robots in Polyhedral Worlds

Thus, we see that the GJK algorithm is easily extended to the case of the Minkowski
difference of convex polygons. In steps 4 and 5, merely replace hz and sZ with the
expressions (F.13) and (F.14). To extend the algorithm to convex polyhedra, merely
replace step 1 of the algorithm by

1. V0 ← {y1, y2, y3, y4} with yi vertices of Z

and step 6 of the algorithm by

6. xk is contained in a face of the convex hull of Vk . Let Vk+1 contain the three vertices
that bound this face and the point zk .

Choset-79066 book February 23, 2005 12:26

G Analysis of Algorithms and Complexity Classes

G.1 Running Time

Yet another way to study an algorithm is to compute the running time of the algorithm
purely as a function of the length of the input. Worst-case analysis considers the longest
running time of all inputs of a particular length. Average-time analysis considers the
average of all the running times of inputs of a particular length. The worst-case
analysis is typically referred to as the running time of an algorithm.

Finding an expression for the exact running time is often difficult, but in most cases
close estimations are possible. Asymptotic analysis provides the means of analyzing
the running time of the algorithms for large inputs. As the lengths of the inputs become
large, the high-order terms dominate the value of the expression and the low-order
terms have little or no effect. Hence, a close approximation can be obtained only by
considering the highest-order term in an expression. For example, the highest-order
term of the function f (n) = 2n5 + 100n3 + 27n + 2003 is 2n5. As n becomes large,
disregarding the coefficient 2, the function f (n) behaves like n5 and it is said that
f (n) is asymptotically at most n5. The following are some common definitions that
are useful in analyzing the asymptotic behavior of functions and hence algorithms.

DEFINITION G.1.1 Let f and g be two functions f, g : N → R
+.

The function g is an asymptotically upper bound for f , denoted f (n) ∈ O (g(n))
and read f is big-O of g, if there exists a constant c > 0 and n0 ∈ N such
that ∀n ≥ n0,

f (n) ≤ cg(n).

Choset-79066 book February 23, 2005 12:26

514 G Analysis of Algorithms and Complexity Classes

The function g is an asymptotically strict upper bound for f , denoted f (n) ∈
o (g(n)) and read f is small-o of g, if for every constant c > 0 and n0 ∈ N such
that ∀n ≥ n0,

f (n) < cg(n).

The function g is an asymptotically lower bound for f , denoted f (n) ∈ � (g(n))
and read f is big-Omega of g, if there exists a constant c > 0 and n0 ∈ N such
that ∀n ≥ n0,

c f (n) ≥ g(n).

The function g is an asymptotically strict lower bound for f , denoted f (n) ∈
ω (g(n)) and read f is small-omega of g, if for every constant c > 0 and n0 ∈ N

such that ∀n ≥ n0,

f (n) > cg(n).

The function g is asymptotically equal to f , denoted f (n) ∈ � (g(n)) and read
f is theta of g, if

f (n) ∈ O (g(n)) and f (n) ∈ � (g(n)) .

Considering only the highest terms and disregarding constant factors, the
big-O notation says that the function f is no more than the function g. The big-O
notation is thought of as suppressing a constant factor. For example, f (n) =
5n4 + 7n3 − 4n2 ∈ O

(
n4

)
, f (n) = nlog n + n100 ∈ O

(
nlog n

)
, etc. When f is strictly

less than g, the small-o notation is used. The small o-notation indicates that the
function g grows much faster than the function f . For example, f (n) = log100 n ∈
o

(
n1/100

)
, f (n) = n40 ∈ o (2n), etc. The notations � and ω express the opposite of

O and o notations, respectively. Thus, the big-Omega notation indicates that f grows
no slower than g, and the small-omega notation indicates that f grows faster than
g. When the functions f and g grow at the same rate, the � notation is used. For
example, f (n) = 3n5 + n4 ∈ �

(
n5

)
.

When describing the running time of different algorithms, certain terms come
up frequently. The running times of common algorithms such as matrix multipli-
cation, sorting, shortest path, etc., are O(nc), where c is some positive constant.
In such cases, it is said that the running time is polynomial in the length of the
input n. Other algorithms, such as satisfiability of Boolean expressions, Hamiltonian
paths, decomposition of integers into prime factors, etc., are O(2nc

), where c is some
positive constant. Such algorithms are said to be running in exponential time. The

Choset-79066 book February 23, 2005 12:26

G.2 Complexity Theory 515

following table summarizes some of the common characterizations of the running
time of algorithms (c is some positive constant).

Running time

constant O (1)

logarithmic O (log n)

polylogarithmic O (logc n)

linear O (n)

polynomial O (nc)

quasipolynomial O
(
nlogc n

)

exponential O
(
2nc)

doubly expnonential O
(

22nc
)

G.2 Complexity Theory

The goal of complexity theory is to characterize the amount of resources needed for
the computation of specific problems. Common resources include sequential time,
sequential space, number of gates in Boolean circuits, parallel time in a multiprocessor
machine, etc. The exact complexity of a problem is determined by the amount of
resources that is both sufficient and necessary for its solution. Sufficiency implies
an upper bound on the amount of resources needed to solve the problem for every
instance of the input. Necessity implies a lower bound, i.e., for some instance of the
input, at least a certain amount of resources is required to solve the problem.

The amount of resources that is needed to solve a problem allows for an elegant
classification of problems according to their computational complexity. Researchers
have developed the notion of complexity classes, where a complexity class is defined
by specifying (a) the type of computation model M, (b) the resource R which is
measured in this model, and (c) an upper bound U on this resource. A complexity
class, then, consists of all problems requiring at most an amount U of resource R for
their solution in the model M. Thus, the complexity of a problem is determined by
finding to which complexity classes it belongs (by providing upper bounds on the
resource) and to which complexity classes it does not belong (by providing lower
bounds). To define complexity classes more precisely, we will need to make use of
definitions of alphabets, strings, and languages.

Choset-79066 book February 23, 2005 12:26

516 G Analysis of Algorithms and Complexity Classes

Input Representation

The amount of the resource used in a complexity class is expressed in terms of the
length of the input. It is not clear, however, how to define the length of the input since
it can be of different types and values, i.e., integers, names, graphs, matrices, etc. It is
convenient to have a unique and clear definition of the length of the input. To this end,
researchers have proposed the encoding of inputs as strings over a set of symbols and
have defined the length of the input as the number of symbols of the encoding string.

DEFINITION G.2.1 An alphabet, usually denoted by �, is any finite set of symbols.

DEFINITION G.2.2 A string s over an alphabet � is a sequence of symbols from �.
The length of a string s, denoted |s|, is equal to the number of its symbols. The set of
all strings over the alphabet � is denoted by �∗.

The encoding of an input a is denoted by enc(a). To illustrate, let � = {0, 1}. Then,
integers can be encoded in standard binary form, e.g., the encodings of 5 and 35 are
101 and 100001 of lengths 3 and 6, respectively. The encoding of a graph G = (V , E),
where V = {v1, . . . , vn} ⊂ N and E = {(v′

1, v′′
1), . . . , (v′

m , v′′
m)} ⊆ V × V , can be

obtained by concatenating the encodings of its vertex set and its edge set. The vertex set
and the edge set can be encoded by concatenating the encodings of the vertices and of
the edges, respectively. Special markers can be used to indicate the ending of a vertex
and edge encoding. Thus, enc(G) = enc(v1)◦enc(∗)◦· · ·◦enc(vn)◦enc(∗)◦enc(+)◦
enc(v′

1) ◦ enc(∗) ◦ enc(v′′
1) ◦ enc(∗) ◦ · · · ◦ enc(v′

m) ◦ enc(∗) ◦ enc(v′′
m) ◦ enc(∗), where

enc(∗) and enc(+) are the encodings of special markers used to separate vertices and
indicate the start of the edge encodings, respectively, and ◦ denotes concatenation.

Problem Abstraction

A problem can be thought of as mapping an input instance to a solution. In many
cases, we are interested in problems whose solution is either “yes” or “no.” Such
problems are known as decision problems. For example, the graph-coloring problem
asks whether it is possible to color the vertices of a graph G = (V , E) using k different
colors such that no two vertices connected by an edge have the same color. In many
other cases, we are interested in finding the best solution according to some criteria.
Such problems are known as optimization problems. To continue our example, we
may be interested in determining the minimum number of colors needed to color
a graph. Generally, an optimization problem can be cast as a decision problem by
imposing an upper bound. In our example, we can determine the minimum number of
colors needed to color a graph G = (V , E) by invoking the corresponding decision
problem with k = 1, . . . , |V | until the answer to the decision problem is “yes.”

Choset-79066 book February 23, 2005 12:26

G.2 Complexity Theory 517

In the rest of the section, we restrict our attention to decision problems since their
definition is more amendable to complexity analysis and since other problems can be
cast as decision problems.

Languages

Languages provide a convenient framework for expressing decision problems.

DEFINITION G.2.3 A language L over an alphabet � is a set of strings over the
alphabet �, i.e., L ⊆ �∗.

The language defined by a decision problem includes all the input instances whose
solution is “yes.” For example, the graph-coloring problem defines the language whose
elements are all the encodings of graphs that can be colored using k colors.

Acceptance of Languages

An algorithm A accepts a string s ∈ �∗ if the output of the algorithm A(s) is “yes.”
The string s is rejected by the algorithm if its output A(s) is “no.” The language L
accepted by an algorithm A is the set of strings accepted by the algorithm, i.e.,

L = {s : s ∈ �∗ and A(s) = “yes”}.
Note that even if L is the language accepted by the algorithm A, given some input
string s �∈ L , the algorithm will not necessarily reject s. It may never be able to
determine that s �∈ L and thus loop forever. Language L is decided by an algorithm
A if for every string s ∈ �∗, A accepts s if s ∈ L and A rejects s if s �∈ L . If L is
decided by A, it guarantees that on any input string the algorithm will terminate.

DEFINITION G.2.4 Let t : N → N be a function. An algorithm A decides a language
L over some alphabet � in time O(t (n)) if for every string s of length n over �, the
algorithm A in O(t (n)) steps accepts s if s ∈ L or rejects s if s �∈ L. Language L is
decided in time O(t (n)).

Complexity Classes

We are now ready to define some of the most important complexity classes. We start
with the definition of the polynomial-time complexity class.

DEFINITION G.2.5 A language L is in P if there exists a polynomial-time algorithm
A that decides L.

Choset-79066 book February 23, 2005 12:26

518 G Analysis of Algorithms and Complexity Classes

The complexity class P encompasses a wide variety of problems such as sorting,
shortest path, Fourier transform, etc. Roughly speaking, P corresponds to all the
problems that admit an efficient algorithm. Generally, we think of problems that are
solvable by polynomial time algorithms as being tractable, or easy, and problems that
require superpolynomial time as being intractable, or hard.

Indeed, for many problems there are no polynomial-time algorithms. For example,
deciding whether or not a graph G = (V , E) can be colored with three colors is
not known to be in P. These problems can be solved by brute-force algorithms in
exponential time.

DEFINITION G.2.6 A language L is in EXPTIME if there exists an exponential-time
algorithm A that decides L.

Interestingly enough, many of these hard problems have a feature that is called
polynomial-time verifiability. That is, although currently it is not possible to solve
these problems in polynomial time, if a candidate solution to the problem, called a
certificate, is given, the correctness of the solution can be verified in polynomial time.
For example, a certificate for the graph-coloring problem with three colors would be a
mapping that for each vertex indicates its color. The correctness can be verified in poly-
nomial time by examining all the edges and checking for each edge that the colors of
its two vertices are different. This observation is captured by the following definition.

DEFINITION G.2.7 A language L is in NP if there exists a polynomial-time verifier
algorithm A and a constant c such that for every string s there exists a certificate y
of length O(|s|c) such that A(s, y) = “yes” if s ∈ L and A(s, y) = “no” if s �∈ L.

It is clear that P ⊆ NP since any language that can be decided in polynomial
time can also be decided without the need of a certificate. The most fundamental
question in complexity theory is whether P ⊂ NP or P = NP. After many years of
extensive research the question remains unanswered. An important step was made
in the 70s when Cook and Levin related the complexity of certain NP problems to
the complexity of all NP problems. They were able to prove that if a polynomial-
time algorithm existed for one of these problems, then a polynomial-time algorithm
could be constructed for any NP problem. These special problems form an important
complexity class known as NP-complete.

DEFINITION G.2.8 A language L1 is polynomial time reducible to a language L2,
denoted L1 ≤p L2, if there exists a polynomial time computable function f : �∗ →
�∗, such that for every s ∈ �∗,

s ∈ L1 ⇐⇒ f (s) ∈ L2.

Choset-79066 book February 23, 2005 12:26

G.2 Complexity Theory 519

f is called the reduction function and the algorithm F that computes f is called the
reduction algorithm.

If a language L1 is reducible to a language L2 via some polynomial-time computable
function f , and if L2 has a polynomial-time algorithm A2, then we can construct a
polynomial-time algorithm A1 for L1. Given some input string s, algorithm A1 invokes
F to compute f (s) and then invokes A2 on f (s) and gives the same answer as A2.
Thus, via reductions, the solution of one problem can be used to solve other problems.

DEFINITION G.2.9 A language L is in NP-complete if

1. L ∈ NP, and

2. if L ′ ∈ NP, then L ′ ≤p L.

If L satisfies the second condition, but not necessarily the first condition, then L is
NP-hard.

It is clear now that if an NP-complete problem has a polynomial-time algorithm,
then via reductions it is possible to construct a polynomial-time algorithm for any
problem in NP. This would imply that P = NP.

In addition to time, another common resource of interest is space. Using the same
framework, complexity classes can be defined based on the amount of space the
algorithms use to solve problems.

DEFINITION G.2.10 Let t : N → N be a function. An algorithm A decides a language
L over some alphabet � in space O(t (n)) if for every string s of length n over �,
the algorithm A using at most O(t (n)) space accepts s if s ∈ L or rejects s if s �∈ L.
The language L is decided in space O(t (n)).

DEFINITION G.2.11 A language L is in PSPACE if there exists a polynomial-space
algorithm A that decides L.

DEFINITION G.2.12 A language L is in PSPACE-complete if

1. L ∈ PSPACE, and

2. if L ′ ∈ PSPACE, then L ′ ≤p L.

If L satisfies the second condition, but not necessarily the first condition, then L is
PSPACE-hard.

Choset-79066 book February 23, 2005 12:26

520 G Analysis of Algorithms and Complexity Classes

It can be easily shown that the relationship between the different complexity classes
that have been defined in this section is as follows:

P ⊆ NP ⊆ PSPACE ⊆ EXPTIME.

G.3 Completeness

When describing robotics algorithms in this book, several notions of “completeness”
are used.

DEFINITION G.3.1 An algorithm A is complete if in a finite amount of time, A always
finds a solution if a solution exists or otherwise A determines that a solution does not
exist.

DEFINITION G.3.2 An algorithm A is resolution complete if in a finite amount of time
and for some small resolution step ε > 0, A always finds a solution if a solution exists
or otherwise A determines that a solution does not exist.

DEFINITION G.3.3 An algorithm A is probabilistically complete if the probability
of finding a solution, if a solution exists, converges to 1, when the running time
approaches infinity.

Complete algorithms include many common algorithms such as A∗, shortest-path,
scheduling problems, etc. Resolution complete algorithms have to approximate a con-
tinuous measure by discretizing it at small steps. Ray tracing from graphics algorithms
and sampling-based planning algorithms that use a grid representation of the configu-
ration space are examples of resolution complete algorithms. Probabilistic complete-
ness guarantees that given enough time, a solution will be found (if a solution exists).
If a solution does not exist, the algorithm may not be able to necessarily detect this
fact and thus runs forever. In practice, probabilistic algorithms terminate and declare
failure if an upper bound on the amount of time the algorithm could use has passed and
a solution has not been found. The basic Probabilistic RoadMap planner (PRM) is an
example of a probabilistically complete algorithm. Such an algorithm trades complete-
ness for efficiency; in many cases, for the same problem, a probabilistically complete
algorithm will find a solution faster (if a solution exists) than a complete algorithm.

Choset-79066 book February 23, 2005 13:10

H Graph Representation and Basic Search

H.1 Graphs

A graph is a collection of nodes and edges, i.e., G = (V , E). See figure H.1. Some-
times, another term for a node is vertex, and this chapter uses the two terms inter-
changeably. We use G for graph, V for vertex (or node), and E for edge. Typically
in motion planning, a node represents a salient location, and an edge connects two
nodes that correspond to locations that have an important relationship. This relation-
ship could be that the nodes are mutually accessible from each other, two nodes are
within line of sight of each other, two pixels are next to each other in a grid, etc. This
relationship does not have to be mutual: if the robot can traverse from nodes V1 to
V2, but not from V2 to V1, we say that the edge E12 connecting V1 and V2 is directed.
Such a collection of nodes and edges is called a directed graph. If the robot can travel
from V1 to V2 and vice versa, then we connect V1 and V2 with two directed edges E12

and E21. If for each vertex Vi that is connected to Vj , both Ei j and Eji exist, then
instead of connecting Vi and Vj with two directed edges, we connect them with a
single undirected edge. Such a graph is called an undirected graph. Sometimes, edges
are annotated with a non-negative numerical value reflective of the costs of traversing
this edge. Such values are called weights.

A path or walk in a graph is a sequence of nodes {Vi } such that for adjacent nodes
Vi and Vi+1, Ei i+1 exists (and thus connects Vi and Vi+1). A graph is connected if for
all nodes Vi and Vj in the graph, there exists a path connecting Vi and Vj . A cycle is a

Choset-79066 book February 23, 2005 13:10

522 H Graph Representation and Basic Search

V1

V2

V3

V4

V5

V7

V8

E3 E4

E6
E2

E1
E5

E7

V6

V1

V2

V3

V4

V5

V7

V8

E3

E6
E2

E5

E7

V6

E4

E8
E1

Figure H.1 A graph is a collection of nodes and edges. Edges are either directed (left) or
undirected (right).

E3

E1

V1

V3

V2
V8

V7

V6

V5

V4

E2
E6

E4

E7

E5

Root

Figure H.2 A tree is a type of directed acyclic graph with a special node called the root. A
cycle in a graph is a path through the graph that starts and ends at the same node.

path of n vertices such that first and last nodes are the same, i.e., V1 = Vn (figure H.2).
Note that the “direction” of the cycle is ambiguous for undirected graphs, which in
many situations is sufficient. For example, a graph embedded in the plane can have
an undirected cycle which could be both clockwise and counterclockwise, whereas a
directed cycle can have one orientation.

A tree is a connected directed graph without any cycles (figure H.2). The tree has
a special node called the root, which is the only node that possesses no incoming arc.
Using a parent-child analogy, a parent node has nodes below it called children; the
root is a parent node but cannot be a child node. A node with no children is called a
leaf . The removal of any nonleaf node breaks the connectivity of the tree.

Typically, one searches a tree for a node with some desired properties such as the
goal location for the robot. A depth-first search starts at the root, chooses a child,

Choset-79066 book February 23, 2005 13:10

H.1 Graphs 523

then that node’s child, and so on until finding either the desired node or a leaf. If the
search encounters a leaf, the search then backs up a level and then searches through
an unvisited child until finding the desired node or a leaf, repeating this process until
the desired node is found or all nodes are visited in the graph (figure H.3).

Breadth-first search is the opposite; the search starts at the root and then visits all
of the children of the root first. Next, the search then visits all of the grandchildren,
and so forth. The belief here is that the target node is near the root, so this search
would require less time (figure H.3).

A grid induces a graph where each node corresponds to a pixel and an edge connects
nodes of pixels that neighbor each other. Four-point connectivity will only have
edges to the north, south, east, and west, whereas eight-point connectivity will have
edges to all pixels surrounding the current pixel. See figure H.4.

1

2

3 8

9

4

5
6

7

1

2

87

43

6

10

910 5

Figure H.3 Depth-first search vs. breadth-first search. The numbers on each node reflect the
order in which nodes are expanded in the search.

n1 n2 n3

n6n5n4

n7 n8 n9

n1 n2 n3

n6n5n4

n7 n8 n9

n1 n2 n3

n6n5n4

n7 n8 n9

n1 n2 n3

n4

n7

n6n5

n8 n9

Figure H.4 Four-point connectivity assumes only four neighbors, whereas eight-point
connectivity has eight.

Choset-79066 book February 23, 2005 13:10

524 H Graph Representation and Basic Search

StackQueue

Push here Pop here Push and pop here

Figure H.5 Queue vs. stack.

As can be seen, the graph that represents the grid is not a tree. However, the breadth-
first and depth-first search techniques still apply. Let the link length be the number
of edges in a path of a graph. Sometimes, this is referred to as edge depth. Link
length differs from path length in that the weights of the edges are ignored; only the
number of edges count. For a general graph, breadth-first search considers each of
the nodes that are the same link length from the start node before going onto child
nodes. In contrast, depth-first search considers a child first and then continues through
the children successively considering nodes of increasing link length away from the
start node until it reaches a childless or already visited node (i.e., a cycle). In other
words, termination of one iteration of the depth-first search occurs when a node has
no unvisited children.

The wave-front planner (chapter 4, section 4.5) is an implementation of a breadth-
first search. Breadth-first search, in general, is implemented with a list where the
children of the current node are placed into the list in a first-in, first-out (FIFO)
manner. This construction is commonly called a queue and forces all nodes of the
same linklength from the start to be visited first (figure H.5). The breadth-first search
starts with placing the start node in the queue. This node is then expanded by it being
popped off (i.e., removed from the front) the queue and all of its children being placed
onto it. This procedure is then repeated until the goal node is found or until there are
no more nodes to expand, at which time the queue is empty. Here, we expand all
nodes of the same level (i.e., link length from the start) first before expanding more
deeply into the graph.

Figure H.6 displays the resulting path of breadth-first search. Note that all paths
produced by breadth-first search in a grid with eight-point connectivity are optimal
with respect to the “eight-point connectivity metric.” Figure H.7 displays the link
lengths for all shortest paths between each pixel and the start pixel in the free space
in Figure H.6. A path can then be determined using this information via a gradient
descent of link length from the goal pixel to the start through the graph as similarly
done with the wavefront algorithm.

Depth-first search contrasts breadth-first search in that nodes are placed in a list
in a last-in, first-out (LIFO) manner. This construction is commonly called a stack
and forces nodes that are of greater and greater link length from the start node to be

Choset-79066 book February 23, 2005 13:10

H.1 Graphs 525

Figure H.6 White pixels denote the path that was determined with breadth-first search.

Figure H.7 A plot of linklength values from the start (upper left corner) node where colored
pixels correspond to link length (where the lighter the pixel the greater the linklength in the
graph) and black pixels correspond to obstacles.

visited first. Now the expansion procedure sounds the same but is a little bit different;
here, we pop the stack and push all of its children onto the stack, except popping
and pushing occur on the same side of the list (figure H.5). Again, this procedure is
repeated until the goal node is found or there are no more nodes to expand. Here, we
expand nodes in a path as deep as possible before going onto a different path.

Figure H.8 displays the resulting path of depth-first search. In this example, depth-
first search did not return an optimal path but it afforded a more efficient search

Choset-79066 book February 23, 2005 13:10

526 H Graph Representation and Basic Search

Figure H.8 White pixels denote the path that was determined with depth-first search.

Figure H.9 A plot of linklength values from the start (upper left corner) node where colored
pixels correspond to link lengths of paths defined by the depth-first search. The lighter the pixel
the greater the linklengths in the graph; black pixels correspond to obstacles.

in that the goal was found more quickly than breadth-first search. Figure H.9 is
similar to figure H.7, except the link lengths here do not correspond to the shortest
path to the start; instead, the link lengths correspond to the paths derived by the depth-
first search. Again, we can use a depth-first search algorithm to fill up such a map and
then determine a path via gradient descent from the goal pixel to the start.

Another common search is called a greedy search which expands nodes that are
closest to the goal. Here, the data structure is called a priority queue in that nodes are

Choset-79066 book February 23, 2005 13:10

H.2 A∗ Algorithm 527

placed into a sorted list based on a priority value. This priority value is a heuristic
that measures distance to the goal node.

H.2 A∗ Algorithm

Breadth-first search produces the shortest path to the start node in terms of link lengths.
Since the wave-front planner is a breadth-first search, a four-point connectivity wave-
front algorithm produces the shortest path with respect to the Manhattan distance
function. This is because it implicitly has an underlying graph where each node
corresponds to a pixel and neighboring pixels have an edge length of one. However,
shortest-path length is not the only metric we may want to optimize. We can tune our
graph search to find optimal paths with respect to other metrics such as energy, time,
traversability, safety, etc., as well as combinations of them.

When speaking of graph search, there is another opportunity for optimization:
minimize the number of nodes that have to be visited to locate the goal node subject
to our path-optimality criteria. To distinguish between these forms of optimality, let us
reserve the term optimality to measure the path and efficiency to measure the search,
i.e., the number of nodes visited to determine the path. There is no reason to expect
depth-first and breadth-first search to be efficient, even though breadth-first search
can produce an optimal path.

Depth-first and breadth-first search in a sense are uninformed, in that the search
just moves through the graph without any preference for or influence on where the
goal node is located. For example, if the coordinates of the goal node are known, then
a graph search can use this information to help decide which nodes in the graph to
visit (i.e., expand) to locate the goal node.

Alas, although we may have some information about the goal node, the best we can
do is define a heuristic which hypothesizes an expected, but not necessarily actual,
cost to the goal node. For example, a graph search may choose as its next node to
explore one that has the shortest Euclidean distance to the goal because such a node
has highest possibility, based on local information, of getting closest to the goal.
However, there is no guarantee that this node will lead to the (globally) shortest path
in the graph to the goal. This is just a good guess. However, these good guesses are
based on the best information available to the search.

The A∗ algorithm searches a graph efficiently, with respect to a chosen heuristic. If
the heuristic is “good,” then the search is efficient; if the heuristic is “bad,” although a
path will be found, its search will take more time than probably required and possibly
return a suboptimal path. A∗ will produce an optimal path if its heuristic is optimistic.

Choset-79066 book February 23, 2005 13:10

528 H Graph Representation and Basic Search

actual

he
ur

ist
ic

di
sta

nc
e

di
st

an
ce

Figure H.10 The heuristic between two nodes is the Euclidean distance, which is less than
the actual path length in the grid, making this heuristic optimistic.

An optimistic, or admissible, heuristic always returns a value less than or equal to the
cost of the shortest path from the current node to the goal node within the graph. For
example, if a graph represented a grid, an optimistic heuristic could be the Euclidean
distance to the goal because the L2 distance is always less than or equal to the L1

distance in the plane (figure H.10).
First, we will explain the A∗ search via example and then formally introduce the

algorithm. See figure H.11 for a sample graph. The A∗ search has a priority queue
which contains a list of nodes sorted by priority, which is determined by the sum of
the distance traveled in the graph thus far from the start node, and the heuristic.

The first node to be put into the priority queue is naturally the start node. Next,
we expand the start node by popping the start node and putting all adjacent nodes to
the start node into the priority queue sorted by their corresponding priorities. Since
node B has the greatest priority, it is expanded next, i.e., it is popped from the queue
and its neighbors are added (figure H.12). Note that only unvisited nodes are added
to the priority queue, i.e., do not re-add the start node.

Now, we expand node H because it has the highest priority. It is popped off of the
queue and all of its neighbors are added. However, H has no neighbors, so nothing
is added to the queue. Since no new nodes are added, no more action or expansion
will be associated with node H (figure H.12). Next, we pop off the node with greatest
priority, i.e., node A, and expand it, adding all of its adjacent neighbors to the priority
queue (figure H.12).

Next, node E is expanded which gives us a path to the goal of cost 5. Note that this
cost is the real cost, i.e., the sum of the edge costs to the goal. At this point, there are

Choset-79066 book February 23, 2005 13:10

H.2 A∗ Algorithm 529

3 3 3

3

3

3 3

1

1 22

3

3

3

2

2

0

2

24
1

1

1 1

1

1 1

1 1

A

B

CD

E F

G H I

J K

L

GOAL

Start

Figure H.11 Sample graph where each node is labeled by a letter and has an associated
heuristic value which is contained inside the node icon. Edge costs are represented by numbers
adjacent to the edges and the start and goal nodes are labeled. We label the start node with a
zero to emphasize that it has the highest priority at first.

nodes in the priority queue which have a priority value greater than the cost to the
goal. Since these priority values are lower bounds on path cost to the goal, all paths
through these nodes will have a higher cost than the cost of the path already found.
Therefore, these nodes can be discarded (figure H.12).

The explicit path through the graph is represented by a series of back pointers. A
back pointer represents the immediate history of the expansion process. So, the back
pointers from nodes A, B, and C all point to the start. Likewise, the back pointers to
D, E, and F point to A. Finally, the back pointer of goal points to E. Therefore, the
path defined with the back pointers is start, A, E, and goal. The arrows in figure H.12
point in the reverse direction of the back pointers.

Even though a path to the goal has been determined, A∗ is not finished because
there could be a better path. A∗ knows this is possible because the priority queue

Choset-79066 book February 23, 2005 13:10

530 H Graph Representation and Basic Search

No expansion
GOAL(5)E (3)

C (4)

D (5)

I (5)

F (7)

G (7)

H (3)

A (4)

C (4)

I (5)

G (7)

H (3)

A (4)

C (4)

I (5)

G (7)

B (3)

A (4)

C (4)

B (3)

A (4)

C (4)

Figure H.12 (Left) Priority queue after the start is expanded. (Middle) Priority queue after
the second node, B, is expanded. (Right) Three iterations of the priority queue are displayed.
Each arrow points from the expanded node to the nodes that were added in each step. Since node
H had no unvisited adjacent cells, its arrow points to nothing. The middle queue corresponds
to two actions. Node E points to the goal which provides the first candidate path to the goal.
Note that nodes D, I, F, and G are shaded out because they were discarded.

No expansion
GOAL(5)

GOAL(4)
E (3)

C (4)

D (5)

I (5)

F (7)

G (7)

H (3)

A (4)

C (4)

I (5)

G (7)

B (3)

A (4)

C (4) K (4)

L (5)

J (5)

Figure H.13 Four displayed iterations of the priority queue with arrows representing the
history of individual expansions. Here, the path to the goal is start, C, K, goal.

still contains nodes whose value is smaller than that of the goal state. The priority
queue at this point just contains node C and is then expanded adding nodes J, K, and
L to the priority queue. We can immediately remove J and L because their priority
values are greater than or equal the cost of the shortest path found thus far. Node K
is then expanded finding the goal with a path cost shorter than the previously found
path through node E. This path becomes the current best path. Since at this point the
priority queue does not possess any elements whose value is smaller than that of the
goal node, this path results in the best path (figure H.13).

H.2.1 Basic Notation and Assumptions

Now, we can more formally define the A∗ algorithm. The input for A∗ is the graph
itself. These nodes can naturally be embedded into the robot’s free space and thus can
have coordinates. Edges correspond to adjacent nodes and have values corresponding
to the cost required to traverse between the adjacent nodes. The output of the A∗

Choset-79066 book February 23, 2005 13:10

H.2 A∗ Algorithm 531

algorithm is a back-pointer path, which is a sequence of nodes starting from the goal
and going back to the start.

We will use two additional data structures, an open set O and a closed set C . The
open set O is the priority queue and the closed set C contains all processed nodes.
Other notation includes

Star(n) represents the set of nodes which are adjacent to n.

c(n1, n2) is the length of edge connecting n1 and n2.

g(n) is the total length of a backpointer path from n to qstart .

h(n) is the heuristic cost function, which returns the estimated cost of shortest
path from n to qgoal .

f (n) = g(n) +h(n) is the estimated cost of shortest path from qstart to qgoal via n.

The algorithm can be found in algorithm 24.

H.2.2 Discussion: Completeness, Efficiency, and Optimality

Here is an informal proof of completeness for A∗. A∗ generates a search tree, which
by definition, has no cycles. Furthermore, there are a finite number of acyclic paths
in the tree, assuming a bounded world. Since A∗ uses a tree, it only considers acyclic
paths. Since the number of acyclic paths is finite, the most work that can be done,

Algorithm 24 A∗ Algorithm
Input: A graph
Output: A path between start and goal nodes

1: repeat
2: Pick nbest from O such that f (nbest) ≤ f (n), ∀n ∈ O .
3: Remove nbest from O and add to C .
4: If nbest = qgoal , EXIT.
5: Expand nbest : for all x ∈ Star(nbest) that are not in C .
6: if x /∈ O then
7: add x to O .
8: else if g(nbest) + c(nbest , x) < g(x) then
9: update x’s backpointer to point to nbest

10: end if
11: until O is empty

Choset-79066 book February 23, 2005 13:10

532 H Graph Representation and Basic Search

searching all acyclic paths, is also finite. Therefore A∗ will always terminate, ensuring
completeness.

This is not to say A∗ will always search all acyclic paths since it can terminate
as soon as it explores all paths with greater cost than the minimum goal cost found.
Thanks to the priority queue, A∗ explores paths likely to reach the goal quickly first.
By doing so, it is efficient. If A∗ does search every acyclic path and does not find the
goal, the algorithm still terminates and simply returns that a path does not exist. Of
course, this also makes sense if every possible path is searched.

Now, there is no guarantee that the first path to the goal found is the cheapest/best
path. So, in quest for optimality (once again, with respect to the defined metric), all
branches must be explored to the extent that a branch’s terminating node cost (sum
of edge costs) is greater than the lowest goal cost. Effectively, all paths with overall
cost lower than the goal must be explored to guarantee that an even shorter one does
not exist. Therefore, A∗ is also optimal (with respect to the chosen metric).

H.2.3 Greedy-Search and Dijkstra’s Algorithm

There are variations or special cases of A∗. When f (n) = h(n), then the search
becomes a greedy search because the search is only considering what it “believes”
is the best path to the goal from the current node. When f (n) = g(n), the planner
is not using any heuristic information but rather growing a path that is shortest from
the start until it encounters the goal. This is a classic search called Dijkstra’s algo-
rithm. Figure H.14 contains a graph which demonstrates Dijkstra’s Algorithm. In this
example, we also show backpointers being updated (which can also occur with A∗).
The following lists the open and closed sets for the Dijkstra search in each step.

1. O = {S}

2. O = {2, 4, 1, 5}; C = {S} (1, 2, 4, 5 all point back to S)

3. O = {4, 1, 5}; C = {S, 2} (there are no adjacent nodes not in C)

1
1

1

2

22

2

3

33

4

4 5S

G

Figure H.14 Dijkstra graph search example.

Choset-79066 book February 23, 2005 13:10

H.2 A∗ Algorithm 533

4. O = {1,5,3}; C = {S, 2, 4} (1, 2, 4 point to S; 5 points to 4)

5. O = {5,3}; C = {S, 2, 4, 1}

6. O = {3, G}; C = {S, 2, 4, 1} (goal points to 5 which points to 4 which points to S)

H.2.4 Example of A∗ on a Grid

Figure H.15 contains an example of a grid world with a start and a goal identified
accordingly. We will assume that the free space uses eight-point connectivity, and thus
cell (3, 2) is adjacent to cell (4, 3), i.e., the robot can travel from (3, 2) to (4, 3). Each
of the cells also has its heuristic distance to the goal where we use a modified metric
which is not the Manhattan or the Euclidean distance. Instead, between free space
pixels, a vertical or horizontal step has length 1 and a diagonal has length 1.4 (our
approximation of

√
2). The cost of traveling from a free space pixel to an obstacle pixel

is made to be arbitrarily high; we chose 10000. So one pixel step from a free space
to an obstacle pixel along a vertical or horizontal direction costs 10000 and one pixel
step along a diagonal direction costs 10000.4. Here, we are assuming that our graph
connects all cells in the grid, not just the free space, and the prohibitively high cost
of moving into an obstacle will prevent the robot from collision (figure H.16).

Note that this metric, in the free space, does not induce a true Euclidean met-
ric because two cells sideways and one cell up is 2.4, not

√
5. However, this met-

ric is quite representative of path length within the grid. This heuristic is optimistic
because the actual cost to current cell to the goal will always be greater than or equal

Figure H.15 Heuristic values are set, but backpointers and priorities have not.

Choset-79066 book February 23, 2005 13:10

534 H Graph Representation and Basic Search

x5x6x7

x4x1x8

x3x2x9 c(x1, x2) = 1
c(x1, x9) = 1.4

c(x1, x8) = 10000, if x8 is in
obstacle, x1 is a free cell

c(x1,x9) = 10000.4, if x9 is in
obstacle, x1 is a free cell

Figure H.16 Eight-point connectivity and possible cost values.

Figure H.17 Start node is put on priority queue, displayed in upper right.

to the heuristic. Thus far, in figure H.15 the back pointers and priorities have not
been set.

The start pixel is put on the priority queue with a priority equal to its heuristic.
See figure H.17. Next, the start node is expanded and the priority values for each of
the start’s neighbors are determined. They are all put on the priority queue sorted in
ascending order by priority. See figure H.18(left). Cell (3, 2) is expanded next, as
depicted in figure H.18(right). Here, cells (4, 1), (4, 2), (4, 3), (3, 3), and (2, 3) are
added onto the priority queue because our graph representation of the grid includes
both free space and obstacle pixels. However, cells (4, 2), (3, 3), and (2, 3) correspond
to obstacles and thus have a high cost. If a path exists in the free space or the longest
path in the free space has a traversal cost less than our arbitrarily high number chosen
for obstacles (figure H.16), then these pixels will never be expanded. Therefore, in
the figures below, we did not display them on the priority queue.

Eventually, the goal cell is reached (figure H.19 (left)). Since the priority value of
the goal is less than the priorities of all other cells in the priority queue, the resulting

Choset-79066 book February 23, 2005 13:10

H.2 A∗ Algorithm 535

Figure H.18 (Left) The start node is expanded, the priority queue is updated, and the back-
pointers are set, which are represented by the right bottom icon. b = (i, j) points to cell (i, j).
(Right) Cell (3, 2) was expanded. Note that pixels (3, 3), (2, 3), and (4, 2) are not displayed in
the priority queue because they correspond to obstacles.

Figure H.19 (Left) The goal state is expanded. (Right) Resulting path.

path is optimal and A∗ terminates. A∗ traces the backpointers to find the optimal path
from start to goal (figure H.19 (right)).

H.2.5 Nonoptimistic Example

Figure H.20 contains an example of a graph whose heuristic values are nonoptimistic
and thus force A∗ to produce a nonoptimal path. A∗ puts node S on the priority queue
and then expands it. Next, A∗ expands node A because its priority value is 7. The goal

Choset-79066 book February 23, 2005 13:10

536 H Graph Representation and Basic Search

2

44

2

f = 13

f = 7

f = 8

A
h = 3

B
h = 10

S
h = 2

G
h = 0

Figure H.20 A nonoptimistic heuristic leads to a nonoptimal path with A∗.

node is then reached with priority value 8, which is still less than node B’s priority
value of 13. At this point, node B will be eliminated from the priority queue because
its value is greater than the goal’s priority value. However, the optimal path passes
through B, not A. Here, the heuristic is not optimistic because from B to G, h = 10
when the actual edge length was 2.

H.3 D∗ Algorithm

So far we have only considered static environments where only the robot experiences
motion. However, we can see that many worlds have moving obstacles, which could be
other robots themselves. We term such environments dynamic. There are three types
of dynamic obstacles: ones that move significantly slower than the robot, those that
move at the same speed, and finally obstacles that move much faster than the robot.
The superfast obstacle case is easy to ignore because the obstacles will be moving
so fast that there probably is no need to plan for them because they will either move
too fast for the planner to have time to account for them or they will be in and out of
the robot’s path so quickly that it does not require any consideration. In this section,
we consider dynamic environments where the world changes at a speed much slower
than the robot. An example can be a door opening and closing.

Consider the grid environment in figure H.21(left) which is identical to the one in
figure H.15, except pixel (4, 3) is a gate which can either be a free-space pixel or
an obstacle pixel. Let’s assume it starts as a free-space pixel. We can run the A∗ or

Choset-79066 book February 23, 2005 13:10

H.3 D∗ Algorithm 537

Figure H.21 (Left) A pixel world similar to figure H.15, except it has a gate, heuristic, and
minimum heuristic values. (Right) Goal node is expanded.

Dijkstra’s algorithm to determine a path from start to goal, and then follow that path
until an unexpected change occurs, which in figure H.21(left) happens at (4, 3). When
the robot encounters pixel (4, 3) and determines that it changed from a free-space to
an obstacle pixel, it can simply reinvoke the A∗ algorithm to determine a new path.
This, however, can become quite inefficient if many pixels are changing from obstacle
to free space and back. The D∗ algorithm was devised to “locally repair” the graph
allowing for an efficient updated searching in dynamic environments, hence the term
D∗ [397].

D∗ initially determines a path starting with the goal and working back to the start
using a slightly modified Dijkstra’s search. The modification involves updating a
heuristic and a minimum heuristic function. Each cell in figure H.21(left) contains a
heuristic cost (h) which for D∗ is an estimate of path length from the particular cell
to the goal, not necessarily the shortest path length to the goal as it was for A∗. In
this example, the h values do not respect the presence of obstacles when reflecting
distance to the goal node; in other words, computation of h assumes that the robot can
pass through obstacles. For example, cell (1, 6) has an h value of 6. These h values
will be updated during the initial Dijkstra search to reflect the existence of obstacles.
The minimum heuristic values (k) are the estimate of the shortest path length to the
goal. Both the h and the k values will vary as the D∗ search runs, but they are equal
upon initialization, and were derived from the metric described in figure H.16.

Initially, the goal node is placed on the queue with h = 0 and then is expanded
(figure H.21, right), adding (6, 6), (6, 5), and (7, 5) onto the queue. Next, pixel (6, 6)
is expanded adding cells (5, 6), (5, 5) onto the queue. Note that the k values are used

Choset-79066 book February 23, 2005 13:10

538 H Graph Representation and Basic Search

Figure H.22 (Left) First (6, 6) and then (7, 5) is expanded. (Right) The h values in obstacle
cells that are put on priority queue are updated.

Figure H.23 (Left) Termination of Dijkstra’s search phase: start cell is expanded. (Right)
Tracing backpointers yields the optimal path.

to determine the priority for the Dijkstra’s search (and later on for the D∗ search) and
that they are equal to the h values for the initial Dijkstra’s search.

Next, pixel (7, 5) is expanded adding cells (6, 4) and (7, 4) onto the queue
(figure H.22, left). More pixels are expanded until we arrive at pixel (4, 6) (figure H.22,
right). When (4, 6) is expanded, pixels (3, 6) and (3, 5), which are obstacle pixels,
are placed onto the priority queue. Unlike our A∗ example, we display these obsta-
cle pixels in the priority queue in figure H.22(right). Note that the h values of the
expanded obstacle pixels are all updated to prohibitively high values which reflects
the fact that they lie on obstacles.

Choset-79066 book February 23, 2005 13:10

H.3 D∗ Algorithm 539

Figure H.24 (Left) The robot physically starts tracing the optimal path. (Right) The robot
cannot trace the assumed optimal path: gate (4, 3) is closed.

The Dijkstra’s search is complete when the start node (2, 1) is expanded (fig-
ure H.23, left). The optimal path from start to goal (assuming that the gate pixel (4, 3)
is open) is found by traversing the backpointers starting from the start node to the
goal node (figure H.23(right)). The optimal path is (2, 1) −→ (3, 2) −→ (4, 3) −→
(5, 4) −→ (6, 5) −→ (7, 6). Note that pixels (1, 1), (1, 2), (1, 3), (1, 4), and (1, 6)
are still on the priority queue.

The robot then starts tracing the optimal path from the start pixel to the goal pixel.
In figure H.24(left), the robot moves from pixel (2, 1) to (3, 2). When the robot
tries to move from pixel (3, 2) to (4, 3), it finds that the gate pixel (4, 3) is closed
(figure H.24, left). In the initial search for an optimal path, we had assumed that the
gate pixel was open, and hence the current path may not be feasible. At this stage,
instead of replanning for an optimal path from the current pixel (3, 2) to goal pixel
using A∗, D∗ tries to make local changes to the optimal path.

D∗ puts the pixel (4, 3) on the priority queue because it corresponds to a discrepancy
between the map and the actual environment. Note that this pixel must have the
lowest minimum heuristic, i.e., k value, because all other pixels on the priority queue
have a k value greater than or equal to the start and all pixels along the previously
determined optimal path have a k value less than the start. The idea here is to put the
changed pixel onto the priority queue and then expand it again, thereby propagating
the possible changes in the heuristic, i.e., the h values, to pixels for which an optimal
path to the goal passes through the changed pixel.

In the current example, pixel (4, 3) is expanded, i.e., it is popped off the priority
queue and pixels whose optimal paths pass through (4, 3) are placed onto the priority

Choset-79066 book February 23, 2005 13:10

540 H Graph Representation and Basic Search

Figure H.25 (Left) The gate pixel (4, 3) is put on priority queue and expanded. The assumed
optimal path from (3, 2) to goal passed through (4, 3), so the h value is increased to a high
value to reflect that the assumed optimal path may not in fact be optimal. (Right) Pixel (3, 2)
is expanded; the h values of (2, 2),(2, 1) and (3, 1) are updated because the assumed optimal
path from these cells passed through the expanded cell. (4, 1)) remains unaffected.

queue with updated heuristic values (h values). The new h values are the h values of
the changed pixel plus the path cost from the changed pixel to the given pixel. This
path cost is a high number which we set to 10000.4 if it passes diagonally through an
obstacle pixel. Therefore, pixel (3, 2) has an h value equal to 10004.6 (figure H.25,
left).

Next, pixel (3, 2) is expanded because its k value is the smallest. However, its k
value is less than its h value and we term such pixels as having a raised state. When
a pixel is in a raised state, its back pointer may no longer point to an optimal path.
Now, pixels (2, 2), (2, 1), (3, 1), and (4, 1) are on the priority queue. The h values of
cells (2, 2), (2, 1), and (3, 1) are updated to high values to reflect that the estimated
optimal path from these cells to the goal passed through the gate cell, and may not
be optimal anymore. However, the optimal path for pixel (4, 1) did not pass through
the gate, and hence its h value stays the same (figure H.25, right).

Pixel (1, 6) is expanded next, but it does not affect the h values of its neighbors.
Next pixel (4, 1) is expanded and pixels (3, 2), (3, 1), (5, 1), and (5, 2) are put onto
the priority queue (figure H.26(left). Now the h values of (5, 1) and (5, 2) remain
unaffected, however, for cell (3, 2), the goal can now possibly be reached in h(4, 1) +
1.4 = 6.2+1.4 = 7.6 because cell (4, 1) is in a lowered state, i.e., it is a cell whose h
values did not have to be updated because of the gate. Therefore, cell (3, 2) receives
an h value of 7.6. The backpointer of (3, 2) is now set pointing toward (4, 1). The
initially determined optimal path from (4, 1) to the goal did not pass through the

Choset-79066 book February 23, 2005 13:10

H.3 D∗ Algorithm 541

Figure H.26 (Left) (4, 1) is expanded; (5, 1) and (5, 2) remain unaffected, the h values of
(3, 2) and (3, 1) are lowered to reflect the lowered heuristic value because of detour, while the
minimum-heuristic values of these two cells are increased, and the backpointers of these cells
are set pointing to (4, 1). (Right) The robot traces the new locally modified optimal path.

gate pixel, and hence it indeed is optimal even after the change of state of the gate
pixel. Then, the path obtained by concatenating the (3, 2) → (4, 1) transition and
the optimal path from (4, 1) will be optimal for (3, 2). Thus, the estimate for the best
path from (3, 2) toward the goal, i.e., k(3, 2), is now 7.6, and the process terminates.
The robot then physically traces the new optimal path from (3, 2) to reach the goal
(figure H.26(right)).

See algorithms 25–31 for a description of the D∗ algorithm. This algorithm uses
the following notation.

X represents a state.

O is the priority queue.

L is the list of all states.

G is the goal state.

S is the start state.

t (X) is value of state with regards to the priority queue.

– t (X) = N EW , if X has never been in O ,
– t (X) = O P E N , if X is currently in O , and
– t (X) = C L O SE D, if X was in O but currently is not.

Choset-79066 book February 23, 2005 13:10

542 H Graph Representation and Basic Search

Algorithm 25 D∗ Algorithm
Input: List of all states L
Output: The goal state, if it is reachable, and the list of states L are updated so that
the backpointer list describes a path from the start to the goal. If the goal state is not
reachable, return NULL.

1: for each X ∈ L do
2: t(X) = NEW
3: end for
4: h(G) = 0
5: O = {G}
6: Xc = S

{The following loop is Dijkstra’s search for an initial path}
7: repeat
8: kmin = P ROC E SS − ST AT E(O , L)
9: until (kmin = −1) or (t (Xc) = C L O SE D)

10: P = G ET − B AC K P O I N T E R − L I ST (L , Xc, G) (algorithm 26)
11: if P = NULL then
12: Return (NULL)
13: end if
14: repeat
15: for each neighbor Y ∈ L of Xc do
16: if r (Xc, Y) �= c(Xc, Y) then
17: M O DI FY − C O ST (O , Xc, Y, r (Xc, Y))
18: repeat
19: kmin = P ROC E SS − ST AT E(O , L)
20: until (kmin ≥ h(Xc)) or (kmin = −1)
21: P = G ET − B AC K P O I N T E R − L I ST (L , Xc, G)
22: if P = NULL then
23: Return (NULL)
24: end if
25: end if
26: end for
27: Xc = the second element of P {Move to the next state in P}.
28: P = G ET − B AC K P O I N T E R − L I ST (L , Xc, G)
29: until Xc = G
30: Return (Xc)

Choset-79066 book February 23, 2005 13:10

H.3 D∗ Algorithm 543

Algorithm 26 G ET − B AC K P O I N T E R − L I ST (L , S, G)
Input: A list of states L and two states (start and goal)
Output: A list of states from start to goal as described by the backpointers in the list
of states L

1: if path exists then
2: Return (The list of states)
3: else
4: Return (NU L L)
5: end if

Algorithm 27 I N SE RT (O , X, hnew)
Input: Open list, a state, and an h-value
Output: Open list is modified

1: if t (X) = N EW then
2: k(X) = hnew

3: else if t (X) = O P E N then
4: k(X) = min(k(X), hnew)
5: else if t (X) = C L O SE D then
6: k(X) = min(h(X), hnew)
7: end if
8: h(X) = hnew

9: t (X) = O P E N
10: Sort O based on increasing k values

c(X, Y) is the estimated path length between adjacent states X and Y .

h(X) is the estimated cost of a path from X to Goal (heuristic).

k(X) is the estimated cost of a shortest path from X to Goal (minimum-heuristic
= min h(X) before X is put on O , values h(X) takes after X is put on O).

b(X) = Y implies that Y is a parent state of X , i.e. the path is like X −→ Y −→ G.

r (X, Y) is the measured distance adjacent states X and Y .

Choset-79066 book February 23, 2005 13:10

544 H Graph Representation and Basic Search

Algorithm 28 M O DI FY − C O ST (O , X, Y, cval)
Input: The open list, two states and a value
Output: A k-value and the open list gets updated

1: c(X, Y) = cval
2: if t (X) = C L O SE D then
3: I N SE RT (O , X, h(X))
4: end if
5: Return G ET − K M I N (O) (algorithm 30)

Algorithm 29 M I N − ST AT E(O)
Input: The open list O
Output: The state with minimum k value in the list related values

1: if O = ∅ then
2: Return (−1)
3: else
4: Return (argminY∈Ok(Y))
5: end if

Algorithm 30 G ET − K M I N (O)
Input: The open list O
Output: Lowest k-value of all states in the open list

1: if O = ∅ then
2: Return (−1)
3: else
4: Return (minY∈O k(Y))
5: end if

Choset-79066 book February 23, 2005 13:10

H.3 D∗ Algorithm 545

Algorithm 31 PROCESS-STATE
Input: List of all states L and the list of all states that are open O
Output: A kmin , an updated list of all states, and an updated open list

1: X = M I N − ST AT E(O) (algorithm 29)
2: if X = NU L L then
3: Return (−1)
4: end if
5: kold = G ET − K M I N (O) (algorithm 30)
6: DE L ET E(X)
7: if kold < h(X) then
8: for each neighbor Y ∈ L of X do
9: if h(Y) ≤ kold and h(X) > h(Y) + c(Y, X) then

10: b(X) = Y
11: h(X) = h(Y) + c(Y, X);
12: end if
13: end for
14: else if kold = h(X) then
15: for each neighbor Y ∈ L of X do
16: if (t (Y) = N EW) or (b(Y) = X and h(Y) �= h(X) + c(X, Y)) or (b(Y) �=

X and h(Y) > h(X) + c(X, Y)) then
17: b(Y) = X
18: I N SE RT (O , Y, h(X) + c(X, Y)) (algorithm 27)
19: end if
20: end for
21: else
22: for each neighbor Y ∈ L of X do
23: if (t (Y) = N EW) or (b(Y) = X and h(Y) �= h(X) + c(X, Y)) then
24: b(Y) = X
25: I N SE RT (O , Y, h(X) + c(X, Y))
26: else if b(Y) �= X and h(Y) > h(X) + c(X, Y) then
27: I N SE RT (O , X, h(X))
28: else if (b(Y) �= X and h(X) > h(Y) + c(X, Y)) and (t (Y) = C L O SE D) and

(h(Y) > kold) then
29: I N SE RT (O , Y, h(Y))
30: end if
31: end for
32: end if
33: Return G ET − K M I N (O) (algorithm 30)

Choset-79066 book February 23, 2005 13:10

546 H Graph Representation and Basic Search

H.4 Optimal Plans

There exists a huge number of search algorithms in the literature, with the ones
discussed here being just the most basic ones. All of the techniques discussed here
result in a path. A path is sufficient if the robot is able to follow it. Sometimes,
randomness may push the robot off its path. One possibility is to replan, as we did in
D∗ (albeit for different reasons: above the environment changed and thereby mandated
replanning). Another is to determine the best action for all nodes in the graph, not
just the ones along the shortest path. A mapping from nodes to actions is called
a universal plan, or policy. Techniques for finding optimal policies are known as
universal planners and can be computationally more involved than the shortest path
techniques surveyed here. One simple way to attain a universal plan to a goal is to
run Dijkstra’s algorithm backward (as in D∗): After completion, we know for each
node in the graph the length of an optimal path to the goal, along with the appropriate
action. Generalizations of this approach are commonly used in stochastic domains,
where the outcome of actions is modeled by a probability distribution over nodes in
the graph.

Choset-79066 book February 23, 2005 13:15

I Statistics Primer

ELEGANT AND powerful techniques are at the fingertips of statisticians. Although
difficult at first, speaking their language can be quite powerful. Probability theory
provides a set of tools that can be used to quantify uncertain events. In the context of
robotics, probability theory allows us make decisions in the presence of uncertainty
caused by phenomena such as noisy sensor data or interaction with unpredictable
humans. This section introduces a few fundamental concepts including probability,
random variables, distributions, and Gaussian random vectors.

When we talk about probability, we generally talk in terms of experiments and
outcomes. When an experiment is conducted, a single outcome from the set of possible
outcomes for that experiment results. For example, an experiment could be flipping
a coin and the set of possible outcomes is {heads, tails}. If the experiment were to
take a measurement in degrees Kelvin, then the set of possible outcomes would be
the interval [0, ∞). An event is defined to be a subset of the possible outcomes.

Let S denote the set of all possible outcomes for a given experiment, and let E be
an event, i.e., E ⊂S. The probability of the event E occurring when the experiment
is conducted is denoted Pr(E). Pr maps S to the interval [0, 1]. In the example of
flipping a fair coin, Pr(heads) = 0.5, Pr(tails) = 0.5, and Pr(heads ∪ tails) = 1. In
general, the probability must obey certain properties:

1. 0 ≤ Pr(E) ≤ 1 for all E ⊂ S.

2. Pr(S) = 1.

Choset-79066 book February 23, 2005 13:15

548 I Statistics Primer

3.
∑

i Pr(Ei) = Pr(E1 ∪ E2 ∪ . . .) for any countable disjoint collection of sets
E1, E2, This property is known as sigma additivity. In particular, we have
∑n

i=1 Pr(Ei) = Pr(E1 ∪ E2 ∪ . . . ∪ En).

4. Pr(∅) = 0.

5. Pr(Ec) = 1 − Pr(E), where Ec denotes the complement of E in S.

6. Pr(E1 ∪ E2) = Pr(E1) + Pr(E2) − Pr(E1 ∩ E2).

Technically, the first three axioms imply the last three.
Events may or may not depend upon each other. If the occurance of E1 has no

effect on E2, then E1 and E2 are independent; otherwise they are dependent. We say
E1 and E2 are independent if Pr(E1 ∧ E2) = Pr(E1) · Pr(E2). One way to express the
dependence of two events is through conditional probability. For events E1 and E2,
Pr(E1 | E2) is the conditional probability that E1 occurs given that E2 occurs. If E1

and E2 are independent and Pr(E2) > 0, then Pr(E1 | E2) = Pr(E1). For dependent
events, Bayes’ rule expresses the relationship between the conditional probabilities
for two events, again assuming Pr(E2) > 0:

Pr(E1 | E2) = Pr(E2 | E1)Pr(E1)

Pr(E2)
.

Bayes’ rule is a useful formula; it is the foundation of the estimation methods presented
in chapter 9.

I.1 Distributions and Densities

Within robotics, a somewhat simplified but nevertheless sufficient model of a ran-
dom variable is a mapping from the set of events to the real line, usually denoted
X : S → R. A simple example of a random variable is to consider a single coin flip
and define X = 0 when the outcome is heads and X = 1 when the outcome is tails. As
another example, consider flipping a fair coin ten times. A random variable can be the
number of heads that appeared or the number of times heads appeared sequentially,
etc. Random variables are useful because they represent events as real numbers. With
real numbers, we can perform calculations and analysis that are difficult or impossible
to perform on the abstract events.

A distribution is an abstract concept that corresponds to all probability statements
that can be made about a random variable. Before we discuss the various distribu-
tions used to describe random variables, we first distinguish between contiunous and
discrete random variables. A random variable is said to be discrete if its range (the

Choset-79066 book February 23, 2005 13:15

I.1 Distributions and Densities 549

values that it maps to) is a set of discrete points. We call a random variable continuous
if its range forms a continuum on the real line and, using a term that is defined further
below, it possesses a probability density function.

Discrete random variables are commonly described using one of two types of
distributions. The first is the cumulutive distribution function (CDF) which is denoted
FX (a) = Pr(X ≤ a). The second is the probability mass function (PMF), which is
defined to be fX (a) = Pr(X = a).

Continuous random variables are described with two analogous distributions. The
first is the cumulative distribution function (figure I.1), which is defined for continuous
random variables exactly the same way that it is defined for discrete random variables.
The second is the probability density function (PDF) (figure I.2), which is denoted
fX and is defined such that

Pr(a ≤ X ≤ b) =
∫ b

x=a
fX (x) dx .

a'a' b' b'
0

1

Figure I.1 Cumulative uniform distribution.

a b

Figure I.2 Probability density function.

Choset-79066 book February 23, 2005 13:15

550 I Statistics Primer

Note that for a continuous random variable, Pr((X = a)) = ∫ a
x=a fX (x) dx = 0. This

can be disconcerting to the newcomer. Another way to view this is: consider the odds
of landing exactly on a. Since the point a is a set of measure zero, it should have zero
probability of occurring.

Some distributions are so common that they have their own name. For example,
the uniform distribution is a family of continuous distributions over an interval. It can
either be described by the CDF

U (x ; a, b) =
0 x < a

x−a
b−a a ≤ x ≤ b

1 x ≥ b

or by the corresponding PDF

u(x ; a, b) =
0 x < a

1
b−a a ≤ x ≤ b

0 x ≥ b.

One can calculate all sorts of probabilties using either the CDF or the PDF. Consider
for a′, b′ ∈ [a, b] with a′< b′. Using the CDF we can compute Pr(a′ ≤ x ≤ b′) =
U (b′; a, b) − U (a′; a, b). Alternatively we can use the PDF to compute Pr(a′ ≤ x ≤
b′) = ∫ b′

x=a′ u(x ; a, b) dx .

I.2 Expected Values and Covariances

We previously defined a random variable to be a function that maps the event space
to the real line. Similarly, we define a random vector to be a mapping from the event
space to the space of real-valued vectors of some dimension. In other words, a random
vector X is a map X : S → R

n . Note that a random variable is just a special case of a
random vector where n = 1.

The expected value (or mean) for a discrete random vector is defined to be

E(X) =
∑

i

xi fX (xi),

where xi is the i th value that random variable X can take and fX is the PMF associated
with X . Note that E(X) is a vector in R

n , where n is the dimension of X . It is tempting
to think that the expected value is the outcome most likely to occur, but this is not
generally the case. The expected value of a single fair die roll is 3.5 which, of course,
cannot occur.

Choset-79066 book February 23, 2005 13:15

I.3 Multivariate Gaussian Distributions 551

The expected value (or mean) of a continuous random vector is defined to be

E(X) =
∫

x∈Rn

x fX (x) dx ,

where fX is the PDF associated with X . As in the case of discrete random vectors,
E(X) is a vector in R

n . We also denote E(X) with X̄. Expectation is a linear operator,
which means that E(aX + bY) = aE(X) + bE(Y).

The variance of a (scalar) random variable x is E((X − X̄)2). For a scalar random
variable the variance is denoted σ 2. For a random vector we can consider the variance
of each element Xi of X individually. The variance of Xi is denoted σ 2

i .
Now we want to consider the effect of one variable on another. This is termed

covariance between two random variables Xi and X j . Let σi j = E((Xi − X̄i)(X j −
X̄ j)). By this definition σi i is the same as σ 2

i , the variance of Xi . For i �= j , if σi j = 0,
then Xi and X j are independent of each other. The covariance matrix of a random
vector X is defined to be

PX = E((X − X̄)(X − X̄)T).

The n × n matrix PX contains the variances and covariances within the random
vector X . Specifically, the element in the i th row, j th column of PX will be identical
to the σi j defined above.

I.3 Multivariate Gaussian Distributions

A random vector X is said to have a multivariate Gaussian distribution if it is described
by the PDF

fX (x) = 1√
(2π)n|PX |e− 1

2 (x−X̄)T P−1
X (x−X̄) ,(I.1)

where X̄ ∈ R
n is the mean vector and PX ∈ R

n×n is the covariance matrix. It can
be verified by direct substitution that X̄ and PX are in fact the mean and covariance
matrix of X as defined in the section above.

Choset-79066 book February 23, 2005 13:17

J Linear Systems and Control

THIS APPENDIX gives a brief review of the theory of linear time invariant (LTI) dynam-
ical systems. Many dynamical systems that appear in science and engineering can be
approximated by LTI systems, and linear systems theory provides important tools to
control and observe them. We focus on the so-called state space formulation of LTI
systems because that is the formulation used in the Kalman filter (see chapter 8). In
this appendix we present some of the more fundamental concepts of LTI state-space
systems, including stability, feedback control, and observability.

J.1 State Space Representation

Consider as an example the mass-spring-damper system depicted in figure J.1, where
z(t) denotes the position of the mass m at time t . If we assume that the spring is
linear, then the force applied by the spring is given as Fs = −kz(t). Likewise, if we
assume that the damper is linear, then the force applied by the damper is proportional

to the velocity of the mass, yielding Fd = −γ dz
dt (t)

�= γ ż(t). For now we assume the
externally applied force Fext = 0. Summing these forces and applying Newton’s law
(force = mass × acceleration) yields

mz̈(t) = −γ ż(t) − kz(t).(J.1)

This second-order ordinary differential equation (ODE) provides a mathematical
description of how the position and velocity of mass change with time. Accordingly,
we call equation (J.1) a model of the mass-spring-damper system. If the position z and

Choset-79066 book February 23, 2005 13:17

J.1 State Space Representation 553

m

Fext

Fs = –kz

Fd = z

Figure J.1 Mass–spring–damper system.

velocity ż are known at some instant of time t0, then the solution to equation (J.1) sub-
ject to initial conditions z(t0) and ż(t0) will match the trajectory of the physical system.

Now define the vector

x(t) =
[

x1(t)
x2(t)

]

=
[

z(t)
ż(t)

]

.

Equation (J.1) can be rewritten in terms of x as follows:

ẋ(t) =
[

ż(t)
z̈(t)

]

=
[

x2(t)
− 1

m (γ ż(t) + kz(t))

]

=
[

x2(t)
− 1

m (γ x2(t) + kx1(t))

]

,

which can finally be summarized as

ẋ(t) =
[

0 1
− k

m − γ

m

]

x(t).(J.2)

Thus we have taken a second-order scalar ODE and rewritten it as a first-order vector
ODE. We call this first-order vector ODE the state-space representation of the mass-
spring-damper system, and the state vector x(t) is a member of the state space. Since
the right hand side of equation (J.2) can be written as a constant matrix multiplied by
the state vector, this system is both linear and time invariant.

Generally, an LTI state-space system can be written as the vector ODE,

ẋ(t) = Ax(t); x(t0) = x0,(J.3)

where x(t) ∈ R
n and A ∈ R

n×n . This ODE is sometimes called a vector field because
it assigns a vector Ax to each point x in the state space. This ODE has a unique

Choset-79066 book February 23, 2005 13:17

554 J Linear Systems and Control

solution, and the solution can be written in closed form,

x(t) = eA(t−t0)x0,(J.4)

where the matrix exponential is defined by the Peano-Baker series

eA(t−t0) =
∞∑

i=0

Ai (t − t0)i

i!

= In×n + A (t − t0) + A2(t − t0)2

2!
+ · · · .

J.2 Stability

Assuming that the matrix A has full rank, then the point x = 0 is the only point in the
state space that satisfies the equilibrium condition ẋ = 0. The point x = 0 is called
an equilibrium point. Note that the state will not move from an equilibrium point. If
the initial condition is x(t0) = 0, then x(t) will remain at 0 for all time. In this section
we discuss the stability of the origin of an LTI system.

We begin by defining a few notions of stability. An equilibrium point xe (in the case
of LTI systems xe = 0) is said to be stable if for every ε > 0 there exists a δ > 0 such
that whenever the initial condition satisfies ‖xe − x(t0)‖< δ the solution x(t) satisfies
‖xe − x(t)‖< ε for all time t > 0. In other words, stable means that if the initial
condition starts close enough to the equilibrium, then the solution will never drift
very far away. xe is said to be asymptotically stable if it is stable and ‖xe − x(t)‖ → 0
as t → ∞. Likewise, xe is said to be unstable if it is neither stable nor asymptotically
stable.

It is worth noting that for LTI systems, the stability properties are global. If they
hold on any open subset of the state space, then they hold everywhere. Stability can
be characterized in terms of the eigenvalues of the matrix A, as stated in the following
theorem:

THEOREM J.2.1 (LTI stability) Consider the LTI system stated in equation (J.3), and
let λi , i ∈ {1, 2, . . . , n} denote the eigenvalues of A. Let re(λi) denote the real part
of λi Then the following holds:

1. xe = 0 is stable if and only if re(λi) ≤ 0 for all i .

2. xe = 0 is asymptotically stable if and only if re(λi) < 0 for all i .

3. xe = 0 is unstable if and only if re(λi) > 0 for some i .

Choset-79066 book February 23, 2005 13:17

J.2 Stability 555

0 5 10 15
-2

-1.5

-1

-0.5

0

0.5

1

1.5

time (seconds)
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x2

x1

x 2

x1

Figure J.2 Asymptotical stability. (Left) The states x1 and x2 (z and ż, respectively) plotted
as time evolves. (Right) Phase plane plot of x2 vs. x1.

Consider the mass-spring-damper example. The eigenvalues of A are

−γ ± √
γ 2 − 4km

2m
.

When the damping term is positive, the real parts of the eigenvalues are negative and
the system is asymptotically stable. Figure J.2 shows two different representations
of the trajectory of the mass-spring-damper system with m = 1, k = 5, and γ = 1.
The figure on the left shows the values of x1 and x2 plotted as functions of time. As
expected for an asymptotically stable system, both converge to zero. The figure on
the right shows the trajectory in state space by plotting x2 vs. x1. This is sometimes
referred to as a “phase plane” plot. The direction in which the trajectory flows is
depicted by arrows. Here the trajectory starts at the initial condition and spirals into
the origin. When the damping is zero, the system solution is a bounded oscillation
and hence is stable but not asymptotically stable. Figure J.3 plots the time and phase
plane representations of the stable trajectory that results when m = 1, k = 5, and
γ = 0. Note that in the phase plane the periodic oscillation becomes a closed loop.
When the damping is negative the damping term actually adds energy to the system,
creating an oscillation that grows without bound. Time and phase plane plots for the
case where m = 1, k = 5, and γ = −0.4 are shown in figure J.4.

Choset-79066 book February 23, 2005 13:17

556 J Linear Systems and Control

0 5 10 15

time (seconds)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x2

x1

x 2

x1

Figure J.3 Stability. (Left) The states x1 and x2 (z and ż, respectively) plotted as time evolves.
(Right) Phase plane plot of x2 vs. x1.

0 5 10 15
-50

-40

-30

-20

-10

0

10

20

30

40

time (seconds)
25 20 15 10 5 0 5 10 15 20 25

-25

-20

-15

-10

-5

0

5

10

15

20

25

x1

x 2

x2

x1

Figure J.4 Instability. (Left) The states x1 and x2 (z and ż, respectively) plotted as time
evolves. (Right) Phase plane plot of x2 vs. x1.

Choset-79066 book February 23, 2005 13:17

J.3 LTI Control Systems 557

J.3 LTI Control Systems

Often one has the ability to affect the behavior of a dynamical system by applying
some sort of external input. For example, in the mass-spring-damper system discussed
earlier we can influence the trajectory of the system by applying a time-varying
external force F(t) to the mass. This results in the LTI control system

ẋ(t) =
[

0 1
− k

m − γ

m

]

x(t) +
[

0
1
m

]

F(t).(J.5)

More generically, we write an LTI control system as

ẋ(t) = Ax(t) + Bu(t); x(t0) = x0,(J.6)

where the state vector x(t) ∈ R
n and the external input vector u(t) ∈ R

m . The matrix
B ∈ R

n×m . The matrix A describes the system dynamics of the unforced system, i.e.,
A describes how the state would evolve if the input were zero. B describes how the
inputs affect the evolution of the state.

The system described in equation (J.3) is said to be controllable if for any initial
condition x(t0), there exists a continuous control input u(t) that drives the solution
x(t) to the origin, x = 0. Note that the origin is an equilibrium point for the unforced
system. This definition of controllability is equivalent to the definition of controlla-
bility for nonlinear systems presented in chapter 8, section 12.3 where the goal state
is restricted to xgoal = 0.

THEOREM J.3.1 (LTI Controllability Test) The LTI control system in equation (J.6)
is controllable if and only if the matrix

Wc = [B AB A2 B · · · An−1 B]

has rank n.

Because controllability is determined solely by the matrices A and B, we can say that
the pair (A, B) is controllable if the system in equation (J.6) is controllable.

One common control objective is to make the origin of a naturally unstable system
stable using state feedback. Consider the control input given by the state-dependent
control law

u(t) = −K x(t)

for some matrix K ∈ R
m×n . Substituting this into equation (J.6) yields

ẋ(t) = (A − BK)x(t).

Choset-79066 book February 23, 2005 13:17

558 J Linear Systems and Control

As a result, we can examine the stability of this new system in terms of the eigenvalues
of the matrix A − BK . One of the fundamental properties of real-valued matrices is
that their eigenvalues must occur in complex conjugate pairs. If a+bi is an eigenvalue
of a matrix, then a − bi must also be an eigenvalue of that matrix. Hence we define
a collection of complex numbers � = {λi | i ∈ {1, 2, . . . , n}} to be allowable if for
each λi that has a nonzero imaginary part there is a corresponding conjugate λ j . Now
we are prepared to state an important result of linear control theory:

THEOREM J.3.2 (Eigenvalue Placement) Consider the system of equation (J.6) and
assume the pair (A, B) is controllable and that the matrix B has full column rank. Let
� = {λi | i ∈ {1, 2, . . . , n}} be any allowable collection of complex numbers. Then
there exists a constant matrix K ∈ R

m×n such that the set of eigenvalues of (A − BK)
is equal to �.

Under the assumptions of this theorem, we can place the eigenvalues of the matrix
A − BK in any allowable configuration using linear feedback. The task of stabilizing
an LTI system is then simply a matter of finding a K so that the corresponding
eigenvalues have negative real parts. There are a number of algorithms to perform
direct eigenvalue assignment (also sometimes called pole placement). Some of these
are implemented in the MATLAB control systems toolbox. Similarly, the famous
linear quadratic regulator (LQR) (see e.g., [396]) places the eigenvalues of A − BK
to optimize a user-defined cost function.

Consider as an example the mass-spring-damper system with negative damping.
As was pointed out earlier, this system is unstable; solutions for initial conditions
arbitrarily close to the origin will grow without bound. To use state feedback to
stabilize this system, consider the matrix

A − BK =
[

0 1
− k

m − γ

m

]

−
[

0
1
m

]

[k1 k2] =
[

0 1
− k+k1

m
γ+k2

m

]

.

The eigenvalues of A − BK are

(−γ − k2) ± √
(−γ − k2)2 − 4(k − k1)m

2m
,

so we can ensure that the real part of both eigenvalues is negative by choosing k2 such
that −γ − k2 < 0. This is equivalent to adding sufficient positive viscous damping to
overcome the energy added by the negative damping term γ .

Choset-79066 book February 23, 2005 13:17

J.4 Observing LTI Systems 559

J.4 Observing LTI Systems

Often it is not possible to directly measure the entire state of an LTI system. Rather,
the state must be observed through the use of sensors that provide some lower-
dimensional measurement of the current state. If it were possible to measure only
velocity in the mass-spring-damper example, then equations of motion together with
the output equation for the system would be

ẋ(t) =
[

0 1
− k

m − γ

m

]

x(t) +
[

0
1
m

]

F(t),
(J.7)

y(t) = [0 1] x(t),

where y(t) represents the output signal coming from the sensor. We write a general
LTI system with output equation as

ẋ(t) = Ax(t) + Bu(t); x(t0) = x0,
(J.8)

y(t) = Cx(t),

where the state vector x(t) ∈ R
n , the control vector u(t) ∈ R

m , and the output
vector y(t) ∈ R

p. The constant matrix C ∈ R
p×n . Note that the matrix C may

not be invertible (it is usually not even square!), so the state at any instant x(t) cannot
be directly observed from the measurement at that instant y(t). We must instead
reconstruct the state by measuring the output over some interval of time and using
knowledge of the system dynamics. A device that performs such a reconstruction is
called an observer.

We say that the system of equation (J.8) is observable if it is possible to determine
the initial state x(t0) by observing the known signals y(t) and u(t) over some period
of time.

THEOREM J.4.1 (LTI Observability Test) The LTI control system in equation (J.8)
is observable if and only if the matrix

Wo =

C
C A
C A2

...

C An−1

has rank n.

As in the case of controllability, we say that the pair (A, C) is observable if the system
in equation (J.8) is observable. Note that the pair (A, C) is observable if and only if

Choset-79066 book February 23, 2005 13:17

560 J Linear Systems and Control

C

K

y

u

+

–
x = Ax + Bu + K(y – Cx)

x

y = Cx

x = Ax + Bu

Figure J.5 Block diagram for a linear observer.

the pair (AT , CT) is controllable. If the pair (A, B) is controllable and the pair (A, C)
is observable, then the system [and the triple (A, B, C)] is said to be minimal.

Now consider an observer defined by the ODE

˙̂x(t) = Ax̂(t) + Bu(t) + K (y(t) − Cx̂(t)).(J.9)

Note that this ODE requires that we know the matrices A, B, and C as well as the
input u(t) and output y(t). The vector x̂(t) is called the state estimate produced by
this observer. As shown in the block diagram in figure J.5, this observer is essentially
a copy of the original dynamic system with a correcting term that is a linear function
of the difference between the measured output y(t) and the estimated output Cx̂(t).
The task is then to try to choose K so that the correcting term forces the state estimate
to converge to the actual value.

If we define the error signal e(t) = x(t) − x̂(t), we can examine how the error
evolves with time:

ė(t) = ẋ(t) − ˙̂x(t)
= Ax(t) + Bu(t) − (Ax̂(t) + Bu(t) + K (y(t) − Cx̂(t)))
= A(x(t) − x̂(t)) − K (Cx(t) − Cx̂(t))
= (A − K C)e(t)

If e(t) → 0, then x̂(t) → x(t). So the state estimate x̂(t) that results from the observer
presented in equation (J.9) converges to the actual state x(t) if K is chosen so that
the unforced LTI system ė(t) = (A − K C)e(t) is asymptotically stable.

Choset-79066 book February 23, 2005 13:17

J.4 Observing LTI Systems 561

0 2 4 6 8 10 12 14 16
-2

-1.5

-1

-0.5

0

0.5

1

1.5

time (seconds)
0 2 4 6 8 10 12 14 16

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

time (seconds)

x2

x1
x2

x1

Figure J.6 Solid lines represent the actual state and the dashed line represents the state
estimate determined by the observer. The left figure depicts x1 and the right x2.

Recall that the eigenvalues of any matrix are equal to the eigenvalues of its trans-
pose, so the eigenvalues of A − K C are identical to the eigenvalues of AT − CT K T .
According to theorem J.3.2, we can place the eigenvalues of AT −CT K T in any allow-
able configuration provided that the pair (AT , CT) is controllable and the matrix CT

has full column rank. This is equivalent to saying that the eigenvalues of A − K C can
be placed in any allowable configuration provided that the pair (A, C) is observable
and C has full row rank. Under these conditions, it is possible to chose a K so that
the observer estimate x̂(t) converges to x(t).

Consider the mass-spring-damper system of equation (J.7). The matrix

A − K C =
[

0 1 − k1

− k
m − γ

m − k2

]

.

The eigenvalues of this matrix are

−(γ + mk2) ± √
(−γ − mk2)2 − 4m(k − k1)

2m
,

so choosing k2 such that −γ − mk2 < 0 will guarantee that the observer given in
equation (J.9) converges, meaning that after some initial transient, estimate x̂(t) will
provide a good approximation of the state. For the case where m = 1, k = 2, and
γ = 0, the choice of K = [0 2]T will provide a convergent observer. Figure J.6 shows
how the estimates x̂1(t) and x̂2(t) converge to x1(t) and x2(t), respectively.

Choset-79066 book February 23, 2005 13:17

562 J Linear Systems and Control

J.5 Discrete Time Systems

The previous sections dealt with an LTI system whose trajectories were continuous
in time. In practice, a continuous dynamical system is usually sampled at regular
time intervals. The sampled or discrete time signal is then fed into a computer as a
sequence of numbers. The computer can then use this sequence to calculate a desired
control input or to estimate the state. In this section we present an overview of the
theory of discrete time LTI systems and their relationship to their continuous time
cousins.

Consider the continuous time signal x(t). We define a sequence of vectors using
the formula xs(k) = x(t0 + kT). The sequence xs(k) is the discrete time sampling
of the continuous signal x(t). In the future, we will abuse notation and drop the s
subscript on the discrete time sequence. The continuous and discrete signals can be
differentiated by the letter used in their argument; x(k) represents an element of the
sequence and x(t) denotes the continuous time signal.

Using the first-order derivative approximation

ẋ(t0 + kT) ≈ x(k + 1) − x(k)

T

and substituting into the continuous time LTI system of equation (J.8) yields

x(k + 1) − x(k)

T
≈ Ax(k) + Bu(k),

which leads to

x(k + 1) ≈ x(k) + T Ax(k) + T Bu(k).

Defining F = In×n + T A, G = T B, and H = C , we can then write a discrete time
approximation of the continuous system:

ẋ(k + 1) = Fx(k) + Gu(k); x(0) = x0

y(k) = H x(k)
(J.10)

Most of the concepts from continuous LTI systems have direct analogs in discrete
time LTI systems. We discuss them briefly here.

J.5.1 Stability

The discrete time notions of stability, asymptotic stability, and instability follow
directly from the continuous time definitions. As in the case of continuous systems,
the stability of the unforced system x(k + 1) = Fx(k) can be evaluated in terms of
the eigenvalues of F :

Choset-79066 book February 23, 2005 13:17

J.5 Discrete Time Systems 563

THEOREM J.5.1 (Discrete Time LTI Stability) Consider the unforced discrete time
LTI system described by the equation x(k + 1) = Fx(k), and let λi , i ∈ {1, 2, . . . , n}
denote the eigenvalues of F. Then the following hold:

1. xe = 0 is stable if and only if |λi | ≤ 1 for all i .

2. xe = 0 is asymptotically stable if and only if |λi | < 1 for all i .

3. xe = 0 is unstable if and only if |λi | > 1 for some i .

J.5.2 Controllability and Observability

The properties of controllability and observability for the discrete time LTI sys-
tem follow from the properties of the continuous time system. The controllability
test is the same for both: the pair (F, G) is controllable if and only if the matrix
[G FG F2G · · · Fn−1G] has rank n. The pair (F, H) is observable if and only if
the pair (F T , H T) is controllable. As in the case of continuous systems, construction
of linear state feedback control laws or linear observers results in a pole placement
problem which can be solved if the system is controllable or observable, respectively.

Choset-79066 book February 23, 2005 13:36

Bibliography

[1] http://www.accuray.com/ck/how9.htm and http://www.cksociety.org/.

[2] http://www.intuitivesurgical.com/about intuitive/index.html.

[3] http://computermotion.wwwa.com/productsandsolutions/products/zeus/
index.cfm.

[4] http://www.aemdesign.com.

[5] http://www.sbsi-sol-optimize.com/NPSOL.htm.

[6] http://www.vni.com.

[7] http://www.nag.com.

[8] Webster’s Ninth New Collegiate Dictionary. Merriam-Webster, Inc., Spring-
field, MA, 1990.

[9] R. Abraham, J. Marsden, and T. Ratiu. Manifolds, Tensor Analysis, and Appli-
cations. Springer-Verlag, New York, 2 edition, 1988.

[10] R. Abraham and J. E. Marsden. Foundations of Mechanics. Addison-Wesley,
1985.

[11] E. U. Acar and H. Choset. Sensor-based coverage of unknown environments:
Incremental construction of Morse decompositions. International Journal of
Robotics Research, 21:345–366, April 2002.

[12] E. U. Acar, H. Choset, A. A. Rizzi, P. Atkar, and D. Hull. Morse decompositions
for coverage tasks. International Journal of Robotics Research, 21:331–344,
April 2002.

[13] S. Akella, W. Huang, K. Lynch, and M. Mason. Parts feeding on a conveyor
with a one joint robot. Algorithmica (Special Issue on Robotics), 26(3/4):313–
344, 2000.

[14] M. Akinc, K. E. Bekris, B. Chen, A. Ladd, E. Plaku, and L. E. Kavraki. Proba-
bilistic roadmaps of trees for parallel computation of multiple query roadmaps.
In International Symposium on Robotics Research, 2003. Book to appear.

Choset-79066 book February 23, 2005 13:36

566 Bibliography

[15] R. Alami, J. Laumond, and T. Siméon. Two manipulation planning algorithms.
In K. Goldberg, D. Halperin, J. C. Latombe, and R. Wilson, editors, Algorithmic
Foundations of Robotics, pages 109–125. A.K. Peters, 1995.

[16] R. Alami, T. Siméon, and J. P. Laumond. A geometrical approach to planning
manipulation tasks. In International Symposium on Robotics Research, pages
113–119, 1989.

[17] P. Allen and I. Stamos. Integration of range and image sensing for photorealistic
3D modeling. In IEEE International Conference on Robotics and Automation,
2000.

[18] N. M. Amato, B. Bayazit, L. Dale, C. Jones, and D. Vallejo. OBPRM: An
obstacle-based PRM for 3d workspaces. In P. Agarwal, L. E. Kavraki, and
M. Mason, editors, Robotics: The Algorithmic Perspective, pages 156–168.
AK Peters, 1998.

[19] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo. Choosing
good distance metrics and local planners for probabilistic roadmap methods. In
IEEE International Conference on Robotics and Automation, pages 630–637,
1998.

[20] N. M. Amato, K. Dill, and G. Song. Using motion planning to map protein
folding landscapes and analyze folding kinetics of known native structures. In
International Conference on Research in Computational Molecular Biology,
pages 2–11, April 2002.

[21] N. M. Amato and G. Song. Using motion planning to study protein folding
pathways. In International Conference on Research in Computational Molec-
ular Biology, pages 287–296, 2001.

[22] E. Anshelevich, S. Owens, F. Lamiraux, and L. E. Kavraki. Deformable vol-
umes in path planning applications. In IEEE International Conference on
Robotics and Automation, pages 2290–2295, 2000.

[23] M. Apaydin, D. Brutlag, C. Guestrin, D. Hsu, J. C. Latombe, and C. Varm.
Stochastic roadmap simulation: An efficient representation and algorithm for
analyzing molecular motion. Journal of Computational Biology, 10:257–281,
2003.

[24] M. Apaydin, C. Guestrin, C. Varma, D. Brutlag, and J. C. Latombe. Studying
protein-ligand interactions with stochastic roadmap simulation. Bioinformat-
ics, 18(2):18–26, 2002.

[25] M. S. Apaydin, D. L. Brutlag, C. Guestrin, D. Hsu, and J. C. Latombe. Stochas-
tic roadmap simulation: An efficient representation and algorithm for analyzing
molecular motion. In International Conference on Research in Computational
Molecular Biology, pages 12–21, April 2002.

Choset-79066 book February 23, 2005 13:36

Bibliography 567

[26] V. I. Arnold. Mathematical Methods of Classical Mechanics. Springer-Verlag,
1989.

[27] K. Arras, N. Tomatis, B. Jensen, and R. Siegwart. Multisensor on-the-fly local-
ization: Precision and reliability for applications. Robotics and Autonomous
Systems, 34(2-3):131–143, 2001.

[28] K. Arras and S. Vestli. Hybrid, high-precision localization for the mail dis-
tributing mobile robot system MOPS. In IEEE International Conference on
Robotics and Automation, 1998.

[29] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle
filters for on-line non-linear/non-Gaussian Bayesian tracking. IEEE Transac-
tions on Signal Processing, 50(2):174–188, 2002.

[30] S. Arya, D. M. Mount. Approximate nearest neighbor queries in fixed dimen-
sions. In 47th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 271–280, 1993.

[31] F. Aurenhammer. Voronoi diagrams—A survey of a fundamental geometric
structure. ACM Computing Surveys, 23:345–405, 1991.

[32] D. Avots, E. Lim, R. Thibaux, and S. Thrun. A probabilistic technique for simul-
taneous localization and door state estimation with mobile robots in dynamic
environments. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2002.

[33] B. Baginski. Motion planning for manipulators with many degrees of
freedom—The BB Method. Ph.D. Thesis, Technische Universität München,
1998.

[34] J. Baillieul and B. Lehman. Open-loop control using oscillatory inputs. In CRC
Control Handbook, pages 967–980. CRC Press, Boca Raton, FL, 1996.

[35] D. J. Balkcom and M. T. Mason. Time optimal trajectories for differential
drive vehicles. International Journal of Robotics Research, 21(3):199–217,
Mar. 2002.

[36] J. Barraquand and P. Ferbach. A penalty function method for constrained
motion planning. In IEEE International Conference on Robotics and Automa-
tion, pages 1235–1242, 1994.

[37] J. Barraquand, L. E. Kavraki, J. C. Latombe, T.-Y. Li, R. Motwani, and P. Ragha-
van. A random sampling scheme for robot path planning. International Journal
of Robotics Research, 16(6):759–774, 1997.

[38] J. Barraquand, B. Langlois, and J. C. Latombe. Numerical potential field tech-
niques for robot path planning. IEEE Transactions on Man and Cybernetics,
22(2):224–241, Mar/Apr 1992.

Choset-79066 book February 23, 2005 13:36

568 Bibliography

[39] J. Barraquand and J. C. Latombe. Robot motion planning: A distributed repre-
sentation approach. Technical Report STAN-CS-89-1257, Stanford University,
Stanford CA, 1989.

[40] J. Barraquand and J. C. Latombe. Robot motion planning: A distributed rep-
resentation approach. International Journal of Robotics Research, 10(6):628–
649, Dec. 1991.

[41] J. Barraquand and J. C. Latombe. Nonholonomic multibody mobile robots:
Controllability and motion planning in the presence of obstacles. Algorithmica,
10:121–155, 1993.

[42] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry.
Springer-Verlag, 2003.

[43] K. E. Bekris, B. Chen, A. Ladd, E. Plaku, and L. E. Kavraki. Multiple query
motion planning using single query primitives. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pages 656–661, 2003.

[44] J. Bentley. Multidimensional divide and conquer. Communications of the ACM,
23(4), 1980.

[45] D. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, sec-
ond edition, 1999.

[46] P. Besl and N. McKay. A method for registration of 3D shapes. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 18(14):239–256, 1992.

[47] P. Bessiere, E. Mazer, and J.-M. Ahuactzin. Planning in continuous space with
forbidden regions: The Ariadne’s clew algorithm. In K. Goldberg, K. Goldberg,
R. Wilson, and D. Halperin, editors, Algorithmic Foundations of Robotics
(WAFR), pages 39–47. A.K. Peters, Wellsley MA, 1995.

[48] P. Bessiere, E. Mazer, and J.-M. Ahuactzin. The ariadne’s clew algorithm.
Journal of Artificial Intelligence Research (JAIR), 9:295–316, 1998.

[49] J. T. Betts. Survey of numerical methods for trajectory optimization. AIAA
Journal of Guidance, Control, and Dynamics, 21(2):193–207, March-April
1998.

[50] A. M. Bloch. Nonholonomic Mechanics and Control. Springer, New York,
2003.

[51] J. E. Bobrow, S. Dubowsky, and J. S. Gibson. Time-optimal control of
robotic manipulators along specified paths. International Journal of Robotics
Research, 4(3):3–17, Fall 1985.

[52] R. Bohlin. Path planning in practice: Lazy evaluation on a multi-resolution
grid. In IEEE/RSJ International Conference on Intelligent Robots and Systems,
2001.

Choset-79066 book February 23, 2005 13:36

Bibliography 569

[53] R. Bohlin and L. E. Kavraki. Path planning using lazy PRM. In IEEE Interna-
tional Conference on Robotics and Automation, pages 521–528, 2000.

[54] R. Bohlin and L. E. Kavraki. A randomized algorithm for robot path planning
based on lazy evaluation. In P. Pardalos, S. Rajasekaran, and J. Rolim, editors,
Handbook on Randomized Computing, pages 221–249. Kluwer Academic Pub-
lishers, 2001.

[55] K.-F. Böhringer, B. R. Donald, L. E. Kavraki, and F. Lamiraux. Part orien-
tation to one or two stable equilibria using programmable force fields. IEEE
Transactions on Robotics and Automation, 16(2):731–747, 2000.

[56] K. Böhringer, B. R. Donald, and N. MacDonald. Programmable vector fields
for distributed manipulation, with application to mems actuator arrays and
vibratory part feeders. International Journal of Robotics Research, 18:168–
200, Feb. 1999.

[57] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. John Wiley
and Sons Inc., New York, NY, 2000.

[58] B. Bonnard. Contrôlabilité des systèmes nonlinéaires. C. R. Acad. Sci. Paris,
292:535–537, 1981.

[59] V. Boor, N. H. Overmars, and A. F. van der Stappen. The Gaussian sampling
strategy for probabilistic roadmap planners. In IEEE International Conference
on Robotics and Automation, pages 1018–1023, 1999.

[60] W. M. Boothby. An Introduction to Differentiable Manifolds and Riemannian
Geometry. Academic Press, 1986.

[61] J. Borenstein, B. Everett, and L. Feng. Navigating Mobile Robots: Systems and
Techniques. A.K. Peters, Ltd., Wellesley, MA, 1996.

[62] M. S. Branicky, S. M. LaValle, K. Olson, and L. Yang. Quasi-randomized
path planning. In IEEE International Conference on Robotics and Automation,
pages 1481–1487, 2001.

[63] G. E. Bredon. Topology and Geometry. Springer-Verlag, New York, NY, 1993.

[64] T. Bretl, J. C. Latombe, and S. Rock. Toward autonomous free climbing robots.
In International Symposium on Robotics Research, 2003. Book to appear.

[65] R. W. Brockett. Nonlinear systems and differential geometry. Proceedings of
the IEEE, 64(1):61–72, Jan. 1976.

[66] R. W. Brockett. Control theory and singular Riemannian geometry. In P. J.
Hilton and G. S. Young, editors, New Directions in Applied Mathematics,
pages 11–27. Springer-Verlag, 1982.

[67] R. A. Brooks and T. Lozano-Pérez. A subdivision algorithm in configuration
space for findpath with rotation. IEEE Transactions Systems, Man, and Cyber-
netics, 15:224–233, 1985.

Choset-79066 book February 23, 2005 13:36

570 Bibliography

[68] R. A. Brooks. Solving the find-path problem by good representation of free
space. IEEE Transactions on Systems, Man, and Cybernetics, 13(3):190–197,
1983.

[69] R. C. Brost. Analysis and Planning of Planar Manipulation Tasks. PhD thesis,
Carnegie Mellon University, Jan. 1991. Available as Technical Report CMU-
CS-91-149.

[70] R. C. Brost. Computing the possible rest configurations of two interacting
polygons. In IEEE International Conference on Robotics and Automation,
pages 686–693, Apr. 1991.

[71] A. E. Bryson. Dynamic Optimization. Addison-Wesley, 1998.

[72] A. E. Bryson and Y. C. Ho. Applied Optimal Control. Hemisphere Publishing,
New York, 1975.

[73] J. Buhmann, W. Burgard, A. Cremers, D. Fox, T. Hofmann, F. Schneider,
J. Strikos, and S. Thrun. The mobile robot RHINO. AI Magazine, 16(2):31–
38, Summer 1995.

[74] F. Bullo. Series expansions for the evolution of mechanical control systems.
SIAM Journal on Control and Optimization, 40(1):166–190, 2001.

[75] F. Bullo. Averaging and vibrational control of mechanical systems. SIAM Jour-
nal on Control and Optimization, 41:542–562, 2002.

[76] F. Bullo, N. E. Leonard, and A. D. Lewis. Controllability and motion algorithms
for underactuated Lagrangian systems on Lie groups. IEEE Transactions on
Automatic Control, 45(8):1437–1454, 2000.

[77] F. Bullo and A. D. Lewis. Geometric Control of Mechanical Systems. Springer,
2004.

[78] F. Bullo, A. D. Lewis, and K. M. Lynch. Controllable kinematic reductions for
mechanical systems: Concepts, computational tools, and examples. In 2002
International Symposium on the Mathematical Theory of Networks and Sys-
tems, Aug. 2002.

[79] F. Bullo and K. M. Lynch. Kinematic controllability for decoupled trajectory
planning of underactuated mechanical systems. IEEE Transactions on Robotics
and Automation, 17(4):402–412, Aug. 2001.

[80] F. Bullo and M. Z̆efran. On mechanical control systems with nonholonomic
constraints and symmetries. Systems and Control Letters, 45(2):133–143, Jan.
2002.

[81] W. Burgard, A. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz,
W. Steiner, and S. Thrun. Experiences with an interactive museum tour-guide
robot. Artificial Intelligence, 114(1-2), 2000.

Choset-79066 book February 23, 2005 13:36

Bibliography 571

[82] W. Burgard, A. Derr, D. Fox, and A. Cremers. Integrating global position
estimation and position tracking for mobile robots: the dynamic Markov local-
ization approach. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, 1998.

[83] W. Burgard, D. Fox, D. Hennig, and T. Schmidt. Estimating the absolute posi-
tion of a mobile robot using position probability grids. In Proc. of the National
Conference on Artificial Intelligence (AAAI), 1996.

[84] W. Burgard, D. Fox, H. Jans, C. Matenar, and S. Thrun. Sonar-based mapping of
large-scale mobile robot environments using EM. In Proc. of the International
Conference on Machine Learning (ICML), 1999.

[85] L. Bushnell, D. Tilbury, and S. Sastry. Steering three-input nonholonomic
systems: The fire-truck example. International Journal of Robotics Research,
14(4):366–381, 1995.

[86] Z. J. Butler, A. A. Rizzi, and R. L. Hollis. Contact sensor-based coverage
of rectilinear environments. In Proc. of IEEE Int’l Symposium on Intelligent
Control, Sept. 1999.

[87] P. E. Caines and E. S. Lemch. On the global controllability of Hamiltonian
and other nonlinear systems: Fountains and recurrence. In IEEE International
Conference on Decision and Control, pages 3575–3580, 1998.

[88] S. Cameron. Collision detection by four-dimensional intersection testing. IEEE
Transactions on Robotics and Automation, pages 291–302, 1990.

[89] S. Cameron. Enhancing GJK: Computing minimum distance and penetration
distanses between convex polyhedra. In IEEE International Conference on
Robotics and Automation, pages 3112–3117, 1997.

[90] J. F. Canny. The Complexity of Robot Motion Planning. MIT Press, Cambridge,
MA, 1988.

[91] J. F. Canny. Constructing roadmaps of semi-algebraic sets I: Completeness.
Artificial Intelligence, 37:203–222, 1988.

[92] J. F. Canny. Computing roadmaps of general semi-algebraic sets. The Computer
Journal, 35(5):504–514, 1993.

[93] J. F. Canny and M. Lin. An opportunistic global path planner. Algorithmica,
10:102–120, 1993.

[94] J. F. Canny, J. Reif, B. Donald, and P. Xavier. On the complexity of kinodynamic
planning. In IEEE Symposium on the Foundations of Computer Science, pages
306–316, White Plains, NY, 1988.

[95] J. F. Canny. Some algebraic and geometric computations in PSPACE. In Proc.
20th ACM Symposium on the Theory of Computing, pages 460–469, 1998.

Choset-79066 book February 23, 2005 13:36

572 Bibliography

[96] Z. L. Cao, Y. Huang, and E. Hall. Region filling operations with random obsta-
cle avoidance for mobile robots. Journal of Robotic systems, pages 87–102,
February 1988.

[97] J. Carpenter, P. Clifford, and P. Fernhead. An improved particle filter for non-
linear problems. IEE Proceedings on Radar and Sonar Navigation, 146(2-7),
1999.

[98] A. Casal. Reconfiguration Planning for Modular Self-Reconfigurable Robots.
PhD thesis, Stanford University, Stanford, CA, 2002.

[99] J. Castellanos, J. Montiel, J. Neira, and J. Tardós. The SPmap: A probabilistic
framework for simultaneous localization and map building. IEEE Transactions
on Robotics and Automation, 15(5):948–953, 1999.

[100] J. Castellanos and J. Tardós. Mobile Robot Localization and Map Building:
A Multisensor Fusion Approach. Kluwer Academic Publishers, Boston, MA,
2000.

[101] P. C. Chen and Y. K. Hwang. SANDROS: A motion planner with performance
proportional to task difficulty. IEEE International Conference on Robotics and
Automation, pages 2346–2353, 1992.

[102] P. C. Chen and Y. K. Hwang. SANDROS: A dynamic graph search algorithm for
motion planning. IEEE Transactions on Robotics and Automation, 14(3):390–
403, June 1998.

[103] P. Cheng and S. M. LaValle. Reducing metric sensitivity in randomized trajec-
tory design. In IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 43–48, 2001.

[104] H. Choset. Nonsmooth analysis, convex analysis, and their applications to
motion planning. Special Issue of the Int. Jour. of Comp. Geom. and Apps.,
1998.

[105] H. Choset and J. Burdick. Sensor based motion planning: Incremental con-
struction of the hierarchical generalized Voronoi graph. International Journal
of Robotics Research, 19(2):126–148, February 2000.

[106] H. Choset and J. Burdick. Sensor based motion planning: The hierarchical
generalized Voronoi graph. International Journal of Robotics Research,
19(2):96–125, February 2000.

[107] H. Choset and J. Y. Lee. Sensor-based construction of a retract-like structure
for a planar rod robot. IEEE Transaction of Robotics and Automation, 17,
2001.

[108] H. Choset and K. Nagatani. Topological simultaneous localization and mapping
(T-SLAM). IEEE Transactions on Robotics Automation, 17, April 2001.

Choset-79066 book February 23, 2005 13:36

Bibliography 573

[109] H. Choset, K. Nagatani, and A. Rizzi. Sensor based planning: Using a honing
strategy and local map method to implement the generalized Voronoi graph.
In SPIE Conference on Systems and Manufacturing, Pittsburgh, PA, 1997.

[110] H. Choset and P. Pignon. Coverage path planning: The boustrophedon decom-
position. In Proceedings of the International Conference on Field and Service
Robotics, Canberra, Australia, December 1997.

[111] P. Choudhury and K. M. Lynch. Trajectory planning for second-order under-
actuated mechanical systems in the presence of obstacles. In J.-D. Boissonnat,
J. Burdick, K. Goldberg, and S. Hutchinson, editors, Algorithmic Foundations
of Robotics V, pages 559–575. Springer-Verlag, 2002.

[112] W.-L. Chow. Uber systemen von linearen partiellen differentialgleichungen
erster ordnung. Math. Ann., 117:98–105, 1939.

[113] S. Ciarcia. An ultrasonic ranging system. Byte Magazine, pages 113–123,
October 1984.

[114] F. H. Clarke. Optimization and Nonsmooth Analysis. Society of Industrial and
Applied Mathematics, Philadelphia, PA, 1990.

[115] J. D. Cohen, M. C. Lin, D. Manocha, and M. K. Ponamgi. I-COLLIDE: An
interactive and exact collision detection system for large-scale environments.
In Symposium on Interactive 3D Graphics, pages 189–196, 218, 1995.

[116] J. Colegrave and A. Branch. A case study of autonomous household vacuum
cleaner. In AIAA/NASA CIRFFSS, 1994.

[117] G. E. Collins. Quantifier elimination for real closed fields by cylindrical alge-
braic decomposition. In Lecture Notes in Computer Science, volume 33, pages
134–183. Springer-Verlag, 1975.

[118] H. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT Press,
Cambridge, MA, 1990.

[119] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, 2002.

[120] J. Cortes, S. Martinez, J. P. Ostrowski, and H. Zhang. Simple mechanical
control systems with constraints and symmetry. SIAM Journal on Control and
Optimization, 41(3):851–874, 2002.

[121] J. Cortés, T. Simeon, and J.-P. Laumond. A random loop generator for planning
the motions of closed kinematic chains. In IEEE International Conference on
Robotics and Automation, pages 2141–2146, 2002.

[122] J. Crowley. World modeling and position estimation for a mobile robot
using ultrasound ranging. In IEEE International Conference on Robotics and
Automation, 1989.

Choset-79066 book February 23, 2005 13:36

574 Bibliography

[123] T. Danner and L. E. Kavraki. Randomized planning for short inspection paths.
In IEEE International Conference on Robotics and Automation, pages 971–
976, San Fransisco, CA, April 2000. IEEE Press.

[124] M. de Berg, M. van Kreveld, and M. Overmars. Computational Geometry:
Algorithms and Applications. Springer, Berlin, 1997.

[125] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte Carlo Localization for
mobile robots. In IEEE International Conference on Robotics and Automation,
1999.

[126] F. Dellaert, S. Seitz, C. Thorpe, and S. Thrun. Structure from motion with-
out correspondence. In Proc. of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), 2000.

[127] A. O. Dempster, A. N. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society,
Series B, 39(1):1–38, 1977.

[128] G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte, and M. Csorba. A
solution to the simultaneous localisation and map building (SLAM) problem.
IEEE Transactions on Robotics and Automation, 2001.

[129] A. W. Divelbiss and J. Wen. Nonholonomic path planning with inequality
constraints. In IEEE International Conference on Decision and Control, pages
2712–2717, 1993.

[130] A. W. Divelbiss and J.-T. Wen. A path space approach to nonholonomic motion
planning in the presence of obstacles. IEEE Transactions on Robotics and
Automation, 13(3):443–451, 1997.

[131] M. P. do Carmo. Riemannian Geometry. Birkhäuser, Boston, MA, 1992.

[132] B. R. Donald. A search algorithm for motion planning with six degrees of
freedom. Artificial Intelligence, 31:295–353, 1987.

[133] B. R. Donald, P. Xavier, J. Canny, and J. Reif. Kinodynamic motion planning.
Journal of the Association for Computing Machinery, 40(5):1048–1066, Nov.
1993.

[134] B. R. Donald and P. Xavier. Provably good approximation algorithms for opti-
mal kinodynamic planning for Cartesian robots and open chain manipulators.
Algorithmica, 4(6):480–530, 1995.

[135] B. R. Donald and P. Xavier. Provably good approximation algorithms for opti-
mal kinodynamic planning: robots with decoupled dynamics bounds. Algo-
rithmica, 4(6):443–479, 1995.

[136] A. Doucet. On sequential simulation-based methods for Bayesian filtering.
Technical report, Department of Engeneering, University of Cambridge, 1998.

Choset-79066 book February 23, 2005 13:36

Bibliography 575

[137] A. Doucet, J. de Freitas, K. Murphy, and S. Russel. Rao-Blackwellised par-
ticle filtering for dynamic Bayesian networks. In Proc. of the Conference on
Uncertainty in Artificial Intelligence (UAI), 2000.

[138] A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo Methods in
Practice. Springer Verlag, 2001.

[139] D. Duff, M. Yim, and K. Roufas. Evolution of polybot: A modular reconfig-
urable robot. In Proc. of the Harmonic Drive Intl. Symposium, Nagano, Japan,
2001.

[140] S. Ehmann and M. C. Lin. Swift: Accelerated distance computation between
convex polyhedra by multi-level Voronoi marching. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2000.

[141] S. A. Ehmann and M. C. Lin. Geometric algorithims: Accurate and fast proxim-
ity queries between polyhedra using convex surface decomposition. Computer
Graphics Forum—Proc. of Eurographics, 20:500–510, 2001.

[142] A. Elfes. Sonar-based real-world mapping and navigation. IEEE Journal of
Robotics and Automation, RA-3:249–265, June 1987.

[143] A. Elfes. Occupancy Grids: A Probabilistic Framework for Robot Percepti on
and Navigation. PhD thesis, Department of Electrical and Computer Engineer-
ing, Carnegie Mellon University, 1989.

[144] A. Elfes. Using occupancy grids for mobile robot perception and navigation.
IEEE Computer, pages 46–57, 1989.

[145] S. Engelson. Passive Map Learning and Visual Place Recognition. PhD thesis,
Department of Computer Science, Yale University, 1994.

[146] M. Erdmann and M. Mason. An exploration of sensorless manipulation. IEEE
Tr. on Rob. and Autom., 4(4):369–379, 1988.

[147] C. Fernandes, L. Gurvits, and Z. Li. Optimal nonholonomic motion planning
for a falling cat. In Z. Li and J. Canny, editors, Nonholonomic Motion Planning.
Kluwer Academic, 1993.

[148] C. Fernandes, L. Gurvits, and Z. Li. Near-optimal nonholonomic motion plan-
ning for a system of coupled rigid bodies. IEEE Transactions on Automatic
Control, 30(3):450–463, Mar. 1994.

[149] R. Fitch, Z. Butler, and D. Rus. Reconfiguration planning for heterogeneous
self-reconfiguring robots. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2003.

[150] S. Fleury, P. Souères, J.-P. Laumond, and R. Chatila. Primitives for smoothing
paths of mobile robots. In IEEE International Conference on Robotics and
Automation, volume 1, pages 832–839, 1993.

Choset-79066 book February 23, 2005 13:36

576 Bibliography

[151] S. Fleury, P. Souères, J.-P. Laumond, and R. Chatila. Primitives for smoothing
mobile robot trajectories. IEEE Transactions on Robotics and Automation,
11:441–448, 1995.

[152] M. Fliess, J. Lévine, P. Martin, and P. Rouchon. On differentially flat nonlinear
systems. In IFAC Symposium NOLCOS, pages 408–412, 1992.

[153] M. Fliess, J. Lévine, P. Martin, and P. Rouchon. Flatness and defect of nonlinear
systems: Introductory theory and examples. International Journal of Control,
61(6):1327–1361, 1995.

[154] A. T. Fomenko and T. L. Kunii. Topological Modeling for Visualization.
Springer-Verlag, Tokyo, 1997.

[155] M. Foskey, M. Garber, M. Lin, and D. Manocha. A voronoi-based hybrid
motion planner. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2001.

[156] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte Carlo localization: Effi-
cient position estimation for mobile robots. In Proc. of the National Conference
on Artificial Intelligence (AAAI), 1999.

[157] D. Fox, W. Burgard, H. Kruppa, and S. Thrun. A probabilistic approach to
collaborative multi-robot localization. Autonomous Robots, 8(3), 2000.

[158] D. Fox, W. Burgard, and S. Thrun. Markov localization for mobile robots
in dynamic environments. Journal of Artificial Intelligence Research (JAIR),
11:391–427, 1999.

[159] T. Fraichard and J.-M. Ahuactzin. Smooth path planning for cars. In IEEE Inter-
national Conference on Robotics and Automation, pages 3722–3727, Seoul,
Korea, 2001.

[160] E. Frazzoli, M. A. Dahleh, and E. Feron. Real-time motion planning for agile
autonomous vehicles. AIAA Journal of Guidance, Control, and Dynamics,
25(1):116–129, 2002.

[161] C. Früh and A. Zakhor. 3D model generation for cities using aerial photographs
and ground level laser scans. In Proc. of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR), 2001.

[162] R. Geraerts and M. Overmars. A comparative study of probabilistic roadmap
planners. In J.-D. Boissonnat, J. Burdick, K. Goldberg, and S. Hutchinson,
editors, Algorithmic Foundations of Robotics V, pages 43–58. Springer-Verlag,
2003.

[163] E. Gilbert, D. Johnson, and S. Keerthi. A fast procedure for computing distance
between complex objects in three-dimensional space. IEEE Transactions on
Robotics and Automation, 4:193–203, 1988.

Choset-79066 book February 23, 2005 13:36

Bibliography 577

[164] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic
Press, New York, 1981.

[165] B. Glavina. Solving findpath by combination of goal-directed and random-
ized search. In IEEE International Conference on Robotics and Automation,
pages 1718–1723, 1990.

[166] K. Y. Goldberg. Orienting polygonal parts without sensors. Algorithmica,
10:201–225, 1993.

[167] N. Gordon, D. Salmond, and A. Smith. Novel approach to nonlinear/non-
Gaussian Bayesian state estimation. IEE Procedings F, 140(2):107–113,
1993.

[168] S. Gottschalk, M. C. Lin, and D. Manocha. OBBTree: A hierarchical structure
for rapid interference detection. Computer Graphics, 30(Annual Conference
Series):171–180, 1996.

[169] P. Grandjean and A. Robert de Saint Vincent. 3-D modeling of indoor scenes
by fusion of noisy range and stereo data. In IEEE International Conference on
Robotics and Automation, 1989.

[170] F. Gravoit, S. Cambon, and R. Alami. Asymov: a planner that deals with
intricate symbolic and geometric problems. In International Symposium on
Robotics Research, 2003. Book to appear.

[171] L. J. Guibas, C. Holleman, and L. E. Kavraki. A probabilistic roadmap planner
for flexible objects with a workspace medial-axis-based sampling approach.
In IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 254–260, 1999.

[172] L. J. Guibas, J. C. Latombe, S. M. LaValle, D. Lin, and R. Motwani. A visibility-
based pursuit-evasion problem. International Journal of Computational Geom-
etry and Applications, 9(4/5):471–512, August/October 1999.

[173] V. Guillemin and A. Pollack, editors. Differential Topology. Prentice-Hall, Inc.,
New Jersey, 1974.

[174] K. Gupta and Z. Guo. Motion planning with many degrees of freedom: sequen-
tial search with backtracking. IEEE Transactions on Robotics and Automation,
6(11):897–906, 1995.

[175] L. Gurvits. Averaging approach to nonholonomic motion planning. In IEEE
International Conference on Robotics and Automation, pages 2541–2546,
1992.

[176] J. Gutmann and D. Fox. An experimental comparison of localization methods
continued. In IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2002.

Choset-79066 book February 23, 2005 13:36

578 Bibliography

[177] J.-S. Gutmann, W. Burgard, D. Fox, and K. Konolige. An experimental com-
parison of localization methods. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, 1998.

[178] J.-S. Gutmann and K. Konolige. Incremental mapping of large cyclic envi-
ronments. In Proc. of the IEEE Int. Symp. on Computational Intelligence in
Robotics and Automation (CIRA), 1999.

[179] J.-S. Gutmann and C. Schlegel. AMOS: Comparison of scan matching
approaches for self-localization in indoor environments. In Proc. of the 1st
Euromicro Workshop on Advanced Mobile Robots. IEEE Computer Society
Press, 1996.

[180] J.-S. Gutmann, T. Weigel, and B. Nebel. A fast, accurate, and robust method
for self-localization in polygonal environments using laser-range-finders.
Advanced Robotics Journal, 14(8):651–668, 2001.

[181] D. Hähnel, W. Burgard, D. Fox, and S. Thrun. A highly efficient FastSLAM
algorithm for generating cyclic maps of large-scale environments from raw
laser range measurements. Submitted for publication.

[182] D. Hähnel, D. Schulz, and W. Burgard. Map building with mobile robots in
populated environments. In Proc. of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2002.

[183] D. Halperin and M. Sharir. A near-quadratic algorithm for planning the motion
of a polygon in a polygonal environment. Discrete Computational Geometry,
16:121–134, 1996.

[184] L. Han and N. M. Amato. A kinematics-based probabilistic roadmap for closed
chain systems. In B. R. Donald, K. Lynch, and D. Rus, editors, New Directions
in Algorithmic and Computational Robotics, pages 233–246. AK Peters, 2001.

[185] G. Heinzinger, P. Jacobs, J. Canny, and B. Paden. Time-optimal trajectories
for a robot manipulator: A provably good approximation algorithm. In IEEE
International Conference on Robotics and Automation, pages 150–156, 1989.

[186] G. Heinzinger and B. Paden. Bounds on robot dynamics. In IEEE Interna-
tional Conference on Robotics and Automation, pages 1227–1232, Scottsdale,
Arizona, 1989.

[187] S. Hert, S. Tiwari, and V. Lumelsky. A Terrain-Covering Algorithm for an
AUV. Autonomous Robots, 3:91–119, 1996.

[188] J. Hertzberg and F. Kirchner. Landmark-based autonomous navigation in sew-
erage pipes. In Proc. of the First Euromicro Workshop on Advanced Mobile
Robots, 1996.

[189] H. Hirukawa, B. Mourrain, and Y. Papegay. A symbolic-numeric silhouette
algorithm. In Intelligent Robots and Systems, pages 2358–2365, Nov 2000.

Choset-79066 book February 23, 2005 13:36

Bibliography 579

[190] C. Hofner and G. Schmidt. Path planning and guidance techniques for
an autonomous mobile cleaning robot. Robotics and Autonomous Systems,
14:199–212, 1995.

[191] C. Holleman and L. E. Kavraki. A framework for using the workspace medial
axis in PRM planners. In IEEE International Conference on Robotics and
Automation, pages 1408–1413, 2000.

[192] D. Hsu. Randomized Single-Query Motion Planning In Expansive Spaces. PhD
thesis, Department of Computer Science, Stanford University, 2000.

[193] D. Hsu, T. Jiang, J. Reif, and Z. Sun. The bridge test for sampling narrow pas-
sages with probabilistic roadmap planners. In IEEE International Conference
on Robotics and Automation, 2003.

[194] D. Hsu, L. E. Kavraki, J. C. Latombe, R. Motwani, and S. Sorkin. On finding
narrow passages with probabilistic roadmap planners. In e. a. P. Agarwal,
editor, Robotics: The Algorithmic Perspective, pages 141–154. A.K. Peters,
Wellesley, MA, 1998.

[195] D. Hsu, R. Kindel, J. C. Latombe, and S. Rock. Randomized kinodynamic
motion planning with moving obstacles. International Journal of Robotics
Research, 21(3):233–255, 2002.

[196] D. Hsu, J. C. Latombe, and R. Motwani. Path planning in expansive configu-
ration spaces. In IEEE International Conference on Robotics and Automation,
pages 2719–2726, 1997.

[197] D. Hsu, J. C. Latombe, and R. Motwani. Path planning in expansive
configuration spaces. International Journal of Computational Geometry and
Applications, 9(4/5):495–512, 1998.

[198] Y. Y. Huang, Z. L. Cao, and E. Hall. Region filling operations for mobile robot
using computer graphics. In Proceedings of the IEEE Conference on Robotics
and Automation, pages 1607–1614, 1986.

[199] T. C. Hudson, M. C. Lin, J. Cohen, S. Gottschalk, and D. Manocha. V-
COLLIDE: Accelerated collision detection for VRML. In R. Carey and
P. Strauss, editors, VRML 97: Second Symposium on the Virtual Reality Mod-
eling Language, pages 119–125, New York City, NY, 1997. ACM Press.

[200] S. Iannitti and K. M. Lynch. Exact minimum control switch motion planning for
the snakeboard. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2003.

[201] M. Isard and A. Blake. Condensation—conditional density propagation for
visual tracking. International Journal of Computer Vision, 29(1), 1998.

[202] A. Isidori. Nonlinear Control Systems: An Introduction. Springer-Verlag, 1985.

Choset-79066 book February 23, 2005 13:36

580 Bibliography

[203] P. Isto. A two-level search algorithm for motion planning. In IEEE International
Conference on Robotics and Automation, pages 2025–2031, 1997.

[204] P. Isto. Constructing probabilistic roadmaps with powerful local planning and
path optimization. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 2323–2328, 2002.

[205] P. Jacobs, G. Heinzinger, J. Canny, and B. Paden. Planning guaranteed near-
time-optimal trajectories for a manipulator in a cluttered workspace. In Interna-
tional Workshop on Sensorial Integration for Industrial Robots: Architectures
and Applications, Zaragoza, Spain, 1989.

[206] P. Jacobs, G. Heinzinger, J. Canny, and B. Paden. Planning guaranteed near-
time-optimal trajectories for a manipulator in a cluttered workspace. Technical
Report RAMP 89-15, University of California, Berkeley, Engineering Systems
Research Center, Sept. 1989.

[207] K. Janich. Topology. Spring-Verlag, New York, NY, 1984.

[208] R. Jarvis. Collision free trajectory planning using distance transforms. Mech
Eng Trans of the IE Aust, ME10:197–191, 1985.

[209] P. Jensfelt and S. Kristensen. Active global localisation for a mobile robot using
multiple hypothesis tracking. IEEE Transactions on Robotics and Automation,
17(5):748–760, Oct. 2001.

[210] X. Ji and J. Xiao. Planning motion compliant to complex contact states. Inter-
national Journal of Robotics Research, 20(6):446–465, 2001.

[211] V. Jurdjevic. Geometric Control Theory. Cambridge University Press, 1997.

[212] V. Jurdjevic and H. J. Sussmann. Control systems on Lie groups. Journal of
Differential Equations, 12:313–329, 1972.

[213] L. Kaelbling, A. Cassandra, and J. Kurien. Acting under uncertainty: Discrete
Bayesian models for mobile-robot navigation. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, 1996.

[214] T. Kailath. Linear Systems. Prentice-Hall, 1980.

[215] R. Kalman. A new approach to linear filtering and prediction problems.
Trans. of the ASME, Journal of basic engineering, 82:35–45, March 1960.

[216] I. Kamon, E. Rimon, and E. Rivlin. Tangentbug: A range-sensor based navi-
gation algorithm. Int. Journal of Robotics Research, 17(9):934–953, 1998.

[217] I. Kamon, E. Rivlin, and E. Rimon. A new range-sensor based globally con-
vergent navigation for mobile robots. In IEEE Int’l. Conf. on Robotics and
Automation, Minneapolis, MN, April 1996.

[218] K. Kanazawa, D. Koller, and S. Russell. Stochastic simulation algorithms for
dynamic probabilistic networks. In Proc. of the 11th Annual Conference on
Uncertainty in AI (UAI), 1995.

Choset-79066 book February 23, 2005 13:36

Bibliography 581

[219] K. Kant and S. Zucker. Toward efficient trajectory planning: Path velocity
decomposition. International Journal of Robotics Research, 5:72–89, 1986.

[220] L. E. Kavraki. Part orientation with programmable vector fields: Two stable
equilibria for most parts. In IEEE International Conference on Robotics and
Automation, pages 20–25, Albuquerque, New Mexico, Apr. 1997.

[221] L. E. Kavraki. Random Networks in Configuration Space for Fast Path Plan-
ning. PhD thesis, Stanford University, 1995.

[222] L. E. Kavraki, M. Kolountzakis, and J. C. Latombe. Analysis of probabilistic
roadmaps for path planning. In IEEE International Conference on Robotics
and Automation, pages 3020–3026, 1996.

[223] L. E. Kavraki, M. N. Kolountzakis, and J. C. Latombe. Analysis of probabilistic
roadmaps for path planning. IEEE Transactions on Robotics and Automation,
14(1):166–171, February 1998.

[224] L. E. Kavraki, F. Lamiraux, and C. Holleman. Towards planning for elastic
objects. In P. Agrawal, L. E. Kavraki, and M. Mason, editors, Robotics: The
Algorithmic Perspective, pages 313–325. A.K. Peters, 1998.

[225] L. E. Kavraki and J. C. Latombe. Randomized preprocessing of configura-
tion space for fast path planning. Technical Report STAN-CS-93-1490, Dept.
Comput. Sci., Stanford Univ., Stanford, CA, 1993.

[226] L. E. Kavraki and J. C. Latombe. Randomized preprocessing of configuration
space for path planning. In IEEE International Conference on Robotics and
Automation, pages 2138–2139, 1994.

[227] L. E. Kavraki and J. C. Latombe. Probabilistic roadmaps for robot path plan-
ning. In K. Gupta and A. P. del Pobil, editors, Practical Motion Planning
in Robotics: Current Approaches and Future Challenges, pages 33–53. John
Wiley, West Sussex, England, 1998.

[228] L. E. Kavraki, J. C. Latombe, R. Motwani, and P. Raghavan. Randomized
query processing in robot motion planning. In Proc. ACM Symp. on Theory of
Computing, pages 353–362, 1995.

[229] L. E. Kavraki, J. C. Latombe, R. Motwani, and P. Raghavan. Randomized query
processing in robot path planning. Journal of Computer and System Sciences,
57(1):50–60, August 1998.

[230] L. E. Kavraki, J. C. Latombe, and R. Wilson. On the complexity of assembly
partitioning. Information Processing Letters, 48:229–235, 1993.

[231] L. E. Kavraki, P. Švestka, J. C. Latombe, and M. H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE
Transactions on Robotics and Automation, 12(4):566–580, June 1996.

Choset-79066 book February 23, 2005 13:36

582 Bibliography

[232] H. Keller. Lectures on Numerical Methods in Bifurcation Problems. Tata Insti-
tute of Fundamental Research, Bombay, India, 1987.

[233] S. D. Kelly and R. M. Murray. Geometric phases and robotic locomotion.
Journal of Robotic Systems, 12(6):417–431, 1995.

[234] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots.
International Journal of Robotics Research, 5:90–98, 1986.

[235] R. Kindel, D. Hsu, J. C. Latombe, and S. Rock. Kinodynamic motion planning
amidst moving obstacles. In IEEE International Conference on Robotics and
Automation, pages 537–543, 2000.

[236] D. E. Kirk. Optimal Control Theory. Prentice-Hall Inc., 1970.

[237] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, O. E., and H. Matsubara.
RoboCup: A challenge problem for AI. AI Magazine, 18(1):73–85, 1997.

[238] J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowizral, and K. Zikan.
Efficient collision detection using bounding volume hierarchies of k-DOPs.
IEEE Transactions on Visualization and Computer Graphics, 4(1):21–36,
1998.

[239] D. E. Koditschek and E. Rimon. Robot navigation functions on manifolds with
boundary. Advances in Applied Mathematics, 11:412–442, 1990.

[240] S. Koenig and R. Simmons. A robot navigation architecture based on partially
observable Markov decision process models. In D. Kortenkamp, R. Bonasso,
and R. Murphy, editors, Artificial Intelligence and Mobile Robots. MIT/AAAI
Press, Cambridge, MA, 1998.

[241] Y. Koga, K. Kondo, J. Kuffner, and J. C. Latombe. Planning motions with
intentions. Computer Graphics (SIGGRAPH’94), pages 395–408, 1994.

[242] Y. Koga and J. C. Latombe. Experiments in dual-arm manipulation planning.
In IEEE International Conference on Robotics and Automation, pages 2238–
2245, 1992.

[243] Y. Koga and J. C. Latombe. On multi-arm manipulation planning. In IEEE
International Conference on Robotics and Automation, pages 945–952, 1994.

[244] K. Kondo. Motion planning with six degrees of freedom by multistrategic
bidirectional heuristic free-space enumeration. IEEE Transactions on Robotics
and Automation, 7:267–277, 1991.

[245] K. Konolige. Markov localization using correlation. In Proc. of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), 1999.

[246] J. J. Kuffner. Effective sampling and distance metrics for 3D rigid body path
planning. In IEEE International Conference on Robotics and Automation,
2004.

Choset-79066 book February 23, 2005 13:36

Bibliography 583

[247] J. J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue. Motion plan-
ning for humanoid robots under obstacle and dynamic balance constraints. In
IEEE International Conference on Robotics and Automation, pages 692–698,
Seoul, Korea, May 2001.

[248] J. J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue. Motion plan-
ning for humanoid robots. In International Symposium on Robotics Research,
2003. Book to appear.

[249] J. J. Kuffner and S. M. LaValle. RRT-connect: An efficient approach to
single-query path planning. In IEEE International Conference on Robotics
and Automation, pages 995–1001, 2000.

[250] B. Kuipers and Y. Byan. A robot exploration and mapping strategy based
on a semantic hierarchy of spatial representations. Journal of Robotics and
Autonomous Systems, 8:47–63, 1991.

[251] A. M. Ladd and L. E. Kavraki. Motion planning for knot untangling. In J.-D.
Boissonnat, J. Burdick, K. Goldberg, and S. Hutchinson, editors, Algorithmic
Foundations of Robotics V, pages 7–24. Springer-Verlag, 2002.

[252] A. M. Ladd and L. E. Kavraki. Measure theoretic analysis of probabilistic path
planning. IEEE Transactions on Robotics and Automation, 20(2):229–242,
2004.

[253] G. Lafferriere and H. Sussmann. Motion planning for controllable systems
without drift. In IEEE International Conference on Robotics and Automation,
pages 1148–1153, Sacramento, CA, 1991.

[254] G. Lafferriere and H. J. Sussmann. A differential geometric approach to motion
planning. In Z. Li and J. Canny, editors, Nonholonomic Motion Planning.
Kluwer Academic, 1993.

[255] F. Lamiraux and L. E. Kavraki. Planning paths for elastic objects under manipu-
lation constraints. International Journal of Robotics Research, 20(3):188–208,
2001.

[256] F. Lamiraux and L. E. Kavraki. Positioning of symmetric and nonsymmet-
ric parts using radial and constant fields: Computation of al equilibrium
configurations. International Journal of Robotics Research, 20(8):635–659,
2001.

[257] F. Lamiraux and J.-P. Laumond. On the expected complexity of random path
planning. In IEEE International Conference on Robotics and Automation,
pages 3014–3019, 1996.

[258] F. Lamiraux and J.-P. Laumond. Smooth motion planning for car-like vehi-
cles. IEEE Transactions on Robotics and Automation, 17(4):498–502, Aug.
2001.

Choset-79066 book February 23, 2005 13:36

584 Bibliography

[259] F. Lamiraux, S. Sekhavat, and J.-P. Laumond. Motion planning and control
for Hilare pulling a trailer. IEEE Transactions on Robotics and Automation,
15(4):640–652, Aug. 1999.

[260] S. Land and H. Choset. Coverage path planning for landmine location. In Third
International Symposium on Technology and the Mine Problem, Monterey, CA,
April 1998.

[261] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha. Fast proximity queries with
swept sphere volumes. Technical Report TR99-018, Department of Computer
Science, University of North Carolina at Chapel Hill, North Carolina, 1999.

[262] J. C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston,
MA, 1991.

[263] J. C. Latombe. Personal communication.

[264] J.-P. Laumond and R. Alami. A geometrical approach to planning manipula-
tion tasks: The case of a circular robot and a movable circular object amidst
polygonal obstacles. Report 88314, LAAS/CNRS, Toulouse, France, 1989.

[265] J.-P. Laumond. Controllability of a multibody mobile robot. IEEE Transactions
on Robotics and Automation, 9(6):755–763, Dec. 1993.

[266] J.-P. Laumond. Robot motion planning and control. Springer, 1998.

[267] J.-P. Laumond, P. E. Jacobs, M. Taı̈x, and R. M. Murray. A motion planner for
nonholonomic mobile robots. IEEE Transactions on Robotics and Automation,
10(5):577–593, Oct. 1994.

[268] S. M. LaValle, J. Yakey, and L. E. Kavraki. Randomized path planning for
linkages with closed kinematics chains. IEEE Transactions on Robotics and
Automation, 17(6):951–959, 2001.

[269] S. M. LaValle and M. S. Branicky. On the relationship between classi-
cal grid search and probabilistic roadmaps. In J.-D. Boissonnat, J. Burdick,
K. Goldberg, and S. Hutchinson, editors, Algorithmic Foundations of Robotics
V, pages 59–76. Springer-Verlag, 2002.

[270] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. In IEEE
International Conference on Robotics and Automation, pages 473–479, 1999.

[271] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. Interna-
tional Journal of Robotics Research, 20(5):378–400, May 2001.

[272] S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees: Progress and
prospects. In B. R. Donald, K. Lynch, and D. Rus, editors, New Directions in
Algorithmic and Computational Robotics, pages 293–308. AK Peters, 2001.

[273] S. M. Lavalle, D. Lin, L. J. Guibas, J. C. Latombe, and R. Motwani. Finding
an unpredictable target in a workspace with obstacles. In IEEE International
Conference on Robotics and Automation, pages 1677–1682, 1997.

Choset-79066 book February 23, 2005 13:36

Bibliography 585

[274] J. Lengyel, M. Reichert, B. R. Donald, and D. P. Greenberg. Real-time robot
motion planning using rasterizing computer graphics hardware. Computer
Graphics, 24(4):327–335, 1990.

[275] S. Lenser and M. Veloso. Sensor resetting localization for poorly modelled
mobile robots. In IEEE International Conference on Robotics and Automation,
2000.

[276] J. J. Leonard and H. Durrant-Whyte. Directed Sonar Sensing for Mobile Robot
Navigation. Kluwer Academic, Boston, MA, 1992.

[277] J. J. Leonard and H. Feder. A computationally efficient method for large-scale
concurrent mapping and localization. In J. Hollerbach and D. Koditschek, edi-
tors, Proceedings of the Ninth International Symposium on Robotics Research,
Salt Lake City, Utah, 1999.

[278] J. J. Leonard and H. Durrant-Whyte. Simultaneous map building and localiza-
tion for an autonomous mobile robot. In IEEE/RSJ International Workshop on
Intelligent Robots and Systems, pages 1442–1447, May 1991.

[279] N. E. Leonard. Control synthesis and adaptation for an underactuated
autonomous underwater vehicle. IEEE Journal of Oceanic Engineering,
20(3):211–220, July 1995.

[280] N. E. Leonard and P. S. Krishnaprasad. Motion control of drift-free, left-
invariant systems on Lie groups. IEEE Transactions on Automatic Control,
40(9):1539–1554, Sept. 1995.

[281] P. Leven and S. Hutchinson. Real-time path planning in changing environments.
International Journal of Robotics Research, 21(12):999–1030, Dec. 2002.

[282] P. Leven and S. Hutchinson. Using manipulability to bias sampling during the
construction of probabilistic roadmaps. IEEE Transactions on Robotics and
Automation, 19(6):1020–1026, Dec. 2003.

[283] A. D. Lewis. When is a mechanical control system kinematic? In IEEE Con-
ference on Decision and Control, pages 1162–1167, Dec. 1999.

[284] A. D. Lewis. Simple mechanical control systems with constraints. IEEE Trans-
actions on Automatic Control, 45(8):1420–1436, 2000.

[285] A. D. Lewis and R. M. Murray. Configuration controllability of simple mechan-
ical control systems. SIAM Journal on Control and Optimization, 35(3):766–
790, May 1997.

[286] A. D. Lewis and R. M. Murray. Configuration controllability of simple mechan-
ical control systems. SIAM Review, 41(3):555–574, 1999.

[287] F. L. Lewis and V. L. Syrmos. Optimal Control. John Wiley and Sons, Inc.,
1995.

[288] Z. Li and J. Canny. Nonholonomic Motion Planning. Kluwer Academic, 1993.

Choset-79066 book February 23, 2005 13:36

586 Bibliography

[289] K. Lian, L. Wang, and L. Fu. Controllability of spacecraft systems in a central
gravitational field. IEEE Transactions on Automatic Control, 39(12):2426–
2440, Dec. 1994.

[290] M. C. Lin, D. Manocha, J. Cohen, and S. Gottschalk. Collision detection:
Algorithms and applications. In J.-P. Laumond and M. Overmars, editors,
Algorithms for Robotic Motion and Manipulation, pages 129–142. A K Peters,
Wellesley, MA, 1997.

[291] S. R. Lindemann and S. M. LaValle. Incremental low-discrepancy lattice meth-
ods for motion planning. In IEEE International Conference on Robotics and
Automation, pages 2920–2927, 2003.

[292] S. R. Lindemann and S. M. LaValle. Current issues in sampling-based motion
planning. In International Symposium on Robotics Research, 2003. Book to
appear.

[293] G. Liu and Z. Li. A unified geometric approach to modeling and control of con-
strained mechanical systems. IEEE Transactions on Robotics and Automation,
18(4):574–587, Aug. 2002.

[294] Y. Liu and S. Arimoto. Path planning using a tangent graph for mobile robots
among polygonal and curved obstacles. International Journal of Robotics
Research, 11(4):376–382, 1992.

[295] C. Lobry. Controllability of nonlinear systems on compact manifolds. SIAM
Journal on Control, 12(1):1–4, 1974.

[296] I. Lotan, F. Schwarzer, D. Halperin, and J. C. Latombe. Efficient maintenance
and self-collision testing for kinematic chains. In Proceedings of the 18th
annual Symposium on Computational geometry, pages 43–52. ACM Press,
2002.

[297] T. Lozano-Pérez. A simple motion-planning algorithm for general robot manip-
ulators. IEEE Journal of Robotics and Automation, RA-3(3):224–238, 1987.

[298] T. Lozano-Perez and M. Wesley. An algorithm for planning collision-free paths
among polyhedral obstacles. Communications of the ACM, 22(10):560–570,
1979.

[299] F. Lu and E. Milios. Globally consistent range scan alignment for environment
mapping. Autonomous Robots, 4:333–349, 1997.

[300] V. Lumelsky, S. Mukhopadhyay, and K. Sun. Dynamic path planning in sensor-
based terrain acquisition. IEEE Transactions on Robotics and Automation,
6(4):462–472, August 1990.

[301] V. Lumelsky and A. Stepanov. Path planning strategies for point mobile
automaton moving amidst unknown obstacles of arbitrary shape. Algorithmica,
2:403–430, 1987.

Choset-79066 book February 23, 2005 13:36

Bibliography 587

[302] J. E. Luntz, W. Messner, and H. Choset. Distributed manipulation using discrete
actuator arrays. International Journal of Robotics Research, 20(7):553–582,
2001.

[303] K. M. Lynch. Controllability of a planar body with unilateral thrusters. IEEE
Transactions on Automatic Control, 44(6):1206–1211, June 1999.

[304] K. M. Lynch and C. K. Black. Recurrence, controllability, and stabilization
of juggling. IEEE Transactions on Robotics and Automation, 17(2):113–124,
Apr. 2001.

[305] K. M. Lynch, N. Shiroma, H. Arai, and K. Tanie. Collision-free trajectory
planning for a 3-DOF robot with a passive joint. International Journal of
Robotics Research, 19(12):1171–1184, Dec. 2000.

[306] D. K. M. Ben-Or and J. Reif. The complexity of elementary algebra and geom-
etry. Journal of Computational Sciences, 32:251–264, 1986.

[307] J. Marsden. Elementary Classical Analysis. W. H. Freeman and Company, New
York, 1974.

[308] J. Marsden and T. Ratiu. Introduction to Mechanics and Symmetry. Springer-
Verlag, New York, 1994.

[309] P. Martin, R. M. Murray, and P. Rouchon. Flat systems. In G. Bastin and
M. Gevers, editors, 1997 European Control Conference Plenary Lectures and
Mini-Courses. 1997.

[310] S. Martinez, J. Cortés, and F. Bullo. A catalog of inverse-kinematics planners
for underactuated systems on matrix Lie groups. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2003.

[311] M. T. Mason. Manipulation by grasping and pushing operations. PhD thesis,
MIT, Artificial Intelligence Laboratory, 1982.

[312] M. T. Mason. Mechanics of Robotic Manipulation. MIT Press, 2001.

[313] P. Maybeck. The Kalman filter: An introduction to concepts. In Autonomous
Robot Vehicles. Springer verlag, 1990.

[314] M. B. Milam, K. Mushambi, and R. M. Murray. A new computational approach
to real-time trajectory generation for constrained mechanical systems. In IEEE
International Conference on Decision and Control, 2000.

[315] J. Milnor. Morse Theory. Princeton University Press, Princeton, NJ, 1963.

[316] B. Mirtich. V-clip: Fast and robust polyhedral collision detection. ACM Trans-
actions on Graphics, 17(3):177–208, 1998.

[317] M. Moll, K. Goldberg, M. A. Erdmann, and R. Fearing. Aligning parts for
micro assemblies. Assembly Automation, 22(1):46–54, Feb. 2002.

Choset-79066 book February 23, 2005 13:36

588 Bibliography

[318] M. Moll and L. E. Kavraki. Path planning for minimal energy curves of constant
length. In IEEE International Conference on Robotics and Automation, pages
2826–2831, 2004.

[319] M. Moll and L. E. Kavraki. Path planning for variable resolution mini-
mal energy curves of constant length. In IEEE International Conference on
Robotics and Automation, 2005.

[320] M. Montemerlo and S. Thrun. Simultaneous localization and mapping prob-
lem with unknown data association using FastSLAM. In IEEE International
Conference on Robotics and Automation, 2003.

[321] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A factored
solution to the simultaneous localization and mapping problem. In Proc. of the
National Conference on Artificial Intelligence (AAAI), 2002.

[322] M. Montemerlo, S. Thrun, and W. Whittaker. Conditional particle filters for
simultaneous mobile robot localization and people tracking. In IEEE Interna-
tional Conference on Robotics and Automation, 2002.

[323] M. Morales, S. Rodriguez, and N. M. Amato. Improving the connectivity of
prm roadmaps. In IEEE International Conference on Robotics and Automation,
pages 4427–4432, 2003.

[324] H. Moravec. Sensor fusion in certainty grids for mobile robots. AI Magazine,
pages 61–74, Summer 1988.

[325] H. Moravec and A. Elfes. High resolution maps from wide angle sonar. In
IEEE International Conference on Robotics and Automation, 1985.

[326] J. J. Moré and S. J. Wright. Optimization Software Guide. SIAM, Philadelphia,
PA, 1993.

[327] K. A. Morgansen. Temporal patterns in learning and control. PhD thesis,
Harvard University, 1999.

[328] K. A. Morgansen, P. A. Vela, and J. W. Burdick. Trajectory stabilization for a
planar carangiform robot fish. In IEEE International Conference on Robotics
and Automation, 2002.

[329] K. Murphy. Bayesian map learning in dynamic environments. In Neural
Info. Proc. Systems (NIPS), 1999.

[330] R. M. Murray, Z. Li, and S. S. Sastry. A Mathematical Introduction to Robotic
Manipulation. CRC Press, 1994.

[331] R. M. Murray, M. Rathinam, and W. Sluis. Differential flatness of mechani-
cal control systems: A catalog of prototype systems. In ASME Int Mech Eng
Congress and Expo, 1995.

[332] R. M. Murray and S. S. Sastry. Nonholonomic motion planning: Steering using
sinusoids. IEEE Transactions on Automatic Control, 38(5):700–716, 1993.

Choset-79066 book February 23, 2005 13:36

Bibliography 589

[333] Y. Nakamura, T. Suzuki, and M. Koinuma. Nonlinear behavior and control of
a nonholonomic free-joint manipulator. IEEE Transactions on Robotics and
Automation, 13(6):853–862, 1997.

[334] P. Newman, J. Leonard, J. Neira, and J. Tardós. Explore and return: Experi-
mental validation of real time concurrent mapping and localization. In IEEE
International Conference on Robotics and Automation, 2002.

[335] C. Nielsen and L. E. Kavraki. A two level fuzzy PRM for manipulation plan-
ning. In IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 1716–1722, Japan, 2000.

[336] D. Nieuwenhuisen and M. H. Overmars. Useful cycles in probabilistic roadmap
graphs. In IEEE International Conference on Robotics and Automation,
pages 446–452, 2004.

[337] C. Nissoux, T. Simeon, and J.-P. Laumond. Visibility based probabilistic
roadmaps. Advanced Robotics Journal, 14(6), 2000.

[338] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Verlag, 1999.

[339] I. Nourbakhsh, R. Powers, and S. Birchfield. DERVISH an office-navigating
robot. AI Magazine, 16(2), 1995.

[340] C. Ó’Dúnlaing and C. Yap. A “retraction” method for planning the motion of
a disc. Algorithmica, 6:104–111, 1985.

[341] M. Ollis and A. Stentz. First results in vision-based crop line tracking. In IEEE
International Conference on Robotics and Automation, 1996.

[342] J. P. Ostrowski and J. W. Burdick. The geometric mechanics of undulatory
robotic locomotion. International Journal of Robotics Research, 17(7):683–
701, July 1998.

[343] J. P. Ostrowski, J. P. Desai, and V. Kumar. Optimal gait selection for non-
holonomic locomotion systems. International Journal of Robotics Research,
19(3):225–237, Mar. 2000.

[344] M. Overmars. A random approach to motion planning. Technical Report RUU-
CS-92-32, Dept. Comput. Sci., Utrecht Univ., Utrecht, the Netherlands, Oct.
1992.

[345] M. Overmars and P. Švestka. A probabilistic learning approach to motion
planning. In K. Goldberg, D. Halperin, J. C. Latombe, and R. Wilson, editors,
Algorithmic Foundations of Robotics (WAFR), pages 19–37. A. K. Peters, Ltd,
1995.

[346] R. Parr and A. Eliazar. DP-SLAM: Fast, robust simultaneous localization and
mapping without predetermined landmarks. In Proc. of the International Joint
Conference on Artificial Intelligence (IJCAI), 2003.

Choset-79066 book February 23, 2005 13:36

590 Bibliography

[347] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers, Inc., 1988.

[348] F. Pfeiffer and R. Johanni. A concept for manipulator trajectory planning. IEEE
Journal of Robotics and Automation, RA-3(2):115–123, 1987.

[349] J. M. Phillips, N. Bedrossian, and L. E. Kavraki. Guided expansive spaces trees:
A search strategy for motion- and cost-constrained state spaces. In IEEE Inter-
national Conference on Robotics and Automation, pages 3968–3973, 2004.

[350] J. Phillips, L. Kavraki, and N. Bedrossian. Spacecraft rendezvous and docking
with real-time, randomized optimization. In AIAA Guidance, Navigation, and
Control, 2003.

[351] A. Piazza, M. Romano, and C. G. L. Bianco. G3-splines for the path planning
of wheeled mobile robots. In European Control Conference, 2003.

[352] C. Pisula, K. Hoff, M. Lin, and D. Manocha. Randomized path planning for a
rigid body based on hardware accelarated Voronoi sampling. In B. R. Donald,
K. Lynch, and D. Rus, editors, New Directions in Algorithmic and Computa-
tional Robotics. AK Peters, 2001.

[353] E. Plaku and L. E. Kavraki. Distributed sampling-based roadmap of trees for
large-scale motion planning. In IEEE International Conference on Robotics
and Automation, 2005.

[354] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko.
The Mathematical Theory of Optimal Processes. Interscience Publishers,
1962.

[355] C. Pradalier, J. Hermosillo, C. Koike, C. Braillon, P. P. Bessière, and C. Laugier.
Safe and autonomous navigation for a car-like robot among pedestrian. In IARP
Int. Workshop on Service, Assistive and Personal Robots, 2003.

[356] F. Preparata and M. I. Shamos. Computational Geometry: An Introduction.
Springer-Verlag, 1985. p198–257.

[357] S. Quinlan. Efficient distance computation between nonconvex objects. In
IEEE International Conference on Robotics and Automation, pages 3324–
3329, 1994.

[358] A. Rao and K. Goldberg. Manipulating algebraic parts in the plane. IEEE Tr.
on Rob. and Autom., 11:598–602, 1995.

[359] N. Rao, N. Stolzfus, and S. Iyengar. A retraction method for learned navigation
in unknown terrains for a circular robot. IEEE Transactions on Robotics and
Automation, 7:699–707, October 1991.

[360] J. A. Reeds and L. A. Shepp. Optimal paths for a car that goes both forwards
and backwards. Pacific Journal of Mathematics, 145(2):367–393, 1990.

Choset-79066 book February 23, 2005 13:36

Bibliography 591

[361] J. Reif. Complexity of the mover’s problem and generalizations. In Proc. 20th
IEEE Symposium on Foundations of Computer Science, pages 421–427, 1979.

[362] J. H. Reif and H. Wang. Nonuniform discretization for kinodynamic motion
planning and its applications. SIAM Journal of Computing, 30(1):161–190,
2000.

[363] D. Reznik, E. Moshkivich, and J. F. Canny. Building a universal planar manip-
ulator. In K.-F. Böhringer and H. Choset, editors, Distributed Manipulation,
pages 147–171. Kluwer Academic Publishers, Boston, 2000.

[364] E. Rimon and D. E. Koditschek. Exact robot navigation using artificial poten-
tial functions. IEEE Transactions on Robotics and Automation, 8(5):501–518,
October 1992.

[365] T. Röfer. Using histogram correlation to create consistent laser scan maps.
In IEEE/RSJ International Conference on Intelligent Robots and Systems,
2002.

[366] H. Rohnert. Shortest path in the plane with convex polygonal obstacles. Infor-
mation Processing Letters, 23:71–76, 1986.

[367] G. Sánchez and J. C. Latombe. On delaying collision checking in prm planning:
Application to multi-robot coor dination. International Journal of Robotics
Research, 21(1):5–26, 2002.

[368] S. S. Sastry. Nonlinear Systems: Analysis, Stability, and Control. Springer-
Verlag, New York, 1999.

[369] D. H. Sattinger and O. L. Weaver. Lie Groups and Algebras with Applications
to Physics, Geometry, and Mechanics. Springer-Verlag, 1986.

[370] A. Scheuer and T. Fraichard. Collision-free and continuous-curvature path
planning for car-like robots. In IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pages 1304–1311, Osaka, Japan, 1997.

[371] B. Schiele and J. Crowley. A comparison of position estimation techniques
using occupancy grids. In IEEE International Conference on Robotics and
Automation, 1994.

[372] B. Schutz. Geometrical methods of mathematical physics. Cambridge Univer-
sity Press, 1980.

[373] J. T. Schwartz and M. Sharir. On the piano movers’ problem: II. General
techniques for computing topological properties of real algebraic manifolds.
Advances in Applied Mathematics, 4:298–351, 1983.

[374] J. T. Schwartz and M. Sharir. On the piano movers’ problem: V. The case of a
rod moving in three-dimensional space amidst polyhedral obstacles. Commu-
nications on Pure and Applied Mathematics, 37:815–848, 1984.

Choset-79066 book February 23, 2005 13:36

592 Bibliography

[375] J. T. Schwartz and M. Sharir. A survey of motion planning and related geometric
algorithms. Artificial Intelligence., 37:157–169, 1988.

[376] F. Schwarzer, M. Saha, and J. C. Latombe. Exact collision checking of robot
paths. In J.-D. Boissonnat, J. Burdick, K. Goldberg, and S. Hutchinson, edi-
tors, Algorithmic Foundations of Robotics V, pages 25–42. Springer-Verlag,
2002.

[377] S. Sekhavat and J.-P. Laumond. Topological property of trajectories computed
from sinusoidal inputs for nonholonomic chained form systems. In IEEE
International Conference on Robotics and Automation, pages 3383–3388,
1996.

[378] S. Sekhavat and J.-P. Laumond. Topological property for collision-free non-
holonomic motion planning: the case of sinusoidal inputs for chained form
systems. IEEE Transactions on Robotics and Automation, 14(5):671–680,
Oct. 1998.

[379] S. Sekhavat, P. Švestka, J.-P. Laumond, and M. H. Overmars. Multilevel path
planning for nonholonomic robots using semiholonomic subsystems. Interna-
tional Journal of Robotics Research, 17(8):840–857, Aug. 1998.

[380] J.-P. Serre. Lie Algebras and Lie Groups. W. A. Benjamin, New York, 1965.

[381] J. Sethian. Level Set Methods and Fast Marching Methods. Cambridge Uni-
versity Press, Cambridge, UK, 1999.

[382] H. Shatkay and L. Kaelbling. Learning topological maps with weak local odo-
metric information. In Proceedings of IJCAI-97. IJCAI, Inc., 1997. 1997.

[383] Z. Shiller and S. Dubowsky. On computing the global time-optimal motions
of robotic manipulators in the presence of obstacles. IEEE Transactions on
Robotics and Automation, 7(6): 785–797, Dec. 1991.

[384] Z. Shiller and H.-H. Lu. Computation of path constrained time optimal motions
with dynamic singularities. ASME Journal of Dynamic Systems, Measurement,
and Control, 114:34–40, Mar. 1992.

[385] K. G. Shin and N. D. McKay. Minimum-time control of robotic manipulators
with geometric path constraints. IEEE Transactions on Automatic Control,
30(6):531–541, June 1985.

[386] R. Simmons and S. Koenig. Probabilistic robot navigation in partially observ-
able environments. In Proc. of the International Joint Conference on Artificial
Intelligence (IJCAI), 1995.

[387] A. Singh, J. C. Latombe, and D. Brutlag. A motion planning approach to
flexible ligand binding. In Intelligent Systems for Molecular Biology, pages
252–261, 1999.

Choset-79066 book February 23, 2005 13:36

Bibliography 593

[388] J.-J. E. Slotine and H. S. Yang. Improving the efficiency of time-optimal
path-following algorithms. IEEE Transactions on Robotics and Automation,
5(1):118–124, Feb. 1989.

[389] R. Smith and P. Cheeseman. On the representation and estimation of spa-
tial uncertainty. The International Journal of Robotics Research, 5(4):56–68,
1986.

[390] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial relationships
in robotics. In I. Cox and G. Wilfong, editors, Autonomous Robot Vehicles.
Springer Verlag, 1990.

[391] E. Sontag. Gradient techniques for systems with no drift: A classical idea
revisited. In IEEE International Conference on Decision and Control, pages
2706–2711, 1993.

[392] E. D. Sontag. Control of systems without drift via generic loops. IEEE Trans-
actions on Automatic Control, 40(7):1210–1219, July 1995.

[393] O. J. Sørdalen. Conversion of a car with n trailers into a chained form. In
IEEE International Conference on Robotics and Automation, pages 1382–
1387, 1993.

[394] P. Souères and J.-D. Boissonnat. Optimal trajectories for nonholonomic mobile
robots. In J.-P. Laumond, editor, Robot Motion Planning and Control. Springer,
1998.

[395] P. Souères and J.-P. Laumond. Shortest paths synthesis for a car-like robot.
IEEE Transactions on Automatic Control, 41(5):672–688, May 1996.

[396] R. F. Stengel. Optimal control and estimation. Dover, New York, 1994.

[397] A. Stentz. Optimal and efficient path planning for unknown and dynamic envi-
ronments. International Journal of Robotics and Automation, 10, 1995.

[398] G. Strang. Linear Algebra and Its Applications. Orlando: Academic Press,
1980.

[399] A. Sudsang and L. Kavraki. A geometric approach to designing a pro-
grammable force field with a unique stable equilibrium for parts in the
plane. In IEEE International Conference on Robotics and Automation (ICRA),
pages 1079–1085, Seoul, 2001.

[400] H. Sussmann. A continuation method for nonholonomic path-finding problems.
In IEEE International Conference on Decision and Control, pages 2718–2723,
1993.

[401] H. J. Sussmann. A general theorem on local controllability. SIAM Journal on
Control and Optimization, 25(1):158–194, Jan. 1987.

Choset-79066 book February 23, 2005 13:36

594 Bibliography

[402] H. J. Sussmann and W. Tang. Shortest paths for the Reeds-Shepp car: a worked
out example of the use of geometric techniques in nonlinear optimal control.
Technical Report SYCON-91-10, Rutgers University, 1991.

[403] I. Suzuki and M. Yamashita. Searching for a mobile intruder in a polygonal
region. SIAM Journal of Computing, 21(5):863–888, October 1992.

[404] P. Švestka. A probabilistic approach to motion planning for car-like robots.
Technical Report RUU-CS-93-18, Dept. Comput. Sci., Utrecht Univ., Utrecht,
the Netherlands, 1993.

[405] P. Švestka and M. H. Overmars. Coordinated motion planning for multiple car-
like robots using probabilistic roadmaps. In IEEE International Conference on
Robotics and Automation, pages 1631–1636, 1995.

[406] P. Švestka and J. Vleugels. Exact motion planning for tractor-trailer robots.
In IEEE International Conference on Robotics and Automation, pages 2445–
2450, 1995.

[407] K. R. Symon. Mechanics. Addison-Wesley, 1971.

[408] X. Tang, B. Kirkpatrick, S. Thomas, G. Song, and N. M. Amato. Using motion
planning to study rna folding kinetics. In International Conference on Research
in Computational Molecular Biology, 2004.

[409] M. Teodoro, G. N. Phillips, and L. E. Kavraki. Molecular docking: A problem
with thousands of degrees of freedom. In IEEE International Conference on
Robotics and Automation, pages 960–966, 2001.

[410] J. Thorpe. Elementary Topics in Differential Geometry. Springer-Verlag, 1985.

[411] S. Thrun. Exploration and model building in mobile robot domains. In Proc. of
the IEEE International Conference on Neural Networks, 1993.

[412] S. Thrun. A probabilistic online mapping algorithm for teams of mobile robots.
International Journal of Robotics Research, 20(5):335–363, 2001.

[413] S. Thrun. Learning occupancy grids with forward sensor models. Autonomous
Robots, 2002.

[414] S. Thrun, M. Bennewitz, W. Burgard, A. Cremers, F. Dellaert, D. Fox,
D. Hähnel, C. Rosenberg, N. Roy, J. Schulte, and D. Schulz. MINERVA: A
second generation mobile tour-guide robot. In IEEE International Conference
on Robotics and Automation, 1999.

[415] S. Thrun, A. Bücken, W. Burgard, D. Fox, T. Fröhlinghaus, D. Hennig,
T. Hofmann, M. Krell, and T. Schimdt. Map learning and high-speed navi-
gation in RHINO. In D. Kortenkamp, R. Bonasso, and R. Murphy, editors,
AI-based Mobile Robots: Case studies of successful robot systems. MIT Press,
Cambridge, MA, to appear.

Choset-79066 book February 23, 2005 13:36

Bibliography 595

[416] S. Thrun, W. Burgard, and D. Fox. A real-time algorithm for mobile robot map-
ping with applications to multi-robot and 3D mapping. In IEEE International
Conference on Robotics and Automation, 2000.

[417] S. Thrun, D. Fox, and W. Burgard. A probabilistic approach to concurrent map-
ping and localization for mobile robots. Machine Learning and Autonomous
Robots (joint issue), 31(1–3):29–53, 1998.

[418] S. Thrun, J.-S. Gutmann, D. Fox, W. Burgard, and B. Kuipers. Integrating topo-
logical and metric maps for mobile robot navigation: A statistical approach. In
Proc. of the National Conference on Artificial Intelligence (AAAI), 1998.

[419] D. Tilbury, R. Murray, and S. Sastry. Trajectory generation for the n-trailer
problem using Goursat normal form. In IEEE International Conference on
Decision and Control, 1993.

[420] G. van den Bergen. Efficient collision detection of complex deformable models
using AABB trees. Journal of Graphics Tools: JGT, 2(4):1–14, 1997.

[421] G. van den Bergen. A fast and robust GJK implementation for collision detec-
tion of convex objects. Journal of Graphics Tools: JGT, 4(2):7–25, 1999.

[422] P. Vela and J. W. Burdick. Control of biomimetic locomotion via averaging
theory. In IEEE International Conference on Robotics and Automation, 2003.

[423] P. A. Vela, K. A. Morgansen, and J. W. Burdick. Underwater locomotion from
oscillatory shape deformations. In IEEE International Conference on Decision
and Control, 2002.

[424] G. Weiß, C. Wetzler, and E. von Puttkamer. Keeping track of position and
orientation of moving indoor systems by correlation of range-finder scans. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
595–601, 1994.

[425] J. T. Wen. Control of nonholonomic systems. In W. S. Levine, editor, The
Control Handbook, pages 1359–1368. CRC Press, 1996.

[426] J. Wiegley, K. Goldberg, M. Peshkin, and M. Brokowski. A complete algorithm
for designing passive fences to orient parts. In Proc. Int. Conf. on Rob. and
Autom., pages 1133–1139, 1996.

[427] S. Wilmarth, N. M. Amato, and P. Stiller. MAPRM: A probabilistic roadmap
planner with sampling on the medial axis of th e free space. In IEEE Interna-
tional Conference on Robotics and Automation, pages 1024–1031, 1999.

[428] R. Wilson and J. C. Latombe. Geometric reasoning about mechanical assembly.
Artificial Intelligence, 71:371–396, 1995.

[429] R. H. Wilson, L. E. Kavraki, J. C. Latombe, and T. Lozano-Pérez. Two-handed
assembly sequencing. International Journal of Robotics Research, 14:335–
350, 1995.

Choset-79066 book February 23, 2005 13:36

596 Bibliography

[430] B. Yamauchi and P. Langley. Place recognition in dynamic environments. Jour-
nal of Robotic Systems, 14(2):107–120, 1997.

[431] M. Yim and A. Berlin. Two approaches to distributed manipulation. In K.-F.
Böhringer and H. Choset, editors, Distributed Manipulation, pages 237–261.
Kluwer Academic Publishers, Boston, 2000.

[432] T. Yoshikawa. Manipulability of robotic mechanisms. International Journal of
Robotics Research, 4(2):3–9, Apr. 1985.

[433] M. Zhang and L. E. Kavraki. A new method for fast and accurate derivation
of molecular conformations. Journal of Chemical Information and Computer
Sciences, 42(1):64–70, 2002.

Choset-79066 book February 23, 2005 13:38

Index

(k1 | k2) notation, 275
C∞-related, 56
SE(n), 62
SO(3), 62
SO(n), 61
ε-neighborhood, 475
3R robot arm, 462

accessible, 416
AERCam, 2
affine connection, 429
angular momentum, 364
applicability condition, 504
Ariadne’s clew, 228
artificial potential function, 12
assembly, 259
asymptotic stability, 554
atan2, 74
atlas, 57
axis-angle parameterization, 492

bad bracket, 420
ball-and-socket joint, 49
Banach space, 481
base variable, 442
Bayes’ rule, 548
Bayesian estimation, 13
bijective, 52
biology, 262
body inertia matrix, 366
body-frame transformation, 65

boundary, 476
bounded, 18
boustrophedon decomposition, 169
bridge planner, 217
brushfire algorithm, 87
Bug1, 17
Bug2, 19

C-space, 40
car, 450
car pulling trailer, 459
Cauchy sequence, 480
cell decomposition, 13
center of mass, 362
centralized planning, 254
centrifugal term, 354
chain rule, 484
chained form, 444
chart, 55
Chow’s theorem, 419
Christoffel symbol, 354
closed set, 476
closed-chain robot, 49
closest neighbors, 209
closure, 476
codimension, 132
codistribution, 408
collision, 201
collision checking, 212
column space, 276
compact, 59

Choset-79066 book February 23, 2005 13:38

598 Index

compact factor, 59
complement of a set, 475
complete, 407
complete planner, 6
complexity, 198
complexity theory, 515
computational complexity, 10
conditional probability, 548
configuration, 2, 39, 40, 202,

203, 227
configuration space, 10, 39, 40, 198
configuration space obstacle, 2, 43
configuration space, 2
connected, 58
connected component, 205, 225
connected components, 58
connection sampling, 223
connectivity, 202, 203, 205, 207
conservative, 47
constrained affine connection, 438
continuous function, 481
control affine nonlinear system, 415
control vector field, 415
control vector field, 406
control-based planning, 253
controllability, 401, 557
controllable, 416
convex hull, 477, 510
convex polygonal region, 500
convexity, 477
coordinate system, 56
Coriolis matrix, 354
Coriolis term, 354
cotangent bundle, 408
cotangent space, 408
covariance matrix, 278, 551
covariant derivative, 426
covector, 408
covector field, 408
cover, 168
coverage, 6
critical arc, 380

critical point, 78, 125, 379
critical values, 142
cumulutive distribution function

(CDF), 549
cycle algorithm, 181

data association, 292
dead reckoning, 285
decision problems, 516
decoupled planning, 256
decoupling vector field, 435
deformation retract, 118
deformation retraction, 121
degrees of freedom, 2, 10, 40
dense set, 477
deterministic sampling, 219
diffeomorphism, 53
differentiable manifold, 55, 57
differential, 69
differential drive, 452
differentially flat, 447
discrepancy, 219
dispersion, 220
distance function, 203
distance metric, 210, 428
distribution, 408
docking, 262
domain, 481
drift vector field, 406, 415
drift-free, 415
dynamical polysystem, 414

edge, 202, 203
eigenvalue placement, 558
eight-point connectivity, 87
EKF, 269, 289
elbow-down, 41
elbow-up, 41
embedding, 59, 210
end effector, 40
equilibrium controllable, 431
EST, 200, 201, 228, 230

Choset-79066 book February 23, 2005 13:38

Index 599

Euclidean metric, 429
Euler angles, 66, 489
Euler’s equation, 364
Euler-Lagrange equations, 350
events, 165
exact planning, 198
exhaustive search, 22
expected value, 550
extended Kalman filter (EKF), 289
extended system, 465

feedback transformation, 356
fiber controllability, 442
fiber variable, 442
fictitious input, 466
filtration, 411
first fundamental group, 122
fixed axis parameterizations, 491
flat output, 447
flexible object, 260
flow, 407
foliation, 412
forward kinematics, 69
four-bar mechanism, 72
four-point connectivity, 87
free configuration space, 43
free path, 43
free space, 43
freeways, 151
free configuration space, 14
free workspace, 14
Frobenius theorem, 412

Gaussian distribution, 277, 551
generalized coordinate, 350
generalized force, 350
generalized gradient, 155
generalized Voronoi graph, 129
generalized Voronoi region, 118
generalized mover’s problem, 2
generic loop, 447
geodesic, 428

GJK distance computation
algorithm, 509

global localization, 302
good bracket, 420
gradient, 77, 483
graph, 203
greedy, 22
grid, 86
group, 60
Grübler’s formula, 50

Hamiltonian, 386
Hessian, 78
Hilbert space, 481
holonomic constraint, 48, 361
homeomorphism, 53
homogeneous coordinates, 64
homotopic, 121
homotopy, 121
hopping robot, 433
hyper-redundant, 50
hyper-redundant robot, 7

image, 52
implicit function, 120
implicit function theorem, 36, 487
inadmissible region, 376
inertia matrix, 353
inertial frame inertia matrix, 364
injective, 52
inner product, 427, 481
innovation, 276
integral curve, 407
integral manifold, 407, 412
interior, 476
intersection, 475
inverse kinematics, 69
involutive, 412
involutive closure, 412

Jacobian, 35, 39, 69, 356, 483
junction region, 141

Choset-79066 book February 23, 2005 13:38

600 Index

Kalman filter, 269, 284
Kalman filtering, 13
kidnapped robot problem, 302
kinematic, 2
kinematic reduction, 435
kinematic reduction, rank 1, 435
kinematic reduction, rank m, 435
kinematically controllable, 437
kinetic energy metric, 429
kinodynamic, 228
knife-edge, 359

Lagrange multipliers, 357, 386
Lagrange’s equations, 350
Lagrangian, 350, 386
LARC, 419
lazy evaluation, 226
leaf, 412
left arm, 69
left-arm, 41, 42
Legendre-Clebsch condition, 387
Lie algebra, 402, 411
Lie algebra rank condition, 419
Lie bracket, 409, 410
Lie product, 410
line of nodes, 369
line of sight, 477
linear state feedback, 557
local planner, 203, 207, 211
localization, 4, 9
locally diffeomorphic, 54
locally homeomorphic, 54

Mahalanobis distance, 279, 293
Manhattan distance

metric, 480
manifold, 55
manifold with boundary, 59
manipulation, 257
mapping, 5, 9
mass matrix, 353
matrix commutator, 467

maximally reducible to a kinematic
system, 435

mean, 550
measurement noise, 273
meet points, 119
metric, 479
metric space, 479
metric spaces, 479
metric topology, 480
Minkowski difference, 477, 508
Minkowski sum, 477
mobility, 49
Morse, 93
Morse decomposition, 169, 171
motion model, 305
motion library, 466
motion planning, 14

natural pairing, 408
navigation, 9
navigation function, 80, 93
navigation functions, 93
negative half plane, 500
neighborhood, 54, 475, 479
neutralize, 421
Newton-Raphson convergence

theorem, 488
nilpotent, 412
nilpotentizable, 466
node, 202, 203
non-degenerate, 78
non-Euclidean space, 2
nonholonomic, 4, 10, 13, 409
nonholonomic constraint, 48, 361, 401
nonlinear optimization, 390
nonwandering point, 423
nonwandering set, 423
normed space, 480
null space, 35, 276

observability, 287, 559
observation model, 305

Choset-79066 book February 23, 2005 13:38

Index 601

observer, 559
obstacle based sampling, 216
offline, 11
offline planning, 2
offset curve, 33, 35
one-form, 408
one-to-one, 52
online, 11
onto, 52
open ball, 54, 480
open set, 476, 478
opportunistic, 22
opportunistic path planner, 151
optimal control, 440
optimization problems, 516
orthogonal, 276, 427

parallel mechanism, 49
parallel-axis theorem, 363, 369
parameterization, 56
path, 2, 14, 202, 203, 205
path planning, 14
path-connected, 58
Peano-Baker, 554
Pfaffian constraint, 357, 409
Philip Hall basis, 412
piano mover’s problem, 1
pixel, 86
planar body with thrusters, 404
plane sweep algorithms, 114
planner, 197, 198, 201, 202
polygon, 501
polygon soup, 499
polygonal region, 501
Pontryagin minimum principle, 386
position tracking, 301
positive half plane, 500
positively Poisson stable, 423
post processing, 212
posterior, 304
posterior probability, 304
potential, 227

potential function, 77
preimage, 52
principal axis of inertia, 366
prior, 305
prior probability, 305
priority queue, 526
prismatic joint, 49
PRM, 198, 200, 201
probabilistic completeness, 201, 243
probabilistic localization, 270
probabilistic roadmap, 202
probability density function

(PDF), 549
probability mass function (PMF), 549
process noise, 273
product of Gaussians, 283
protein folding, 262
pursuit/evasion problem, 187

quasirandom sampling, 219
quaternions, 494
query, 202–204

random variable, 548
random vector, 550
range, 481
raw distance function, 23
reduced visibility graph, 111
redundant, 50
redundant robot, 7
Reeb graph, 178
Reeds-Shepp curve, 453
regular, 411
regular distribution, 408
regular value, 125
retract, 121
retraction, 121
revolute joint, 49
Riemannian metric, 429
right arm, 69
right-arm, 41, 42
roadmap, 12, 198, 202, 203, 205

Choset-79066 book February 23, 2005 13:38

602 Index

robot, 197, 198, 203, 227
robot dynamics, 2, 13
rod, 138
roll, pitch and yaw, 491
rotation matrix, 66, 67
RP manipulator, 351
RPP, 227, 228
RRT, 200, 201, 228, 233

sampling-based, 197, 198, 227
saturate raw distance function, 23
SBL, 229
semifree path, 43
sensor-based, 11
sensor-based planning, 5
serial mechanism, 49
set, 475
shape variable, 442
shortest path, 427
silhouette curve, 142
simple mechanical control system, 425
singular, 70
singular arc, 380
singular optimal control, 388
singular point, 380
SLAM, 5, 270, 294
slice, 141
small-time local equilibrium

controllability, 431
small-time locally accessible, 416
small-time locally configuration

accessible, 431
small-time locally configuration

controllable, 431
small-time locally controllable, 417
small-time locally kinematically

controllable, 437
smooth, 53
smooth curve, 484
smooth function, 482
smoothing, 205
snakeboard, 470

sofa mover’s problem, 2
special Euclidean group, 62
special orthogonal group, 62
spherical joint, 49
SRT, 200, 201, 238, 257
stability, 554
standard topology, 478
star algorithm, 507
star-shaped, 97, 477
star-spaces, 97
state space, 552
STLA, 416
STLC, 417
STLCA, 431
STLCC, 431
STLEC, 431
STLKC, 437
submanifold, 60
subset, 475
surjective, 52
sweep line, 114, 165
symmetric closure, 431
symmetric control system, 414
symmetric product, 430

tangent, 31
Tangent Bug, 23
tangent bundle, 405
tangent map, 483
tangent space, 125, 405
tangent vector, 405
time scaling, 374
time-optimal, 6
topological space, 478
topology, 50, 478
torus, 41
trajectory, 2
trajectory planning, 13
transform matrix, 62
transversal, 132
transversality, 131
tree, 228

Choset-79066 book February 23, 2005 13:38

Index 603

two-form, 408, 429
type A contact, 503
type B contact, 503

ultrasonic sensor, 33
underactuated, 401
underactuation, 13
unicycle, 403
uniform distribution, 203, 550
uniform sampling, 208, 216
union, 475

variance, 551
vector field, 77, 405
velocity limit curve, 377
visibility graph, 110
visibility-based sampling, 218
Voronoi region, 118

weakly positively Poisson stable, 423
white noise, 273
workspace, 14, 40, 203, 227
world-frame transformation, 65

zero inertia point, 375, 379

	6280947
	6280934
	6280933
	6280932
	6280931
	6280930
	6280929
	6280928
	6280952
	6280951
	6280950
	6280949
	6280948
	6280945
	6280944
	6280943
	6280942
	6280941
	6280940
	6280939
	6280938
	6280937
	6280936
	6280935
	6280946

