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Preface

The motivations for writing these notes arose while I was coteaching a seminar on Special
Topics in Machine Perception with Kostas Daniilidis in the Spring of 2004. In the Spring
of 2005, I gave a version of my course Advanced Geometric Methods in Computer Science
(CIS610), with the main goal of discussing statistics on diffusion tensors and shape statistics
in medical imaging. This is when I realized that it was necessary to cover some material
on Riemannian geometry but I ran out of time after presenting Lie groups and never got
around to doing it! Then, in the Fall of 2006 I went on a wonderful and very productive
sabbatical year in Nicholas Ayache’s group (ACSEPIOS) at INRIA Sophia Antipolis where
I learned about the beautiful and exciting work of Vincent Arsigny, Olivier Clatz, Hervé
Delingette, Pierre Fillard, Grégoire Malandin, Xavier Pennec, Maxime Sermesant, and, of
course, Nicholas Ayache, on statistics on manifolds and Lie groups applied to medical imag-
ing. This inspired me to write chapters on differential geometry and, after a few additions
made during Fall 2007 and Spring 2008, notably on left-invariant metrics on Lie groups, my
little set of notes from 2004 had grown into the manuscript found here.

Let me go back to the seminar on Special Topics in Machine Perception given in 2004.
The main theme of the seminar was group-theoretical methods in visual perception. In
particular, Kostas decided to present some exciting results from Christopher Geyer’s Ph.D.
thesis [63] on scene reconstruction using two parabolic catadioptric cameras (Chapters 4
and 5). Catadioptric cameras are devices which use both mirrors (catioptric elements) and
lenses (dioptric elements) to form images. Catadioptric cameras have been used in computer
vision and robotics to obtain a wide field of view, often greater than 180°, unobtainable
from perspective cameras. Applications of such devices include navigation, surveillance and
vizualization, among others. Technically, certain matrices called catadioptric fundamental
matrices come up. Geyer was able to give several equivalent characterizations of these
matrices (see Chapter 5, Theorem 5.2). To my surprise, the Lorentz group O(3,1) (of the
theory of special relativity) comes up naturally! The set of fundamental matrices turns
out to form a manifold, F, and the question then arises: What is the dimension of this
manifold? Knowing the answer to this question is not only theoretically important but it is
also practically very significant because it tells us what are the “degrees of freedom” of the
problem.

Chris Geyer found an elegant and beautiful answer using some rather sophisticated con-
cepts from the theory of group actions and Lie groups (Theorem 5.10): The space F is
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isomorphic to the quotient
O<37 1) X 0(37 1)/HF>

where Hp is the stabilizer of any element, F', in F. Now, it is easy to determine the dimension
of Hr by determining the dimension of its Lie algebra, which is 3. As dim O(3,1) = 6, we
find that dimF =2-6—-3=09.

Of course, a certain amount of machinery is needed in order to understand how the above
results are obtained: group actions, manifolds, Lie groups, homogenous spaces, Lorentz
groups, etc. As most computer science students, even those specialized in computer vision
or robotics, are not familiar with these concepts, we thought that it would be useful to give
a fairly detailed exposition of these theories.

During the seminar, I also used some material from my book, Gallier [60], especially from
Chapters 11, 12 and 14. Readers might find it useful to read some of this material before-
hand or in parallel with these notes, especially Chapter 14, which gives a more elementary
introduction to Lie groups and manifolds. For the reader’s convenience, I have incorporated
a slightly updated version of chapter 14 from [60] as Chapter 1 of this manuscript. In fact,
during the seminar, I lectured on most of Chapter 2, but only on the “gentler” versions of
Chapters 3, 5, as in [60] and not at all on Chapter 7, which was written after the course had
ended.

One feature worth pointing out is that we give a complete proof of the surjectivity of the
exponential map, exp: s0(1,3) — SOy(1,3), for the Lorentz group SOq(3,1) (see Section
5.5, Theorem 5.22). Although we searched the literature quite thoroughly, we did not find
a proof of this specific fact (the physics books we looked at, even the most reputable ones,
seem to take this fact as obvious and there are also wrong proofs, see the Remark following
Theorem 2.6). We are aware of two proofs of the surjectivity of exp: so(1,n) — SOy(1,n)
in the general case where where n is arbitrary: One due to Nishikawa [119] (1983) and an
earlier one due to Marcel Riesz [127] (1957). In both cases, the proof is quite involved (40
pages or s0). In the case of SOq(1, 3), a much simpler argument can be made using the fact
that ¢: SL(2,C) — SOy(1,3), is surjective and that its kernel is {I,—1} (see Proposition
5.21). Actually, a proof of this fact is not easy to find in the literature either (and, beware
there are wrong proofs, again, see the Remark following Theorem 2.6). We have made sure
to provide all the steps of the proof of the surjectivity of exp: so(1,3) — SOq(1,3). For
more on this subject, see the discussion in Section 5.5, after Corollary 5.18.

One of the “revelations” I had while on sabbatical in Nicholas’ group was that many
of the data that radiologists deal with (for instance, “diffusion tensors”) do not live in
Euclidean spaces, which are flat, but instead in more complicated curved spaces (Riemannian
manifolds). As a consequence, even a notion as simple as the average of a set of data does
not make sense in such spaces. Similarly, it is not clear how to define the covariance matrix
of a random vector.

Pennec [121], among others, introduced a framework based on Riemannian Geometry for
defining some basic statistical notions on curved spaces and gave some algorithmic methods



to compute these basic notions. Based on work in Vincent Arsigny’s Ph.D. thesis, Arsigny,
Fillard, Pennec and Ayache [5] introduced a new Lie group structure on the space of symmet-
ric positive definite matrices, which allowed them to transfer strandard statistical concepts to
this space (abusively called “tensors”.) One of my goals in writing these notes is to provide
a rather thorough background in differential geometry so that one will then be well prepared
to read the above papers by Arsigny, Fillard, Pennec, Ayache and others, on statistics on
manifolds.

At first, when I was writing these notes, I felt that it was important to supply most proofs.
However, when I reached manifolds and differential geometry concepts, such as connections,
geodesics and curvature, I realized that how formidable a task it was! Since there are lots of
very good book on differential geometry, not without regrets, I decided that it was best to
try to “demistify” concepts rather than fill many pages with proofs. However, when omitting
a proof, I give precise pointers to the literature. In some cases where the proofs are really
beautiful, as in the Theorem of Hopf and Rinow, Myers’ Theorem or the Cartan-Hadamard
Theorem, I could not resist to supply complete proofs!

Experienced differential geometers may be surprised and perhaps even irritated by my
selection of topics. I beg their forgiveness! Primarily, I have included topics that I felt would
be useful for my purposes and thus, I have omitted some topics found in all respectable
differential geomety book (such as spaces of constant curvature). On the other hand, I have
occasionally included topics because I found them particularly beautiful (such as character-
istic classes) even though they do not seem to be of any use in medical imaging or computer
vision. I also hope that readers with a more modest background will not be put off by the
level of abstraction in some of the chapters and instead will be inspired to read more about
these concepts, including fibre bundles!

I have also included chapters that present material having significant practical applica-
tions. These include

1. Chapter 4, on constructing manifolds from gluing data, has applications to surface
reconstruction from 3D meshes,

2. Chapter 16, on spherical harmonics, has applications in computer graphics and com-
puter vision

3. Chapter 19, on the “Log-Euclidean framework”, has applications in medical imaging
and

4. Chapter 21, on Clifford algebras and spinnors, has applications in robotics and com-
puter graphics.

Of course, as anyone who attempts to write about differential geometry and Lie groups,
I faced the dilemma of including or not including a chapter on differential forms. Given that
our intented audience probably knows very little about them, I decided to provide a fairly



detailed treatment including a brief treatment of vector-valued differential forms. Of course,
this made it necessary to review tensor products, exterior powers, etc., and I have included
a rather extensive chapter on this material.

I must aknowledge my debt to two of my main sources of inspiration: Berger’s Panoramic
View of Riemannian Geometry [16] and Milnor’s Morse Theory [107]. In my opinion, Milnor’s
book is still one of the best references on basic differential geometry. His exposition is
remarkably clear and insightful and his treatment of the variational approach to geodesics
is unsurpassed. We borrowed heavily from Milnor [107]. Since Milnor’s book is typeset
in “ancient” typewritten format (1973!), readers might enjoy reading parts of it typeset
in IXTEX. I hope that the readers of these notes will be well prepared to read standard
differential geometry texts such as do Carmo [51], Gallot, Hulin, Lafontaine [61] and O’Neill
[120] but also more advanced sources such as Sakai [131], Petersen [122], Jost [84], Knapp
[90] and of course, Milnor [107].

Acknowledgement: 1 would like to thank Fugenio Calabi, Chris Croke, Ron Donagi, David
Harbater, Herman Gluck, Alexander Kirillov, Steve Shatz and Wolfgand Ziller for their
encouragement, advice, inspiration and for what they taught us.
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Chapter 1

Introduction to Manifolds and Lie
Groups

Le role prépondérant de la théorie des groupes en mathématiques a été longtemps
insoupgonné; il y a quatre-vingts ans, le nom méme de groupe était ignoré. C’est Galois
qui, le premier, en a eu une notion claire, mais c’est seulement depuis les travaux de
Klein et surtout de Lie que 'on a commencé a voir qu’il n’y a presque aucune théorie
mathématique ou cette notion ne tienne une place importante.

—Henri Poincaré

1.1 The Exponential Map

The purpose of this chapter is to give a “gentle” and fairly concrete introduction to manifolds,
Lie groups and Lie algebras, our main objects of study.

Most texts on Lie groups and Lie algebras begin with prerequisites in differential geometry
that are often formidable to average computer scientists (or average scientists, whatever that
means!). We also struggled for a long time, trying to figure out what Lie groups and Lie
algebras are all about, but this can be done! A good way to sneak into the wonderful world
of Lie groups and Lie algebras is to play with explicit matrix groups such as the group
of rotations in R? (or R?) and with the exponential map. After actually computing the
exponential A = ef of a 2 x 2 skew symmetric matrix B and observing that it is a rotation
matrix, and similarly for a 3 x 3 skew symmetric matrix B, one begins to suspect that there
is something deep going on. Similarly, after the discovery that every real invertible n x n
matrix A can be written as A = RP, where R is an orthogonal matrix and P is a positive
definite symmetric matrix, and that P can be written as P = e for some symmetric matrix
S, one begins to appreciate the exponential map.

Our goal in this chapter is to give an elementary and concrete introduction to Lie groups
and Lie algebras by studying a number of the so-called classical groups, such as the general
linear group GL(n,R), the special linear group SL(n,R), the orthogonal group O(n), the

13



14 CHAPTER 1. INTRODUCTION TO MANIFOLDS AND LIE GROUPS

special orthogonal group SO(n), and the group of affine rigid motions SE(n), and their Lie
algebras gl(n,R) (all matrices), sl(n,R) (matrices with null trace), o(n), and so(n) (skew
symmetric matrices). Now, Lie groups are at the same time, groups, topological spaces and
manifolds, so we will also have to introduce the crucial notion of a manifold.

The inventors of Lie groups and Lie algebras (starting with Lie!) regarded Lie groups as
groups of symmetries of various topological or geometric objects. Lie algebras were viewed
as the “infinitesimal transformations” associated with the symmetries in the Lie group. For
example, the group SO(n) of rotations is the group of orientation-preserving isometries of
the Euclidean space E". The Lie algebra so(n,R) consisting of real skew symmetric n x n
matrices is the corresponding set of infinitesimal rotations. The geometric link between a Lie
group and its Lie algebra is the fact that the Lie algebra can be viewed as the tangent space
to the Lie group at the identity. There is a map from the tangent space to the Lie group,
called the exponential map. The Lie algebra can be considered as a linearization of the Lie
group (near the identity element), and the exponential map provides the “delinearization,”
i.e., it takes us back to the Lie group. These concepts have a concrete realization in the
case of groups of matrices and, for this reason, we begin by studying the behavior of the
exponential maps on matrices.

We begin by defining the exponential map on matrices and proving some of its properties.
The exponential map allows us to “linearize” certain algebraic properties of matrices. It also
plays a crucial role in the theory of linear differential equations with constant coefficients.
But most of all, as we mentioned earlier, it is a stepping stone to Lie groups and Lie algebras.
On the way to Lie algebras, we derive the classical “Rodrigues-like” formulae for rotations
and for rigid motions in R? and R3. We give an elementary proof that the exponential map
is surjective for both SO(n) and SE(n), not using any topology, just certain normal forms
for matrices (see Gallier [60], Chapters 11 and 12).

The last section gives a quick introduction to manifolds, Lie groups and Lie algebras.
Rather than defining abstract manifolds in terms of charts, atlases, etc., we consider the
special case of embedded submanifolds of RY. This approach has the pedagogical advantage
of being more concrete since it uses parametrizations of subsets of RY, which should be
familiar to the reader in the case of curves and surfaces. The general definition of a manifold
will be given in Chapter 3.

Also, rather than defining Lie groups in full generality, we define linear Lie groups us-
ing the famous result of Cartan (apparently actually due to Von Neumann) that a closed
subgroup of GL(n,R) is a manifold, and thus a Lie group. This way, Lie algebras can be
“computed” using tangent vectors to curves of the form ¢ — A(t), where A(t) is a matrix.
This section is inspired from Artin [7], Chevalley [34], Marsden and Ratiu [103], Curtis [39],
Howe [81], and Sattinger and Weaver [135].

Given an nxn (real or complex) matrix A = (a;;), we would like to define the exponential
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e of A as the sum of the series
AP
TS - -4
p=>1 p=>0

letting AY = I,,. The problem is, Why is it well-defined? The following lemma shows that
the above series is indeed absolutely convergent.

Lemma 1.1. Let A = (a;;) be a (real or complex) n x n matriz, and let
p=max{|a;;| | 1 <i,j <n}.
If AP = (a§§)), then
‘ (p)| < (np)?
for alli,j, 1 <1i,7 <n. As a consequence, the n® series

al(p-)
>

p=>0

converge absolutely, and the matrix
AP
A ft _
€= Z !
p=0
1s a well-defined matriz.

Proof. The proof is by induction on p. For p = 0, we have A’ = I, (nu)® = 1, and the
lemma is obvious. Assume that
aif)| < (np)”

for all 4,5, 1 <4,7 < n. Then we have

(p+1 | _

< Zlazk [laxs] < uZ!a | < np(np)? = (np)*,

zk

for all 4,4, 1 <1i,5 <n. For every pair (i, ) such that 1 <i,j < n, since

the series
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is bounded by the convergent series

and thus it is absolutely convergent. This shows that

A Ak

e’ = —
k!
k>0

is well defined. O

It is instructive to compute explicitly the exponential of some simple matrices. As an
example, let us compute the exponential of the real skew symmetric matrix

A= (5 %)

We need to find an inductive formula expressing the powers A™. Let us observe that

G300 3) ma G 3) ()
=03,

Then, letting

we have
A4n _ 8411]27
A4n+1 — 94n+1 J,
A4n+2 — _04n+2 ]27
A4n+3 — _04n+3J’
and so

A L
A —_— — —_— — — — — — — — — — .« e .
¢ =ht oo/t pht o == o

Rearranging the order of the terms, we have

2 o g 6 ¢ o o
A— —_— — —_—— — “ e —_—— — —_—— — ...
‘ _(1 TR )I”(u TR T )‘]'
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We recognize the power series for cosf and sin #, and thus

et = cos O, + sin6.J,

A (cos@ —siné’)
sinf cosf@ -

Thus, e? is a rotation matrix! This is a general fact. If A is a skew symmetric matrix,
then e” is an orthogonal matrix of determinant +1, i.e., a rotation matrix. Furthermore,
every rotation matrix is of this form; i.e., the exponential map from the set of skew symmetric
matrices to the set of rotation matrices is surjective. In order to prove these facts, we need to
establish some properties of the exponential map. But before that, let us work out another

example showing that the exponential map is not always surjective. Let us compute the
exponential of a real 2 x 2 matrix with null trace of the form

(%)

We need to find an inductive formula expressing the powers A™. Observe that

that is

A2 = (a® 1 be) ]y = — det(A) .
If a®> + bc = 0, we have
€A = Ig + A.
If a® 4+ be < 0, let w > 0 be such that w? = —(a® + be). Then, A? = —w?I,. We get

A W2 w? wt wt wb wb
A —_— — — — — — — — — — — — D)
¢ =htqogrh oAt rht A rh oAt

Rearranging the order of the terms, we have

2 4 6 3 5 7
A_ whoow W 1w W w
e—<1—2!+4! 6!+ )[2—i—w(w '—i- .+ )A.

We recognize the power series for cosw and sinw, and thus

sinw
e = cosw Iy +

A.

If a® 4+ bc > 0, let w > 0 be such that w? = (a? + bc). Then A? = w?I,. We get

2 2 4 4 6

A w W W W w wb
A_ — — — — — — — .« o o
e —]2+1!+2!]2+3!A+4!12+5!A+6!12+7!A+ .
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Rearranging the order of the terms, we have

a_ |y w? Wt Wwh / 1 wd oW W 4
e’ = —l—i—l-z—ka-i-"' 2+; w—i_g—i_ﬁ—i_ﬁ—i_.” .

If we recall that coshw = (¢ + ¢7*) /2 and sinhw = (e — e7*) /2, we recognize the power
series for coshw and sinh w, and thus

sinh w
ed = coshw I +

A.

It immediately verified that in all cases,
det (eA) =1

This shows that the exponential map is a function from the set of 2 x 2 matrices with null
trace to the set of 2 x 2 matrices with determinant 1. This function is not surjective. Indeed,
tr(e?) = 2cosw when a2 + be < 0, tr(e?) = 2 coshw when a? + be > 0, and tr(e?) = 2 when
a® + bc = 0. As a consequence, for any matrix A with null trace,

tr (eA) > =2,

and any matrix B with determinant 1 and whose trace is less than —2 is not the exponential
e? of any matrix A with null trace. For example,

a 0
B_(O a1>’

where a < 0 and a # —1, is not the exponential of any matrix A with null trace.

A fundamental property of the exponential map is that if A\;,..., A\, are the eigenvalues

of A, then the eigenvalues of e are e, ..., e . For this we need two lemmas.

Lemma 1.2. Let A and U be (real or complex) matrices, and assume that U is invertible.
Then
-1
VAU = AU

Proof. A trivial induction shows that

UAPU™ = (UAUY)P,

and thus
. UAU-1y U APy~
QAU Z ( _ Z
= P = P
AP
= U (Z —'> Ul =UerU .
p>0 P
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Say that a square matrix A is an upper triangular matriz if it has the following shape,

11 aiz2 aiz ... aj1n—-1 ain
0 ago azz ... a2n—1 a2 p
0 0 ass ... asnp—1 asn
)
0 0 0 oo Ap—1n—1 QAap—1n
0 0 0o ... 0 QAnn

i.e., a;; = 0 whenever j <1, 1<17,j <n.

Lemma 1.3. Given any complex n X n matriz A, there is an invertible matriz P and an
upper triangular matrix T such that

A= PTP
Proof. We prove by induction on n that if f: C* — C” is a linear map, then there is a
basis (u1, ..., u,) with respect to which f is represented by an upper triangular matrix. For
n = 1 the result is obvious. If n > 1, since C is algebraically closed, f has some eigenvalue
A1 € C, and let u; be an eigenvector for A\;. We can find n — 1 vectors (vs, ..., v,) such that
(ug,vg,...,v,) is a basis of C", and let W be the subspace of dimension n — 1 spanned by
(va,...,v,). In the basis (uj,vs...,v,), the matrix of f is of the form
a1 aAir2 ... Q1p
0 29 ... QA9p
0 Apo2 ... Qpnp
since its first column contains the coordinates of Aju; over the basis (ug, v, ..., v,). Letting

p: C" — W be the projection defined such that p(u;) = 0 and p(v;) = v; when 2 < i < n,
the linear map g: W — W defined as the restriction of p o f to W is represented by the

(n—1) x (n— 1) matrix (a; j)a<i j<n over the basis (vq, ..., v,). By the induction hypothesis,
there is a basis (ug,...,u,) of W such that g is represented by an upper triangular matrix
(bij)1<ij<n—1-
However,
Cn = Cu1 @ VV,
and thus (ug,...,u,) is a basis for C". Since p is the projection from C" = Cu; & W onto
W and g: W — W is the restriction of po f to W, we have
flu) = M
and
n—1

f(wig1) = apu; + Z bi juj11

j=1
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for some a;; € C, when 1 < i < n— 1. But then the matrix of f with respect to (ug,...,u,)
is upper triangular. Thus, there is a change of basis matrix P such that A = PTP~! where
T is upper triangular. O

Remark: If F is a Hermitian space, the proof of Lemma 1.3 can be easily adapted to prove
that there is an orthonormal basis (us, . .., u,) with respect to which the matrix of f is upper
triangular. In terms of matrices, this means that there is a unitary matrix U and an upper
triangular matrix 7" such that A = UTU*. This is usually known as Schur’s lemma. Using
this result, we can immediately rederive the fact that if A is a Hermitian matrix, then there
is a unitary matrix U and a real diagonal matrix D such that A = UDU*.

If A= PTP~! where T is upper triangular, note that the diagonal entries on T" are the
eigenvalues Ay, ..., A\, of A. Indeed, A and T have the same characteristic polynomial. This
is because if A and B are any two matrices such that A = PBP~!, then

det(A— A1) = det(PBP' —APIP™?),
= det(P(B—AI)PY),
= det(P)det(B — A1) det(P~ 1)
= det(P)det(B M) det(P)™*
= det(B—\I).

Furthermore, it is well known that the determinant of a matrix of the form

A=A aj2 a3 A1n—1 a1n
0 )\2—)\ a923 asnp—1 asp,
0 0 )\3—)\ asn—1 asn
0 0 0 N )\n—l - A Ap—1n
0 0 0 0 Ap — A

s (A1 = A)--- (A, — A), and thus the eigenvalues of A = PTP~! are the diagonal entries of
T. We use this property to prove the following lemma.

Lemma 1.4. Given any complex n xn matriz A, if A\,..., A, are the eigenvalues of A, then
eM, ..., eM are the eigenvalues of e*. Furthermore, if u is an eigenvector of A for \;, then

w is an eigenvector of e? for et

Proof. By Lemma 1.3 there is an invertible matrix P and an upper triangular matrix 7" such
that
A= PTP
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By Lemma 1.2,
TP = pel P,

However, we showed that A and T have the same eigenvalues, which are the diagonal entries
A, ..., A\, of T, and e = TP = PeT P! and eT have the same eigenvalues, which are
the d1agonal entries of e Clearly, the diagonal entries of e” are eM, ..., e*. Now, if u is
an eigenvector of A for the eigenvalue A, a simple induction shows that u is an eigenvector
of A" for the eigenvalue \*, from which is follows that u is an eigenvector of e? for e*. [

As a consequence, we can show that
det(e?) = "),

where tr(A) is the trace of A, i.e., the sum a1 + -+ + a,, of its diagonal entries, which is
also equal to the sum of the eigenvalues of A. This is because the determinant of a matrix
is equal to the product of its eigenvalues, and if \q,..., \, are the eigenvalues of A, then by
Lemma 1.4, eM, ..., eM are the eigenvalues of e?, and thus

det (GA) =M .. e = gl — pt(d)

This shows that e is always an invertible matrix, since e* is never null for every z € C. In

fact, the inverse of e is e™4, but we need to prove another lemma. This is because it is
generally not true that

unless A and B commute, i.e., AB = BA. We need to prove this last fact.
Lemma 1.5. Given any two complex n x n matrices A, B, if AB = BA, then

€A+B — eAeB'

Proof. Since AB = BA, we can expand (A + B)P

)
(A+ By = i (i) Ak prk,

using the binomial formula:

and thus )
1 Ak pp—k
—(A+ B)? = —_
| I(p — k)]
p! = kl(p — k)!
Note that for any integer N > 0, we can write
2N 2N p k k
1 A*BP~
Zpt(A+B) - ZZkIp k)l
p=0 k=0
AP) ( Al Bp) Ak B!
- (LN (%)
| Z | TR
(170 P p=0 P max(k,l) >N il

k+l<2N
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where there are N(N + 1) pairs (k,1) in the second term. Letting
[A]l = max{[a;;| [ 1 <i,j <n}, |[|B|| =max{|b;;| |1<1d,j<n},
and p = max(||A]|, | B||), note that for every entry ¢;; in (A*/k!) (B'/l!) we have
(n)* ()" _ (n?p)*™
k1! — NI
As a consequence, the absolute value of every entry in
Ak B!
> WT

max(k,l) >N
k+l1<2N

lcijl <n

is bounded by

(n?p)*

N! 7

which goes to 0 as N + oco. From this, it immediately follows that

N(N +1)

B = edeb.

Now, using Lemma 1.5, since A and —A commute, we have
oA = A4 _ O _ [

which shows that the inverse of e? is e=4.

We will now use the properties of the exponential that we have just established to show
how various matrices can be represented as exponentials of other matrices.

1.2 The Lie Groups GL(n,R), SL(n,R), O(n), SO(n), the
Lie Algebras gl(n,R), sl(n,R), o(n), so(n), and the
Exponential Map

First, we recall some basic facts and definitions. The set of real invertible n X n matrices
forms a group under multiplication, denoted by GL(n, R). The subset of GL(n, R) consisting
of those matrices having determinant +1 is a subgroup of GL(n,R), denoted by SL(n,R).
It is also easy to check that the set of real n x n orthogonal matrices forms a group under
multiplication, denoted by O(n). The subset of O(n) consisting of those matrices having
determinant +1 is a subgroup of O(n), denoted by SO(n). We will also call matrices in
SO(n) rotation matrices. Staying with easy things, we can check that the set of real n x n
matrices with null trace forms a vector space under addition, and similarly for the set of
skew symmetric matrices.
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Definition 1.1. The group GL(n,R) is called the general linear group, and its subgroup
SL(n,R) is called the special linear group. The group O(n) of orthogonal matrices is called
the orthogonal group, and its subgroup SO(n) is called the special orthogonal group (or group
of rotations). The vector space of real n x n matrices with null trace is denoted by sl(n, R),
and the vector space of real n x n skew symmetric matrices is denoted by so(n).

Remark: The notation sl(n, R) and so(n) is rather strange and deserves some explanation.
The groups GL(n,R), SL(n,R), O(n), and SO(n) are more than just groups. They are also
topological groups, which means that they are topological spaces (viewed as subspaces of
R”Q) and that the multiplication and the inverse operations are continuous (in fact, smooth).
Furthermore, they are smooth real manifolds.! Such objects are called Lie groups. The real
vector spaces sl(n) and so(n) are what is called Lie algebras. However, we have not defined
the algebra structure on sl(n,R) and so(n) yet. The algebra structure is given by what is
called the Lie bracket, which is defined as

[A, Bl = AB — BA.

Lie algebras are associated with Lie groups. What is going on is that the Lie algebra of
a Lie group is its tangent space at the identity, i.e., the space of all tangent vectors at the
identity (in this case, I,,). In some sense, the Lie algebra achieves a “linearization” of the Lie
group. The exponential map is a map from the Lie algebra to the Lie group, for example,

exp: so(n) — SO(n)
and
exp: sl(n,R) — SL(n,R).

The exponential map often allows a parametrization of the Lie group elements by simpler
objects, the Lie algebra elements.

One might ask, What happened to the Lie algebras gl(n,R) and o(n) associated with the
Lie groups GL(n,R) and O(n)? We will see later that gl(n,R) is the set of all real n x n
matrices, and that o(n) = so(n).

The properties of the exponential map play an important role in studying a Lie group.
For example, it is clear that the map

exp: gl(n,R) — GL(n,R)

is well-defined, but since every matrix of the form e” has a positive determinant, exp is not
surjective. Similarly, since
det(e?) = "™,

"'We refrain from defining manifolds right now, not to interupt the flow of intuitive ideas.
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the map
exp: sl(n,R) — SL(n,R)

is well-defined. However, we showed in Section 1.1 that it is not surjective either. As we will
see in the next theorem, the map

exp: so(n) — SO(n)
is well-defined and surjective. The map
exp: o(n) = O(n)

is well-defined, but it is not surjective, since there are matrices in O(n) with determinant
—1.

Remark: The situation for matrices over the field C of complex numbers is quite different,
as we will see later.

We now show the fundamental relationship between SO(n) and so(n).
Theorem 1.6. The exponential map
exp: 50(n) — SO(n)
1s well-defined and surjective.

A

Proof. First, we need to prove that if A is a skew symmetric matrix, then e” is a rotation

matrix. For this, first check that

Then, since AT = —A, we get

and so -
(e?) et =e et =e M =" = I,
and similarly,
e (eA)T =1,,
showing that e is orthogonal. Also,
det (eA) = (A,
and since A is real skew symmetric, its diagonal entries are 0, i.e., tr(A) = 0, and so

det(e?) = +1.

For the surjectivity, we will use Theorem 11.4.4 and Theorem 11.4.5, from Chapter 11
of Gallier [60]. Theorem 11.4.4 says that for every skew symmetric matrix A there is an
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orthogonal matrix P such that A = PD P, where D is a block diagonal matrix of the form

Dy
D,

D

p

such that each block D; is either 0 or a two-dimensional matrix of the form

0 -6,
v )

where 6; € R, with 6; > 0. Theorem 11.4.5 says that for every orthogonal matrix R there is
an orthogonal matrix P such that R = PE P", where E is a block diagonal matrix of the
form

En
Es
B,

such that each block E; is either 1, —1, or a two-dimensional matrix of the form

o _ [cos f; —sinb;
" \sinf; cos®; |-
If R is a rotation matrix, there is an even number of —1’s and they can be grouped into

blocks of size 2 associated with 6 = 7. Let D be the block matrix associated with F in the
obvious way (where an entry 1 in E' is associated with a 0 in D). Since by Lemma 1.2

-1 _
eA — ePDP — P€DP 1’

and since D is a block diagonal matrix, we can compute e” by computing the exponentials
of its blocks. If D; = 0, we get E; = ¢” = +1, and if

0 —6;

D, cosf;, —sinb;
et = . ,
sinf; cosb;

exactly the block ;. Thus, F = e”, and as a consequence,

we showed earlier that

e = PPPTN _ pePp-l — pEpp-! — PEPT = R,

This shows the surjectivity of the exponential. O
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When n = 3 (and A is skew symmetric), it is possible to work out an explicit formula for
e, For any 3 x 3 real skew symmetric matrix

—c b
A=l ¢ 0 —a],
—b a 0
letting 0 = va? + b? + ¢ and
a®> ab ac
B=\|ab b bc|,
ac be c?

we have the following result known as Rodrigues’s formula (1840).

Lemma 1.7. The exponential map exp: s0(3) — SO(3) is given by

et = cosOI; + 8129A+ (1 —9(;036)37

or, equivalently, by
At 51110A+ (1 —cos®)

2
0 02 A

if 0 # 0, with % = I.

Proof sketch. First, prove that

A* = -0’1+ B,
AB = BA=0.
From the above, deduce that
A% = —9%A,
and for any k > 0,
Atk gtk g
A2 gtk g2
A3 gtz g
AdkH4 _ _pak2 42

Then prove the desired result by writing the power series for e and regrouping terms so

that the power series for cos and sin show up. O]

The above formulae are the well-known formulae expressing a rotation of axis specified by
the vector (a, b, ¢) and angle 6. Since the exponential is surjective, it is possible to write down
an explicit formula for its inverse (but it is a multivalued function!). This has applications
in kinematics, robotics, and motion interpolation.
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1.3 Symmetric Matrices, Symmetric Positive Definite
Matrices, and the Exponential Map

Recall that a real symmetric matrix is called positive (or positive semidefinite) if its eigen-
values are all positive or null, and positive definite if its eigenvalues are all strictly positive.
We denote the vector space of real symmetric n x n matrices by S(n), the set of symmetric
positive matrices by SP(n), and the set of symmetric positive definite matrices by SPD(n).

The next lemma shows that every symmetric positive definite matrix A is of the form
eB for some unique symmetric matrix B. The set of symmetric matrices is a vector space,
but it is not a Lie algebra because the Lie bracket [A, B] is not symmetric unless A and B
commute, and the set of symmetric (positive) definite matrices is not a multiplicative group,
so this result is of a different flavor as Theorem 1.6.

Lemma 1.8. For every symmetric matriz B, the matriz e? is symmetric positive definite.

For every symmetric positive definite matrixz A, there is a unique symmetric matriz B such
that A = eB.

Proof. We showed earlier that
() ="

If B is a symmetric matrix, then since BT = B, we get

(eB)T _ eBT _ B

and e? is also symmetric. Since the eigenvalues A, ..., )\, of the symmetric matrix B are
real and the eigenvalues of e? are e, ..., eM, and since e* > 0 if A € R, €? is positive
definite.

If A is symmetric positive definite, by Theorem 11.4.3 from Chapter 11 of Gallier [60],
there is an orthogonal matrix P such that A = PD PT, where D is a diagonal matrix

where A\; > 0, since A is positive definite. Letting

10g )\1
log Ao

log A\,
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it is obvious that e* = D, with log \; € R, since \; > 0.
Let
B=PLP".

By Lemma 1.2, we have
eB = PLPT _ ,PLP™! _ pLp-1 _ p,LpT _ pppT — A,

Finally, we prove that if B; and B, are symmetric and A = €51 = €52, then B, = B,.

Since Bj is symmetric, there is an orthonormal basis (ug,...,u,) of eigenvectors of Bj.
Let py,...,u, be the corresponding eigenvalues. Similarly, there is an orthonormal basis
(v1,...,v,) of eigenvectors of By. We are going to prove that B; and B, agree on the basis

(v1,...,vy), thus proving that B; = Bs.

Let p be some eigenvalue of By, and let v = v; be some eigenvector of By associated with
. We can write
V= QiU + -+ aply,.

Since v is an eigenvector of By for u and A = P2, by Lemma 1.4
A(v) = etv = efaquy + - - - + efanuy,.
On the other hand,
A() = Alaqug + - + antiy) = g A(ug) + - - - 4+ Aluy),

and since A = eP' and B;(u;) = psu;, by Lemma 1.4 we get

A(v) = eMoquy + -+ - + eFrauy,.
Therefore, o; = 0 if p; # p. Letting

I={i|pw=mpie{l,...,n}},

V= E QG U;.

il

we have

Now,

B(v) = B <Z au) =Y aBiu) = 3 o,

icl el icl
= E QG Uy = ,U( E aiui) = v,
i€l iel

since p; = p when 7 € I. Since v is an eigenvector of By for p,
B2 (U) = pv,

which shows that
Bl(U) = BQ(?}).

Since the above holds for every eigenvector v;, we have B; = B. O
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Lemma 1.8 can be reformulated as stating that the map exp: S(n) — SPD(n) is a
bijection. It can be shown that it is a homeomorphism. In the case of invertible matrices,
the polar form theorem can be reformulated as stating that there is a bijection between
the topological space GL(n,R) of real n x n invertible matrices (also a group) and O(n) x
SPD(n).

As a corollary of the polar form theorem (Theorem 12.1.3 in Chapter 12 of Gallier [60])
and Lemma 1.8, we have the following result: For every invertible matrix A there is a unique
orthogonal matrix R and a unique symmetric matrix S such that

A=Re5.

Thus, we have a bijection between GL(n, R) and O(n) x S(n). But S(n) itself is isomorphic
to R™"*+1/2 Thus, there is a bijection between GL(n,R) and O(n) x R™™+1/2_ Tt can also
be shown that this bijection is a homeomorphism. This is an interesting fact. Indeed, this
homeomorphism essentially reduces the study of the topology of GL(n,R) to the study of
the topology of O(n). This is nice, since it can be shown that O(n) is compact.

In A= Re, if det(A4) > 0, then R must be a rotation matrix (i.e., det(R) = +1), since
det (es) > 0. In particular, if A € SL(n,R), since det(A) = det(R) = +1, the symmetric
matrix S must have a null trace, i.e., S € S(n)Nsl(n,R). Thus, we have a bijection between
SL(n,R) and SO(n) x (S(n) Nsl(n,R)).

We can also show that the exponential map is a surjective map from the skew Hermitian
matrices to the unitary matrices (use Theorem 11.4.7 from Chapter 11 in Gallier [60]).

1.4 The Lie Groups GL(n,C), SL(n,C), U(n), SU(n), the
Lie Algebras gl(n,C), sl(n,C), u(n), su(n), and the
Exponential Map

The set of complex invertible n x n matrices forms a group under multiplication, denoted by
GL(n,C). The subset of GL(n, C) consisting of those matrices having determinant +1 is a
subgroup of GL(n,C), denoted by SL(n,C). It is also easy to check that the set of complex
n X n unitary matrices forms a group under multiplication, denoted by U(n). The subset
of U(n) consisting of those matrices having determinant +1 is a subgroup of U(n), denoted
by SU(n). We can also check that the set of complex n x n matrices with null trace forms
a real vector space under addition, and similarly for the set of skew Hermitian matrices and
the set of skew Hermitian matrices with null trace.

Definition 1.2. The group GL(n,C) is called the general linear group, and its subgroup
SL(n,C) is called the special linear group. The group U(n) of unitary matrices is called the
unitary group, and its subgroup SU(n) is called the special unitary group. The real vector
space of complex n x n matrices with null trace is denoted by sl(n, C), the real vector space
of skew Hermitian matrices is denoted by u(n), and the real vector space u(n) N sl(n, C) is
denoted by su(n).
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Remarks:

(1) As in the real case, the groups GL(n,C), SL(n,C), U(n), and SU(n) are also topo-
logical groups (viewed as subspaces of R2”2), and in fact, smooth real manifolds. Such
objects are called (real) Lie groups. The real vector spaces sl(n,C), u(n), and su(n)
are Lie algebras associated with SL(n,C), U(n), and SU(n). The algebra structure is
given by the Lie bracket, which is defined as

[A, B] = AB — BA.

(2) It is also possible to define complex Lie groups, which means that they are topological
groups and smooth complez manifolds. It turns out that GL(n,C) and SL(n,C) are
complex manifolds, but not U(n) and SU(n).

@ One should be very careful to observe that even though the Lie algebras sl(n, C),
u(n), and su(n) consist of matrices with complex coefficients, we view them as real

vector spaces. The Lie algebra sl(n,C) is also a complex vector space, but u(n) and su(n)

are not! Indeed, if A is a skew Hermitian matrix, ¢A is not skew Hermitian, but Hermitian!

Again the Lie algebra achieves a “linearization” of the Lie group. In the complex case,
the Lie algebras gl(n, C) is the set of all complex n x n matrices, but u(n) # su(n), because
a skew Hermitian matrix does not necessarily have a null trace.

The properties of the exponential map also play an important role in studying complex
Lie groups. For example, it is clear that the map

exp: gl(n,C) — GL(n,C)

is well-defined, but this time, it is surjective! One way to prove this is to use the Jordan

normal form. Similarly, since
det (eA) = "),

the map
exp: sl(n,C) — SL(n,C)

is well-defined, but it is not surjective! As we will see in the next theorem, the maps
exp: u(n) — U(n)

and
exp: su(n) — SU(n)

are well-defined and surjective.
Theorem 1.9. The exponential maps
exp: u(n) — U(n) and exp: su(n) — SU(n)

are well-defined and surjective.
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Proof. First, we need to prove that if A is a skew Hermitian matrix, then e is a unitary
matrix. For this, first check that

Then, since A* = —A, we get

and so
* _ _
(eA) oA — o AA — A+A:eon:[n7

and similarly, e4 (e*)” = I,,, showing that e” is unitary. Since
det (eA) = (A
if A is skew Hermitian and has null trace, then det(e?) = +1.

For the surjectivity we will use Theorem 11.4.7 in Chapter 11 of Gallier [60]. First,
assume that A is a unitary matrix. By Theorem 11.4.7, there is a unitary matrix U and
a diagonal matrix D such that A = UDU*. Furthermore, since A is unitary, the entries
A1, ..y Ay in D (the eigenvalues of A) have absolute value +1. Thus, the entries in D are of
the form cos@ +isin@ = €. Thus, we can assume that D is a diagonal matrix of the form

ei91
oit
D = .
o0
If we let E be the diagonal matrix
it
E= v |
i0,

it is obvious that E is skew Hermitian and that

e? =D.

Then, letting B = UEU*, we have
eBP=A

and it is immediately verified that B is skew Hermitian, since F is.

Y

If A is a unitary matrix with determinant 41, since the eigenvalues of A are ¢, ... e

and the determinant of A is the product

W00, iy — (014 +0y)

e
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of these eigenvalues, we must have
0, +---+0,=0,
and so, F is skew Hermitian and has zero trace. As above, letting
B=UFEU",

we have

e = A,

where B is skew Hermitian and has null trace. O

We now extend the result of Section 1.3 to Hermitian matrices.

1.5 Hermitian Matrices, Hermitian Positive Definite
Matrices, and the Exponential Map

Recall that a Hermitian matrix is called positive (or positive semidefinite) if its eigenvalues
are all positive or null, and positive definite if its eigenvalues are all strictly positive. We
denote the real vector space of Hermitian nxn matrices by H(n), the set of Hermitian positive
matrices by HP(n), and the set of Hermitian positive definite matrices by HPD(n).

The next lemma shows that every Hermitian positive definite matrix A is of the form e?

for some unique Hermitian matrix B. As in the real case, the set of Hermitian matrices is a
real vector space, but it is not a Lie algebra because the Lie bracket [A, B] is not Hermitian
unless A and B commute, and the set of Hermitian (positive) definite matrices is not a
multiplicative group.

Lemma 1.10. For every Hermitian matriz B, the matriz e? is Hermitian positive definite.
For every Hermitian positive definite matriz A, there is a unique Hermitian matriz B such
that A = eB.

Proof. 1t is basically the same as the proof of Theorem 1.10, except that a Hermitian matrix
can be written as A = UDU?*, where D is a real diagonal matrix and U is unitary instead of
orthogonal. O]

Lemma 1.10 can be reformulated as stating that the map exp: H(n) — HPD(n) is a
bijection. In fact, it can be shown that it is a homeomorphism. In the case of complex
invertible matrices, the polar form theorem can be reformulated as stating that there is a
bijection between the topological space GL(n, C) of complex n x n invertible matrices (also a
group) and U(n) x HPD(n). As a corollary of the polar form theorem and Lemma 1.10, we
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have the following result: For every complex invertible matrix A, there is a unique unitary
matrix U and a unique Hermitian matrix S such that

A=Uée".

Thus, we have a bijection between GL(n,C) and U(n) x H(n). But H(n) itself is isomorphic
to R™, and so there is a bijection between GL(n,C) and U(n) x R™. It can also be
shown that this bijection is a homeomorphism. This is an interesting fact. Indeed, this
homeomorphism essentially reduces the study of the topology of GL(n,C) to the study of
the topology of U(n). This is nice, since it can be shown that U(n) is compact (as a real
manifold).

In the polar decomposition A = Ue®, we have | det(U)| = 1, since U is unitary, and tr(.9)
is real, since S is Hermitian (since it is the sum of the eigenvalues of S, which are real), so
that det (es) > 0. Thus, if det(A) = 1, we must have det (es) = 1, which implies that S €
H(n)Nsl(n,C). Thus, we have a bijection between SL(n,C) and SU(n) x (H(n)Nsl(n,C)).

In the next section we study the group SE(n) of affine maps induced by orthogonal trans-
formations, also called rigid motions, and its Lie algebra. We will show that the exponential
map is surjective. The groups SE(2) and SE(3) play play a fundamental role in robotics,
dynamics, and motion planning.

1.6 The Lie Group SE(n) and the Lie Algebra se(n)

First, we review the usual way of representing affine maps of R™ in terms of (n+1) x (n+1)
matrices.

Definition 1.3. The set of affine maps p of R”, defined such that
p(X)=RX +U,

where R is a rotation matrix (R € SO(n)) and U is some vector in R", is a group under
composition called the group of direct affine isometries, or rigid motions, denoted by SE(n).

Every rigid motion can be represented by the (n + 1) x (n + 1) matrix

(0 %)
()= 0)

p(X)=RX +U.

in the sense that

iff
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Definition 1.4. The vector space of real (n 4+ 1) x (n + 1) matrices of the form

QU
=)
where () is a skew symmetric matrix and U is a vector in R”, is denoted by se(n).

Remark: The group SE(n) is a Lie group, and its Lie algebra turns out to be se(n).

We will show that the exponential map exp: se(n) — SE(n) is surjective. First, we prove
the following key lemma.

Lemma 1.11. Given any (n + 1) x (n + 1) matriz of the form

QU
=0 0)
where 2 1s any matrix and U € R",

QF QU
kE_
=0 %)

A GQ VU

“=\o 1)
— 1,
+Zk+1

Proof. A trivial induction on k£ shows that

Ak (Qk Q’HU)

where Q° = I,,. As a consequence,

where

0 0

Then we have

1 /QkF Q1
= ["+1+ZH(O 0 );
E>1

k—1
— (In + Zk>0 k' Zk>1 Qk' >
0 1 ’

B et VU
N 0 1/
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We can now prove our main theorem. We will need to prove that V' is invertible when €2
is a skew symmetric matrix. It would be tempting to write V' as

V=0 -1).

Unfortunately, for odd n, a skew symmetric matrix of order n is not invertible! Thus, we
have to find another way of proving that V' is invertible. However, observe that we have the

following useful fact:
QF '
V=I, E —_— = dt.
T2 kT /0 ‘

k>1

This is what we will use in Theorem 1.12 to prove surjectivity.

Theorem 1.12. The exponential map
exp: se(n) — SE(n)

is well-defined and surjective.

Q

Proof. Since €1 is skew symmetric, e* is a rotation matrix, and by Theorem 1.6, the expo-

nential map
exp: so(n) — SO(n)

is surjective. Thus, it remains to prove that for every rotation matrix R, there is some skew
symmetric matrix  such that R = e and

y
V=Il,+) ——
£ (k+1)!

is invertible. By Theorem 11.4.4 in Chapter 11 of Gallier [60], for every skew symmetric
matrix () there is an orthogonal matrix P such that Q = PD P, where D is a block
diagonal matrix of the form

p

such that each block D; is either 0 or a two-dimensional matrix of the form

0 -0,
Di= (ei 0 )

where 0; € R, with 6; > 0. Actually, we can assume that 0; # k27 for all k € Z, since when
0; = k2m we have e’ = I,, and D; can be replaced by two one-dimensional blocks each
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consisting of a single zero. To compute V, since 2 = PD P" = PDP~! observe that

Qk
Vo= L+Y ——
T2 T

where

We can compute

by computing

by blocks. Since
oDi _ (€8 0, —sinb,
~ \sinf; cosb;
when D; is a 2 x 2 skew symmetric matrix and W; = fol ePitdt, we get

W, = (fo cos(O;t)dt [, —sin(Qﬁ)dt) 1 ( sin(0;t) |§  cos(6;t) |(1)> ’

! sin 0;t)dt ! cos 0,t)dt 0; \— cos(fit) |y sin(6;t) |g
0 0
that is,
1 sinf;  —(1 —cos#;)
Wi = 0; (1—0050,- sin 0, ) ’
and W; =1 when D; = 0. Now, in the first case, the determinant is
1 ) 9 9 2
P2 ((sin6;)* + (1 — cos 6;)?) = 0—2(1 — cosb;),

which is nonzero, since 6; # k2x for all k € Z. Thus, each W; is invertible, and so is W, and
thus, V = PW P~ is invertible. O
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In the case n = 3, given a skew symmetric matrix

0 —c b
Q=1 ¢ 0 —al,
b a 0

letting 0 = va? + b + 2, it it easy to prove that if # = 0, then

Aa_ (I3 U
6_(01’

and that if § # 0 (using the fact that Q3 = —6%Q)), then

sin 0 (1 —cosf)

et =15+ Q+ 0?

g 0
and (1 8 (6—sind)
— cos —sinf)
Vel la D

Our next goal is to define embedded submanifolds and (linear) Lie groups. Before doing
this, we believe that some readers might appreciate a review of the notion of the derivative
of a function between two normed vector spaces.

1.7 The Derivative of a Function Between
Normed Vector Spaces, a Review

In this brief section, we review some basic notions of differential calculus, in particular, the
deriwative of a function, f: F — F', where F and F' are normed vector spaces. In most cases,
E =R" and F = R™. However, if we need to deal with infinite dimensional manifolds, then
it is necessary to allow E and F' to be infinite dimensional. This section can be omitted by
readers already familiar with this standard material. We omit all proofs and refer the reader
to standard analysis textbooks such as Lang [95, 94], Munkres [117], Choquet-Bruhat [37]
or Schwartz [136], for a complete exposition.

Let E and F' be two normed vector spaces, let A C E be some open subset of A, and let
a € A be some element of A. Even though a is a vector, we may also call it a point.

The idea behind the derivative of the function f at a is that it is a linear approximation
of f in a small open set around a. The difficulty is to make sense of the quotient

fla+h)—f(a)
h

where h is a vector. We circumvent this difficulty in two stages.
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A first possibility is to consider the directional derivative with respect to a vector u # 0
in F.
We can consider the vector f(a + tu) — f(a), where t € R (or ¢t € C). Now,

fla+tu) = f(a)
t

makes sense.

The idea is that in E, the points of the form a+tu for ¢ in some small interval [—¢, +¢ in
R form a line segment [r, s] in A containing a, and that the image of this line segment defines
a small curve segment on f(A). This curve segment is defined by the map ¢t — f(a + tu),
from [r, s] to F', and the directional derivative D, f(a) defines the direction of the tangent
line at a to this curve.

Definition 1.5. Let F and F be two normed spaces, let A be a nonempty open subset of
E, and let f: A — F be any function. For any a € A, for any u # 0 in E, the directional
derivative of f at a w.r.t. the vector u, denoted by D, f(a), is the limit (if it exists)

Lt t) = fla)

t—0,teU t ’

where U={teR|a+tuc A, t#0} (or U={teCla+tuc A, t#0}).

Since the map t — a + tu is continuous, and since A — {a} is open, the inverse image
U of A — {a} under the above map is open, and the definition of the limit in Definition 1.5
makes sense.

Remark: Since the notion of limit is purely topological, the existence and value of a di-
rectional derivative is independent of the choice of norms in F and F', as long as they are
equivalent norms.

The directional derivative is sometimes called the Gateaux derivative.

In the special case where £ = R, F' = R and we let u = 1 (i.e., the real number 1, viewed
as a vector), it is immediately verified that Dy f(a) = f'(a). When E =R (or £ = C) and F
is any normed vector space, the derivative Dy f(a), also denoted by f’(a), provides a suitable
generalization of the notion of derivative.

However, when E has dimension > 2, directional derivatives present a serious problem,
which is that their definition is not sufficiently uniform. Indeed, there is no reason to believe
that the directional derivatives w.r.t. all nonzero vectors u share something in common. As
a consequence, a function can have all directional derivatives at a, and yet not be continuous
at a. Two functions may have all directional derivatives in some open sets, and yet their
composition may not. Thus, we introduce a more uniform notion.
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Definition 1.6. Let E and F' be two normed spaces, let A be a nonempty open subset of F,
and let f: A — F be any function. For any a € A, we say that f is differentiable at a € A
if there is a linear continuous map, L: F — F, and a function, €(h), such that

fla+h) = fla) + L(h) + e(h)[[n]]

for every a + h € A, where
lim €(h) =0,

h—0, heU

with U ={h € E|a+h € A, h # 0}. The linear map L is denoted by Df(a), or Df,, or
df (a), or df,, or f'(a), and it is called the Fréchet derivative, or total derivative, or derivative,
or total differential, or differential, of f at a.

Since the map h — a+h from E to F is continuous, and since A is open in F, the inverse
image U of A — {a} under the above map is open in E, and it makes sense to say that

lim €(h) =0.

h—0, heU

Note that for every h € U, since h # 0, €(h) is uniquely determined since

fla+h)— f(a) = L(h)
7] ’

e(h) =

and the value €(0) plays absolutely no role in this definition. It does no harm to assume that
€(0) = 0, and we will assume this from now on.

Remark: Since the notion of limit is purely topological, the existence and value of a deriva-
tive is independent of the choice of norms in £ and F', as long as they are equivalent norms.
Note that the continuous linear map L is unique, if it exists.

The following proposition shows that our new definition is consistent with the definition
of the directional derivative and that the continuous linear map L is unique, if it exists.

Proposition 1.13. Let E and F be two normed spaces, let A be a nonempty open subset
of E, and let f: A — F be any function. For any a € A, if Df(a) is defined, then f is
continuous at a and f has a directional derivative D, f(a) for everyu # 0 in E. Furthermore,

Duf(a) =Df(a)(u)
and thus, D f(a) is uniquely defined.

Proof. 1If L = D f(a) exists, then for any nonzero vector u € E, because A is open, for any
t € R—{0} (or t € C—{0}) small enough, a + tu € A, so

fla+tu) = f(a)+ L(tu) + e(tu)||tu]|
fla) +tL(u) + [t|e(tw)ull
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which implies that

pw = 1D ZTD My,

and since limy, o €(tu) = 0, we deduce that

L(u) = Df(a)(u) = Duf(a).

Because

fla+h) = fla) + L(h) + e(h)|[n]]
for all h such that ||h|| is small enough, L is continuous, and limy,q€(h)||h]| = 0, we have
limp, 0 f(a + h) = f(a), that is, f is continuous at a. O

Observe that the uniqueness of D f(a) follows from Proposition 1.13. Also, when E is of
finite dimension, it is easily shown that every linear map is continuous and this assumption
is then redundant.

If Df(a) exists for every a € A, we get a map Df: A — L(F; F), called the derivative
of f on A, and also denoted by df. Here, L(E; F') denotes the vector space of continuous
linear maps from E to F'.

When F is of finite dimension n, for any basis, (uq,...,u,), of E, we can define the
directional derivatives with respect to the vectors in the basis (u1, ..., u,) (actually, we can
also do it for an infinite basis). This way, we obtain the definition of partial derivatives, as
follows:

Definition 1.7. For any two normed spaces FE and F, if E is of finite dimension n, for
every basis (uy,...,u,) for E, for every a € E, for every function f: E — F, the directional
derivatives Dy, f(a) (if they exist) are called the partial derivatives of f with respect to the

basis (u1,...,u,). The partial derivative D, f(a) is also denoted by 9, f(a), or %(a).
J

0
The notation —f(a) for a partial derivative, although customary and going back to

8$j
Leibniz, is a “logical obscenity.” Indeed, the variable z; really has nothing to do with the
formal definition. This is just another of these situations where tradition is just too hard to
overthrow!

We now consider a number of standard results about derivatives. A function f: £ — F

%
is said to be affine if there is some linear map f : E — F and some fixed vector ¢ € F', such
that

%
flu)= f(u)+c
for all u € E. We call f the linear map associated with f.
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Proposition 1.14. Given two normed spaces E and F, if f: E — F is a constant function,

%
then Df(a) =0, for everya € E. If f: E — F is a continuous affine map, then D f(a) = f,
for every a € E, where ? denotes the linear map associated with f.

Proposition 1.15. Given a normed space E and a normed vector space F, for any two
functions f,g: E — F, for every a € E, if Df(a) and Dg(a) exist, then D(f + g)(a) and
D(Af)(a) exist, and

D(f + g)(a) = Df(a) + Dg(a),
D(Af)(a) = ADf(a).

Proposition 1.16. Given three normed vector spaces Ey, Eo, and F, for any continuous
bilinear map f: Ey X Ey — F, for every (a,b) € Ey X Ey, Df(a,b) exists, and for every
u € E and v € Es,

Df<a7 b)(ua U) = f(u> b) + f(aa U)'

We now state the very useful chain rule.

Theorem 1.17. Given three normed spaces E, F', and G, let A be an open set in E, and
let B an open set in F'. For any functions f: A — F and g: B — G, such that f(A) C B,
for any a € A, if Df(a) exists and Dg(f(a)) exists, then D(g o f)(a) exists, and

D(go f)(a) = Dg(f(a)) o Df(a).

Theorem 1.17 has many interesting consequences. We mention one corollary.

Proposition 1.18. Given two normed spaces EE and F, let A be some open subset in E, let
B be some open subset in F', let f: A — B be a bijection from A to B, and assume that D f
exists on A and that Df~! exists on B. Then, for every a € A,

Df ' (f(a)) = (Df(a)) "

Proposition 1.18 has the remarkable consequence that the two vector spaces £ and F
have the same dimension. In other words, a local property, the existence of a bijection f
between an open set A of F and an open set B of F, such that f is differentiable on A and
f~1 is differentiable on B, implies a global property, that the two vector spaces E and F
have the same dimension.

If both E and F' are of finite dimension, for any basis (uy,...,u,) of £ and any basis
(v1,...,vm) of F, every function f: F — F' is determined by m functions f;: £ — R (or
fi: E— C), where

f(aj) = fl(aj)vl +oeee fm(x)vm>
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for every x € E. Then, we get

Df(a)(u;) = Dfi(a)(uj)vy + - - + Dfi(a)(uj)vi + - - + D frn(a) (uj)vm,

that is,

Df(a)(u;) = 0;fila)vr + -+ - + O; fila)vi + - - + 0; fm(a) U
Since the j-th column of the m x n-matrix representing D f(a) w.r.t. the bases (uy,...,u,)
and (vy, ... ,un) is equal to the components of the vector D f(a)(u;) over the basis (v1, ..., vp,),

the linear map D f(a) is determined by the m x n-matrix

I1)@) = @), or J0)0) = (@)

J

Ofila) Opfi(a) ... Onfi(a)
Oifala)  Opfo(a) ... Onfa(a)

sy = | P AR O
Ofm(a) Oafm(a) ... Onfm(a)
> of, . Of of:
8_x1(a) 8_:102(@ " B (a)
9 a of a) ... 02 a
- | T T 3
Ofn.  Ofm, . Of
3_x1(a) 8_x2(a) " Ba (a)

This matrix is called the Jacobian matriz of Df at a. When m = n, the determinant,
det(J(f)(a)), of J(f)(a) is called the Jacobian of Df(a).

We know that this determinant only depends on D f(a), and not on specific bases. How-
ever, partial derivatives give a means for computing it.

When EF = R" and F' = R™, for any function f: R® — R™, it is easy to compute the
partial derivatives %(a} We simply treat the function f;: R™ — R as a function of its j-th
argument, leaving the others fixed, and compute the derivative as the usual derivative.
Example 1.1. For example, consider the function f: R? — R?, defined by

f(r,0) = (rcosf,rsind).

Then, we have
cosf) —rsin 0)

T, 0) = (sin9 r cos 0
and the Jacobian (determinant) has value det(J(f)(r,0)) = r.
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In the case where £ = R (or £ = C), for any function f: R — F (or f: C — F), the
Jacobian matrix of Df(a) is a column vector. In fact, this column vector is just D; f(a).
Then, for every A € R (or A € C), Df(a)(A) = AD; f(a). This case is sufficiently important
to warrant a definition.

Definition 1.8. Given a function f: R — F' (or f: C — F'), where F' is a normed space,
the vector

Df(a)(1) = D1 f(a)

is called the wvector derivative or velocity vector (in the real case) at a. We usually identify
D f(a) with its Jacobian matrix Dy f(a), which is the column vector corresponding to Dy f(a).
By abuse of notation, we also let D f(a) denote the vector Df(a)(1) = Dy f(a).

When E = R, the physical interpretation is that f defines a (parametric) curve that is
the trajectory of some particle moving in R™ as a function of time, and the vector D, f(a)
is the velocity of the moving particle f(t) at ¢t = a.

Example 1.2.

1. When A = (0,1), and F = R3, a function
f:(0,1) — R? defines a (parametric) curve in R3. If f = (fi, f2, f3), its Jacobian
matrix at a € R is
df

@
0@ = | 22
s
E(@

2. When £ = R? and F = R3, a function ¢: R? — R3 defines a parametric surface.
Letting ¢ = (f, g, h), its Jacobian matrix at a € R? is

of

L)
T@a) = | Do) P
oh oh

%(a) %(@
3. When E = R3, and F = R, for a function f: R® — R, the Jacobian matrix at a € R3

1@ = (G0 S Fa),
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More generally, when f: R — R, the Jacobian matrix at a € R" is the row vector

100 = (@ - @),

Its transpose is a column vector called the gradient of f at a, denoted by gradf(a) or V f(a).
Then, given any v € R", note that

0 0
DF@) = g (a) o+ () v = grad (o) o
the scalar product of gradf(a) and v.
When E, F, and G have finite dimensions, (u1,...,u,) is a basis for E, (v1,...,v,) is
a basis for F', and (wy,...,w,,) is a basis for G, if A is an open subset of E, B is an open

subset of F', for any functions f: A — F and ¢g: B — G, such that f(A) C B, for any
a € A, letting b = f(a), and h = go f, if Df(a) exists and Dg(b) exists, by Theorem 1.17,
the Jacobian matrix J(h)(a) = J(g o f)(a) w.r.t. the bases (u1,...,u,) and (wq,...,wy,) is
the product of the Jacobian matrices J(g)(b) w.r.t. the bases (vq,...,v,) and (w1, ..., wy),
and J(f)(a) w.r.t. the bases (uy,...,u,) and (vy,...,v,):

g1 dg dg1 df1 df1 dfr
) G0 - 5 (@) @) - gra)
892 392 392 P P Ofs
J(h)(a) = 8_m(b) 8_y2(b) a_yn(b) 6:::1() axQ() ag;p()
O0m  Ogm ogn | |0f,  0n. o

Thus, we have the familiar formula
Z agz af k
8x] 8yk 8x]

Given two normed spaces E and F' of finite dimension, given an open subset A of E| if
a function f: A — F'is differentiable at a € A, then its Jacobian matrix is well defined.

@ One should be warned that the converse is false. There are functions such that all the
partial derivatives exist at some a € A, but yet, the function is not differentiable at a,

and not even continuous at a.

However, there are sufficient conditions on the partial derivatives for Df(a) to exist,
namely, continuity of the partial derivatives. If f is differentiable on A, then f defines a
function Df: A — L(F; F). It turns out that the continuity of the partial derivatives on A
is a necessary and sufficient condition for Df to exist and to be continuous on A.
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Theorem 1.19. Given two normed spaces E and F', where E is of finite dimension n
and where (uy, ..., u,) is a basis of E, given any open subset A of E, given any function
f: A — F, the derivative Df: A — L(E;F) is defined and continuous on A iff every

0
partial derivative 0;f (or —f) 1s defined and continuous on A, for all j, 1 < 7 < n. As

aﬂlj
a corollary, if F is of finite dimension m, and (vyi,...,v,) is a basis of F, the derivative
Ofi
Df: A— L(E; F) is defined and continuous on A iff every partial derivative 0; f; (or 8f )
Ly

is defined and continuous on A, for alli,7, 1 <i<m,1<j<n.

Definition 1.9. Given two normed spaces E and F, and an open subset A of F, we say that
a function f: A — F is a C°-function on A if f is continuous on A. We say that f: A — F
is a C'-function on A if Df exists and is continuous on A.

Let E and F' be two normed spaces, let U C E be an open subset of £ and let f: E — F
be a function such that Df(a) exists for all a € U. If Df(a) is injective for all a € U, we
say that f is an immersion (on U) and if Df(a) is surjective for all a € U, we say that f is
a submersion (on U).

When E and F are finite dimensional with dim(£) = n and dim(F) = m, if m > n,
then f is an immersion iff the Jacobian matrix, J(f)(a), has full rank (n) for all « € E and
if n > m, then f is a submersion iff the Jacobian matrix, J(f)(a), has full rank (m) for all
ac€ k.

A very important theorem is the inverse function theorem. In order for this theorem to
hold for infinite dimensional spaces, it is necessary to assume that our normed spaces are
complete.

Given a normed vector space, F, we say that a sequence, (uy,),, with u,, € E, is a Cauchy
sequence iff for every € > 0, there is some N > 0 so that for all m,n > N,

|tn — wup|| <e.

A normed vector space, F, is complete iff every Cauchy sequence converges. A complete
normed vector space is also called a Banach space, after Stefan Banach (1892-1945).

Fortunately, R, C, and every finite dimensional (real or complex) normed vector space is
complete. A real (resp. complex) vector space, F, is a real (resp. complex) Hilbert space
if it is complete as a normed space with the norm ||u|| = \/(u, u) induced by its Euclidean
(resp. Hermitian) inner product (of course, positive, definite).

Definition 1.10. Given two topological spaces E and F' and an open subset A of E., we
say that a function f: A — F is a local homeomorphism from A to F if for every a € A,
there is an open set U C A containing a and an open set V' containing f(a) such that f is a
homeomorphism from U to V = f(U). If B is an open subset of F', we say that f: A — F
is a (global) homeomorphism from A to B if f is a homeomorphism from A to B = f(A).
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If £ and F are normed spaces, we say that f: A — F is a local diffeomorphism from
A to F if for every a € A, there is an open set U C A containing a and an open set V'
containing f(a) such that f is a bijection from U to V, f is a C'-function on U, and f~!
is a Cl-function on V = f(U). We say that f: A — F is a (global) diffeomorphism from A
to B if f is a homeomorphism from A to B = f(A), f is a C'-function on A, and f~!is a
C*'-function on B.

Note that a local diffeomorphism is a local homeomorphism. Also, as a consequence of
Proposition 1.18, if f is a diffeomorphism on A, then Df(a) is a bijection for every a € A.

Theorem 1.20. (Inverse Function Theorem) Let E and F be complete normed spaces, let A
be an open subset of E, and let f: A — F be a C'-function on A. The following properties
hold:

(1) For every a € A, if Df(a) is invertible, then there exist some open subset U C A
containing a, and some open subset V of F' containing f(a), such that f is a diffeo-
morphism from U to V = f(U). Furthermore,

Df ! (f(a)) = (Df(a))".

For every neighborhood N of a, the image f(N) of N is a neighborhood of f(a), and
for every open ball U C A of center a, the image f(U) of U contains some open ball

of center f(a).

(2) If Df(a) is invertible for every a € A, then B = f(A) is an open subset of F', and
fis a local diffeomorphism from A to B. Furthermore, if f is injective, then f is a
diffeomorphism from A to B.

Part (1) of Theorem 1.20 is often referred to as the “(local) inverse function theorem.”
It plays an important role in the study of manifolds and (ordinary) differential equations.

If £ and F are both of finite dimension, the case where Df(a) is just injective or just
surjective is also important for defining manifolds, using implicit definitions.

1.8 Manifolds, Lie Groups and Lie Algebras

In this section we define precisely manifolds, Lie groups and Lie algebras. One of the reasons
that Lie groups are nice is that they have a differential structure, which means that the notion
of tangent space makes sense at any point of the group. Furthermore, the tangent space at
the identity happens to have some algebraic structure, that of a Lie algebra. Roughly, the
tangent space at the identity provides a “linearization” of the Lie group, and it turns out
that many properties of a Lie group are reflected in its Lie algebra, and that the loss of
information is not too severe. The challenge that we are facing is that unless our readers are
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already familiar with manifolds, the amount of basic differential geometry required to define
Lie groups and Lie algebras in full generality is overwhelming.

Fortunately, most of the Lie groups that we will consider are subspaces of RY for some
sufficiently large N. In fact, most of them are isomorphic to subgroups of GL(N,R) for
some suitable N, even SE(n), which is isomorphic to a subgroup of SL(n + 1). Such groups
are called linear Lie groups (or matriz groups). Since these groups are subspaces of RV in
a first stage, we do not need the definition of an abstract manifold. We just have to define
embedded submanifolds (also called submanifolds) of RY (in the case of GL(n,R), N = n?).
This is the path that we will follow. The general definition of manifold will be given in
Chapter 3.

In general, the difficult part in proving that a subgroup of GL(n,R) is a Lie group is
to prove that it is a manifold. Fortunately, there is a characterization of the linear groups
that obviates much of the work. This characterization rests on two theorems. First, a Lie
subgroup H of a Lie group G (where H is an embedded submanifold of G) is closed in G
(see Warner [148], Chapter 3, Theorem 3.21, page 97). Second, a theorem of Von Neumann
and Cartan asserts that a closed subgroup of GL(n,R) is an embedded submanifold, and
thus, a Lie group (see Warner [148], Chapter 3, Theorem 3.42, page 110). Thus, a linear Lie
group is a closed subgroup of GL(n, R).

Since our Lie groups are subgroups (or isomorphic to subgroups) of GL(n,R) for some
suitable n, it is easy to define the Lie algebra of a Lie group using curves. This approach to
define the Lie algebra of a matrix group is followed by a number of authors, such as Curtis
[39]. However, Curtis is rather cavalier, since he does not explain why the required curves
actually exist, and thus, according to his definition, Lie algebras could be the trivial vector
space! Although we will not prove the theorem of Von Neumann and Cartan, we feel that it
is important to make clear why the definitions make sense, i.e., why we are not dealing with
trivial objects.

A small annoying technical problem will arise in our approach, the problem with discrete
subgroups. If A is a subset of R™, recall that A inherits a topology from RY called the
subspace topology, and defined such that a subset V of A is open if

V=ANU

for some open subset U of RY. A point a € A is said to be isolated if there is there is some
open subset U of RY such that
{a} =ANU,

in other words, if {a} is an open set in A.

The group GL(n, R) of real invertible n x n matrices can be viewed as a subset of R™, and
as such, it is a topological space under the subspace topology (in fact, a dense open subset
of R”Z). One can easily check that multiplication and the inverse operation are continuous,
and in fact smooth (i.e., C*°-continuously differentiable). This makes GL(n,R) a topological
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group. Any subgroup G of GL(n,R) is also a topological space under the subspace topology.
A subgroup G is called a discrete subgroup if it has some isolated point. This turns out to be
equivalent to the fact that every point of G is isolated, and thus, GG has the discrete topology
(every subset of G is open). Now, because GL(n,R) is Hausdorff, it can be shown that
every discrete subgroup of GL(n,R) is closed (which means that its complement is open).
Thus, discrete subgroups of GL(n,R) are Lie groups! But these are not very interesting Lie
groups, and so we will consider only closed subgroups of GL(n,R) that are not discrete.

Let us now review the definition of an embedded submanifold. For simplicity, we re-
strict our attention to smooth manifolds. For detailed presentations, see DoCarmo [50, 51],
Milnor [109], Marsden and Ratiu [103], Berger and Gostiaux [17], or Warner [148]. For the
sake of brevity, we use the terminology manifold (but other authors would say embedded
submanifolds, or something like that).

The intuition behind the notion of a smooth manifold in RY is that a subspace M is a
manifold of dimension m if every point p € M is contained in some open subset set U of
M (in the subspace topology) that can be parametrized by some function ¢: Q — U from
some open subset () of the origin in R, and that ¢ has some nice properties that allow the
definition of smooth functions on M and of the tangent space at p. For this, ¢ has to be at
least a homeomorphism, but more is needed: ¢ must be smooth, and the derivative ¢'(0,,)
at the origin must be injective (letting 0,, = (0,...,0)).

——

m

Definition 1.11. Given any integers N, m, with N > m > 1, an m-dimensional smooth
manifold in RN, for short a manifold, is a nonempty subset M of RY such that for every
point p € M there are two open subsets {2 C R™ and U C M, with p € U, and a smooth
function ¢: Q — RY such that ¢ is a homeomorphism between Q and U = »(2), and ¢/ (t)
is injective, where tg = ¢~ !(p). The function ¢: Q — U is called a (local) parametrization
of M at p. If 0,,, € Q and ¢(0,,) = p, we say that p: Q — U is centered at p.

Recall that M C RY is a topological space under the subspace topology, and U is some
open subset of M in the subspace topology, which means that U = M N W for some open
subset W of RY. Since ¢: 2 — U is a homeomorphism, it has an inverse ¢~': U — ) that
is also a homeomorphism, called a (local) chart. Since Q@ C R™, for every point p € M and
every parametrization ¢: Q — U of M at p, we have ¢! (p) = (21,..., 2z,n) for some z; € R,
and we call 21, ..., 2, the local coordinates of p (w.r.t. ¢=*). We often refer to a manifold
M without explicitly specifying its dimension (the integer m).

Intuitively, a chart provides a “flattened” local map of a region on a manifold. For
instance, in the case of surfaces (2-dimensional manifolds), a chart is analogous to a planar
map of a region on the surface. For a concrete example, consider a map giving a planar
representation of a country, a region on the earth, a curved surface.

Remark: We could allow m = 0 in definition 1.11. If so, a manifold of dimension 0 is just
a set of isolated points, and thus it has the discrete topology. In fact, it can be shown that
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Figure 1.1: Inverse stereographic projections

a discrete subset of RV is countable. Such manifolds are not very exciting, but they do
correspond to discrete subgroups.

Example 1.3. The unit sphere S? in R? defined such that

S*={(z,y,2) eR® | 2® +y* +2* =1}

is a smooth 2-manifold, because it can be parametrized using the following two maps ¢; and
¥P2:

2u 2 uw?+0? -1
w2 +1" w4+ 0241 w2402 +1

o1 (u,v) — (

and

2u 2v 1—u2 -2
w42 +1 w0241 w202 4+1) 0

o (u,v) — <

The map ¢; corresponds to the inverse of the stereographic projection from the north
pole N = (0,0,1) onto the plane z = 0, and the map s corresponds to the inverse of the
stereographic projection from the south pole S = (0,0, —1) onto the plane z = 0, as illus-
trated in Figure 1.1. We leave as an exercise to check that the map ¢, parametrizes S? —{ N}
and that the map ¢, parametrizes S? — {S} (and that they are smooth, homeomorphisms,
etc.). Using ¢4, the open lower hemisphere is parametrized by the open disk of center O and
radius 1 contained in the plane z = 0.

The chart ¢ * assigns local coordinates to the points in the open lower hemisphere. If we
draw a grid of coordinate lines parallel to the x and y axes inside the open unit disk and map
these lines onto the lower hemisphere using ¢;, we get curved lines on the lower hemisphere.
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These “coordinate lines” on the lower hemisphere provide local coordinates for every point
on the lower hemisphere. For this reason, older books often talk about curvilinear coordinate
systems to mean the coordinate lines on a surface induced by a chart. We urge our readers
to define a manifold structure on a torus. This can be done using four charts.

Every open subset of RV is a manifold in a trivial way. Indeed, we can use the inclusion
map as a parametrization. In particular, GL(n,R) is an open subset of R”Q, since its
complement is closed (the set of invertible matrices is the inverse image of the determinant
function, which is continuous). Thus, GL(n,R) is a manifold. We can view GL(n,C) as a
subset of R’ using the embedding defined as follows: For every complex n x n matrix A,
construct the real 2n x 2n matrix such that every entry a + b in A is replaced by the 2 x 2

block
a —b
b a

where a,b € R. It is immediately verified that this map is in fact a group isomorphism.
Thus, we can view GL(n,C) as a subgroup of GL(2n,R), and as a manifold in R(E)?,

A l-manifold is called a (smooth) curve, and a 2-manifold is called a (smooth) surface
(although some authors require that they also be connected).

The following two lemmas provide the link with the definition of an abstract manifold.
The first lemma is easily shown using the inverse function theorem.

Lemma 1.21. Given an m-dimensional manifold M in RN, for every p € M there are
two open sets O,W C RN with Oy € O and p € M NW, and a smooth diffeomorphism
w: O = W, such that ¢(On) = p and

(0N (R™ x {0x_m})) = M OW.

The next lemma is easily shown from Lemma 1.21 (see Berger and Gostiaux [17], Theorem
2.1.9 or DoCarmo [51], Chapter 0, Section 4). It is a key technical result used to show that
interesting properties of maps between manifolds do not depend on parametrizations.

Lemma 1.22. Given an m-dimensional manifold M in RN, for every p € M and any
two parametrizations p1: Qy — Uy and oo: Qo — Uy of M at p, if Uy NUy # 0, the map
0yt o1 o UL NUy) — @, {(UL N Uy) is a smooth diffeomorphism.

The maps ;" o @11 o] H(Uy NUs) — @31 (U; NUy) are called transition maps. Lemma
1.22 is illustrated in Figure 1.2.

Using Definition 1.11, it may be quite hard to prove that a space is a manifold. Therefore,
it is handy to have alternate characterizations such as those given in the next Proposition:

Proposition 1.23. A subset, M C R™* is an m-dimensional manifold iff either

(1) For every p € M, there is some open subset, W C R™* with p € W and a (smooth)
submersion, f: W — RF, so that W N M = f~1(0),
or
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Figure 1.2: Parametrizations and transition functions

(2) For every p € M, there is some open subset, W C R™* with p € W and a (smooth)
map, f: W — R so that f'(p) is surjective and W N M = f~1(0).

Observe that condition (2), although apparently weaker than condition (1), is in fact
equivalent to it, but more convenient in practice. This is because to say that f’(p) is surjective
means that the Jacobian matrix of f’(p) has rank k, which means that some determinant is
nonzero, and because the determinant function is continuous this must hold in some open
subset W7 C W containing p. Consequently, the restriction, f;, of f to W is indeed a
submersion and f;(0) = Wi N fH0) =W NnWNM=W,NM.

A proof of Proposition 1.23 can be found in Lafontaine [93] or Berger and Gostiaux [17].
Lemma 1.21 and Proposition 1.23 are actually equivalent to Definition 1.11. This equivalence
is also proved in Lafontaine [93] and Berger and Gostiaux [17].

The proof, which is somewhat illuminating, is based on two technical lemmas that are
proved using the inverse function theorem (for example, see Guillemin and Pollack [70],
Chapter 1, Sections 3 and 4).

Lemma 1.24. Let U C R™ be an open subset of R™ and pick somea € U. If f: U — R"
is a smooth immersion at a, i.e., df, is injective (so, m < n), then there is an open set,
V C R™, with f(a) € V, an open subset, U C U, with a € U' and f(U") C V, an open
subset O C R™™ and a diffeomorphism, 6:V — U’ x O, so that

O(f(z1,...,xm)) = (21, ..., Tm,0,...,0),
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for all (z1,...,z,) € U as illustrated in the diagram below

UcU—L- fuycv
X le
U xO0
where ing (1, ..., 2n) = (T1,...,Tm,0,...,0).

Proof. Since f is an immersion, its Jacobian matrix, J(f), (an n x m matrix) has rank m
and by permuting coordinates if needed, we may assume that the first m rows of J(f) are

linearly independent and we let
Afi
A=
(3%’ (a))

be this invertible m x m matrix. Define the map, g: U x R*™™ — R", by

g(x, y) = (f1<l’)7 SRR fm(x)7y1 + fm-‘rl(x)v s Yn—m fn<l’)>,
for all x € U and all y € R"™. The Jacobian matrix of ¢ at (a,0) is of the form

(2

so det(J) = det(A)det(l) = det(A) # 0, since A is invertible. By the inverse function
theorem, there are some open subsets W C U x R*™™™ with (a,0) € W and V' C R" such
that the restriction of g to W is a diffeomorphism between W and V. Since W C U x R*™™
is an open set, we can find some open subsets U’ C U and O C R"™ so that U’ x O C W,
a € U', and we can replace W by U’ x O and restrict further ¢ to this open set so that we
obtain a diffeomorphism from U’ x O to (a smaller) V. If §: V — U’ x O is the inverse of
this diffeomorphism, then f(U’) C V and since g(z,0) = f(x),

0(g(x,0)) =0(f(x1,...,2m)) = (z1,...,2m,0,...,0),
forall z = (z1,...,2,) € U'. O

Lemma 1.25. Let W C R™ be an open subset of R™ and pick somea € W. If f: W — R"
is a smooth submersion at a, i.e., df, is surjective (so, m > n), then there is an open set,
VCW CR™, witha €V, and a diffeomorphism ¢: O — V', with domain O C R™, so that

fW(zy, .. xm)) = (21, .., 2),

for all (xq,...,2y) € O as illustrated in the diagram below

OCR" Y- vVcwcRr™

where w(x1, ..., Ty) = (T1,...,Tp).
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Proof. Since f is a submersion, its Jacobian matrix, J(f), (an n x m matrix) has rank n
and by permuting coordinates if needed, we may assume that the first n columns of J(f)

are linearly independent and we let
Afi
A —
(09;]- (a))

be this invertible n x n matrix. Define the map, g: W — R™, by

g(I) = (f(x>’xn+1’ oo 7'xm)7

for all x € W. The Jacobian matrix of g at a is of the form

A B
=0 7)
so det(J) = det(A)det(]) = det(A) # 0, since A is invertible. By the inverse function
theorem, there are some open subsets V. C W with a € V and O C R™ such that the

restriction of g to V' is a diffeomorphism between V and O. Let v: O — V be the inverse of
this diffeomorphism. Because g o 1) = id, we have

(1’1, s vxm} = 9(¢($)) = (f(?ﬂ(i’f)),%ﬂ(if), s ﬂ/Jm(iﬂ)),

that is,
fW(zy, ... xm) = (21, .., 24)

for all (z1,...,z,) € O, as desired. ]

Using Lemmas 1.24 and 1.25, we can prove the following theorem which confirms that
all our characterizations of a manifold are equivalent.

Theorem 1.26. A nonempty subset, M C RY | is an m-manifold (with 1 < m < N ) iff any
of the following conditions hold:

(1) For every p € M, there are two open subsets Q@ C R™ and U C M, with p € U,
and a smooth function p: Q — RY such that ¢ is a homeomorphism between Q and
U = (), and ¢'(0) is injective, where p = ¢(0).

(2) For every p € M, there are two open sets O,W C RY with Oy € O andp € M NW,
and a smooth diffeomorphism ¢: O — W, such that ¢(On) = p and

(0N (R™ x {0x_m})) = M OW.

(3) For every p € M, there is some open subset, W C RN, with p € W and a smooth
submersion, f: W — RN=™ 5o that W N M = f~1(0).
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(4) For every p € M, there is some open subset, W C RN with p € W and N —m
smooth functions, f;: W — R, so that the linear forms df1(p), ..., df n_m(p) are linearly

independent and
WnM=f0)n---nfyl,,(0).

Proof. If (1) holds, then by Lemma 1.24, replacing 2 by a smaller open subset €' C  if
necessary, there is some open subset V' C RY with p € V and (') C V, an open subset,
O C R¥=™_and some diffeomorphism, 6: V' — Q' x O, so that

Oop)(xy,...,xm) = (z1,...,Zm,0,...,0),
for all (zq,...,z,) € . Observe that the above condition implies that
(0 0p)(Q) =0(V)N(R™ x {(0,...,0)}).

Since ¢ is a homeomorphism between 2 and its image in M and since ' C €) is an open
subset, p(£2) = M N W’ for some open subset W’ C RY | so if we let W =V N W’ because
©(Q) C V it follows that () = M N and

OW N M) =0(p(Q))=0(V)N(R™ x{(0,...,0)}).
However, 6 is injective and (W N M) C (W) so

oW AM) = OW)NoV)N(R™ x {(0,...,0)})
= W NV)N(R™ x {(0,...,0)})
= (W) N (R™ x {(0,...,0)}).

If we let O = (W), we get
O (ONMR™ x {(0,...,0)})) =MnW,

which is (2).

If (2) holds, we can write ¢! = (fi,..., fy) and because ¢~ ': W — O is a diffeomor-
phism, dfi(q),...,dfy(q) are linearly independent for all ¢ € W, so the map

f=ms1s-- 5 IN)
is a submersion, f: W — RY=™ and we have f(z) = 0 iff foq(z) = --- = fy(z) =0 iff
o Hx) = (fi(2),..., fm(2),0,...,0)
iff o 1(z) € ON(R™ x {0n_m}) iff 2 € p(O N (R™ X {On_pm}) = M NW, because
(0N (R™ x {On_m})) = M NW.

Thus, M N W = f~1(0), which is (3).
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The proof that (3) implies (2) uses Lemma 1.25 instead of Lemma 1.24. If f: W — RV-™
is the submersion such that M N W = f~1(0) given by (3), then by Lemma 1.25, there are
open subsets V C W, O C RY and a diffeomorphism, ¢/: O — V so that

fW(zy,...,z2n)) = (21, .., TN_m)

for all (zq,...,zx) € O. If o is the permutation of variables given by
o(T1, o Ty Tty - - s EN) = (Tonady oo oy TNG Ty e ey T,

then ¢ =1 o 0 is a diffeomorphism such that

flo(zr,. .., 2n)) = (Tmaty - - -, TN)
for all (x1,...,zx) € O. If we denote the restriction of f to V' by g, it is clear that

MnV =g1*0)

and because g(p(z1,...,zx)) =0 iff (41, ..., 2n5) = Ony_m and ¢ is a bijection,

MOV = {(y1,...,yn) €V | g(y1,...,yn) =0}
{o(x1,...;zN) | B(z1,...,2n) € O)(g(p(z1,...,2x5)) =0)}
= e(ONR" x {On-m})),

which is (2).
If (2) holds, then ¢: O — W is a diffeomorphism,
ONER"™ X {On_m}) =2 % {0n_m}
for some open subset, 2 C R™, and the map ©: Q — RY given by
U(z) = @(x, 0n—m)

is an immersion on {2 and a homeomorhism onto U N M, which implies (1).

If (3) holds, then if we write f = (f1,..., fn_m), with f;: W — R, then the fact that
df (p) is a submersion is equivalent to the fact that the linear forms df;(p), ..., dfn_m(p) are
linearly independent and

MAW = f740) = f71(0) NN 3L, (0).
Finally, if (4) holds, then if we define f: W — RN=™ by
f=0 o fvem),

because df(p), ..., dfv_m(p) are linearly independent we get a smooth map which is a sub-
mersion at p such that
MNW = f710).

Now, f is a submersion at p iff df(p) is surjective, which means that a certain determinant
is nonzero and since the determinant function is continuous, this determinant is nonzero on

some open subset, W/ C W, containing p, so if we restrict f to W', we get an immersion on
W' such that M N W' = f=1(0). O
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Condition (4) says that locally (that is, in a small open set of M containing p € M),
M is “cut out” by N —m smooth functions, f;: W — R, in the sense that the portion
of the manifold M N W is the intersection of the N — m hypersurfaces, f; '(0), (the zero-
level sets of the f;) and that this intersection is “clean”, which means that the linear forms
df1(p), ..., df n_m(p) are linearly independent.

As an illustration of Theorem 1.26, we can show again that the sphere
S" = {z e R" [ ||z[l; — 1 =0}

is an n-dimensional manifold in R"*'. Indeed, the map f: R"*' — R given by f(x) = ||z||3—1
is a submersion (for x # 0) since

n+1

df ()(y) =2 wayse-

We can also show that the rotation group, SO(n), is an @—dimensional manifold in

2

R™.

Indeed, GL™(n) is an open subset of R"* (recall, GL*(n) = {A € GL(n) | det(A4) > 0})
and if f is defined by
f(A) = ATA - Ia
n(rs)

where A € GL"(n), then f(A) is symmetric, so f(A) € S(n) =R

It is easy to show (using directional derivatives) that
df(A)Y(H)=A"H+ H" A,

But then, df(A) is surjective for all A € SO(n), because if S is any symmetric matrix, we

see that
df (A) <§> =S.

As SO(n) = f71(0), we conclude that SO(n) is indeed a manifold.

A similar argument proves that O(n) is an M"T_l)—dimensional manifold. Using the map,

f: GL(n) — R, given by A — det(A), we can prove that SL(n) is a manifold of dimension
n? —1.

Remark: We have df(A)(B) = det(A)tr(A™!B) for every A € GL(n), where f(A) =
det(A).

The third characterization of Theorem 1.26 suggests the following definition.
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Definition 1.12. Let f: R™** — R* be a smooth function. A point, p € R™** is called a
critical point (of f) iff df, is not surjective and a point ¢ € R is called a critical value (of
f) iff g = f(p), for some critical point, p € R™**. A point p € R™** is a regular point (of f)
iff p is not critical, i.e., df, is surjective, and a point ¢ € R* is a regular value (of f) iff it is
not a critical value. In particular, any ¢ € R¥ — f(R™*) is a regular value and ¢ € f(R™"*)
is a regular value iff every p € f~!(q) is a regular point (but, in contrast, ¢ is a critical value
iff some p € f~1(q) is critical).

Part (3) of Theorem 1.26 implies the following useful proposition:

Proposition 1.27. Given any smooth function, f: R™* — R¥  for every regular value,
q € f(R™F), the preimage, Z = f~1(q), is a manifold of dimension m.

Definition 1.12 and Proposition 1.27 can be generalized to manifolds. Regular and critical
values of smooth maps play an important role in differential topology. Firstly, given a smooth
map, f: R™** — R¥ almost every point of R¥ is a regular value of f. To make this statement
precise, one needs the notion of a set of measure zero. Then, Sard’s theorem says that the
set of critical values of a smooth map has measure zero. Secondly, if we consider smooth
functions, f: R™" — R, a point p € R™*! is critical iff df, = 0. Then, we can use second
order derivatives to further classify critical points. The Hessian matriz of f (at p) is the
matrix of second-order partials

Hy(p) = ( 853% (p))

and a critical point p is a nondegenerate critical point if H;(p) is a nonsingular matrix.
The remarkable fact is that, at a nondegenerate critical point, p, the local behavior of f is
completely determined, in the sense that after a suitable change of coordinates (given by a
smooth diffeomorphism)

f@)=flp) =2t = =2l + 2%+ + T

near p, where A called the index of f at p is an integer which depends only on p (in fact, A is
the number of negative eigenvalues of Hy(p)). This result is known as Morse lemma (after
Marston Morse, 1892-1977).

Smooth functions whose critical points are all nondegenerate are called Morse functions.
It turns out that every smooth function, f: R™*! — R, gives rise to a large supply of Morse
functions by adding a linear function to it. More precisely, the set of a € R™*! for which
the function f, given by

fa(w) = f(x) + a1z1 + - + 1T

is not a Morse function has measure zero.
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Morse functions can be used to study topological properties of manifolds. In a sense
to be made precise and under certain technical conditions, a Morse function can be used to
reconstuct a manifold by attaching cells, up to homotopy equivalence. However, these results
are way beyond the scope of this book. A fairly elementary exposition of nondegenerate
critical points and Morse functions can be found in Guillemin and Pollack [70] (Chapter 1,
Section 7). Sard’s theorem is proved in Appendix 1 of Guillemin and Pollack [70] and also
in Chapter 2 of Milnor [109]. Morse theory (starting with Morse lemma) and much more,
is discussed in Milnor [107], widely recognized as a mathematical masterpiece. An excellent
and more leisurely introduction to Morse theory is given in Matsumoto [106], where a proof
of Morse lemma is also given.

Let us now review the definitions of a smooth curve in a manifold and the tangent vector
at a point of a curve.

Definition 1.13. Let M be an m-dimensional manifold in RY. A smooth curve v in M
is any function «: I — M where [ is an open interval in R and such that for every t € I,
letting p = ~y(t), there is some parametrization ¢: Q — U of M at p and some open interval
|t — €, t +¢[ C I such that the curve ¢t o~y: |t — ¢, t + €[ — R™ is smooth.

Using Lemma 1.22, it is easily shown that Definition 1.13 does not depend on the choice
of the parametrization ¢: Q — U at p.

Lemma 1.22 also implies that v viewed as a curve 7: I — RY is smooth. Then the
tangent vector to the curve v: I — RY at t, denoted by +/(t), is the value of the derivative
of v at t (a vector in RY) computed as usual:

) . A+ h) =)
() = lim h '

Given any point p € M, we will show that the set of tangent vectors to all smooth curves
in M through p is a vector space isomorphic to the vector space R™. The tangent vector at
p to a curve v on a manifold M is illustrated in Figure 1.3.

Given a smooth curve v: [ — M, for any t € I, letting p = (t), since M is a manifold,
there is a parametrization ¢: 0 — U such that ¢(0,,) = p € U and some open interval J C [
with ¢ € J and such that the function

o ltoy: J = R™

is a smooth curve, since 7 is a smooth curve. Letting a = ¢ =1 o7, the derivative o/(t) is
well-defined, and it is a vector in R™. But poa: J — M is also a smooth curve, which
agrees with v on J, and by the chain rule,

7(8) = ¢ (0m) (/(1)),

since a(t) = 0,, (because ¢(0,,) = p and y(t) = p). Observe that 7/(¢) is a vector in RY.
Now, for every vector v € R™, the curve a: J — R™ defined such that

alu) = (u—t)v
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Figure 1.3: Tangent vector to a curve on a manifold

for all u € J is clearly smooth, and «/(¢t) = v. This shows that the set of tangent vectors at ¢
to all smooth curves (in R™) passing through 0,, is the entire vector space R™. Since every
smooth curve v: I — M agrees with a curve of the form ¢ o a: J — M for some smooth
curve a: J — R™ (with J C I) as explained above, and since it is assumed that ¢'(0,,) is
injective, ¢'(0,,) maps the vector space R™ injectively to the set of tangent vectors to v at
p, as claimed. All this is summarized in the following definition.

Definition 1.14. Let M be an m-dimensional manifold in RY. For every point p € M, the
tangent space T,M at p is the set of all vectors in RY of the form ~/(0), where v: I — M is
any smooth curve in M such that p = v(0). The set T, M is a vector space isomorphic to
R™. Every vector v € T,M is called a tangent vector to M at p.

We can now define Lie groups (postponing defining smooth maps).

Definition 1.15. A Lie group is a nonempty subset G of RY (N > 1) satisfying the following
conditions:

(a) G is a group.
(b) G is a manifold in RY.
(c) The group operation - : G x G — G and the inverse map ~!': G — G are smooth.

(Smooth maps are defined in Definition 1.18). It is immediately verified that GL(n, R)
is a Lie group. Since all the Lie groups that we are considering are subgroups of GL(n,R),
the following definition is in order.



60 CHAPTER 1. INTRODUCTION TO MANIFOLDS AND LIE GROUPS

Definition 1.16. A linear Lie group is a subgroup G of GL(n,R) (for some n > 1) which
is a smooth manifold in R™.

Let M(n,RR) denote the set of all real n x n matrices (invertible or not). If we recall that
the exponential map
exp: A+ e’

is well defined on M(n,R), we have the following crucial theorem due to Von Neumann and
Cartan.

Theorem 1.28. A closed subgroup G of GL(n,R) is a linear Lie group. Furthermore, the
set g defined such that

g={X € M(n,R)|eX €G foraltecR}

1 a vector space equal to the tangent space TiG at the identity I, and g is closed under the

Lie bracket [—, —] defined such that [A, Bl = AB — BA for all A, B € M(n,R).

Theorem 1.28 applies even when G is a discrete subgroup, but in this case, g is trivial
(i.e., g = {0}). For example, the set of nonnull reals R* = R — {0} = GL(1,R) is a Lie
group under multiplication, and the subgroup

H=1{2"|nez)

is a discrete subgroup of R*. Thus, H is a Lie group. On the other hand, the set Q* = Q—{0}
of nonnull rational numbers is a multiplicative subgroup of R*, but it is not closed, since Q
is dense in R.

The proof of Theorem 1.28 involves proving that when G is not a discrete subgroup, there
is an open subset  C M(n,R) such that 0,,, € €2, an open subset W C M(n, R) such that
I € W, and that exp: 2 — W is a diffeomorphism such that

exp(2Ng)=WnNAG.

If G is closed and not discrete, we must have m > 1, and g has dimension m.

With the help of Theorem 1.28 it is now very easy to prove that SL(n), O(n), SO(n),
SL(n,C), U(n), and SU(n) are Lie groups and to figure out what are their Lie algebras.
(Of course, GL(n,R) is a Lie group, as we already know.)

For example, if G = GL(n,R), as e is invertible for every matrix, A € M(n,R), we
deduce that the Lie algebra, gl(n,R), of GL(n,R) is equal to M(n,R). We also claim that
the Lie algebra, sl(n,R), of SL(n,R) is the set of all matrices with zero trace. Indeed,
sl(n,R) is the subalgebra of gl(n,R) consisting of all matrices X € gl(n,R) such that

det(e*) =1



1.8. MANIFOLDS, LIE GROUPS AND LIE ALGEBRAS 61

for all t € R, and because det(e!*) = e™X) for t = 1, we get tr(X) = 0, as claimed.

We can also prove that SE(n) is a Lie group as follows. Recall that we can view every
element of SE(n) as a real (n+ 1) x (n + 1) matrix

R U
0 1
where R € SO(n) and U € R". In fact, such matrices belong to SL(n + 1). This embedding

of SE(n) into SL(n + 1) is a group homomorphism, since the group operation on SE(n)
corresponds to multiplication in SL(n + 1):

()= GE )

Note that the inverse is given by
R —R7'UW\ (R" —-R'U
0 1 -\ 0 1 '

Also note that the embedding shows that, as a manifold, SE(n) is diffeomorphic to
SO(n) x R™ (given a manifold M; of dimension m; and a manifold M, of dimension ma,
the product M; x M, can be given the structure of a manifold of dimension m; + ms in a
natural way). Thus, SE(n) is a Lie group with underlying manifold SO(n) x R", and in
fact, a subgroup of SL(n + 1).

@ Even though SE(n) is diffeomorphic to SO(n) x R™ as a manifold, it is not isomorphic

to SO(n) x R™ as a group, because the group multiplication on SE(n) is not the
multiplication on SO(n) x R™. Instead, SE(n) is a semidirect product of SO(n) and R"; see
Gallier [60], Chapter 2, Problem 2.19).

Returning to Theorem 1.28, the vector space g is called the Lie algebra of the Lie group
G. Lie algebras are defined as follows.

Definition 1.17. A (real) Lie algebra A is a real vector space together with a bilinear map
[-,-]: Ax A — A called the Lie bracket on A such that the following two identities hold for
all a,b,c € A:

[CL, CL] =0,

and the so-called Jacobi identity
[a, b, c]] + ¢, [a, B]] + [b, [¢, a]] = 0.

It is immediately verified that [b, a] = —[a, b].
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In view of Theorem 1.28, the vector space g = T;G associated with a Lie group G is
indeed a Lie algebra. Furthermore, the exponential map exp: g — G is well-defined. In
general, exp is neither injective nor surjective, as we observed earlier. Theorem 1.28 also
provides a kind of recipe for “computing” the Lie algebra g = T;G of a Lie group . Indeed,
g is the tangent space to GG at I, and thus we can use curves to compute tangent vectors.
Actually, for every X € T;G, the map

VX tHetX

is a smooth curve in G, and it is easily shown that +%(0) = X. Thus, we can use these curves.
As an illustration, we show that the Lie algebras of SL(n) and SO(n) are the matrices with
null trace and the skew symmetric matrices.

Let t — R(t) be a smooth curve in SL(n) such that R(0) = I. We have det(R(t)) = 1
for all t €] — ¢, € [. Using the chain rule, we can compute the derivative of the function

t — det(R(t))
at t =0, and we get
det}(R'(0)) = 0.
It is an easy exercise to prove that
det(X) = tr(X),
and thus tr(R'(0)) = 0, which says that the tangent vector X = R’(0) has null trace. Clearly,
sl(n,R) has dimension n? — 1.

Let ¢ +— R(t) be a smooth curve in SO(n) such that R(0) = I. Since each R(t) is
orthogonal, we have

RORM =1
for all t €] — €, € [. Taking the derivative at t = 0, we get

R(0) R(0)" + R(0) R'(0)" =0,
but since R(0) =1 = R(0)", we get
R(0)+R(0)" =0,

which says that the tangent vector X = R’(0) is skew symmetric. Since the diagonal elements
of a skew symmetric matrix are null, the trace is automatically null, and the condition
det(R) = 1 yields nothing new. This shows that o(n) = so(n). It is easily shown that so(n)
has dimension n(n — 1)/2.

As a concrete example, the Lie algebra s0(3) of SO(3) is the real vector space consisting
of all 3 x 3 real skew symmetric matrices. Every such matrix is of the form
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0 —-d c
d 0 =b
—c b 0

where b,c,d € R. The Lie bracket [A, B] in s0(3) is also given by the usual commutator,
A, B] = AB — BA.

We can define an isomorphism of Lie algebras 1: (R3, x) — s0(3) by the formula

0 —-d c
by, dy=|d 0 —b
—c b 0

It is indeed easy to verify that

P(uxv) = [¢(u), Y(v)].

It is also easily verified that for any two vectors u = (b, ¢,d) and v = (V/,c,d’) in R3
Y(u)(v) =u X v.

The exponential map exp: s0(3) — SO(3) is given by Rodrigues’s formula (see Lemma
1.7):

e = cosO 5 + SIEQA + u QZOSQ)B,
or equivalently by
eA_13+51r019A+(1 HZOSQ)AQ
if 0 # 0, where
0 —d c
A=[d 0 =b|,
- b 0

0 =+b2+c2+d? B = A?+ 0%I5, and with % = 5.

Using the above methods, it is easy to verify that the Lie algebras gl(n,R), sl(n,R),
o(n), and so(n), are respectively M(n,R), the set of matrices with null trace, and the set
of skew symmetric matrices (in the last two cases). A similar computation can be done for
gl(n,C), sl(n,C), u(n), and su(n), confirming the claims of Section 1.4. It is easy to show
that gl(n,C) has dimension 2n?, sl(n,C) has dimension 2(n? — 1), u(n) has dimension n?,
and su(n) has dimension n? — 1.

For example, the Lie algebra su(2) of SU(2) (or S?) is the real vector space consisting of
all 2 x 2 (complex) skew Hermitian matrices of null trace. Every such matrix is of the form

b c+ z'd)

i(doy + cog + bos) = (—c id  —ib
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where b, c,d € R, and 01, 09, 03 are the Pauli spin matrices

(0 1 (0 —1 (1 0
=1 0) 27\ o) 7 \o —1)°
and thus the matrices ioy, 09,03 form a basis of the Lie algebra su(2). The Lie bracket

[A, B] in su(2) is given by the usual commutator, [A, B] = AB — BA.

It is easily checked that the vector space R? is a Lie algebra if we define the Lie bracket
on R? as the usual cross product u x v of vectors. Then we can define an isomorphism of
Lie algebras ¢: (R3, x) — su(2) by the formula

i 1 b c+id
gO(b,C,d) = 5(d0’1+€0’2+b0’3) = 5 (—C—i—’id _ib ) .

It is indeed easy to verify that

pluxv) = [pu), p(v)].
Returning to su(2), letting 0 = v/b? + ¢? + d?, we can write
B b —ic+d\ _
d0'1+00'2+60'3—(ic+d b )—GA,

where

1 1 b —ic+d
A_é(d01+602+b03)_§<ic+d b ),

so that A? = I, and it can be shown that the exponential map exp: su(2) — SU(2) is given
by
exp(ilA) = cosf1+isinf A.

In view of the isomorphism ¢: (R?, x) — su(2), where

1 ib c+id) .0
So(b7 ¢, d) - 5 (-C—l-ld —ib ) - Z§A7

the exponential map can be viewed as a map exp: (R?, x) — SU(2) given by the formula

exp(fv) = |:COS g, sin g v] :

for every vector fv, where v is a unit vector in R® and § € R. In this form, exp(6v) is a
quaternion corresponding to a rotation of axis v and angle 6.

As we showed, SE(n) is a Lie group, and its lie algebra se(n) described in Section 1.6 is
easily determined as the subalgebra of sl(n + 1) consisting of all matrices of the form
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(0 )

where B € so(n) and U € R™. Thus, se(n) has dimension n(n + 1)/2. The Lie bracket is

given by
B U\ (C VN (C VN (B U\_(BC-CB BV-CU
0 0 0 0 0 0 0o 0/ 0 0 ’
We conclude by indicating the relationship between homomorphisms of Lie groups and ho-

momorphisms of Lie algebras. First, we need to explain what is meant by a smooth map
between manifolds.

Definition 1.18. Let M; (m;-dimensional) and M, (my-dimensional) be manifolds in R¥.
A function f: My — My is smooth if for every p € M there are parametrizations p: 0y — U,
of My at p and ¢: Qs — Us of My at f(p) such that f(U;) C Uy and

1/J_lofog0:Ql—>Rm2

is smooth.

Using Lemma 1.22, it is easily shown that Definition 1.18 does not depend on the choice
of the parametrizations ¢: €1 — Uy and ¢: 9 — U,. A smooth map f between manifolds
is a smooth diffeomorphism if f is bijective and both f and f~! are smooth maps.

We now define the derivative of a smooth map between manifolds.

Definition 1.19. Let M; (m;-dimensional) and M, (my-dimensional) be manifolds in RY.
For any smooth function f: M; — M, and any p € My, the function f): T, My — Ty, Mo,
called the tangent map of f at p, or derivative of f at p, or differential of f at p, is defined
as follows: For every v € T,,M; and every smooth curve v: I — M; such that v(0) = p and
7'(0) = v,

fp0) = (f27)(0).

The map f}, is also denoted by df,, or T),f. Doing a few calculations involving the facts
that

fov=(fop)o(p o) and y=yo(p'o9)

and using Lemma 1.22, it is not hard to show that f}(v) does not depend on the choice of
the curve 7. It is easily shown that f] is a linear map.

Finally, we define homomorphisms of Lie groups and Lie algebras and see how they are
related.
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Definition 1.20. Given two Lie groups G and Ga, a homomorphism (or map) of Lie groups
is a function f: Gy — Go that is a homomorphism of groups and a smooth map (between
the manifolds G; and G3). Given two Lie algebras A; and Ay, a homomorphism (or map)
of Lie algebras is a function f: A; — A, that is a linear map between the vector spaces A;
and As and that preserves Lie brackets, i.e.,

f([A, B]) = [f(A), f(B)]
for all A, B € A;.

An isomorphism of Lie groups is a bijective function f such that both f and f~! are
maps of Lie groups, and an isomorphism of Lie algebras is a bijective function f such that
both f and f~! are maps of Lie algebras. It is immediately verified that if f: Gy — G is
a homomorphism of Lie groups, then f;: g; — g2 is a homomorphism of Lie algebras. If
some additional assumptions are made about G; and Go (for example, connected, simply
connected), it can be shown that f is pretty much determined by f;.

Alert readers must have noticed that we only defined the Lie algebra of a linear group.
In the more general case, we can still define the Lie algebra g of a Lie group G as the tangent
space T7G at the identity I. The tangent space g = T7G is a vector space, but we need to
define the Lie bracket. This can be done in several ways. We explain briefly how this can be
done in terms of so-called adjoint representations. This has the advantage of not requiring
the definition of left-invariant vector fields, but it is still a little bizarre!

Given a Lie group G, for every a € G we define left translation as the map L,: G — G
such that L,(b) = ab for all b € G, and right translation as the map R,: G — G such that
R, (b) = ba for all b € G. The maps L, and R, are diffeomorphisms, and their derivatives
play an important role. The inner automorphisms R,-1 o L, (also written as R,-1L,) also
play an important role. Note that

R,1L4(b) = aba™.

The derivative
(Ry-1L,);: TG — TG

of R-1L,: G — G at [ is an isomorphism of Lie algebras, and since T7G = g, we get a map
denoted by Ad,: g — g. The map a — Ad, is a map of Lie groups

Ad: G — GL(g),

called the adjoint representation of G (where GL(g) denotes the Lie group of all bijective
linear maps on g).

In the case of a linear group, one can verify that

Ad(a)(X) = Ad,(X) = aXa™*
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for all « € G and all X € g. The derivative
Ad7: g — gl(g)

of Ad: G — GL(g) at I is map of Lie algebras, denoted by ad: g — gl(g), called the adjoint
representation of g. (Recall that Theorem 1.28 immediately implies that the Lie algebra,
gl(g), of GL(g) is the vector space of all linear maps on g).

In the case of a linear group, it can be verified that
ad(A)(B) = [A, B]

for all A, B € g. One can also check that the Jacobi identity on g is equivalent to the fact
that ad preserves Lie brackets, i.e., ad is a map of Lie algebras:

ad([A, B]) = [ad(A), ad(B)]

for all A, B € g (where on the right, the Lie bracket is the commutator of linear maps on g).
Thus, we recover the Lie bracket from ad.

This is the key to the definition of the Lie bracket in the case of a general Lie group (not
just a linear Lie group). We define the Lie bracket on g as

[A, B] = ad(A)(B).

To be complete, we have to define the exponential map exp: g — G for a general Lie
group. For this we need to introduce some left-invariant vector fields induced by the deriva-
tives of the left translations, and integral curves associated with such vector fields. We will
do this in Chapter 5 but for this we will need a deeper study of manifolds (see Chapter 3).

Readers who wish to learn more about Lie groups and Lie algebras should consult (more
or less listed in order of difficulty) Curtis [39], Sattinger and Weaver [135], Hall [71] and
Marsden and Ratiu [103]. The excellent lecture notes by Carter, Segal, and Macdonald
[31] constitute a very efficient (although somewhat terse) introduction to Lie algebras and
Lie groups. Classics such as Weyl [152] and Chevalley [34] are definitely worth consulting,
although the presentation and the terminology may seem a bit old fashioned. For more
advanced texts, one may consult Abraham and Marsden [1], Warner [148], Sternberg [144],
Brocker and tom Dieck [25], and Knapp [90]. For those who read French, Mneimné and
Testard [112] is very clear and quite thorough, and uses very little differential geometry,
although it is more advanced than Curtis. Chapter 1, by Bryant, in Freed and Uhlenbeck
[26] is also worth reading, but the pace is fast.
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Chapter 2

Review of Groups and Group Actions

2.1 Groups

Definition 2.1. A group is a set G equipped with a binary operation -: G x G — G that
associates an element a - b € GG to every pair of elements a,b € G, and having the following
properties: - is associative, has an identity element e € GG, and every element in G is invertible
(w.r.t. -). More explicitly, this means that the following equations hold for all a,b,c € G:

(Gl) a-(b-c)=(a-b)-c. (associativity);
(G2) a-e=e-a=a. (identity);
(G3) For every a € G, there is some a™' € G such that a-a™! =a-a=e (inverse).

A group G is abelian (or commutative) if
a-b=b-a

for all a,b € G.

A set M together with an operation -: M x M — M and an element e satisfying only
conditions (G1) and (G2) is called a monoid. For example, the set N = {0,1,...,n,...} of
natural numbers is a (commutative) monoid under addition. However, it is not a group.

Some examples of groups are given below.
Example 2.1.

1. The set Z = {...,—n,...,—1,0,1,...,n,...} of integers is a group under addition,
with identity element 0. However, Z* = Z — {0} is not a group under multiplication.

2. The set Q of rational numbers (fractions p/q with p,q € Z and ¢ # 0) is a group
under addition, with identity element 0. The set Q* = Q — {0} is also a group under
multiplication, with identity element 1.
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Similarly, the sets R of real numbers and C of complex numbers are groups under
addition (with identity element 0), and R* = R — {0} and C* = C — {0} are groups
under multiplication (with identity element 1).

The sets R™ and C" of n-tuples of real or complex numbers are groups under compo-
nentwise addition:

(xla"'amn) + (yla--'7yn) = (1171 +y17"'7xn+yn)7
with identity element (0,...,0). All these groups are abelian.

Given any nonempty set S, the set of bijections f: .S — S, also called permutations
of S, is a group under function composition (i.e., the multiplication of f and g is the
composition g o f), with identity element the identity function idg. This group is not
abelian as soon as S has more than two elements.

The set of n x n matrices with real (or complex) coefficients is a group under addition
of matrices, with identity element the null matrix. It is denoted by M, (R) (or M,,(C)).

The set R[X] of all polynomials in one variable with real coefficients is a group under
addition of polynomials.

The set of n x n invertible matrices with real (or complex) coefficients is a group under
matrix multiplication, with identity element the identity matrix [I,,. This group is
called the general linear group and is usually denoted by GL(n,R) (or GL(n,C)).

The set of n x n invertible matrices with real (or complex) coefficients and determinant
+1 is a group under matrix multiplication, with identity element the identity matrix
I,,. This group is called the special linear group and is usually denoted by SL(n,R)
(or SL(n,C)).

The set of n x n invertible matrices with real coefficients such that RR'T = I,, and
of determinant +1 is a group called the orthogonal group and is usually denoted by
SO(n) (where R" is the transpose of the matrix R, i.e., the rows of R are the columns
of R). It corresponds to the rotations in R™.

Given an open interval ]a, b[, the set C(]a, b[) of continuous functions f: ]Ja,b[— R is a
group under the operation f + g defined such that

(f +9)(z) = f(x) +g(x)

for all = €]a, b|.

It is customary to denote the operation of an abelian group G by +, in which case the
inverse a~! of an element a € G is denoted by —a.
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The identity element of a group is unique. In fact, we can prove a more general fact:

Fact 1. If a binary operation -: M x M — M is associative and if ¢/ € M is a left identity
and €” € M is a right identity, which means that

¢-a=a forall ae M (G21)

and
a-¢"=a forall ae M, (G2r)

then e = ¢e”.

Proof. 1f we let a = €” in equation (G21), we get

and thus

as claimed. O

Fact 1 implies that the identity element of a monoid is unique, and since every group is
a monoid, the identity element of a group is unique. Furthermore, every element in a group
has a unique inverse. This is a consequence of a slightly more general fact:

Fact 2. In a monoid M with identity element e, if some element a € M has some left inverse
a’ € M and some right inverse a” € M, which means that

ad-a=e (G3l)

and
a-d’ =e, (G3r)

then o’ = da”.
Proof. Using (G3l) and the fact that e is an identity element, we have

(@' a)-a"=e-ad"=d".
Similarly, Using (G3r) and the fact that e is an identity element, we have

a-(a-d")y=d -e=d.
However, since M is monoid, the operation - is associative, so

" "

ad=d- -(a-d")=(d-a) -d"=d",

as claimed. n
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Remark: Axioms (G2) and (G3) can be weakened a bit by requiring only (G2r) (the exis-
tence of a right identity) and (G3r) (the existence of a right inverse for every element) (or
(G21) and (G3l)). It is a good exercise to prove that the group axioms (G2) and (G3) follow
from (G2r) and (G3r).

Given a group, G, for any two subsets R, S C G, we let
RS ={r-s|reR,seS}.
In particular, for any g € G, if R = {g}, we write
9S={g-s|s€S}
and similarly, if S = {g}, we write

Rg={r-g|r € R}.

From now on, we will drop the multiplication sign and write g;gs for g; - gs.
Definition 2.2. Given a group, G, a subset, H, of G is a subgroup of G iff
(1) The identity element, e, of G also belongs to H (e € H);
(2) For all hy, hy € H, we have hihy € H;
(3) For all h € H, we have h™' € H.

It is easily checked that a subset, H C G, is a subgroup of G iff H is nonempty and
whenever hy, ho € H, then h1h2_1 € H.

If H is a subgroup of G and g € G is any element, the sets of the form gH are called left
cosets of H in G and the sets of the form Hg are called right cosets of H in G. The left
cosets (resp. right cosets) of H induce an equivalence relation, ~, defined as follows: For all

91,92 € G,
g ~g it g H=gH

(vesp. g1 ~ g2 iff Hgy = Hgs,).

Obviously, ~ is an equivalence relation. Now, it is easy to see that ¢zH = ¢oH iff
g5 g1 € H, so the equivalence class of an element g € G is the coset gH (resp. Hg). The set
of left cosets of H in G (which, in general, is not a group) is denoted G/H. The “points”
of G/H are obtained by “collapsing” all the elements in a coset into a single element.

It is tempting to define a multiplication operation on left cosets (or right cosets) by
setting

(1 H)(92H) = (9192) H,

but this operation is not well defined in general, unless the subgroup H possesses a special
property. This property is typical of the kernels of group homomorphisms, so we are led to
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Definition 2.3. Given any two groups, G, G’, a function p: G — G’ is a homomorphism iff
p(g192) = p(g1)¢(g2), for all g1, 95 € G.

Taking g1 = g2 = e (in GG), we see that

1

and taking g; = g and g = g, we see that

elg™") =9

If p: G —- G"and ¥: G' — G" are group homomorphisms, then o p: G — G” is also a
homomorphism. If p: G — G’ is a homomorphism of groups and H C G and H' C G’ are
two subgroups, then it is easily checked that

Im H=p(H)={¢(g9) | g € H} 1is a subgroup of G’
(Im H is called the image of H by ) and
o Y(H')={g9€ G| p(g) € H} isa subgroup of G.
In particular, when H' = {e’}, we obtain the kernel, Ker ¢, of ¢. Thus,
Ker o ={g € G| p(9) =¢}.

It is immediately verified that ¢: G — G’ is injective iff Ker ¢ = {e}. (We also write
Ker ¢ = (0).) We say that ¢ is an isomorphism if there is a homomorphism, ¢: G' — G, so
that

wogp:idg and @Ow:idcl.
In this case, v is unique and it is denoted ¢=!. When ¢ is an isomorphism we say the
the groups G and G’ are isomorphic. When G’ = G, a group isomorphism is called an
automorphism.

We claim that H = Ker ¢ satisfies the following property:
gH = Hg, forall g€ . (%)
First, note that (x) is equivalent to
gHg ' =H, forallgeQg,
and the above is equivalent to
gHg ' C H, forallgecg. ()
This is because gHg ' C H implies H C g~ 'Hg, and this for all g € G. But,

/ 1 /

p(ghg™) = w(g)e(h)e(g™") = ¢(g)e'p(9) ™" = w(g)p(g) ™" = ¢,
forallh € H = Ker p and all g € G. Thus, by definition of H = Ker ¢, we have gHg~! C H.
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Definition 2.4. For any group, GG, a subgroup, N C G, is a normal subgroup of G iff
gNg™' =N, forall g €G.

This is denoted by N <1 G.

If N is a normal subgroup of G, the equivalence relation induced by left cosets is the
same as the equivalence induced by right cosets. Furthermore, this equivalence relation, ~,
is a congruence, which means that: For all g1, ¢2, 91, ¢ € G,

(1) If ¢ N = g\ N and goN = g4 N, then g;go N = ¢} g5 N, and
(2) If ¢ N = goN, then g;'N = g; ' N.

As a consequence, we can define a group structure on the set GG/ ~ of equivalence classes
modulo ~, by setting

(91N)(92N) = (9192)N.
This group is denoted G/N. The equivalence class, gV, of an element g € G is also denoted
g. The map m: G — G/N, given by
m(g9) =9 =gN,
is clearly a group homomorphism called the canonical projection.

Given a homomorphism of groups, ¢: G — G’, we easily check that the groups G/Ker ¢
and Im ¢ = p(G) are isomorphic.

2.2 Group Actions and Homogeneous Spaces, I

If X is a set (usually, some kind of geometric space, for example, the sphere in R?, the upper
half-plane, etc.), the “symmetries” of X are often captured by the action of a group, G, on
X. In fact, if G is a Lie group and the action satisfies some simple properties, the set X
can be given a manifold structure which makes it a projection (quotient) of G, a so-called
“homogeneous space”.

Definition 2.5. Given a set, X, and a group, G, a left action of G on X (for short, an
action of G- on X) is a function, ¢: G x X — X, such that

(1) For all g,h € G and all x € X,
©(g,p(h,x)) = ¢(gh, x),

(2) Forall z € X,
o(l,z) =z,
where 1 € G is the identity element of G.
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To alleviate the notation, we usually write g - x or even gz for ¢(g,x), in which case, the
above axioms read:

(1) For all g,h € G and all z € X,

(2) For all x € X,

The set X is called a (left) G-set. The action ¢ is faithful or effective iff for every g, if
g-z = x for all x € X, then g = 1; the action ¢ is transitive iff for any two elements
x,y € X, there is some g € GG so that gz =y.

Given an action, ¢: G x X — X, for every g € G, we have a function, ¢ : X — X,
defined by
pg(x) =g-x, forallzeX.

Observe that ¢, has g1 as inverse, since

po1(pg(@) = @gi(g-2) =g~ - (g-2)=(97'9) v =12 =u,
and similarly, ¢, 0 ¢,-1 = id. Therefore, ¢, is a bijection of X, i.e., a permutation of X.
Moreover, we check immediately that

Pg © Ph = Pgh,

so, the map g — ¢, is a group homomorphism from G to Gx, the group of permutations of
X. With a slight abuse of notation, this group homomorphism G — Gy is also denoted ¢.

Conversely, it is easy to see that any group homomorphism, ¢: G — Gy, yields a group
action, -: G x X — X, by setting
g-z=¢(g)(x).

Observe that an action, ¢, is faithful iff the group homomorphism, ¢: G — Gy, is injective.
Also, we have g-x =y iff g' -y =z, since (gh) -z =g-(h-z) and 1-x =z, for all g,h € G
and all z € X.

Definition 2.6. Given two G-sets, X and Y, a function, f: X — Y, issaid to be equivariant,
or a G-map iff for all x € X and all g € G, we have

flg-x)=g-[f(x).

Remark: We can also define a right action, -: X x G — X, of a group G on a set X, as a
map satisfying the conditions
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(1) For all g,h € G and all z € X,

(2) Forall z € X,

Every notion defined for left actions is also defined for right actions, in the obvious way.
Here are some examples of (left) group actions.
Example 1: The unit sphere S? (more generally, S"1).
Recall that for any n > 1, the (real) unit sphere, ST™1, is the set of points in R™ given by

Sl =L(zy, . x,) ERM |2 -+ 22 = 1.

In particular, S? is the usual sphere in R3. Since the group SO(3) = SO(3,R) consists of
(orientation preserving) linear isometries, i.e., linear maps that are distance preserving (and
of determinant +1), and every linear map leaves the origin fixed, we see that any rotation
maps S? into itself.

@ Beware that this would be false if we considered the group of affine isometries, SE(3), of
E3. For example, a screw motion does not map S? into itself, even though it is distance
preserving, because the origin is translated.

Thus, we have an action, -: SO(3) x S? — S?, given by
R-x = Rx.

The verification that the above is indeed an action is trivial. This action is transitive.
This is because, for any two points x,y on the sphere S?, there is a rotation whose axis is
perpendicular to the plane containing x,y and the center, O, of the sphere (this plane is not
unique when x and y are antipodal, i.e., on a diameter) mapping x to y.

Similarly, for any n > 1, we get an action, -: SO(n) x S"~! — S"~1. It is easy to show
that this action is transitive.
Analogously, we can define the (complex) unit sphere, X" ! as the set of points in C"
given by
SV ={(z1,.. . ,20) €EC" | 2921 -+ 2,2, = 1}

If we write z; = x; + 1y;, with z;,y; € R, then
S = (2, T Y yn) ERP 2 bR by 2 = 1T,

Therefore, we can view the complex sphere, X" (in C"), as the real sphere, S*"~! (in R?").
By analogy with the real case, we can define an action, -: SU(n) x X! — 371 of the
group, SU(n), of linear maps of C™ preserving the hermitian inner product (and the origin,
as all linear maps do) and this action is transitive.
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@ One should not confuse the unit sphere, "7, with the hypersurface, S¢™!, given by
Set={(z1,...,20) €C | 27+ + 22 =1}

For instance, one should check that a line, L, through the origin intersects X" ! in a circle,
whereas it intersects Sp~! in exactly two points!

Example 2: The upper half-plane.

The upper half-plane, H, is the open subset of R? consisting of all points, (x,y) € R?,
with y > 0. It is convenient to identify H with the set of complex numbers, z € C, such
that Sz > 0. Then, we can define an action, -: SL(2,R) x H — H, of the group SL(2,R)
on H, as follows: For any z € H, for any A € SL(2,R),

az+b
cz+d’

1= (¢ )

with ad — bc = 1. 1t is easily verified that A - z is indeed always well defined and in H when
z € H. This action is transitive (check this).

cz =

where

Maps of the form

az+b

cz+d
where z € C and ad — bc = 1, are called Mdbius transformations. Here, a,b,c,d € R, but in
general, we allow a,b,c,d € C. Actually, these transformations are not necessarily defined
everywhere on C, for example, for z = —d/c if ¢ # 0. To fix this problem, we add a “point
at infinity”, oo, to C and define M&bius transformations as functions CU{oo} — CU{o0}.
If ¢ = 0, the Mobius transformation sends oo to itself, otherwise, —d/c — oo and oo — a/c.
The space CU{oo} can be viewed as the plane, R?, extended with a point at infinity. Using
a stereographic projection from the sphere S? to the plane, (say from the north pole to the
equatorial plane), we see that there is a bijection between the sphere, S?, and CU{co}. More
precisely, the stereographic projection of the sphere S? from the north pole, N = (0,0, 1), to
the plane z = 0 (extended with the point at infinity, co) is given by

x Yy T+ 1y .
5?2 —{(0,0,1)} — [ —— = C th (0,0,1) — oo.
e est = {000} ({2 ) =2 ee vt 0015
The inverse stereographic projection is given by
2z 2y 49?1

(z,y) — ( ) ,  with oo+ (0,0,1).

o T e R e e |

Intuitively, the inverse stereographic projection “wraps” the equatorial plane around the
sphere. The space C U {oo} is known as the Riemann sphere. We will see shortly that
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C U {oo} = S? is also the complex projective line, CP'. In summary, M&bius transforma-
tions are bijections of the Riemann sphere. It is easy to check that these transformations
form a group under composition for all a,b,c,d € C, with ad — bc = 1. This is the Mobius
group, denoted M6éb™. The Mobius transformations corresponding to the case a, b, c,d € R,
with ad — be = 1 form a subgroup of Méb" denoted Moby,. The map from SL(2,C) to
Mob™ that sends A € SL(2,C) to the corresponding Mébius transformation is a surjec-
tive group homomorphism and one checks easily that its kernel is {—1, I} (where I is the
2 x 2 identity matrix). Therefore, the Mcbius group Mob™ is isomorphic to the quotient
group SL(2,C)/{—1,1}, denoted PSL(2,C). This latter group turns out to be the group of
projective transformations of the projective space CP'. The same reasoning shows that the
subgroup Méby, is isomorphic to SL(2,R)/{—1I, I}, denoted PSL(2, R).

The group SL(2,C) acts on C U {oco} = S? the same way that SL(2,R) acts on H,
namely: For any A € SL(2,C), for any z € CU {0},

az+b
'Z:—,
cz+d

where

A:(a b) with ad — bec=1.
c d

This action is clearly transitive.

One may recall from complex analysis that the (complex) M&bius transformation

Z—1
z+1

Z =

is a biholomorphic isomorphism between the upper half plane, H, and the open unit disk,
D={zeC||z| <1}

As a consequence, it is possible to define a transitive action of SL(2,R) on D. This can be
done in a more direct fashion, using a group isomorphic to SL(2,R), namely, SU(1,1) (a
group of complex matrices), but we don’t want to do this right now.

Example 3: The set of n X n symmetric, positive, definite matrices, SPD(n).

The group GL(n) = GL(n,R) acts on SPD(n) as follows: For all A € GL(n) and all
S € SPD(n),
A5 =ASAT.

It is easily checked that ASAT is in SPD(n) if S is in SPD(n). This action is transitive
because every SPD matrix, S, can be written as S = AA", for some invertible matrix, A
(prove this as an exercise).

Example 4: The projective spaces RP" and CP".
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The (real) projective space, RP", is the set of all lines through the origin in R**!, i.e., the
set of one-dimensional subspaces of R"™! (where n > 0). Since a one-dimensional subspace,
L C R is spanned by any nonzero vector, u € L, we can view RP" as the set of equivalence
classes of nonzero vectors in R™* — {0} modulo the equivalence relation,

u~v iff v=2>Au, forsome Me&R, \F#0.

In terms of this definition, there is a projection, pr: (R"** —{0}) — RP", given by pr(u) =
[u]~, the equivalence class of v modulo ~. Write [u] for the line defined by the nonzero
vector, u. Since every line, L, in R"*! intersects the sphere S™ in two antipodal points, we
can view RP" as the quotient of the sphere S™ by identification of antipodal points. We
write

S"/{I,—1I} = RP".

We define an action of SO(n + 1) on RP" as follows: For any line, L = [u], for any
ReSO(n + 1),
R-L=[Rul.

Since R is linear, the line [Ru] is well defined, i.e., does not depend on the choice of u € L.
It is clear that this action is transitive.

The (complex) projective space, CP", is defined analogously as the set of all lines through
the origin in C"™!, i.e., the set of one-dimensional subspaces of C"™! (where n > 0). This
time, we can view CP" as the set of equivalence classes of vectors in C"*' — {0} modulo the
equivalence relation,

u~ov iff v=2>Au, forsome M #0eC.

We have the projection, pr: C**1 —{0} — CP", given by pr(u) = [u]., the equivalence class
of u modulo ~. Again, write [u] for the line defined by the nonzero vector, wu.

Remark: Algebraic geometers write Pi for RP" and P¢ (or even P") for CP".
Recall that X* C C*"!, the unit sphere in C*™!, is defined by

Y ={(z1,...,2n41) € Cntl | 2121+ -+ + Zng1Zny1 = 1}

For any line, L = [u], where u € C"*! is a nonzero vector, writing u = (uy, ..., up41), @ point
z € C"™! belongs to L iff z = A(uy, ..., uyys1), for some A € C. Therefore, the intersection,
L NY" of the line L and the sphere " is given by

LNE" ={A(ug,...,tung1) € CTH A€ C, Aty + -+ + Upy1Tnt1) = 1,

ie.,

1
Lo {A<u1,...,un+1) CCT PG N = e P}'
1 PR TL+1
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Thus, we see that there is a bijection between L N X" and the circle, S*, i.e., geometrically,
LNX"is a circle. Moreover, since any line, L, through the origin is determined by just one
other point, we see that for any two lines L; and Ly through the origin,

Ly # Ly iff (LinX")N(LynX™) = 0.

However, 3" is the sphere S?"™! in R?"*2, Tt follows that CP" is the quotient of S?"*! by
the equivalence relation, ~, defined such that

y~z iff y,ze LNX", for some line, L, through the origin.

Therefore, we can write

SQn-i—l/sl ~ (C]P;n

Observe that CP" can also be viewed as the orbit space of the action, -: St x §?7+l — g2nt+l
given by
A (21,000 2na1) = (Az1, oy AZngt),

where S' = U(1) (the group of complex numbers of modulus 1) and S?"! is identified with
™. The case n = 1 is particularly interesting, as it turns out that

S?/5t = g2
This is the famous Hopf fibration. To show this, proceed as follows: As
S =Y ={(z,2) € C*| |2|* + " =1},
define a map, HF: S% — S2, by
HF (2, #)) = (227, |2 — |2/[2).
We leave as a homework exercise to prove that this map has range S? and that
HF((z1, 21)) = HF ((22,25)) iff (21, 27) = A(22,25), for some A with [\ = 1.

In other words, for any point, p € S?, the inverse image, HF '(p) (also called fibre over
p), is a circle on S3®. Consequently, S* can be viewed as the union of a family of disjoint
circles. This is the Hopf fibration. It is possible to visualize the Hopf fibration using the
stereographic projection from S® onto R®. This is a beautiful and puzzling picture. For
example, see Berger [15]. Therefore, HF induces a bijection from CP' to S2, and it is a
homeomorphism.

We define an action of SU(n + 1) on CP" as follows: For any line, L = [u], for any
ReSU(n+1),
R - L = [Rul.

Again, this action is well defined and it is transitive.
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Example 5: Affine spaces.

If £ is any (real) vector space and X is any set, a transitive and faithful action,
-+ Ex X — X, of the additive group of £ on X makes X into an affine space. The intuition
is that the members of E are translations.

Those familiar with affine spaces as in Gallier [60] (Chapter 2) or Berger [15] will point
out that if X is an affine space, then, not only is the action of ¥ on X transitive, but more
is true: For any two points, a,b € F, there is a unique vector, u € E, such that u-a = b.
By the way, the action of E on X is usually considered to be a right action and is written
additively, so u - a is written a + u (the result of translating a by u). Thus, it would seem
that we have to require more of our action. However, this is not necessary because £ (under
addition) is abelian. More precisely, we have the proposition

Proposition 2.1. If G is an abelian group acting on a set X and the action -: G x X — X
s transitive and faithful, then for any two elements x,y € X, there is a unique g € G so
that g - x =y (the action is simply transitive).

Proof. Since our action is transitive, there is at least some g € GG so that g - x = y. Assume
that we have g1, go € G with

g1 T =02 =Y.
We shall prove that, actually,
g1-z2=g¢g9-2, forall ze X.

As our action is faithful we must have g; = ¢o, and this proves our proposition.

Pick any z € X. As our action is transitive, there is some h € G so that z = h-x. Then,
we have

G-z = g1-(h-2)

= (q1h) =
= (hg) - x (since G is abelian)
= h-(g17)
= h-(92-2) (since g7 =gy )
= (hgs) - x
= (goh)- - x (since G is abelian)
= g2 (h-x)
= g2z
Therefore, g1 - 2 = g9 - z, for all z € X, as claimed. O

More examples will be considered later.

The subset of group elements that leave some given element = € X fixed plays an impor-
tant role.
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Definition 2.7. Given an action, -: G x X — X, of a group G on a set X, for any x € X,
the group G, (also denoted Stabg(x)), called the stabilizer of x or isotropy group at x is
given by

Go,={9eG|g-z=z}

We have to verify that GG, is indeed a subgroup of GG, but this is easy. Indeed, if g-z = x
and h - x = x, then we also have h™! - 2 = z and so, we get gh~! - x = x, proving that G, is
a subgroup of G. In general, G, is not a normal subgroup.

Observe that
Gg~a: = gG:):.gil>

for all g € G and all x € X.
Indeed,
Gyo = {h€G|h-(g-2)=g z}
= {heGlhg-x=g- -z}
{heGlgthg -z =21}
9G.g~ "

Therefore, the stabilizers of x and ¢ - x are conjugate of each other.
When the action of G on X is transitive, for any fixed = € GG, the set X is a quotient (as
set, not as group) of G by G,. Indeed, we can define the map, m,.: G — X, by
m(9) =g-z, forallgeq.

Observe that

This shows that m,: G — X induces a quotient map, 7,: G/G, — X, from the set, G/G,,
of (left) cosets of G, to X, defined by

T (9Gy) = g - .

7.(g) =7,(h) if g-x=h-x ff g'h-z=2 if ¢g'heqG, iff ¢G,=hG,,

we deduce that 7, : G/G, — X is injective. However, since our action is transitive, for every
y € X, there is some g € G so that g-x =y and so, 7,(¢9G,) = g-x =y, i.e., the map 7, is
also surjective. Therefore, the map 7,: G/G, — X is a bijection (of sets, not groups). The
map 7,: G — X is also surjective. Let us record this important fact as
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Proposition 2.2. If -: G x X — X is a transitive action of a group G on a set X, for every
fixed x € X, the surjection, m: G — X, given by

m(g)=g-®

induces a bijection

T G/Gy = X,

where G, is the stabilizer of x.

The map 7: G — X (corresponding to a fixed x € X) is sometimes called a projection
of G onto X. Proposition 2.2 shows that for every y € X, the subset, 771(y), of G (called
the fibre above y) is equal to some coset, gG,, of G and thus, is in bijection with the group
G, itself. We can think of G as a moving family of fibres, GG, parametrized by X. This
point of view of viewing a space as a moving family of simpler spaces is typical in (algebraic)
geometry, and underlies the notion of (principal) fibre bundle.

Note that if the action -: G x X — X is transitive, then the stabilizers G, and G, of any
two elements x,y € X are isomorphic, as they as conjugates. Thus, in this case, it is enough
to compute one of these stabilizers for a “convenient” .

As the situation of Proposition 2.2 is of particular interest, we make the following defi-
nition:

Definition 2.8. A set, X, is said to be a homogeneous space if there is a transitive action,
- G x X = X, of some group, G, on X.

We see that all the spaces of Example 1-5 are homogeneous spaces. Another example
that will play an important role when we deal with Lie groups is the situation where we have
a group, G, a subgroup, H, of G (not necessarily normal) and where X = G/H, the set of
left cosets of G modulo H. The group G acts on GG/H by left multiplication:

a-(gH) = (ag)H,

where a,g € G. This action is clearly transitive and one checks that the stabilizer of gH
is gHg™'. If G is a topological group and H is a closed subgroup of G (see later for an
explanation), it turns out that G/H is Hausdorff (Recall that a topological space, X, is
Hausdorff iff for any two distinct points z # y € X, there exists two disjoint open subsets,

U and V, with x € U and y € V.) If G is a Lie group, we obtain a manifold.
@ Even if G and X are topological spaces and the action, -: G x X — X is continuous,
the space G/G, under the quotient topology is, in general, not homeomorphic to X.

We will give later sufficient conditions that insure that X is indeed a topological space
or even a manifold. In particular, X will be a manifold when G is a Lie group.
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In general, an action -: G x X — X is not transitive on X, but for every x € X, it is
transitive on the set
Ol)=G-z={g-z|geG}.

Such a set is called the orbit of x. The orbits are the equivalence classes of the following
equivalence relation:

Definition 2.9. Given an action, -: G x X — X, of some group, GG, on X, the equivalence
relation, ~, on X is defined so that, for all z,y € X,

rx~y iff y=g-x, forsomegeG.
For every x € X, the equivalence class of z is the orbit of x, denoted O(z) or Orbg(z), with
O(x)={g-z|geG}
The set of orbits is denoted X/G.
The orbit space, X /G, is obtained from X by an identification (or merging) process: For
every orbit, all points in that orbit are merged into a single point. For example, if X = 5?2

and G is the group consisting of the restrictions of the two linear maps I and —I of R3 to
S? (where —I(z,y,2) = (—x,—y, —z)), then

X/G = S?/{I,—I} =~ RP>
Many manifolds can be obtained in this fashion, including the torus, the Klein bottle, the
Mobius band, etc.

Since the action of G is transitive on O(x), by Proposition 2.2, we see that for every
r € X, we have a bijection

O(r) 2 G/4G,.

As a corollary, if both X and G are finite, for any set, A C X, of representatives from
every orbit, we have the orbit formula:

X =) [G: G.] =) |GI/|Gal.

acA acA

Even if a group action, -: G x X — X, is not transitive, when X is a manifold, we can
consider the set of orbits, X/G, and if the action of G on X satisfies certain conditions,
X/G is actually a manifold. Manifolds arising in this fashion are often called orbifolds. In
summary, we see that manifolds arise in at least two ways from a group action:

(1) As homogeneous spaces, G/G,, if the action is transitive.

(2) As orbifolds, X/G.
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Of course, in both cases, the action must satisfy some additional properties.

Let us now determine some stabilizers for the actions of Examples 1-4, and for more
examples of homogeneous spaces.

(a) Consider the action, -: SO(n) x S"~! — S~ of SO(n) on the sphere S"! (n > 1)
defined in Example 1. Since this action is transitive, we can determine the stabilizer of any
convenient element of S"~!, say e; = (1,0,...,0). In order for any R € SO(n) to leave e
fixed, the first column of R must be e, so R is an orthogonal matrix of the form

1 U :
R = (0 S)’ with det(S) = 1.

As the rows of R must be unit vector, we see that U = 0 and S € SO(n — 1). Therefore,
the stabilizer of e; is isomorphic to SO(n — 1), and we deduce the bijection

SO(n)/SO(n — 1) = 5",

@ Strictly speaking, SO(n — 1) is not a subgroup of SO(n) and in all rigor, we should
consider the subgroup, SO(n — 1), of SO(n) consisting of all matrices of the form

((1) g) with  det(S) = 1

and write -
SO(n)/SO(n — 1) = S"

However, it is common practice to identify SO(n — 1) with §6(n —1).
When n = 2, as SO(1) = {1}, we find that SO(2) = S, a circle, a fact that we already
knew. When n = 3, we find that SO(3)/SO(2) = 5?. This says that SO(3) is somehow the

result of glueing circles to the surface of a sphere (in R?), in such a way that these circles do
not intersect. This is hard to visualize!

A similar argument for the complex unit sphere, X", shows that
SU(n)/SU(n — 1) = xn! = g2n-1

Again, we identify SU(n — 1) with a subgroup of SU(n), as in the real case. In particular,
when n = 2, as SU(1) = {1}, we find that

i.e., the group SU(2) is topologically the sphere S3! Actually, this is not surprising if we
remember that SU(2) is in fact the group of unit quaternions.
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(b) We saw in Example 2 that the action, -: SL(2,R) x H — H, of the group SL(2,R)
on the upper half plane is transitive. Let us find out what the stabilizer of z = 7 is. We
should have

ai+b .
=1
ci+d 7
that is, ai + b = —c + di, i.e.,
(d—a)i=0b+ec.
Since a, b, ¢, d are real, we must have d = a and b = —c. Moreover, ad — bc = 1, so we get

a® +b* = 1. We conclude that a matrix in SL(2,R) fixes i iff it is of the form

(a _b), with o +b* = 1.
b «a

Clearly, these are the rotation matrices in SO(2) and so, the stabilizer of i is SO(2). We
conclude that

SL(2,R)/SO(2) = H.

This time, we can view SL(2,R) as the result of glueing circles to the upper half plane. This
is not so easy to visualize. There is a better way to visualize the topology of SL(2,R) by
making it act on the open disk, D. We will return to this action in a little while.

Now, consider the action of SL(2,C) on CU {co} & S2. As it is transitive, let us find
the stabilizer of z = 0. We must have

and as ad —bc = 1, we must have b = 0 and ad = 1. Thus, the stabilizer of 0 is the subgroup,
SL(2,C)y, of SL(2,C) consisting of all matrices of the form

(a 91), where a € C—{0} and ceC.

c a

We get
SL(2,C)/SL(2,C)o = CU {oo} = S,

but this is not very illuminating.

(c) In Example 3, we considered the action, -: GL(n) x SPD(n) — SPD(n), of GL(n)
on SPD(n), the set of symmetric positive definite matrices. As this action is transitive, let
us find the stabilizer of /. For any A € GL(n), the matrix A stabilizes I iff

ATAT = AAT =1
Therefore, the stabilizer of I is O(n) and we find that

GL(n)/O(n) = SPD(n).
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Observe that if GL™(n) denotes the subgroup of GL(n) consisting of all matrices with
a strictly positive determinant, then we have an action -: GL™(n) x SPD(n) — SPD(n) of
GL"(n) on SPD(n). This action is transtive and we find that the stabilizer of I is SO(n);
consequently, we get
GL*(n)/SO(n) = SPD(n).

(d) In Example 4, we considered the action, -: SO(n + 1) x RP" — RP", of SO(n + 1)
on the (real) projective space, RP". As this action is transitive, let us find the stabilizer of
the line, L = [e;], where e; = (1,0,...,0). For any R € SO(n + 1), the line L is fixed iff
either R(ej) = e; or R(ej) = —ey, since e; and —e; define the same line. As R is orthogonal
with det(R) = 1, this means that R is of the form

R—((g g), with a==+1 and det(5) = a.

But, S must be orthogonal, so we conclude S € O(n). Therefore, the stabilizer of L = [e]
is isomorphic to the group O(n) and we find that

SO(n + 1)/O(n) = RP".

@ Strictly speaking, O(n) is not a subgroup of SO(n + 1), so the above equation does not
make sense. We should write

SO(n +1)/0(n) = RP",

where O(n) is the subgroup of SO(n + 1) consisting of all matrices of the form

(g g) , with S€O0O(n), a=+1 and det(5)=a.

However, the common practice is to write O(n) instead of O(n).

We should mention that RP? and SO(3) are homeomorphic spaces. This is shown using
the quaternions, for example, see Gallier [60], Chapter 8.
A similar argument applies to the action, -: SU(n + 1) x CP" — CP", of SU(n + 1) on
the (complex) projective space, CP". We find that
SU(n+1)/U(n) = CP".

Again, the above is a bit sloppy as U(n) is not a subgroup of SU(n + 1). To be rigorous,
we should use the subgroup, U(n), consisting of all matrices of the form

<g g) , with SeU(n), la]=1 and det(S)=a.
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The common practice is to write U(n) instead of U(n). In particular, when n = 1, we find
that

SU(2)/U(1) = CP".
But, we know that SU(2) 2 S% and, clearly, U(1) = S'. So, again, we find that S°/S' = CP*
(but we know, more, namely, S°/S! = 52 = CP'.)

(e) We now consider a generalization of projective spaces (real and complex). First,
consider the real case. Given any n > 1, for any k, with 0 < k < n, let G(k,n) be the
set of all linear k-dimensional subspaces of R™ (also called k-planes). Any k-dimensional
subspace, U, of R is spanned by k linearly independent vectors, uq,...,u, in R™; write
U = span(uy, ..., u;). We can define an action, -: O(n) x G(k,n) — G(k,n), as follows: For
any R € O(n), for any U = span(uy, ..., u), let

R-U = span(Ruy, ..., Rug).

We have to check that the above is well defined. If U = span(vy,...,v;) for any other k
linearly independent vectors, vy, ..., v;, we have

k
vi:Zaijuj, 1§Z§k,
j=1
for some a;; € R, and so,
k
RUi = Zainuj, 1< < ]{37
j=1
which shows that
span(Ruy, . .., Ruy) = span(Ruvy, ..., Ruy),

i.e., the above action is well defined. This action is transitive. This is because if U and V are
any two k-planes, we may assume that U = span(uq, ..., u) and V' = span(vy, ..., vy), where
the u;’s form an orthonormal family and similarly for the v;’s. Then, we can extend these
families to orthonormal bases (uq, ..., u,) and (vy,...,v,) or R", and w.r.t. the orthonormal
basis (ug,...,u,), the matrix of the linear map sending u; to v; is orthogonal. Thus, it is
enough to find the stabilizer of any k-plane. Pick U = span(ey, ..., ex), where (e1,...,e,)
is the canonical basis of R" (i.e., ¢; = (0,...,0,1,0,...,0), with the 1 in the ith position).
Now, any R € O(n) stabilizes U iff R maps ey, ..., e, to k linearly independent vectors in
the subspace U = span(ey, ..., eg), i.e., R is of the form

S 0
w= (o 7)

where S is k X k and T is (n — k) x (n — k). Moreover, as R is orthogonal, S and T must
be orthogonal, i.e., S € O(k) and T' € O(n — k). We deduce that the stabilizer of U is
isomorphic to O(k) x O(n — k) and we find that

O(n)/(O(k) x O(n — k)) = G(k, n).
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It turns out that this makes G(k,n) into a smooth manifold of dimension k(n — k) called a
Grassmannian.

The restriction of the action of O(n) on G(k,n) to SO(n) yields an action, -: SO(n) x
G(k,n) — G(k,n), of SO(n) on G(k,n). Then, it is easy to see that the stabilizer of the
subspace U is isomorphic to the subgroup, S(O(k) x O(n — k)), of SO(n) consisting of the

rotations of the form
o S 0
—\0 T)°

with S € O(k), T € O(n — k) and det(S) det(T") = 1. Thus, we also have

SO(n)/S(0(k) x O(n — k)) = G(k,n).

If we recall the projection pr: R"™ — {0} — RP", by definition, a k-plane in RP" is the
image under pr of any (k + 1)-plane in R"™!. So, for example, a line in RP" is the image
of a 2-plane in R"™!, and a hyperplane in RP" is the image of a hyperplane in R"*!. The
advantage of this point of view is that the k-planes in RP" are arbitrary, i.e., they do not
have to go through “the origin” (which does not make sense, anyway!). Then, we see that
we can interpret the Grassmannian, G(k + 1,n + 1), as a space of “parameters” for the
k-planes in RP". For example, G(2,n + 1) parametrizes the lines in RP". In this viewpoint,
G(k+1,n+ 1) is usually denoted G(k,n).

It can be proved (using some exterior algebra) that G(k,n) can be embedded in RP(:) .
Much more is true. For example, G(k,n) is a projective variety, which means that it can be

defined as a subset of RP(*)~1 equal to the zero locus of a set of homogeneous equations.
There is even a set of quadratic equations, known as the Plicker equations, defining G(k,n).
In particular, when n = 4 and k = 2, we have G(2,4) C RP® and G(2,4) is defined by
a single equation of degree 2. The Grassmannian G(2,4) = G(1,3) is known as the Klein
quadric. This hypersurface in RP® parametrizes the lines in RP?.

Complex Grassmannians are defined in a similar way, by replacing R by C and O(n) by
U(n) throughout. The complex Grassmannian, G¢(k, n), is a complex manifold as well as a
real manifold and we have

U(n)/(Uk) x U(n — k)) = Ge(k, n).

As in the case of the real Grassmannians, the action of U(n) on G¢(k,n) yields an action of
SU(n) on Ge(k,n) and we get

SU(n)/S(U(k) x U(n — k)) = Ge(k, n),

where S(U(k) x U(n — k)) is the subgroup of SU(n) consisting of all matrices, R € SU(n),

of the form S
0
n=(5 1)
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with S € U(k), T € U(n — k) and det(S) det(T") = 1.

We now return to case (b) to give a better picture of SL(2,R). Instead of having SL(2, R)
act on the upper half plane we define an action of SL(2,R) on the open unit disk, D.
Technically, it is easier to consider the group, SU(1, 1), which is isomorphic to SL(2,R), and
to make SU(1,1) act on D. The group SU(1,1) is the group of 2 x 2 complex matrices of

the form
(C-L b) . with @ —bb=1.

b a
The reader should check that if we let
1 —i
9= (1 i ) ’
then the map from SL(2,R) to SU(1, 1) given by
A gAg!

is an isomorphism. Observe that the Mobius transformation associated with g is

Z—1
241

Z =

which is the holomorphic isomorphism mapping H to D mentionned earlier! Now, we can
define a bijection between SU(1,1) and S* x D given by

a b

(5 ) > o)

We conclude that SL(2,R) = SU(1, 1) is topologically an open solid torus (i.e., with the
surface of the torus removed). It is possible to further classify the elements of SL(2,R) into
three categories and to have geometric interpretations of these as certain regions of the torus.

For details, the reader should consult Carter, Segal and Macdonald [31] or Duistermatt and
Kolk [54] (Chapter 1, Section 1.2).

The group SU(1,1) acts on D by interpreting any matrix in SU(1,1) as a M&bius tran-

formation, i.e.,
(a b) ( az + b)
- _ )=z = .
b a bz +a

The reader should check that these transformations preserve D. Both the upper half-plane
and the open disk are models of Lobachevsky’s non-Euclidean geometry (where the parallel
postulate fails). They are also models of hyperbolic spaces (Riemannian manifolds with
constant negative curvature, see Gallot, Hulin and Lafontaine [61], Chapter III). According
to Dubrovin, Fomenko, and Novikov [52] (Chapter 2, Section 13.2), the open disk model is
due to Poincaré and the upper half-plane model to Klein, although Poincaré was the first to
realize that the upper half-plane is a hyperbolic space.
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2.3 The Lorentz Groups O(n, 1), SO(n,1) and SOq(n, 1)

The Lorentz group provides another interesting example. Moreover, the Lorentz group
SO(3,1) shows up in an interesting way in computer vision.

Denote the p x p-identity matrix by I, for p,q, > 1, and define

I, O
b (b %)

If n = p+ ¢, the matrix [, , is associated with the nondegenerate symmetric bilinear form

p n
SOPyQ((‘xl?'"7xn)7(y17"'7yn)) :leyz_ Z Z5Y;
=1

Jj=p+1

with associated quadratic form

p n
Dy (w1, m0)) = me - Z a:?
i=1

J=p+1
In particular, when p = 1 and ¢ = 3, we have the Lorentz metric

2 2 2 2

In physics, z; is interpreted as time and written ¢t and xs, x5, 24 as coordinates in R? and
written x,y, z. Thus, the Lozentz metric is usually written a

2 g —y? - 22

although it also appears as

22yt

which is equivalent but slightly less convenient for certain purposes, as we will see later. The
space R* with the Lorentz metric is called Minkowski space. It plays an important role in
Einstein’s theory of special relativity.

The group O(p, q) is the set of all n x n-matrices
O(p,q) ={A € GL(n,R) | AL, A = I,,4}.

This is the group of all invertible linear maps of R" that preserve the quadratic form, @, ,,
i.e., the group of isometries of ®,,. Clearly, Ig’q = I, so the condition A", ,A = I,, is
equivalent to I, ,A"I,,A = I, which means that

At=1,,ATL,,
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Thus, Al,, A" = I, also holds, which shows that O(p, q) is closed under transposition (i.e.,
if A€ O(p,q), then AT € O(p, q)). We have the subgroup

SO(p,q) ={A € O(p,q) | det(A) = 1}

consisting of the isometries of (R", ®,,) with determinant +1. It is clear that SO(p,q) is
also closed under transposition. The condition A" I, ,A = I, , has an interpretation in terms
of the inner product ¢, , and the columns (and rows) of A. Indeed, if we denote the jth
column of A by A;, then

ATl A = (ppg(Ai, Aj)),

so A € O(p, ¢) iff the columns of A form an “orthonormal basis” w.r.t. ¢, ,, i.e.,

(5ij if 1 <4,j <p;
Ppa(Ai, Aj) = {—6,-j fp+1<4j<p+q

The difference with the usual orthogonal matrices is that ¢, ,(A4;, 4;) = —1, if
p+1<i<p+gq As O(p,q) is closed under transposition, the rows of A also form an
orthonormal basis w.r.t. ¢, ,.

It turns out that SO(p, ¢) has two connected components and the component containing
the identity is a subgroup of SO(p, q) denoted SOq(p, q). The group SOq(p, ¢) turns out to
be homeomorphic to SO(p) x SO(g) x RP?, but this is not easy to prove. (One way to prove
it is to use results on pseudo-algebraic subgroups of GL(n,C), see Knapp [90] or Gallier’s
notes on Clifford algebras (on the web)).

We will now determine the polar decomposition and the SVD decomposition of matrices
in the Lorentz groups O(n,1) and SO(n,1). Write J = I,,; and, given any A € O(n, 1),

write
B u

where B is an n X n matrix, u,v are (column) vectors in R™ and ¢ € R. We begin with the
polar decomposition of matrices in the Lorentz groups O(n,1).

Proposition 2.3. Every matriz A € O(n, 1) has a polar decomposition of the form

@) e @A),

0 1 v’ c 0 —1 v’ c

where Q € O(n) and ¢ =/ ||v|* + 1.

Proof. Write A in block form as above. As the condition for A to bein O(n,1)is ATJA = J,

we get
BT w B u\ (I, O
u' ¢)\=v" —¢) \0 -1/
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ie,.

B'B = I+w'
wu = -1

B'u = cv.
If we remember that we also have AJA"T = J, then

Bv = cu,

which can also be deduced from the three equations above. From v u = ||Ju||* = ¢ — 1, we
deduce that |c| > 1, and from B'"B = I +vv', we deduce that B B is symmetric, positive
definite. Now, geometrically, it is well known that v /v Tv is the orthogonal projection onto
the line determined by v. Consequently, the kernel of vv' is the orthogonal complement of
v and vv' has the eigenvalue 0 with multiplicity n — 1 and the eigenvalue ¢ — 1 = H’UH2 =
v'v with multiplicity 1. The eigenvectors associated with 0 are orthogonal to v and the
eigenvectors associated with ¢ — 1 are proportional with v. It follows that I +vv " has the
eigenvalue 1 with multiplicity n—1 and the eigenvalue ¢ with multiplicity 1, the eigenvectors
being as before. Now, B has polar form B = )5S}, where () is orthogonal and S; is symmetric
positive definite and S? = B'B = I +vv'. Therefore, if ¢ > 0, then S; = VI +wvv' is a
symmetric positive definite matrix with eigenvalue 1 with multiplicity n — 1 and eigenvalue
¢ with multiplicity 1, the eigenvectors being as before. If ¢ < 0, then change ¢ to —c.

Case 1: ¢ > 0. Then, v is an eigenvector of S; for ¢ and we must also have Bv = cu,
which implies

Bv = QS1v = Q(cv) = cQu = cu,

SO

Qu = u.

-(E Y- -6

Therefore, the polar decomposition of A € O(n, 1) is

@)

0 1 T

v c
where Q € O(n) and ¢ = /||v|* + 1.

Case 2: ¢ < 0. Then, v is an eigenvector of S; for —c and we must also have Bv = cu,
which implies

It follows that

Bv = QS1v=Q(—cv) = cQ(—v) = cu,



94 CHAPTER 2. REVIEW OF GROUPS AND GROUP ACTIONS

SO
Q(—v) = u.
It follows that

(2 ) ) )

v v c -1 —v —cC
In this case, the polar decomposition of A € O(n, 1) is

- )

0 -1 —T —c

where Q € O(n) and ¢ = —y/||v||* + 1. Therefore, we conclude that any A € O(n, 1) has a
polar decomposition of the form

YT e

0 1 vl c 0 —1 vl c

where Q € O(n) and ¢ = y/||v]|* + 1. O

Thus, we see that O(n, 1) has four components corresponding to the cases:

(1) @ € O(n); det(Q) < 0; +1 as the lower right entry of the orthogonal matrix;
(2) @ € SO(n); —1 as the lower right entry of the orthogonal matrix;
(

3) @ € O(n); det(Q) < 0; —1 as the lower right entry of the orthogonal matrix;
(4) @ € SO(n); +1 as the lower right entry of the orthogonal matrix.

Observe that det(A) = —1 in cases (1) and (2) and that det(A) = +1 in cases (3) and (4).
Thus, (3) and (4) correspond to the group SO(n, 1), in which case the polar decomposition

is of the form
A (Q O) (\/I+UUT v)

0 -1 v’ c

where Q € O(n), with det(Q) = —1 and ¢ = /||| + 1 or

A Q 0\ (vVI+wvw' v
- \0 1 v’ c
where @ € SO(n) and ¢ = 1/||v||* + 1. The components in (1) and (2) are not groups. We

will show later that all four components are connected and that case (4) corresponds to a
group (Proposition 2.8). This group is the connected component of the identity and it is
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denoted SOq(n,1) (see Corollary 2.27). For the time being, note that A € SOq(n,1) iff
A € SO(n,1) and api1nt1 (= ¢) > 0 (here, A = (a;;).) In fact, we proved above that if
Untins1 > 0, then anq1pnp > 1.

Remark: If we let

Ap = <]n(_)1,1 (1)> and Ar=1,;, where I,;= (I(;Z _01) ’

then we have the disjoint union

O(TL, 1) = SOO(n, ].) U APSOO(TL, 1) U ATSO()(TL, 1) U APATSOO(’I’L, 1)

In order to determine the SVD of matrices in SOq(n, 1), we analyze the eigenvectors and
the eigenvalues of the positive definite symmetric matrix

o (x/[—l—mﬁ v)
N vl c

involved in Proposition 2.3. Such a matrix is called a Lorentz boost. Observe that if v = 0,
then c=1and S = [,1.

Proposition 2.4. Assume v # 0. The eigenvalues of the symmetric positive definite matriz

5= (YTE 1),

’U—r C

where ¢ =/ |v||* + 1, are 1 with multiplicity n — 1, and e* and e~ each with multiplicity 1

(for some a > 0). An orthonormal basis of eigenvectors of S consists of vectors of the form

(“1> (“nl) (ﬂ7|v||) (ﬂvnvn)
AR | b) 1 b 1 b
0 0 7=/ \~%

where the u; € R™ are all orthogonal to v and pairwise orthogonal.

Proof. Let us solve the linear system

() ) )

VI+ovw'(v)+dv = v

vioted = M,

We get
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that is (since ¢ = \/ ||| + 1 and VT + o0 (v) = ev),
(c+dv = v
F—1l4cd = M
Since v # 0, we get A\ = ¢+ d. Substituting in the second equation, we get
A —1+cd=(c+dd,
that is,
d>=c* —1.

Thus, either \y = c++vVc2—1landd=+vV2—1,or \y =c—+vVc2—1andd = —vc2—1.
Since ¢ > 1 and M\ = 1, set a = log(c+ V¢ — 1) > 0, so that —a = log(c — v/¢? — 1) and
then, A\ = e® and Ay = ¢™®. On the other hand, if u is orthogonal to v, observe that

(6= 6)

since the kernel of vv' is the orthogonal complement of v. The rest is clear. O]
Corollary 2.5. The singular values of any matriz A € O(n, 1) are 1 with multiplicity n—1,

e”, and e=“, for some a > 0.

Note that the case o = 0 is possible, in which case, A is an orthogonal matrix of the form

Q@ 0 Q@ 0
(0 1) % \o —1)°
with @ € O(n). The two singular values e and e~ tell us how much A deviates from being
orthogonal.
We can now determine a convenient form for the SVD of matrices in O(n, 1).

Theorem 2.6. Every matrizx A € O(n, 1) can be written as
1 -0 0 0
A_(O e) 0 --- 1 0 0 <0 1)
0 --- 0 cosha sinha

0 --- 0 sinha cosha

with e = £1, P € O(n) and Q € SO(n). When A € SO(n, 1), we have det(P)e = +1, and
when A € SOy(n, 1), we have e = +1 and P € SO(n), that is,

1 -0 0 0

A‘(o 1) 0 -1 0 0 <o 1)
o --- cosha sinh «
0 sinha cosha

o O

with P € SO(n) and @ € SO(n).
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Proof. By Proposition 2.3, any matrix A € O(n) can be written as

(o 9

0 e v’ c

where € = 1, R € O(n) and ¢ = /||v||> + 1. The case where ¢ = 1 is trivial, so assume
¢ > 1, which means that « from Proposition 2.4 is such that o > 0. The key fact is that the

eigenvalues of the matrix
cosha sinh o
sinha cosh «
are e® and e~ % and that
e* 0\ \/Lg % cosha sinha
0 e \/Li _\/Li sinha cosha

From this fact, we see that the diagonal matrix

Sl
G-k
SN—

1 --- 0 0 0
D= 1o 1 0 0
0 0 e 0
0 0 0 e©@
of eigenvalues of S is given by
1 --- 0 0 0 1 0 0 0 1 0 O 0
p=]o -1 0 o ||o 1 0 0 0 10 0
0 - 0 \/L§ \% 0 0 cosha sinha 0 0 \% \/LQ
0 - 0 \% —\% 0 0 sinha cosha 0 0 \% _\/Li

By Proposition 2.4, an orthonormal basis of eigenvectors of S consists of vectors of the form

(ul) (Un—1> (ﬂvnvn) (ﬁqﬂvn)
VAR ] ) 1 b 1 b
0 0 5/ \—%

where the u; € R" are all orthogonal to v and pairwise orthogonal. Now, if we multiply the
matrices

1 .-+ 0 0 0
(%1 u%—l \/%M ﬁllfll) () 1 () 0 )
2 VG 0o --- 0 L L

V2 V2



98 CHAPTER 2. REVIEW OF GROUPS AND GROUP ACTIONS

(@)

we get an orthogonal matrix of the form

where the columns of () are the vectors
v

Upy -y Un—1, m

By flipping u; to —u; if necessary, we can make sure that this matrix has determinant +1.
Consequently,

1 -0 0 0

: : T
@)

cosha sinh o

nn

I
R
o O
i)
N———
—_

]
[aw]

O --- 0 sinha cosha
SO
1 0 0 0
A‘(o e><0 1> 0 -1 0 0 (0 1)’
0O -+ 0 cosha sinhao
0 0 sinha cosha
and if we let P = RQ), we get the desired decomposition. n

Remark: We warn our readers about Chapter 6 of Baker’s book [13]. Indeed, this chapter
is seriously flawed. The main two Theorems (Theorem 6.9 and Theorem 6.10) are false
and as consequence, the proof of Theorem 6.11 is wrong too. Theorem 6.11 states that the
exponential map exp: so(n, 1) — SOq(n, 1) is surjective, which is correct, but known proofs
are nontrivial and quite lengthy (see Section 5.5). The proof of Theorem 6.12 is also false,
although the theorem itself is correct (this is our Theorem 5.22, see Section 5.5). The main
problem with Theorem 6.9 (in Baker) is that the existence of the normal form for matrices
in SOg(n, 1) claimed by this theorem is unfortunately false on several accounts. Firstly, it
would imply that every matrix in SOg(n, 1) can be diagonalized, but this is false for n > 2.
Secondly, even if a matrix A € SOg(n, 1) is diagonalizable as A = PDP~!, Theorem 6.9
(and Theorem 6.10) miss some possible eigenvalues and the matrix P is not necessarily in
SOq(n,1) (as the case n = 1 already shows). For a thorough analysis of the eigenvalues of
Lorentz isometries (and much more), one should consult Riesz [127] (Chapter III).

Clearly, a result similar to Theorem 2.6 also holds for the matrices in the groups O(1,n),
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SO(1,n) and SOy(1,n). For example, every matrix A € SOg(1,n) can be written as

cosha sinha 0 --- 0
Lo sinha cosha 0 --- 0 Lo
- 0 0 1 - 0
A (0 P) | S (0 QT)’
0 0 0o --- 1

where P, @ € SO(n).

In the case n = 3, we obtain the proper orthochronous Lorentz group, SOq(1,3), also
denoted Lor(1, 3). By the way, O(1,3) is called the (full) Lorentz group and SO(1,3) is the
special Lorentz group.

Theorem 2.6 (really, the version for SOy(1,n)) shows that the Lorentz group SOy(1, 3)
is generated by the matrices of the form

10 .
(o P> with P € SO(3)

and the matrices of the form

cosha sinha 0 0
sinha cosha 0 O
0 0 10
0 0 0 1

This fact will be useful when we prove that the homomorphism ¢: SL(2,C) — SOq(1,3) is
surjective.

Remark: Unfortunately, unlike orthogonal matrices which can always be diagonalized over
C, not every matrix in SO(1,n) can be diagonalized for n > 2. This has to do with the fact
that the Lie algebra so(1,n) has non-zero idempotents (see Section 5.5).

It turns out that the group SOg(1,3) admits another interesting characterization involv-
ing the hypersurface

M= (1) RV |- =y — 2 = 1}

This surface has two sheets and it is not hard to show that SOg(1,3) is the subgroup of
SO(1, 3) that preserves these two sheets (does not swap them). Actually, we will prove this
fact for any n. In preparation for this we need some definitions and a few propositions.

Let us switch back to SO(n, 1). First, as a matter of notation, we write every u € R"*!
as u = (u,t), where u € R" and ¢t € R, so that the Lorentz inner product can be expressed
as

(u,v) = ((u,t),(v,s)) =u-v—ts,

where u - v is the standard Euclidean inner product (the Euclidean norm of x is denoted
|z|l). Then, we can classify the vectors in R™*! as follows:
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Definition 2.10. A nonzero vector, u = (u,t) € R"™! is called
(a) spacelike iff (u,u) > 0, i.e., iff [u]|* > %
(b) timelike iff (u,u) <0, ie., iff |ul?® < t%;
(c) lightlike or isotropic iff (u,u) =0, ie., iff |Jul® = 2.

A spacelike (resp. timelike, resp. lightlike) vector is said to be positive iff t > 0 and negative
iff t < 0. The set of all isotropic vectors

H1a(0) = {u = (u,t) € R™ | |Jul|* = ¢°}
is called the light cone. For every r > 0, let
Ho(r) = {u = (u,t) R | Jul* = * = —r},
a hyperboloid of two sheets.

It is easy to check that H,(r) has two connected components as follows: First, since
r >0 and

lul* +r =22,
we have [t| > /r. Now, for any = = (x1,...,2,,t) € H,(r) with ¢ > /r, we have the
continuous path from (0,...,0,1/7) to x given by
A= Az, AT, T+ A28 — 1),

where A € [0, 1], proving that the component of (0,...,0,/7) is connected. Similarly, when
t < —4/r, we have the continuous path from (0,...,0,—+/7) to z given by

)\'_><)‘x17"'>)‘$n7_ T+)\2(t2—r))7

where A € [0, 1], proving that the component of (0, ...,0, —4/r) is connected. We denote the
sheet containing (0, ...,0,+/r) by H; (r) and sheet containing (0, ...,0, —/r) by H, (r)

Since every Lorentz isometry, A € SO(n, 1), preserves the Lorentz inner product, we
conclude that A globally preserves every hyperboloid, H,(r), for r > 0. We claim that every
A € SOq(n, 1) preserves both H(r) and H_ (). This follows immediately from

Proposition 2.7. If a,11n,41 > 0, then every isometry, A € O(n, 1), preserves all positive
(resp. megative) timelike vectors and all positive (resp. negative) lightlike vectors. Moreover,
if A € O(n,1) preserves all positive timelike vectors, then a,y1,11 > 0.
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Proof. Let u = (u,t) be a nonzero timelike or lightlike vector. This means that
Jul* <> and t#0.

Since A € O(n, 1), the matrix A preserves the inner product; if (u,u) = |Jul®* — # < 0,
we get (Au, Au) < 0, which shows that Au is also timelike. Similarly, if (u,u) = 0, then
(Au, Au) = 0. As A € O(n, 1), we know that

<An+17An+1> = _17

that is,

2
HAn-&-IH - ai—i—l,n—i—l =—1,

where A1 = (Ayi1, Gni1,ni1) i the (n+1)th row of the matrix A. The (n+1)th component
of the vector Au is

u - An+1 + an—i—l,n-{—lt-

By Cauchy-Schwarz,
(u-Ap1)? < Julf* [|An],

so we get,

(- Ap)® <l Al

2/ 2 42 2 2
t (an+1,n+1 - 1) =1 an+1,n+1 —1

ARRVANNVAN

2 2
t an+1, n+1>

since t # 0. It follows that u - A, 1 + ay4+1, n41t has the same sign as ¢, since @41, 11 > 0.
Consequently, if @, 41 n+1 > 0, we see that A maps positive timelike (resp. lightlike) vectors
to positive timelike (resp. lightlike) vectors and similarly with negative timelight (resp.
lightlike) vectors.

Conversely, as e,.1 = (0,...,0,1) is timelike and positive, if A preserves all positive
timelike vectors, then Ae,; is timelike positive, which implies @41 ,+1 > 0. O

Let O™ (n, 1) denote the subset of O(n, 1) consisting of all matrices, A = (a;;), such that
ant1nt1 > 0. Using Proposition 2.7, we can now show that O™ (n, 1) is a subgroup of O(n, 1)
and that SOg(n, 1) is a subgroup of SO(n, 1). Recall that

SOO(TL, 1) = {A c SO(TL, 1) | An+1n+1 > 0}
Note that SOg(n,1) = OT(n,1) N SO(n, 1).

Proposition 2.8. The set O (n,1) is a subgroup of O(n,1) and the set SOy(n,1) is a
subgroup of SO(n, 1).



102 CHAPTER 2. REVIEW OF GROUPS AND GROUP ACTIONS

Proof. Let A € O"(n,1) C O(n, 1), so that a,.1,+1 > 0. The inverse of A in O(n,1) is
JATJ, where
I, 0
(i h),

which implies that a,};,.1 = Gniins1 > 0 and so, A~L € OF(n,1). If A,B € O*(n,1),
then, by Proposition 2.7, both A and B preserve all positive timelike vectors, so AB preserve
all positive timelike vectors. By Proposition 2.7, again, AB € O"(n, 1). Therefore, O"(n, 1)
is a group. But then, SOgy(n,1) = O*(n,1) N SO(n,1) is also a group. O

Since any matrix, A € SOq(n, 1), preserves the Lorentz inner product and all positive
timelike vectors and since H.7 (1) consists of timelike vectors, we see that every A € SOg(n, 1)
maps H. (1) into itself. Similarly, every A € SOq(n,1) maps H, (1) into itself. Thus, we
can define an action -: SOq(n,1) X H} (1) — H} (1) by

A-u=Au
and similarly, we have an action -: SOg(n,1) x H, (1) — H, (1).
Proposition 2.9. The group SOq(n, 1) is the subgroup of SO(n,1) that preserves H; (1)
(and H,, (1)) i.e.,
SOy(n,1) = {A €SO(n,1) | A(H (1)) =H (1) and A(H, (1)) =H, (1)}

Proof. We already observed that A(H}(1)) = HF(1) if A € SOg(n,1) (and similarly,
A(H, (1)) = H,(1)). Conversely, for any A € SO(n,1) such that A(H] (1)) = HI(1),

as e,+1 = (0,...,0,1) € H}F(1), the vector Ae, 1 must be positive timelike, but this says
that Ap+1,n+1 > 0, i.e., A€ SOO(’I’L, 1) ]

Next, we wish to prove that the action SOg(n,1) x H (1) — H.F(1) is transitive. For
this, we need the next two propositions.

Proposition 2.10. Let u = (u,t) and v = (v, s) be nonzero vectors in R"™! with {(u,v) = 0.

If w is timelike, then v is spacelike (i.e., (v,v) > 0).

Proof. We have |lu|® < t?, so t # 0. Since u-v —ts = 0, we get

(u-v)?
2

2 2
(v,0) = |Iv|I” = s* = [Iv|]" =

But, Cauchy-Schwarz implies that (u - v)% < |lu)® ||v]?, so we get

(u-v)? (-v)?

2 2
V,V) = ||V|| — Vi —
(v,0) = vl v vl =

as |lu® < . O
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Lemma 2.10 also holds if u = (u,t) is a nonzero isotropic vector and v = (v,s) is a
nonzero vector that is not collinear with w: If (u,v) = 0, then v is spacelike (i.e., (v,v) > 0).
The proof is left as an exercise to the reader.

Proposition 2.11. The action SOg(n,1) x H} (1) — H} (1) is transitive.

Proof. Let epy1 = (0,...,0,1) € H;(1). It is enough to prove that for every u = (u,t) €
H; (1), there is some A € SOqy(n, 1) such that Ae, 1 = u. By hypothesis,

(u,u) = [ul” — 2 = ~1.

We show that we can construct an orthonormal basis, eq,...,e,,u, with respect to the
Lorentz inner product. Consider the hyperplane

H = {veR"! | (u,v) =0}.

Since u is timelike, by Proposition 2.10, every nonzero vector v € H is spacelike, i.e.,
(v,v) > 0. Let vy,...,v, be a basis of H. Since all (nonzero) vectors in H are spacelike, we
can apply the Gramm-Schmidt orthonormalization procedure and we get a basis ey, ..., e,,
of H, such that

(€iyej) =6;5, 1<i,7<n.

Now, by construction, we also have
(ej,uy=0, 1<i<n, and (u,u)=—1.

Therefore, ey, ..., e,,u are the column vectors of a Lorentz matrix, A, such that Ae,; = u,
proving our assertion. O

Let us find the stabilizer of e,,;; = (0,...,0,1). We must have Ae,;; = e,.1, and the
polar form implies that

A:(IJ (1)) with P € SO(n).

Therefore, the stabilizer of e, is isomorphic to SO(n) and we conclude that H; (1), as a
homogeneous space, is

H. (1) 2 SOg(n,1)/SO(n).
We will show in Section 2.5 that SOg(n, 1) is connected.

2.4 More on O(p, q)

Recall from Section 2.3 that the group O(p, q) is the set of all n x n-matrices

O(I% CI) = {A € GL(”> R) ’ AT[p,qA = p,q}'
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We deduce immediately that |det(A)] = 1 and we also know that AI,,AT = I,, holds.
Unfortunately, when p # 0,1 and ¢ # 0, 1, it does not seem possible to obtain a formula as
nice as that given in Proposition 2.3. Nevertheless, we can obtain a formula for the polar
form of matrices in O(p, q). First, recall (for example, see Gallier [60], Chapter 12) that if
S is a symmetric positive definite matrix, then there is a unique symmetric positive definite

matrix, 7', so that
S =T

We denote T by S 2 or V/S. By S’%, we mean the inverse of Sz. In order to obtain the polar
form of a matrix in O(p, ¢), we begin with the following proposition:

Proposition 2.12. Every matrizx X € O(p,q) can be written as

x= (Y0 (f% oz ,
0o Vv 027 52

where o« = (I — Z"Z) Y and 6 = (I — ZZ )7L, for some orthogonal matrices U € O(p),
V € O(q) and for some q X p matriz, Z, such that [ — Z"Z and I — ZZ" are symmetric
positive definite matrices. Moreover, U, V, Z are uniquely determined by X .

A B
(¢ b)
with A a p X p matrix, D a ¢ X ¢ matrix, B a p X ¢ matrix and C' a ¢ X p matrix, then the
equations A" I, ,A = I,, and Al, ,A" = I,, yield the (not independent) conditions

Proof. If we write

ATA = 14+C'C
D'D = I+B'B
A'"B = C'D
AAT = I+ BB'
DD' = I1+cCCT
ACT = BD'.

Since C'TC is symmetric and since it is easy to show that C'TC has nonnegative eigenval-
ues, we deduce that AT A is symmetric positive definite and similarly for D' D. If we assume
that the above decomposition of X holds, we deduce that

A= UI-2"2):
B = UI-2"2)y22"
C = V(I-22"y2Z2
D = V(I-22Z")¢,
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which implies
Z=D1'C and Z'=A7'B.

Thus, we must check that
(D'C)' =A'B

ie.,

CT (D" =A"B,

namely, , ;
AC" =BD",

which is indeed the last of our identities. Thus, we must have Z = D71C = (A7'B)". The
above expressions for A and D also imply that

ATA=I-2"2)" and D'D=(UI—-2Z")",
so we must check that the choice Z = D7C = (A7'B)" yields the above equations.
Since ZT = A™'B, we have
Z'Z = AT'BBT(A")™!
= ANAAT —D)(AT)!

= - AHAT)!
= I —(ATA)™
Therefore,
(ATA) ' =1-2"7,
ie.,

ATA=(1-2"2)",
as desired. We also have, this time, with Z = D=1,

77" = D 'ccT(D")™
= DYDD" —1)(D")™!

— _[ o D—I(DT)—I
= - (D'D)™"
Therefore,
(D'Dy'=1-22",
ie.,

D'D=(I-2Z")",
as desired. Now, since AT A and DT D are positive definite, the polar form implies that

A=UATA: =UI-2"2):
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and ) )
D=V(D'D):=V(I—-2ZZ")"2,

for some unique matrices, U € O(p) and V € O(q). Since Z = D7!C and Z' = A7 B, we
get C = DZ and B = AZ", but this is

B = UI-2"2)y22"
C = V(I-22")22Z,

as required. Therefore, the unique choice of Z = D7'C' = (A7'B)", U and V does yield the
formula of the proposition. n

It remains to show that the matrix

ar a2:Z"\ ((I-Z"2)y: (I-ZTZ)2ZT
022 63 ) \UI-22T)y:Zz (I1-2Z7)

is symmetric. To prove this, we will use power series and a continuity argument.

Proposition 2.13. For any q x p matriz, Z, such that [ —Z"Z and I —ZZ" are symmetric
positive definite, the matrix

is symmetric, where « = (I — Z'Z) ™ and 6 = (I — ZZ )71

Proof. The matrix S is symmetric iff

ie., iff ) .
ZI0-2"2y2=(1-22")22.

Consider the matrices
B)=(I—tZ"2)% and ~y(t)=I—-t227)2,

for any t with 0 < t < 1. We claim that these matrices make sense. Indeed, since Z'Z is
symmetric, we can write

Z'7 =PDPT

where P is orthogonal and D is a diagonal matrix with nonnegative entries. Moreover, as
I1-2"7Z=P(I—-D)P"
and I — ZTZ is positive definite, 0 < X\ < 1, for every eigenvalue in D. But then, as

I-tZ"Z =P —tD)P',
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we have 1 —t\ > 0 for every X in D and for all ¢+ with 0 < t < 1, so that [ —tZ"Z is
positive definite and thus, (I —tZ"Z)™2 is also well defined. A similar argument applies to
(I —tZZ7)"2. Observe that

N[

lim S(t)

t—1

(0%

since

Bt)y=(I—tZ'Z)"2 = P(I—tD)zP",

where (/ —tD)*% is a diagonal matrix with entries of the form (l—t)\)’% and these eigenvalues
are continuous functions of ¢ for ¢t € [0,1]. A similar argument shows that

I

lim~(t) = d2.

t—1

Therefore, it is enough to show that

Zp(t) =~(t)Z,

with 0 <t < 1 and our result will follow by continuity. However, when 0 <t < 1, the power
series for B(t) and 7(t) converge. Thus, we have

1 1 Ll ). (L k41
5(15):1+§tZTZ—§t2(ZTZ)2+---+2(2 )k,(Q +)tk(ZTZ)k+...

and

Lo Lo, mo 3 (5
fy(t):1+§tZZ —gt(ZZ )+t

and we get

1 1 L S I ey i |
ZB(t) =7+ A §t2Z(ZTZ)2+.--+ 2 (2 ) (2 )tkz(ZTz)k+...

2 k!
and

1 1 TE-1 (i —-k+1

Yt)Z = Z + 5tZZTZ — th(ZZT)QZ ot 2 (-1 k'(Z )tk(ZZT)kZ +

However

22" =22"72---2"2=22"---22"7=(ZZ2")2Z,

e e

which proves that Z5(t) = v(t)Z, as required. O

Another proof of Proposition 2.13 can be given using the SVD of Z. Indeed, we can write

Z=PDQ’
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where P is a ¢ X g orthogonal matrix, () is a p X p orthogonal matrix and D is a ¢ X p matrix
whose diagonal entries are (strictly) positive and all other entries zero. Then,

I-2"Z=1-QD'"P'"PDQ"=Q(I -D'D)Q",
a symmetric positive definite matrix. We also have
I-22"=1—-PDQ'QD'P" = P(I -DD")PT,
another symmetric positive definite matrix. Then,
Z(I—-2"2)2 =PDQ'QU - D'D)2QT = PD(I —D'D)"2:Q"
and
(I-22Z"y2=PI-DD")y2:P"PDQT = P(I—DD")":DQ",
so it suffices to prove that
D(I-D'D)y2=(I—-DD")zD.
However, D is essentially a diagonal matrix and the above is easily verified, as the reader
should check.

Remark: The polar form can also be obtained via the exponential map and the Lie algebra,
o(p, q), of O(p,q), see Section 5.6.

We also have the following amusing property of the determinants of A and D:

Proposition 2.14. For any matriz X € O(p, q), if we write
A B
(& n)
det(X) = det(A)det(D)™" and |det(A)| = |det(D)| > 1.
Proof. Using the identities ATB =C"D and D"D = I + BT B proved earlier, observe that

AT 0 \ (A B\ ATA ATB _(ATA A'B
BT -p")\c p) \B"A-D'C B'B-D'D)"\ 0 —I,)°

If we compute determinants, we get

det(A)(—1)7 det(D) det(X) = det(A)*(—1)".

then

It follows that

det(X) = det(A) det(D) ™.
From ATA=T1+C"C and D"D = I + B" B, we conclude that det(A4) > 1 and det(D) > 1.
Since | det(X)| = 1, we have |det(A)| = | det(D)| > 1. O

Remark: It is easy to see that the equations relating A, B, C, D established in the proof of
Proposition 2.12 imply that

det(A) =41 iff C=0 iff B=0 iff det(D)=+1.
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2.5 Topological Groups

Since Lie groups are topological groups (and manifolds), it is useful to gather a few basic
facts about topological groups.

Definition 2.11. A set, G, is a topological group iff
(a) G is a Hausdorff topological space;
(b) G is a group (with identity 1);

(c) Multiplication, -: G x G — G, and the inverse operation, G — G: g — ¢!, are
continuous, where G x GG has the product topology.

It is easy to see that the two requirements of condition (c) are equivalent to

(¢) The map G x G — G: (g,h) — gh™! is continuous.

Given a topological group G, for every a € G we define left translation as the map,
L,: G — G, such that L,(b) = ab, for all b € G, and right translation as the map, R,: G —
G, such that R,(b) = ba, for all b € G. Observe that L,-1 is the inverse of L, and similarly,
R,-1 is the inverse of R,. As multiplication is continuous, we see that L, and R, are
continuous. Moreover, since they have a continuous inverse, they are homeomorphisms. As
a consequence, if U is an open subset of G, then so is gU = Ly(U) (resp. Ug = R,U), for
all g € G. Therefore, the topology of a topological group (i.e., its family of open sets) is
determined by the knowledge of the open subsets containing the identity, 1.

Given any subset, S C G, let S™' = {s7'| s € S}; let S = {1} and S™™! = 5SS, for all
n > 0. Property (c) of Definition 2.11 has the following useful consequences:

Proposition 2.15. If G is a topological group and U is any open subset containing 1, then
there is some open subset, V C U, with 1 € V, so that V =V =1 and V? C U. Furthermore,
VCu.

Proof. Since multiplication G x G — G is continuous and G x G is given the product
topology, there are open subsets, U; and U,, with 1 € U; and 1 € U,, so that UyU; C U.
Ley W = U NUyand V = W N WL Then, V is an open set containing 1 and, clearly,
V=V~'and V2C U U, CU. If g € V, then gV is an open set containing g (since 1 € V)
and thus, gV NV # (). This means that there are some hy,hy € V so that gh; = hy, but
then, g = hoh' € VV 1 =VV C U. O

A subset, U, containing 1 and such that U = U™!, is called symmetric. Using Proposition
2.15, we can give a very convenient characterization of the Hausdorff separation property in
a topological group.

Proposition 2.16. If G is a topological group, then the following properties are equivalent:
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(1) G is Hausdorff;
(2) The set {1} is closed;
(3) The set {g} is closed, for every g € G.

Proof. The implication (1) — (2) is true in any Hausdorff topological space. We just have
to prove that G — {1} is open, which goes as follows: For any g # 1, since G is Hausdorff,
there exists disjoint open subsets U, and V,, with g € U, and 1 € V,. Thus, U, = G—{1},
showing that G — {1} is open. Since L, is a homeomorphism, (2) and (3) are equivalent.
Let us prove that (3) — (1). Let g1, 92 € G with g; # go. Then, g; g # 1 and if U and
V are distinct open subsets such that 1 € U and g;'g, € V, then g; € ¢,U and g, € g1V,
where ¢1U and ¢,V are still open and disjoint. Thus, it is enough to separate 1 and g # 1.
Pick any g # 1. If every open subset containing 1 also contained g, then 1 would be in the
closure of {g}, which is absurd, since {g} is closed and g # 1. Therefore, there is some open
subset, U, such that 1 € U and g ¢ U. By Proposition 2.15, we can find an open subset,
V, containing 1, so that VV C U and V = V=1, We claim that V' and Vg are disjoint open
sets with 1 € V and g € gV.

Since 1 € V, it is clear that 1 € V and g € gV. If we had V N gV # 0, then we would
have g € VV ! = VV C U, a contradiction. m

If H is a subgroup of G (not necessarily normal), we can form the set of left cosets, G/H
and we have the projection, p: G — G/H, where p(g) = gH = g. If G is a topological
group, then G/H can be given the quotient topology, where a subset U C G//H is open iff
p Y(U) is open in G. With this topology, p is continuous. The trouble is that G/H is not
necessarily Hausdorff. However, we can neatly characterize when this happens.

Proposition 2.17. If G is a topological group and H is a subgroup of G then the following
properties hold:

(1) The map p: G — G/H is an open map, which means that p(V) is open in G/H
whenever V' is open in G.

(2) The space G/H is Hausdorff iff H is closed in G.

(8) If H is open, then H is closed and G/H has the discrete topology (every subset is open).

(4) The subgroup H is open iff 1 € If_f (i.e., there is some open subset, U, so that
leUCH).

Proof. (1) Observe that if V' is open in G, then VH = J, ., V'h is open, since each Vh is
open (as right translation is a homeomorphism). However, it is clear that

p(p(V) =VH,
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i.e., p~1(p(V)) is open, which, by definition, means that p(V) is open.

(2) If G/H is Hausdorff, then by Proposition 2.16, every point of G/H is closed, i.e.,
each coset gH is closed, so H is closed. Conversely, assume H is closed. Let 7 and ¥ be two
distinct point in G/H and let z,y € G be some elements with p(x) = 7 and p(y) = 7. As
T # 7, the elements x and y are not in the same coset, so © ¢ yH. As H is closed, so is
yH, and since = ¢ yH, there is some open containing x which is disjoint from yH, and we
may assume (by translation) that it is of the form Ux, where U is an open containing 1. By
Proposition 2.15, there is some open V' containing 1 so that VV C U and V = V1. Thus,
we have

VienyH =0
and in fact,
VieHNyH =0,

since H is a group. Since V = V1, we get
VaHNVyH = (),

and then, since V' is open, both VaH and VyH are disjoint, open, so p(VxzH) and p(VyH)
are open sets (by (1)) containing T and 7 respectively and p(VaxH) and p(VyH) are disjoint
(because p~(p(VaH)) = VaeHH = VxH and p~'(p(VyH)) = VyHH = VyH and
VeHNVyH =0).

(3) If H is open, then every coset gH is open, so every point of G/H is open and G/H
is discrete. Also, U9¢H gH is open, i.e., H is closed.

(4) Say U is an open subset such that 1 € U C H. Then, for every h € H, the set hU is
an open subset of H with h € hU, which shows that H is open. The converse is trivial. [J

Proposition 2.18. If G is a connected topological group, then G is generated by any sym-
metric neighborhood, V', of 1. In fact,

G=Jv

n>1

Proof. Since V = V=1, it is immediately checked that H = Un21 V™ is the group generated
by V. As V is a neighborhood of 1, there is some open subset, U C V', with 1 € U, and so

1le [f[ . From Proposition 2.17, the subgroup H is open and closed and since G is connected,
H=G. O

A subgroup, H, of a topological group G is discrete iff the induced topology on H is
discrete, i.e., for every h € H, there is some open subset, U, of G so that U N H = {h}.

Proposition 2.19. If G is a topological group and H s discrete subgroup of G, then H 1is
closed.
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Proof. As H is discrete, there is an open subset, U, of G so that U N H = {1}, and by
Proposition 2.15, we may assume that U = U~'. If ¢ € H, as gU is an open set containing
g, we have gU N H # (). Consequently, there is some y € gU N H = gU ' N H, so g € yU
with y € H. Thus, we have

geyUNHCyUNH = {y} = {y},
since UNH = {1}, y € H and G is Hausdorff. Therefore, g =y € H. O

Proposition 2.20. If G is a topological group and H is any subgroup of G, then the closure,
H, of H is a subgroup of G.

Proof. This follows easily from the continuity of multiplication and of the inverse operation,
the details are left as an exercise to the reader. O

Proposition 2.21. Let G be a topological group and H be any subgroup of G. If H and
G/H are connected, then G is connected.

Proof. 1t is a standard fact of topology that a space G is connected iff every continuous
function, f, from G to the discrete space {0,1} is constant. Pick any continuous function,
f, from G to {0,1}. As H is connected and left translations are homeomorphisms, all
cosets, gH, are connected. Thus, f is constant on every coset, gH. Thus, the function
f: G — {0,1} induces a continuous function, f: G/H — {0, 1}, such that f = f o p (where
p: G — G/H; the continuity of f follows immediately from the definition of the quotient
topology on G/H). As G/H is connected, f is constant and so, f = f o p is constant. ~ [J

Proposition 2.22. Let G be a topological group and let V' be any connected symmetric open
subset containing 1. Then, if Gy is the connected component of the identity, we have

Go=JV"

n>1
and Gy is a normal subgroup of G. Moreover, the group G /Gy is discrete.

Proof. First, as V' is open, every V" is open, so the group Un21 V™ is open, and thus closed,
by Proposition 2.17 (3). For every n > 1, we have the continuous map

Vx...xV—V": ey Gn) gL G
R XV, (g1, Gn) = g1 9

n

As V' is connected, V' x --- x V is connected and so, V" is connected. Since 1 € V" for all
n > 1, and every V" is connected, we conclude that | J,~, V" is connected. Now, J, -, V" is
connected, open and closed, so it is the connected component of 1. Finally, for every ¢g € G,
the group gGog~! is connected and contains 1, so it is contained in Gy, which proves that
Gy is normal. Since Gy is open, the group G /G| is discrete. n
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A topological space, X, is locally compact iff for every point p € X, there is a compact
neighborhood, C' of p, i.e., there is a compact, C', and an open, U, with p € U C C. For
example, manifolds are locally compact.

Proposition 2.23. Let G be a topological group and assume that G is connected and locally
compact. Then, G is countable at infinity, which means that G is the union of a countable
family of compact subsets. In fact, if V is any symmetric compact neighborhood of 1, then

G=|Jv

n>1

Proof. Since G is locally compact, there is some compact neighborhood, K, of 1. Then,
V = KN K~ is also compact and a symmetric neighorhood of 1. By Proposition 2.18, we

have
¢=Jv"
n>1
An argument similar to the one used in the proof of Proposition 2.22 to show that V" is
connected if V' is connected proves that each V" compact if V' is compact. O

If a topological group, G acts on a topological space, X, and the action -: G x X — X
is continuous, we say that G acts continuously on X. Under some mild assumptions on GG
and X, the quotient space, G/G,, is homeomorphic to X. For example, this happens if X
is a Baire space.

Recall that a Baire space, X, is a topological space with the property that if {F'};> is
any countable family of closed sets, F}, such that each F; has empty interior, then | J,~, F;
also has empty interior. By complementation, this is equivalent to the fact that for every
countable family of open sets, U;, such that each U; is dense in X (i.e., U; = X), then 5, Ui
is also dense in X. a

Remark: A subset, A C X, is rare if its closure, A, has empty interior. A subset, Y C X,
is meager if it is a countable union of rare sets. Then, it is immediately verified that a space,
X, is a Baire space iff every nonempty open subset of X is not meager.

The following theorem shows that there are plenty of Baire spaces:

Theorem 2.24. (Baire) (1) Every locally compact topological space is a Baire space.

(2) Every complete metric space is a Baire space.

A proof of Theorem 2.24 can be found in Bourbaki [24], Chapter IX, Section 5, Theorem

We can now greatly improve Proposition 2.2 when G and X are topological spaces having
some “nice” properties.
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Theorem 2.25. Let G be a topological group which is locally compact and countable at
infinity, X a Hausdorff topological space which is a Baire space and assume that G acts
transitively and continuously on X. Then, for any x € X, the map p: G/G, — X is a
homeomorphism.

Proof. We follow the proof given in Bourbaki [24], Chapter IX, Section 5, Proposition 6
(Essentially the same proof can be found in Mneimné and Testard [112], Chapter 2). First,
observe that if a topological group acts continuously and transitively on a Hausdorff topo-
logical space, then for every x € X, the stabilizer, GG, is a closed subgroup of GG. This is
because, as the action is continuous, the projection 7: G — X: g + ¢ - x is continuous,
and G, = 7 '({z}), with {2} closed. Therefore, by Proposition 2.17, the quotient space,
G/G,, is Hausdorff. As the map 7: G — X is continuous, the induced map ¢: G/G, — X
is continuous and by Proposition 2.2, it is a bijection. Therefore, to prove that ¢ is a home-
omorphism, it is enough to prove that ¢ is an open map. For this, it suffices to show that
7 is an open map. Given any open, U, in GG, we will prove that for any g € U, the element
7m(g) = g - x is contained in the interior of U - z. However, observe that this is equivalent to
proving that x belongs to the interior of (7! - U) - . Therefore, we are reduced to the case:
If U is any open subset of GG containing 1, then = belongs to the interior of U - z.

Since G is locally compact, using Proposition 2.15, we can find a compact neighborhood
of the form W = V, such that 1 € W, W = W~ and W? C U, where V is open with
1€V CU. As G is countable at infinity, G = (J,~, K;, where each K; is compact. Since V'
is open, all the cosets gV are open, and as each K is covered by the gV’s, by compactness
of Kj;, finitely many cosets gV cover each K; and so,

¢=Uav=Uam

i>1 i>1

for countably many ¢; € G, where each ¢g;W is compact. As our action is transitive, we
deduce that
X=Jaw =,

i>1

where each ¢;W - x is compact, since our action is continuous and the ¢;WW are compact. As
X is Hausdorff, each ¢g;W -x is closed and as X is a Baire space expressed as a union of closed
sets, one of the ¢;WW - x must have nonempty interior, i.e., there is some w € W, with g;w - x
in the interior of ¢g;WW - x, for some i. But then, as the map y — ¢ -y is a homeomorphism
for any given g € G (where y € X)), we see that x is in the interior of

wilgt (gW z)=w ' W s CW'W.2=W? 2CU -z,

as desired. ]

By Theorem 2.24, we get the following important corollary:
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Theorem 2.26. Let G be a topological group which is locally compact and countable at
infinity, X a Hausdorff locally compact topological space and assume that G acts transitively
and continuously on X . Then, for any x € X, the map p: G/G, — X is a homeomorphism.

As an application of Theorem 2.26 and Proposition 2.21, we show that the Lorentz group
SOq(n, 1) is connected. Firstly, it is easy to check that SOg(n,1) and H; (1) satisfy the
assumptions of Theorem 2.26 because they are both manifolds, although this notion has not
been discussed yet (but will be in Chapter 3). Also, we saw at the end of Section 2.3 that
the action -: SOg(n,1) x H, (1) — H. (1) of SOg(n,1) on K, (1) is transitive, so that, as
topological spaces

SOq(n,1)/SO(n) = H,(1).

Now, we already showed that (1) is connected so, by Proposition 2.21, the connectivity
of SOg(n, 1) follows from the connectivity of SO(n) for n > 1. The connectivity of SO(n)
is a consequence of the surjectivity of the exponential map (for instance, see Gallier [60],
Chapter 14) but we can also give a quick proof using Proposition 2.21. Indeed, SO(n + 1)
and S™ are both manifolds and we saw in Section 2.2 that

SO(n + 1)/SO(n) 2 S™.

Now, S™ is connected for n > 1 and SO(1) = S* is connected. We finish the proof by
induction on n.

Corollary 2.27. The Lorentz group SOg(n, 1) is connected; it is the component of the
identity in O(n,1).

Readers who wish to learn more about topological groups may consult Sagle and Walde
[130] and Chevalley [34] for an introductory account, and Bourbaki [23], Weil [150] and
Pontryagin [123, 124], for a more comprehensive account (especially the last two references).
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Chapter 3

Manifolds

3.1 Charts and Manifolds

In Chapter 1 we defined the notion of a manifold embedded in some ambient space, RY.
In order to maximize the range of applications of the theory of manifolds it is necessary to
generalize the concept of a manifold to spaces that are not a priori embedded in some RY.
The basic idea is still that, whatever a manifold is, it is a topological space that can be
covered by a collection of open subsets, U,, where each U, is isomorphic to some “standard
model,” e.g., some open subset of Euclidean space, R". Of course, manifolds would be very
dull without functions defined on them and between them. This is a general fact learned from
experience: Geometry arises not just from spaces but from spaces and interesting classes of
functions between them. In particular, we still would like to “do calculus” on our manifold
and have good notions of curves, tangent vectors, differential forms, etc. The small drawback
with the more general approach is that the definition of a tangent vector is more abstract.
We can still define the notion of a curve on a manifold, but such a curve does not live in
any given R", so it it not possible to define tangent vectors in a simple-minded way using
derivatives. Instead, we have to resort to the notion of chart. This is not such a strange
idea. For example, a geography atlas gives a set of maps of various portions of the earth and
this provides a very good description of what the earth is, without actually imagining the
earth embedded in 3-space.

The material of this chapter borrows from many sources, including Warner [148], Berger
and Gostiaux [17], O’Neill [120], Do Carmo [51, 50], Gallot, Hulin and Lafontaine [61],
Lang [96], Schwartz [136], Hirsch [77], Sharpe [140], Guillemin and Pollack [70], Lafontaine
93], Dubrovin, Fomenko and Novikov [53] and Boothby [18]. A nice (not very technical)
exposition is given in Morita [115] (Chapter 1). The recent book by Tu [146] is also highly
recommended for its clarity. Among the many texts on manifolds and differential geometry,
the book by Choquet-Bruhat, DeWitt-Morette and Dillard-Bleick [37] stands apart because
it is one of the clearest and most comprehensive (many proofs are omitted, but this can
be an advantage!) Being written for (theoretical) physicists, it contains more examples and
applications than most other sources.

117
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Given R"”, recall that the projection functions, pr;: R®™ — R, are defined by

pri(xy, ..., 1) =25 1 <i<n,.

For technical reasons (in particular, to ensure the existence of partitions of unity, a crucial
tool in manifold theory; see Sections 3.6 and 3.8) and to avoid “esoteric” manifolds that do
not arise in practice, from now on, all topological spaces under consideration will be assumed
to be Hausdorff and second-countable (which means that the topology has a countable basis).

The first step in generalizing the notion of a manifold is to define charts, a way to say
that locally, a manifold “looks like” an open subset of R".

Definition 3.1. Given a topological space, M, a chart (or local coordinate map) is a pair,
(U, @), where U is an open subset of M and ¢: U — € is a homeomorphism onto an open
subset, 2 = p(U), of R™# (for some n, > 1). For any p € M, a chart, (U, ¢), is a chart at p iff
p e U. If (U, ) is a chart, then the functions z; = pr; o ¢ are called local coordinates and for
every p € U, the tuple (x1(p),...,z,(p)) is the set of coordinates of p w.r.t. the chart. The
inverse, (2, p™1), of a chart is called a local parametrization. Given any two charts, (U;, ¢;)
and (Uj, p;), if U; NU; # 0, we have the transition maps, @ : ¢;(U;NU;) — o;(U; NU;) and
QO; QOJ(UZ N UJ) — QOZ(UZ N Uj), defined by

¢l =pjop;t and ¢ =00

i (A, 0)-1 13 J i
Clearly, % = (¢}) . Qbserve that the transition maps ¢; (resp. ¢}) are maps bet'vveen
open subsets of R™. This is good news! Indeed, the whole arsenal of calculus is available
for functions on R™, and we will be able to promote many of these results to manifolds by
imposing suitable conditions on transition functions.

As in Section 1.8, whatever our generalized notion of a manifold is, we would like to
define the notion of tangent space at a point of manifold, the notion of smooth function
between manifolds, and the notion of derivative of a function (at a point) between manifolds.
Unfortunately, even though our parametrizations ¢=': Q — U are homeomorphisms, since
U is a subset of a space M which is not assumed to be contained in RY (for any N ), the
derivative dgpt’ol does not make sense, unlike in the situation of Definition 1.11. Therefore,
some extra conditions on the charts must be imposed in order to recapture the fact that
for manifolds embedded in RY, the parametrizations are immersions. An invaluable hint is
provided by Lemma 1.22: we require the transition maps ¢! : ;(U; N U;) — ¢;(U; N U;) to
be sufficiently differentiable. This makes perfect sense since the @{ are functions between
open subsets of R™. It also turns out that these conditions on transition maps guarantee
that notions, such as tangent vectors, whose definition seems to depend on the choice of a
chart, are in fact independent of the choice of charts. The above motivations suggest the
following requirements on charts.

Definition 3.2. Given a topological space, M, given some integer n > 1 and given some k
such that k is either an integer k > 1 or k = oo, a C* n-atlas (or n-atlas of class C*), A, is
a family of charts, {(U;, ¢;)}, such that



3.1. CHARTS AND MANIFOLDS 119

(1) ¢;(U;) € R™ for all i;

(2) The U; cover M, i.e.,

M:UUZ,

(3) Whenever U; NU; # 0, the transition map ¢’ (and @) is a C*-diffeomorphism. When
k = 0o, the ¢! are smooth diffeomorphisms.

We must ensure that we have enough charts in order to carry out our program of gener-
alizing calculus on R™ to manifolds. For this, we must be able to add new charts whenever
necessary, provided that they are consistent with the previous charts in an existing atlas.
Technically, given a C* n-atlas, A, on M, for any other chart, (U, ), we say that (U, ) is
compatible with the atlas A iff every map ¢; 0ot and po ;' is C* (whenever U NU; # ().
Two atlases A and A" on M are compatible iff every chart of one is compatible with the
other atlas. This is equivalent to saying that the union of the two atlases is still an atlas.
It is immediately verified that compatibility induces an equivalence relation on C* n-atlases
on M. In fact, given an atlas, A, for M, the collection, A, of all charts compatible with A is
a maximal atlas in the equivalence class of charts compatible with A. Finally, we have our
generalized notion of a manifold.

Definition 3.3. Given some integer n > 1 and given some k such that £ is either an integer
k> 1 or k = oo, a Ck-manifold of dimension n consists of a topological space, M, together
with an equivalence class, A, of C* n-atlases, on M. Any atlas, A, in the equivalence class
A is called a differentiable structure of class C* (and dimension n) on M. We say that M
is modeled on R™. When k = co, we say that M is a smooth manifold.

Remark: It might have been better to use the terminology abstract manifold rather than
manifold, to emphasize the fact that the space M is not a priori a subspace of RY, for some

suitable N.

We can allow k = 0 in the above definitions. In this case, condition (3) in Definition 3.2
is void, since a C-diffeomorphism is just a homeomorphism, but gpg is always a homeomor-
phism. In this case, M is called a topological manifold of dimension n. We do not require a
manifold to be connected but we require all the components to have the same dimension, n.
Actually, on every connected component of M, it can be shown that the dimension, n,, of
the range of every chart is the same. This is quite easy to show if £ > 1 but for £ = 0, this
requires a deep theorem of Brouwer. (Brouwer’s Invariance of Domain Theorem states that
if U C R is an open set and if f: U — R™ is a continuous and injective map, then f(U)
is open in R”. Using Brouwer’s Theorem, we can show the following fact: If U C R™ and
V' C R™ are two open subsets and if f: U — V' is a homeomorphism between U and V', then
m = n. If m > n, then consider the injection, i: R" — R™, where i(x) = (z,0,,_,). Clearly,
i is injective and continuous, so i o f: U — (V') is injective and continuous and Brouwer’s
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Figure 3.1: A nodal cubic; not a manifold

Theorem implies that (V') is open in R™, which is a contradiction, as i(V) =V x {0,—n}
is not open in R™. If m < n, consider the homeomorphism f=': V — U.)

What happens if n = 07 In this case, every one-point subset of M is open, so every
subset of M is open, i.e., M is any (countable if we assume M to be second-countable) set
with the discrete topology!

Observe that since R™ is locally compact and locally connected, so is every manifold
(check this!).

In order to get a better grasp of the notion of manifold it is useful to consider examples
of non-manifolds. First, consider the curve in R? given by the zero locus of the equation

y? = 2% — 25,

namely, the set of points
My = {(s,y) € R | * =2 — 2%},

This curve showed in Figure 3.1 and called a nodal cubic is also defined as the parametric
curve

x = 1—1t

y = t(1—1t?).

We claim that M; is not even a topological manifold. The problem is that the nodal cubic
has a self-intersection at the origin. If M; was a topological manifold, then there would be
a connected open subset, U C M;, containing the origin, O = (0, 0), namely the intersection
of a small enough open disc centered at O with M, and a local chart, ¢: U — €2, where €2
is some connected open subset of R (that is, an open interval), since ¢ is a homeomorphism.
However, U—{O} consists of four disconnected components and 2—¢(O) of two disconnected
components, contradicting the fact that ¢ is a homeomorphism.

Let us now consider the curve in R? given by the zero locus of the equation
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Figure 3.2: A Cuspidal Cubic

namely, the set of points
My = {(z,y) € R* | y* = 2"},

This curve showed in Figure 3.2 and called a cuspidal cubic is also defined as the para-
metric curve
r = t

= 3.

Consider the map, ¢: My — R, given by

o(z,y) =y

Since x = y*/3 on M,, we see that ¢! is given by
p (1) = (1)

and clearly, ¢ is a homeomorphism, so M is a topological manifold. However, with the atlas
consisting of the single chart {¢: My — R}, the space M, is also a smooth manifold! Indeed,
as there is a single chart, condition (3) of Definition 3.2 holds vacuously.

This fact is somewhat unexpected because the cuspidal cubic is not smooth at the origin,
since the tangent vector of the parametric curve, c: ¢t — (¢2,¢3), at the origin is the zero
vector (the velocity vector at ¢, is ¢/(t) = (2t,3t?)). However, this apparent paradox has
to do with the fact that, as a parametric curve, M, is not immersed in R? since ¢ is not
injective (see Definition 3.24 (a)), whereas as an abstract manifold, with this single chart,
M is diffeomorphic to R.

Now, we also have the chart, ¥: My — R, given by
U(z,y) =y,

with =1 given by
¢71(U) = (u2/37u)'
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With the atlas consisting of the single chart {¢: My — R}, the space M; is also a smooth
manifold. Observe that

poH(u) =u'’?,

a map that is not differentiable at u = 0. Therefore, the atlas {¢: My — R, ¢: My — R}
is not C'' and thus, with respect to that atlas, M, is not a C'-manifold. This example also
shows that the atlases {¢: My — R} and {¢): My — R} are inequivalent.

The example of the cuspidal cubic reveals one of the subtleties of the definition of a C* (or
C*) manifold: whether a topological space is a C*-manifold or a smooth manifold depends
on the choice of atlas. As a consequence, if a space M happens to be a topological manifold
because it has an atlas consisting of a single chart, or more generally if it has an atlas whose
transition functions “avoid” singularities, then it is automatically a smooth manifold. In
particular, if f: U — R™ is any continuous function from some open subset, U, of R", to
R™. then the graph T'(f) C R™™ of f given by

L(f) ={(z, f(z)) eR™™ |z € U}

is a smooth manifold with respect to the atlas consisting of the single chart, ¢: I'(f) — U,
given by
p(r, f(z)) =,

with its inverse, ¢~': U — T'(f), given by

o (z) = (2, f(2)).

The notion of a submanifold using the concept of “adapted chart” (see Definition 3.23 in
Section 3.4) gives a more satisfactory treatment of C* (or smooth) submanifolds of R™.

It should also be noted that determining the number of inequivalent differentiable struc-
tures on a topological space is a very difficult problem, even for R”. In the case of R", it
turns out that any two smooth differentiable structures are diffeomorphic, except for n = 4.
For n = 4, it took some very hard and deep work to show that there are uncountably many
distinct diffeomorphism classes of differentiable structures. The case of the spheres S™ is
even more mysterious. It is known that there is a single diffeomorphism class for n = 1, 2, 3,
but for n = 4 the answer is unknown! For n = 15, there are 16,256 distinct classes; for
more about these issues, see Conlon [38] (Chapter 3). It is also known that every topolog-
ical manifold admits a smooth structure for n = 1,2,3. However, for n = 4, there exist
nonsmoothable manifolds; see Conlon [38] (Chapter 3).

In some cases, M does not come with a topology in an obvious (or natural) way and a
slight variation of Definition 3.2 is more convenient in such a situation:

Definition 3.4. Given a set, M, given some integer n > 1 and given some k such that & is
either an integer k > 1 or k = oo, a C* n-atlas (or n-atlas of class C*), A, is a family of
charts, {(U;, i)}, such that
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(1) Each U; is a subset of M and ¢;: U; — ¢;(U;) is a bijection onto an open subset,
i(U;) CR™, for all i;

(2) The U; cover M, i.e.,

3) Whenever U; NU; # 0, the sets o;(U; NU;) and ¢;(U; N U;) are open in R™ and the
7. : J J J
transition maps ¢! and @} are C*-diffeomorphisms.

Then, the notion of a chart being compatible with an atlas and of two atlases being
compatible is just as before and we get a new definition of a manifold, analogous to Definition
3.3. But, this time, we give M the topology in which the open sets are arbitrary unions of
domains of charts, U;, more precisely, the U;’s of the maximal atlas defining the differentiable
structure on M. It is not difficult to verify that the axioms of a topology are verified and
M is indeed a topological space with this topology. It can also be shown that when M is
equipped with the above topology, then the maps ¢;: U; — ¢;(U;) are homeomorphisms,
so M is a manifold according to Definition 3.3. We also require that under this topology,
M is Hausdorff and second-countable. A sufficient condition (in fact, also necessary!) for
being second-countable is that some atlas be countable. A sufficient condition of M to be
Hausdorff is that for all p,q € M with p # ¢, either p,q € U; for some U; or p € U; and
q € Uj for some disjoint U;, U;. Thus, we are back to the original notion of a manifold where
it is assumed that M is already a topological space.

One can also define the topology on M in terms of any of the atlases, A, defining M (not
only the maximal one) by requiring U C M to be open iff ¢;(UNU;) is open in R™, for every
chart, (U;, ¢;), in the atlas A. Then, one can prove that we obtain the same topology as the
topology induced by the maximal atlas. For details, see Berger and Gostiaux [17], Chapter
2.

If the underlying topological space of a manifold is compact, then M has some finite
atlas. Also, if A is some atlas for M and (U, ¢) is a chart in A, for any (nonempty) open
subset, V' C U, we get a chart, (V,¢ [ V), and it is obvious that this chart is compatible
with A. Thus, (V,¢ [ V) is also a chart for M. This observation shows that if U is any open
subset of a C*-manifold, M, then U is also a C*-manifold whose charts are the restrictions
of charts on M to U.

Interesting manifolds often occur as the result of a quotient construction. For example,
real projective spaces and Grassmannians are obtained this way. In this situation, the
natural topology on the quotient object is the quotient topology but, unfortunately, even if
the original space is Hausdorff, the quotient topology may not be. Therefore, it is useful to
have criteria that insure that a quotient topology is Hausdorff (or second-countable). We will
present two criteria. First, let us review the notion of quotient topology. For more details,
consult Munkres [116], Massey [104, 105], or Tu [146].
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Definition 3.5. Given any topological space, X, and any set, Y, for any surjective func-
tion, f: X — Y, we define the quotient topology on Y determined by f (also called the
identification topology on Y determined by f), by requiring a subset, V| of ¥ to be open if
f7YV) is an open set in X. Given an equivalence relation R on a topological space X, if
m: X — X/R is the projection sending every x € X to its equivalence class [z] in X/R, the
space X/R equipped with the quotient topology determined by  is called the quotient space
of X modulo R. Thus a set, V, of equivalence classes in X/R is open iff 771(V) is open in
X, which is equivalent to the fact that (Jj, ey [7] is open in X.

It is immediately verified that Definition 3.5 defines topologies and that f: X — Y and
m: X — X/R are continuous when Y and X/R are given these quotient topologies.

@ One should be careful that if X and Y are topological spaces and f: X — Y is a
continuous surjective map, Y does not necessarily have the quotient topology determined
by f. Indeed, it may not be true that a subset V of Y is open when f~(V) is open. However,
this will be true in two important cases.

Definition 3.6. A continuous map, f: X — Y, is an open map (or simply open) if f(U) is
open in Y whenever U is open in X, and similarly, f: X — Y is a closed map (or simply
closed) if f(F') is closed in Y whenever F is closed in X.

Then, Y has the quotient topology induced by the continuous surjective map f if either
f is open or f is closed. Indeed, if f is open, then assuming that f~(V) is open in X, we
have f(f~!(V)) =V open in Y. Now, since f~1(Y — B) = X — f~!(B), for any subset, B,
of Y, a subset, V, of Y is open in the quotient topology iff f~}(Y — V) is closed in X. From
this, we can deduce that if f is a closed map, then V is open in Y iff f~}(V) is open in X.

If -: G x X — X is an action of a group G on a topological space X and if for every
g € G, the map from X to itself given by x — ¢ - = is continuous, then it can be show that
the projection, 7: X — X/G, is an open map. Furthermore, if G is a finite group, then  is
a closed map.

Unfortunately, the Hausdorff separation property is not necessarily preserved under quo-
tient. Nevertheless, it is preserved in some special important cases.

Proposition 3.1. Let X and Y be topological spaces, let f: X — Y be a continuous surjec-
tive map, and assume that X is compact and that 'Y has the quotient topology determined by
f. Then'Y is Hausdorff iff f is a closed map.

Proof. If Y is Hausdorff, because X is compact and f is continuous, since every closed set
F in X is compact, f(F) is compact, and since Y is Hausdorff, f(F') is closed, and f is a
closed map.

For the converse, we use the fact that in a Hausdorff space, F, if A and B are compact
disjoint subsets of F/, then there exist two disjoint open sets U and V' such that A C U and
BCV.
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Since X is Hausdorff, every set, {a}, consisting of a single element, a € X, is closed,
and since f is a closed map, {f(a)} is also closed in Y. Since f is surjective, every set, {b},
consisting of a single element, b € Y, is closed. If by, by € Y and by # be, since {b;} and {by}
are closed in Y and f is continuous, the sets f~1(b;) and f~!(bs) are closed in X and thus
compact and by the fact stated above, there exists some disjoint open sets U; and U, such
that f~1(b;) C Uy and f~1(by) C Us. Since f is closed, the sets f(X — U;) and f(X — Uy)
are closed, and thus the sets

Vi = Y-f(X-U)
Vo = Y = f(X—Uh)

are open, and it is immediately verified that V; NV, = 0, by € V4, and by € V5. This proves
that Y is Hausdordl. O

Under the hypotheses of Proposition 3.1, it is easy to show that Y is Hausdorff iff the set

{(z1,72) € X X X | f(21) = f(2)}

is closed in X x X.

Another simple criterion uses continuous open maps. The following proposition is proved
in Massey [104] (Appendix A, Proposition 5.3).

Proposition 3.2. Let f: X — Y be a surjective continuous map between topological spaces.
If f is an open map then Y is Hausdorff iff the set

{(z1,22) € X X X | f(21) = f(22)}

18 closed in X x X.

Note that the hypothesis of Proposition 3.2 implies that Y has the quotient topology
determined by f.

A special case of Proposition 3.2 is discussed in Tu [146] (Section 7.5, Theorem 7.8).
Given a topological space, X, and an equivalence relation, R, on X, we say that R is open
if the projection map, 7: X — X/R, is an open map, where X/R is equipped with the
quotient topology. Then, if R is an open equivalence relation on X, the topological space
X/R is Hausdorff iff R is closed in X x X.

The following proposition, also from Tu [146] (Section 7.5, Theorem 7.9), yields a suffi-
cient condition for second-countability (the proof is really simple):

Proposition 3.3. If X is a topological space and R is an open equivalence relation on X,
then for any basis, {Ba}, for the topology of X, the family {m(By)} is a basis for the topology
of X/R, where m: X — X/R is the projection map. Consequently, if X is second-countable,
then so is X/R.
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We are now fully prepared to present a variety of examples.
Example 1. The sphere S™.

Using the stereographic projections (from the north pole and the south pole), we can
define two charts on S™ and show that S™ is a smooth manifold. Let on: S™ — {N} — R”
and og: S — {S} — R", where N = (0,---,0,1) € R"™ (the north pole) and S =
(0,---,0,—1) € R*™"! (the south pole) be the maps called respectively stereographic projec-
tion from the north pole and stereographic projection from the south pole given by

1 1

(x1,...,2,) and og(xy, ..., Tpy1) = ———— (21, ..., Tp).

ON(T1 s Tnt) = 14 Tpi1

1- Tn+1

The inverse stereographic projections are given by

1 n
0';]1(5617. .. ,xn) = W (23}1, e 72377” (Z([j?) — 1>
=1

i=1Ti
and
— 1 n
Usl($17gxn)zm<2fﬂl,72377—“—(23712)—'—1)
E i=1

Thus, if we let Uy = S™ — {N} and Ug = S™ — {S}, we see that Uy and Ug are two open
subsets covering S™, both homeomorphic to R™. Furthermore, it is easily checked that on
the overlap, Uy N Ug = S™ — {N, S}, the transition maps

0500;,1 = UNOJ§1

are given by
1
(ml,...,xn) — n—(ml,...,xn),
D i1 T
that is, the inversion of center O = (0,...,0) and power 1. Clearly, this map is smooth on
R™ — {0}, so we conclude that (Uy,on) and (Us,0g) form a smooth atlas for S™.

Example 2. The projective space RP".

To define an atlas on RP" it is convenient to view RIP" as the set of equivalence classes
of vectors in R"™ — {0} modulo the equivalence relation,

u~v iff v=>Au, forsome X\ #0¢&R.

Given any p = [21,...,2,41] € RP", we call (xy,...,2,41) the homogeneous coordinates
of p. It is customary to write (z1: -+ : x,41) instead of [z1,...,2,51]. (Actually, in most
books, the indexing starts with 0, i.e., homogeneous coordinates for RP" are written as
(xo: -+ : x,).) Now, RP" can also be viewed as the quotient of the sphere, S, under the
equivalence relation where any two antipodal points, x and —x, are identified. It is not hard
to show that the projection w: S™ — RP" is both open and closed. Since S™ is compact



3.1. CHARTS AND MANIFOLDS 127

and second-countable, we can apply our previous results to prove that under the quotient
topology, RPP" is Hausdorff, second-countable, and compact.

We define charts in the following way. For any ¢, with 1 <7 <n+1, let
Ul’ = {(%1: et iL‘n+1) ER]P” ‘ ZT; 7&0}

Observe that U; is well defined, because if (y1: -+ : ypy1) = (€11 -+ : Tpyq), then there is
some A # 0 so that y; = Az;, for j =1,...,n 4+ 1. We can define a homeomorphism, ¢;, of
U; onto R", as follows:

. . YS! Ti—1 Tit1 Tn+1
Soi(xl-"'-xn-i-l)_ DR EREE) ) P )

where the 7th component is omitted. Again, it is clear that this map is well defined since it
only involves ratios. We can also define the maps, v;, from R" to U; C RP", given by

Vi(wy, .y mn) = (T oy Loy oo xy),

where the 1 goes in the ith slot, for i = 1,...,n + 1. One easily checks that ¢; and 1); are
mutual inverses, so the ¢; are homeomorphisms. On the overlap, U; N U;, (where i # j), as
x; # 0, we have

1 A rip 1 x; Tj1 Tjqq T,
(SOJOSO/L )(xl,...,l’n) — _‘7.-., ] 7_‘,_A’..-7_A7_A,...7_A .
x; z; xyx TR T

(We assumed that i < j; the case j < i is similar.) This is clearly a smooth function from
©i(U; N U;) to ¢;(U; N U;). As the U; cover RP", we conclude that the (U;, ¢;) are n + 1
charts making a smooth atlas for RP". Intuitively, the space RP" is obtained by gluing the
open subsets U; on their overlaps. Even for n = 3, this is not easy to visualize!

Example 3. The Grassmannian G(k,n).

Recall that G(k,n) is the set of all k-dimensional linear subspaces of R", also called k-
planes. Every k-plane, W, is the linear span of k linearly independent vectors, uq, ..., ug, in
R™; furthermore, uq, ..., u; and vy,..., v, both span W iff there is an invertible k x k-matrix,
A = ()\;), such that

k
Uj :Z)\ijuu 1<) <k
i=1
Obviously, there is a bijection between the collection of k linearly independent vectors,
Uy,...,ug, in R™ and the collection of n X k matrices of rank k. Furthermore, two n X k
matrices A and B of rank k represent the same k-plane iff

B = AA, for some invertible k x k& matrix, A.

(Note the analogy with projective spaces where two vectors u, v represent the same point iff
v = Au for some invertible A € R.)
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The set of n x k matrices of rank % is a subset of R™**  in fact, an open subset. One can
show that the equivalence relation on n x k matrices of rank k given by

B = AA, for some invertible k£ x k matrix, A,

is open and that the graph of this equivalence relation is closed. For some help proving
these facts, see Problem 7.2 in Tu [146]. By Proposition 3.2, the Grassmannian G(k,n) is
Hausdorff and second-countable.

We can define the domain of charts (according to Definition 3.2) on G(k,n) as follows:
For every subset, S = {iy,...,i} of {1,...,n}, let Ug be the subset of n x k matrices, A,
of rank k& whose rows of index in S = {i,...,4;} form an invertible k£ x k matrix denoted
As. Observe that the k x k matrix consisting of the rows of the matrix AAg" whose index
belong to S is the identity matrix, . Therefore, we can define a map, ¢g: Ug — R=F)xk
where pg(A) is equal to the (n — k) x k& matrix obtained by deleting the rows of index in S
from AAG".

We need to check that this map is well defined, i.e., that it does not depend on the matrix,
A, representing W. Let us do this in the case where S = {1,...,k}, which is notationally
simpler. The general case can be reduced to this one using a suitable permutation.

If B= AA, with A invertible, if we write

Al Bl
A = B —=
(A2> and <B2) ’

as B = AA, we get By = A1\ and By = A5 A, from which we deduce that

Bl B_1: Ik _ Ik _ [k _ Al A_l
B2 ! BQBl_l AQAA_lAl_l AQAl_l Ag L

Therefore, our map is indeed well-defined. It is clearly injective and we can define its
inverse, 1g, as follows: Let mg be the permutation of {1,...,n} swaping {1,...,k} and S
and leaving every other element fixed (i.e., if S = {i1,..., 4}, then mg(j) = i; and 7ws(i;) = 7,
for j =1,...,k). If Pg is the permutation matrix associated with 7g, for any (n — k) x k
matrix, M, let

Vs(M) = Ps (fé)

The effect of 15 is to “insert into M” the rows of the identity matrix I; as the rows of index
from S. At this stage, we have charts that are bijections from subsets, Ug, of G(k,n) to
open subsets, namely, R®¥)>** Then, the reader can check that the transition map ¢p ogpgl
from ps(Us N Ur) to or(Us N Ur) is given by

M+ (C+ DM)(A+ BM)™,

A B
(C D):PTP57

where
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is the matrix of the permutation 77 o mg (this permutation “shuffles” S and 7'). This map
is smooth, as it is given by determinants, and so, the charts (Us, ¢s) form a smooth atlas
for G(k,n). Finally, one can check that the conditions of Definition 3.2 are satisfied, so the
atlas just defined makes G(k,n) into a topological space and a smooth manifold.

The Grassmannian G(k,n) is actually compact. To see this, observe that if W is any
k-plane, then using the Gram-Schmidt orthonormalization procedure, every basis B =
(b1, ...,bx) for W yields an orthonormal basis U = (uy,...,u;) and there is an invertible

matrix, A, such that
U = BA,

where the the columns of B are the b;s and the columns of U are the ujs. The matrices U
have orthonormal columns and are characterized by the equation

U'u = I,.

Consequently, the space of such matrices is closed an clearly bounded in R™** and thus,
compact. The Grassmannian G(k,n) is the quotient of this space under our usual equivalence
relation and G(k,n) is the image of a compact set under the projection map, which is clearly
continuous, so G(k,n) is compact.

Remark: The reader should have no difficulty proving that the collection of k-planes rep-
resented by matrices in Ug is precisely the set of k-planes, W, supplementary to the (n — k)-
plane spanned by the canonical basis vectors ej, ,...,¢e;, (i.e., span(WU{ej,,,,...,€;.}) =
R™, where S = {i1,...,4} and {jrs1,...,dn} =1{1,...,n} = 9).

Example 4. Product Manifolds.

Let M; and M, be two C*-manifolds of dimension n; and n,, respectively. The topological
space, My x M,, with the product topology (the opens of M; x M, are arbitrary unions of
sets of the form U x V| where U is open in M; and V is open in M;) can be given the
structure of a C*-manifold of dimension n; + ny by defining charts as follows: For any two
charts, (U;, ;) on M; and (V}, ;) on Ms, we declare that (U; x V},¢; X ;) is a chart on
My x My, where @; x ¢;: U; x V; — R™*"2 ig defined so that

@i X ¥i(p,q) = (wi(p),¥;(q)), forall (p,q) € Ui x Vj.

Example 5. Configuration Spaces.

Interesting classes of manifolds arise in motion planning for mobile robots. The goal
is to place several robots in motion, at the same time, in such a way that collisions are
avoided. To model such a system, we assume that the location of each robot is a point in
some topological space X; for instance the circle (i.e., S'), R?, or R3.

Definition 3.7. The configuration space of n distinct points on X denoted by Conf"(X), is

the space
Conf"(X) = (H X) — A,
i=1
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where

A = {(xl,...,xn) EHX|xi:xj for somei;«éj}.
i=1

The unlabeled configuation space UCont"(X), is defined as the quotient of Conf"(X) by the
equivalence relation defined such that two n-tuples are equivqglent iff one is a permutation of
the other. This space is given the quotient topology.

The set A, the pairwise diagonal, represents those configuations of n points in X which
experience a collision-this is the set of illegal configuations for the robots.

Configuration spaces of points on a manifold M are all (noncompact) manifolds of dimen-
sion n-dim(M). Tt turns out that the space Conf™(S') (n points on a circle) is homeomorphic
to (n—1)! distinct copies of ST x R"™!, while UConf"(S") is a connected space. It can also be
shown that Conf"(R?) (two points in the plane) is homeomorphic to R? x S*. Configuations
spaces and their applications to robotic motion planning have been investigated by Robert
Ghrist among others.

We define C*-maps between manifolds as follows:

Definition 3.8. Given any two C*-manifolds, M and N, of dimension m and n respectively,
a C*-map is a continuous function, h: M — N, satisfying the following property: For every
p € M, there is some chart, (U, ), at p and some chart, (V, ), at ¢ = h(p), with f(U) CV
and

Yohop i o(U) — (V)

a C*-function.

It is easily shown that Definition 3.8 does not depend on the choice of charts. In par-
ticular, if N = R, we obtain a C*-function on M. One checks immediately that a function,
f: M — R, is a C*-map iff for every p € M, there is some chart, (U, ¢), at p so that

foe™ip(U) —R

is a C*-function. If U is an open subset of M, the set of C*-functions on U is denoted by
C*(U). In particular, C¥(M) denotes the set of C*-functions on the manifold, M. Observe
that C*(U) is a ring.

On the other hand, if M is an open interval of R, say M =la,b[, then 7: |a,b] — N is
called a C*-curve in N. One checks immediately that a function, v: ]a,b[— N, is a C*-map
iff for every g € N, there is some chart, (V,4), at ¢ so that

Pory:]a,b[ — (V)
is a C*-function.

It is clear that the composition of C*-maps is a C*-map. A C*F-map, h: M — N,
between two manifolds is a C*-diffeomorphism iff h has an inverse, h™': N — M (i.e.,
h='oh =idy and hoh™! = idy), and both h and h=! are C*-maps (in particular, h and
h~! are homeomorphisms). Next, we define tangent vectors.
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3.2 Tangent Vectors, Tangent Spaces,
Cotangent Spaces

Let M be a C* manifold of dimension n, with k£ > 1. The purpose of this section is to define
the tangent space, T,,(M), at a point p of a manifold M (and its dual, the cotangent space,
T;(M)). We provide three definitions of the notion of a tangent vector to a manifold and
prove their equivalence. The first definition uses equivalence classes of curves on a manifold
and is the most intuitive. The second definition is based on the view that a tangent vector,
v, at p induces a differential operator on functions, f, defined locally near M; namely, the
map, f — v(f), is a linear form satisfying an additional property akin to the rule for taking
the derivative of a product. Such linear forms are called point-derivations. This second
definition is more intrinsic than the first but more abstract. However, for any point p on
the manifold M and for any chart whose domain contains p, there is a convenient basis of
the tangent space T,(M). The second definition is also the most convenient one to define
vector fields. A few technical complications arise when M is not a smooth manifold (when
k # o0) but these are easily overcome using “stationary germs.” As pointed out by Serre in
[137] (Chapter III, Section 8), the relationship between the first definition and the second
definition of the tangent space at p is best described by a nondegenerate pairing which shows
that 7,,(M) is the dual of the space of point-derivations at p that vanish on stationay germs.
The third definition makes heavy use of the charts and of the transition functions. It is also
quite intuitive and it is easy to see that that it is equivalent to the first definition. The third
definition is the most convenient one to define the manifold structure of the tangent bundle,
T(M) (see Section 3.3).

The most intuitive method to define tangent vectors is to use curves. Let p € M be any
point on M and let v: | —¢,e[— M be a C'-curve passing through p, that is, with v(0) = p.
Unfortunately, if M is not embedded in any R”, the derivative 7/(0) does not make sense.
However, for any chart, (U, ¢), at p, the map po~ is a C'-curve in R” and the tangent vector
v = (¢ o) (0) is well defined. The trouble is that different curves may yield the same v!

To remedy this problem, we define an equivalence relation on curves through p as follows:

Definition 3.9. Given a C* manifold, M, of dimension n, for any p € M, two C'-curves,
Y] —e, e[ = M and yo: | — €, €o] = M, through p (i.e., 71(0) = 12(0) = p) are equivalent
iff there is some chart, (U, ), at p so that

(o) (0) = (o 72)(0).

Now, the problem is that this definition seems to depend on the choice of the chart.
Fortunately, this is not the case. For, if (V) is another chart at p, as p belongs both to U
and V, we have U NV # 0, so the transition function n = 1) o ¢! is C* and, by the chain
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rule, we have

(Y om)'(0) = (nowom)(0)
"((p))((p om)'(0))

n
1 (0(p))((¢ 072)'(0))
10 o) (0)

(
= (¥ o72)'(0).

This leads us to the first definition of a tangent vector.

Definition 3.10. (Tangent Vectors, Version 1) Given any C*-manifold, M, of dimension n,
with k > 1, for any p € M, a tangent vector to M at p is any equivalence class of Cl-curves
through p on M, modulo the equivalence relation defined in Definition 3.9. The set of all
tangent vectors at p is denoted by T,,(M) (or T,M).

It is obvious that T,(M) is a vector space. If u,v € T,(M) are defined by the curves v,
and v;, then u + v is defined by the curve v, + 7, (we may assume by reparametrization
that v, and 7, have the same domain.) Similarly, if u € T,(M) is defined by a curve v and
A € R, then Au is defined by the curve \y. The reader should check that these definitions
do not depend on the choice of the curve in its equivalence class.

Observe that the map that sends a curve, v: | —€ e[— M, through p (with v(0) = p) to its
tangent vector, (¢ o) (0) € R" (for any chart (U, ¢), at p), induces a map, @: T,(M) — R™.
It is easy to check that @ is a linear bijection (by definition of the equivalence relation on

curves through p). This shows that 7),(M) is a vector space of dimension n = dimension of
M.

One should observe that unless M = R", in which case, for any p,q € R", the tangent
space T,(M) is naturally isomorphic to the tangent space T,(M) by the translation ¢ — p,
for an arbitrary manifold, there is no relationship between 7},(M) and T;,(M) when p # q.

One of the defects of the above definition of a tangent vector is that it has no clear
relation to the C*-differential structure of M. In particular, the definition does not seem to
have anything to do with the functions defined locally at p. There is another way to define
tangent vectors that reveals this connection more clearly. Moreover, such a definition is more
intrinsic, i.e., does not refer explicitly to charts. Our presentation of this second approach
is heavily inspired by Schwartz [136] (Chapter 3, Section 9) but also by Warner [148] and
Serre [137] (Chapter III, Sections 7 and 8.

As a first step, consider the following: Let (U, ) be a chart at p € M (where M is
a C*-manifold of dimension n, with & > 1) and let x; = pr; o ¢, the ith local coordinate
(1 <i < n). For any function, f, defined on U > p, set

3) Ifop™) .
f=—"F5— ) 1<i<n.
<3xi 0X; ©(p)
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(Here, (0g/0X;)|, denotes the partial derivative of a function g: R® — R with respect to
the ith coordinate, evaluated at y.)

We would expect that the function that maps f to the above value is a linear map on
the set of functions defined locally at p, but there is technical difficulty: The set of functions
defined locally at p is not a vector space! To see this, observe that if f is defined on an open
U > p and g is defined on a different open V' 3 p, then we do not know how to define f + g.
The problem is that we need to identify functions that agree on a smaller open subset. This
leads to the notion of germs.

Definition 3.11. Given any C*-manifold, M, of dimension n, with & > 1, for any p € M,
a locally defined function at p is a pair, (U, f), where U is an open subset of M containing p
and f is a function defined on U. Two locally defined functions, (U, f) and (V, g), at p are
equivalent iff there is some open subset, W C U NV, containing p so that

fIW=g[W.

The equivalence class of a locally defined function at p, denoted [f] or £, is called a germ at
.

One should check that the relation of Definition 3.11 is indeed an equivalence relation.
Of course, the value at p of all the functions, f, in any germ, f, is f(p). Thus, we set

f(p) = f(p), for any f € f.

For example, for every a € (—1, 1), the locally defined functions (R —{1},1/(1 —x)) and
((—1,1),>°>° ™) at a are equivalent.

One should also check that we can define addition of germs, multiplication of a germ by
a scalar and multiplication of germs, in the obvious way: If f = [f] and g = [g] are two
germs at p, and A € R, then

fI1+1gl = [f+d]
Ml = M
[fllg] = [fgl.

However, we have to check that these definitions make sense, that is, that they don’t depend
on the choice of representatives chosen in the equivalence classes [f] and [g]. Let us give
the details of this verification for the sum of two germs, [f] and [g]. For any two locally
defined functions, (f,U) and (g,V), at p, let f + g be the locally defined function at p
with domain U NV and such that (f + g)(z) = f(z) + g(z) for all x € UNV. We need
to check that for any locally defined functions (Uy, f1), (Us, f2), (Vi,91), and (V3 g2), at
p, if (U, f1) and (Us, fo) are equivalent and if (Vi,¢1) and (V3,ge) are equivalent, then
(U N Vi, f1 4+ g1) and (Uy N Vo, fo + g2) are equivalent. However, as (U, f1) and (Us, fo)
are equivalent, there is some Wy C Uy N U, so that f; [ Wi = fo | Wi and as (V4,¢1) and
(Va, go) are equivalent, there is some Wy C Vi NV; so that g1 [ Wa = go [ Wa. Then, observe
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that (fi +g1) [ (WiNWa) = (fa + g2) | (W1 N Ws), which means that [f; + ¢1] = [f2 + ¢2]-
Therefore, [f + g] does not depend on the representatives chosen in the equivalence classes
[f] and [g] and it makes sense to set

[f1+ 9] = [f + gl

We can proceed in a similar fashion to define A[f] and [f][g]. Therefore, the germs at p form
a ring.

The ring of germs of C*-functions at p is denoted (’)](\]f[?p. When k = oo, we usually drop
the superscript oo.

Remark: Most readers will most likely be puzzled by the notation (’) . In fact, it is
standard in algebraic geometry, but it is not as commonly used in dlfferentlal geometry. For
any open subset, U, of a manifold, M, the ring, C*(U), of C*-functions on U is also denoted

O(k (U) (certainly by people with an algebraic geometry bent') Then, it turns out that the

map U — (’) (U) is a sheaf, denoted O , and the ring O( » 1s the stalk of the sheaf (9
at p. Such rings are called local rings. Roughly speaking, all the “local” information about
M at p is contained in the local ring OMJ,. (This is to be taken with a grain of salt. In the

Ck-case where k < 0o, we also need the “stationary germs,” as we will see shortly.)

Now that we have a rigorous way of dealing with functions locally defined at p, observe

that the map
afEi p

yields the same value for all functions f in a germ f at p. Furthermore, the above map is
linear on O\ Mp More is true:

(1) For any two functions f, g locally defined at p, we have

(ai)p<fg> = /() (ai)pgw(p) (aa)f

(2) If (f oo™ 1) (e(p)) = 0, then ;
<8zci)pf =0

The first property says that v; is a point derivation. As to the second property, when
(f o ™Y (p(p)) =0, we say that f is stationary at p.

It is easy to check (using the chain rule) that being stationary at p does not depend on
the chart, (U, ), at p or on the function chosen in a germ, f. Therefore, the notion of a
stationary germ makes sense.
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Definition 3.12. We say that a germ f at p € M is a stationary germ iff (fop™1) (o(p)) =0
for some chart, (U, ), at p and some function, f, in the germ, f. The C*-stationary germs

form a subring of Og\?p (but not an ideal!) denoted S](\?p.

Remarkably, it turns out that the dual of the vector space, Og\?p / S](\’;?p, is isomorphic to
the tangent space, T),(M).

Let us refresh the reader’s memory and review quotient vector spaces. If F is a vector
space, the set of all linear forms f: £ — R on E is a vector space called the dual of E and
denoted by E*. If H C FE is any subspace of E, we define the equivalence relation ~ so that
for all u,v € F,

u~v iff u—veH.

Every equivalence class, [u], is equal to the subset wu + H = {u+ h | h € H}, called a coset,
and the set of equivalence classes, E//H, modulo ~ is a vector space under the operations

[u] + [v] = [u+ 7]
AMu] = [Mu].

The space E/H is called the quotient of E by H or for short, a quotient space.

Denote by L(E/H) the set of linear forms f: £ — R that vanish on H (this means
that for every f € L(E/H), we have f(h) = 0 for all h € H). We claim that there is an
isomorphism

L(E/H) = (E/H)
between L(E/H) and the dual of the quotient space F/H.

To see this, define the map, f s f from £(E/H) to (E/H)* as follows: For any
/e L(E/H), R
f([u]) = f(u), [u] € E/H.
This function is well-defined because it does not depend on the representative, u, chosen in
the equivalence class [u]. Indeed, if v ~ u, then v = u + h some h € H and so

f) = fluth) = f(u)+ f(h) = f(u),

since f(h) = 0 for all h € H. The formula f([u]) = f(u) makes it obvious that f is linear
since f is linear. The mapping f — f is injective. This is beause if f; = f5, then

Ailful) = Fa([u])

for all u € E, and because ﬁ([u]) = fi(u) and fg([u]) = fo(u), we get fiu) = fo(u) for all
u € F, that is, fi = fo. The mapping f +— f is surjective because given any linear form
v € (E/H)*, if we define f by
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~

for all w € E, then f is linear, vanishes on H and clearly, f = . Therefore, we have the
isomorphism,

L(E/H) = (E/H)",
as claimed.

Let us return to the space of linear forms on (’)E\?p that vanish on S](\Z)p (which is isomorphic
to (O](\]f[?p/S](\f[?p)*). First, we prove that this space has <i> e ( o ) as a basis.
P P

Ox1 Ozn

Proposition 3.4. Given any C*-manifold, M, of dimension n, with k > 1, for any p € M
and any chart (U, ) at p, the n functions, <3%1>p e <i>p, defined on O](\’f[?p by

Oxn
( 0 ) po o)

1< <
8:70,- 8XZ ! "

) — —

»(p)

are linear forms that vanish on S](\’;?p. Every linear form, L, on O](\];?p that vanishes on S](\Z)p
can be expressed in a unique way as

where \; € R. Therefore, the

(8) ) 1=1,...,n
axi p

form a basis of the vector space of linear forms on O](\?p that vanish on S](\Z)p.
Proof. The first part of the proposition is trivial, by definition of (f o ™) (¢(p)) and of
(%),

p

Next, assume that L is a linear form on (9](\]2}7 that vanishes on S](\?p. Consider the locally
defined function at p given by

o0 = 50) - (om0 (5 ) 1

i=1

Observe that the germ of g is stationary at p, since

0(0) = (705 )el) = (Fop™)pla) = oo 0)(a) (5 ) f




3.2. TANGENT VECTORS, TANGENT SPACES, COTANGENT SPACES 137

with X;(q) = (pri o ¢)(q). It follows that

Ogop ™| _ ofoe™)
0X, 0X;

»(p)

But then, as L vanishes on stationary germs, we get

L(f) = ZZ:;L(m o) (g;)pf,

as desired. We still have to prove linear independence. If

g 0
ZIAZ (a—xz)p - 0,

1=

then, if we apply this relation to the functions x; = pr; o v, as

0

we get A\, =0, fori=1,...,n. O

As the subspace of linear forms on (’)J(\lf[)p that vanish on Sj(\lj?p is isomorphic to the dual,

(O, /545 ofthe space 045,/ wo s hat. he

(3) , 1=1,...,n
8:171» p

also form a basis of ((’)E\Z?p / S](f[?p)*.

To define our second version of tangent vectors, we need to define point-derivations.

Definition 3.13. Given any C*-manifold, M, of dimension n, with & > 1, for any p € M,
- : T B oo (k)
a derwation at p in M or point-deriwation on Oy, is a linear form, v, on Oy, such that

v(fg) = v(f)g(p) + £(p)uv(g),
for all germs f, g € O](\]f[?p. The above is called the Leibniz property.
As expected, point-derivations vanish on constant functions.

Proposition 3.5. Every point-derivation, v, on (95\]2]3, vanishes on germs of constant func-
tions.
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Proof. If g is a germ of constant functions at p, then there is some A € R so that g = A (a
constant function with value A) for all g € g. Since v is linear,

v(g) = v(AL) = Mo(1).

where 1 is the germ of constant functions with value 1, so we just have to show that v(1) = 0.
However, because 1 =1 -1 and v is a point-derivation, we get

v(l) = v(1-1)

= v(1)1(p) + 1(p)u(1)
= v(1)1+ 1v(1) = 2v(1)
from which we conclude that v(1) = 0, as claimed. [

Recall that we observed earlier that the (%) are point-derivations at p. Therefore, we
‘/p
have

Proposition 3.6. Given any C*-manifold, M, of dimension n, with k > 1, for any p € M,
the linear forms on (’)E\]}?p that vanish on S](\Z)p are ezactly the point-deriwations on (9]\’2’) that

vanish on S](\?p.

Proof. By Proposition 3.4, the

(0) , 1=1,...,n
0@» p

form a basis of the linear forms on Oj(\fl?p that vanish on S](\j’)p. Since each (%) is a also a
tp
point-derivation at p, the result follows. O]

Remarks:

(1) If we let DY (M) denote the set of point-derivations on Og\?p, then Proposition 3.6

says that any linear form on Og’;?p that vanishes on S](\f?p belongs to D[(,k)(M ), SO we
have the inclusion

(0% /Si,)" € DV (M).

However, in general, when k£ # oo, a point-derivation on (95\4)17 does not necessarily

vanish on S](\?p. We will see in Proposition 3.11 that this is true for £ = oo.
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(2) In the case of smooth manifolds (k = co) some authors, including Morita [115] (Chapter
1, Definition 1.32) and O’Neil [120] (Chapter 1, Definition 9), define point-derivations
as linear derivations with domain C*° (M), the set of all smooth funtions on the entire
manifold, M. This definition is simpler in the sense that it does not require the
definition of the notion of germ but it is not local, because it is not obvious that if
v is a point-derivation at p, then v(f) = v(g) whenever f,g € C®(M) agree locally
at p. In fact, if two smooth locally defined functions agree near p it may not be
possible to extend both of them to the whole of M. However, it can proved that this
property is local because on smooth manifolds, “bump functions” exist (see Section
3.6, Proposition 3.30). Unfortunately, this argument breaks down for C*-manifolds
with k < oo and in this case the ring of germs at p can’t be avoided.

Here is now our second definition of a tangent vector.

Definition 3.14. (Tangent Vectors, Version 2) Given any C*-manifold, M, of dimension n,
with £ > 1, for any p € M, a tangent vector to M at p is any point-derivation on O](\Z?p that

vanishes on S(Mk?p, the subspace of stationary germs.

Let us consider the simple case where M = R. In this case, for every € R, the tangent
space, T,(R), is a one-dimensional vector space isomorphic to R and (%) is a basis
vector of T,(R). For every C*-function, f, locally defined at z, we have

0 dfy
(&), 7=, =7

Thus, (%)x is: compute the derivative of a function at z.

. d

We now prove the equivalence of the two definitions of a tangent vector.

Proposition 3.7. Let M be any C*-manifold of dimension n, with k > 1. For any p €
M, let u be any tangent vector (version 1) given by some equivalence class of C'-curves,

v: | —€,+€[— M, through p (i.e., p=~(0)). Then, the map L, defined on OJ(\?p by
Ly(£f) = (f27)'(0)

1 a point-derivation that vanishes on 8](\2). Furthermore, the map u — L, defined above is

an isomorphism between T,(M) and (O](\Z?p/S](\?p)*, the space of linear forms on O](\?p that
. k

vanish on 81(\4,)p-

Proof. (After L. Schwartz) Clearly, L, (f) does not depend on the representative, f, chosen

in the germ, f. If v and o are equivalent curves defining u, then (¢ o)’ (0) = (¢ 0 ~)'(0), so
we get

(foo)(0)=(foe ) (@)((po0)(0)=(for ) (eP)(voy)(0)=(fo)(0),
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which shows that L,(f) does not depend on the curve, v, defining u. If f is a stationary
germ, then pick any chart, (U, ¢), at p and let ¢ = ¢ o y. We have

Lu(£) = (f09)'(0) = ((f o9 ) 0 (9 09))(0) = (f oo™ ) ((p))(¥'(0)) = O,

since (f o o™ 1)(p(p)) = 0, as f is a stationary germ. The definition of L, makes it clear
that L, is a point-derivation at p. If u # v are two distinct tangent vectors, then there exist
some curves v and o through p so that

(¢ 07)'(0) # (v o 0)(0).

Thus, there is some ¢, with 1 < i < n, so that if we let f = pr; o ¢, then

(f07)'(0) # (f 2 0)(0),
and so, L, # L,. This proves that the map u + L, is injective.

For surjectivity, recall that every linear map, L, on (’)](\I;?p that vanishes on SJ(\]j?p can be

uniquely expressed as
n 0
L= Aol =— 1 .
; (axi)p

Define the curve, v, on M through p by

Y(t) =@ () + t(AL, -, An)),

for ¢ in a small open interval containing 0. Then, we have

FOy(@®) = (f oo )(elp) + (A1, ..., \)),

and we get
: 1y ~ ., O(foy™
(For/(0) = (F oYl (hr.....d) =3 a 222D gy
: 0X;
i=1 ¢(p)
This proves that T,(M) and (O](\l;?p / S](\Z)p)* are isomorphic. O

There is a conceptually clearer way to define a canonical isomorphism between 7,,(M) and
the dual of (95\]2]3 / S](f[?p in terms of a nondegenerate pairing between 7,,(M) and O](\]f[?p / S](\?p (for
the notion of a pairing, see Definition 22.1 and Proposition 22.1). This pairing is described
by Serre in [137] (Chapter III, Section 8) for analytic manifolds and can be adapted to our
situation.

Define the map, w: T,(M) x O](\];?p — R, so that

w([], £) = (f 22)'(0),
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for all [y] € T,(M) and all f € (95@?,, (with f € f). It is easy to check that the above
expression does not depend on the representatives chosen in the equivalences classes [y] and
f and that w is bilinear. However, as defined, w is degenerate because w([v],f) = 0if f is a

stationary germ. Thus, we are led to consider the pairing with domain 7},(M) x (Ogﬁ?p / S](f[’)p)
given by

w([], [£]) = (f 2 7)'(0),
where [7] € T,,(M) and [f] € (’)5\]2])/8](\?1), which we also denote w: T,,(M) x ((’)](\]f[?p/S](\?p) — R.
Then, the following result holds:

Proposition 3.8. The map w: T,(M) X (Ogﬁ?p/S](f[,)p) — R defined so that
w(y], [f]) = (f 2 7)'(0),
for all [y] € T,(M) and all [f] € O](\]f[?p/S](\?p, is a nondegenerate pairing (with f € f).

*

Consequently, there is a canonical isomorphism between T,(M) and ((’)](\l;?p/sz(\?p) and a

canonical isomorphism between T (M) and Og\]j?p/S](\f[?p.

Proof. This is basically a replay of the proof of Proposition 3.7. First, assume that given some
[v] € T,,(M), we have w([y], [f]) = 0 for all [f] € Og\lf[?p/S](\?p. Pick a chart, (U, ), with p € U
and let ; = pr; o . Then, the x;’s are not stationary germs, since z; 0™t = priopop ! =
pr; and (pr;)’(0) = pr; (because pr; is a linear form). By hypothesis, w([v], [xi]) = 0 for
1 =1,...,n, which means that

(zi ©7)'(0) = (priope7)'(0) =0

for i =1,...,n, namely, pr;((¢ov)’(0)) =0 for i = 1,...,n; that is,

)
(0 7)'(0) = On,
proving that [y] = 0.
Next, assume that given some [f] € Og\?p / S](\’j?p, we have w([7], [f]) = 0 for all [y] € T,,(M).
Again, pick a chart, (U, ). For every z € R", we have the curve =, given by
(1) = 07 (e (p) +12)

for all ¢ in a small open interval containing 0. Then, by hypothesis,

w(ly:l [f]) = (f 07:)'(0) = (fo ™) ((p))(2) = 0

for all z € R™, which means that

(foe™)(e(p)) =0.
But then, f is a stationary germ and so, [f] = 0. Therefore, we proved that w is a nondegen-
erate pairing. Since T,,(M) and Og\?p / S](\Z)p have finite dimension, n, it follows by Proposition
22.1 that there is are canonical isomorphisms between 7,(M) and ((’)](\]f[?p / S](\?p)* and between
. k k
T:(M) and OF) /ST O
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In view of Proposition 3.8, we can identify 7,,(M) with ((’)](w?p/sj(w’)p) and T;(M) with
O(k) /S(k)
Mp/ = M,p*

Remark: Also recall that if F is a finite dimensional space, the map ig: F — E** defined
so that, for any v € F,

v v, where v(f)= f(v), forall fe E*

is a linear isomorphism.

Observe that we can view w(u,f) = w([y], [f]) as the result of computing the directional
derivative of the locally defined function f € f in the direction u (given by a curve 7).
Proposition 3.8 also suggests the following definition:

Definition 3.15. Given any C*-manifold, M, of dimension n, with k& > 1, for any p € M,
the tangent space at p, denoted T,(M) is the space of point-derivations on Og\];?p that vanish

on S](\f[?p. Thus, T,(M) can be identified with (O](\’;?p / S](\f[?p)*. The space O](\Z?p / S](f[,)p is called
the cotangent space at p; it is isomorphic to the dual, T (M), of T,(M). (For simplicity of
notation we also denote T),(M) by T,M and T(M) by T>M.)

Even though this is just a restatement of Proposition 3.4, we state the following propo-
sition because of its practical usefulness:

Proposition 3.9. Given any C*-manifold, M, of dimension n, with k > 1, for anyp € M
and any chart (U, @) at p, the n tangent vectors,

o 9
gr) "\ 0w, ) )

Observe that if x; = pr; o ¢, as

form a basis of T,M.

0

the images of z,...,x, in O](\Z?p/S](\;?p form the dual basis of the basis (%)p e <%>p
of T,,(M).

Given any C*-function, f, on M, we denote the image of f in T5(M) = O](\];?p/S](\f[?p
by df,. This is the differential of f at p. Using the isomorphism between O](\];?p / S](\f?p and
(O](\?p / S](\Z)p)** described above, df, corresponds to the linear map in 7y (M) defined by

dfy(v) = v(f),
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for all v € T,,(M). With this notation, we see that (dr1),, ..., (dr,), is a basis of T (M),
and this basis is dual to the basis (%)p ey (%)p of T,(M). For simplicity of notation,

we often omit the subscript p unless confusion arises.

Remark: Strictly speaking, a tangent vector, v € T,(M), is defined on the space of germs,

(95\%, at p. However, it is often convenient to define v on C*-functions, f € C¥(U), where U
is some open subset containing p. This is easy: Set

Given any chart, (U, ), at p, since v can be written in a unique way as

- )\Z a )
’ zzl ( Oz p

= 0
:;Ai (8_:m)pf

This shows that v(f) is the directional derivative of f in the direction v. The directional
derivative, v(f), is also denoted v[f].

we get

When M is a smooth manifold, things get a little simpler. Indeed, it turns out that in
this case, every point-derivation vanishes on stationary germs. To prove this, we recall the
following result from calculus (see Warner [148)):

Proposition 3.10. If g: R — R is a C*-function (k > 2) on a convex open, U, about
p € R, then for every q € U, we have

T ! 0%g
p) + (¢ — pi) + p)/ (1=1) 555+ dt.
; tlp Z ’ 0 0X;0X; 1—t¢

i,j=1 J1(1=t)p+tq
In particular, if g € C*°(U), then the integral as a function of q is C™.

Proposition 3.11. Let M be any C*-manifold of dimension n. For any p € M, any
point-derivation on (’)](\f; vanishes on S](\fg, the ring of stationary germs. Consequently,

T,(M) = DF (M).

Proof. Pick some chart, (U, ), at p, where U is convex (for instance, an open ball) and let
f be any stationary germ. If we apply Proposition 3.10 to f o ¢=! (for any f € f) and then
compose with ¢, we get

p>+;a<f;—;f_) wmat DS ) — ),

w(p ij=1
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near p, where h is C*°. Since f is a stationary germ, this yields

p)+ > (1 — i(p)(z; — 2;(p))h.

ij=1

If v is any point-derivation, we get

o(f) =v(fP) + ) [(xi = 2:(p))(p) (x5 — z;(p)) (p)v(h)

+ (@ = z(p))(p)o(x; — ;(p)h(p) + vlw: — 2i(p)) () — ivj(p))(p)h(p)] =0

Thus, v vanishes on stationary germs. O

Proposition 3.11 shows that in the case of a smooth manifold, in Definition 3.14, we
can omit the requirement that point-derivations vanish on statlonary germs, since th1s is
automatic. It is also possible to define 7),(M) just in terms of O Let my;, C (’) be
the ideal of germs that vanish at p. Then, we also have the ideal m?wp, which consists of all
finite sums of products of two elements in my,, and it turns out that 7;(M) is isomorphic
to myy,/my,, (see Warner [148] Lemma 1.16).

Actually, if we let m C O(k denote the ideal of C*-germs that vanish at p and
55\’;19 C Sy k) denote the 1deal of statlonary C*-germs that vanish at p, adapting Warner’s
argument, We can prove the following proposition:

Proposition 3.12. We have the inclusion, (ms\/[) )2 C 5( ) and the isomorphism

k k * A~ *
(O8N /Saty)" = (M, /513,)"
As a consequence, T,(M) = (mMp/s o) and Ty(M) = mg\lzp/ﬁg\?p
Proof. Given any two germs, f, g € mgmp, for any two locally defined functions, f € f and

g € g, since f(p) = g(p) =0, for any chart, (U, ), with p € U, by definition of the product
fg of two functions, for any ¢ € M near p, we have

(fgoe (g )=( f9) (e ()
flp™ ( )g(e~'(q))
( @) goe ),

SO
fgoo™t = (for N )gop™)

and by the product rule for derivatives, we get

(fgo 1)(0) = (foe ) (0)(gow )(0)+ (for ")(0)(goy ") (0)=0,
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because (g0 ¢™)(0) = g(¢7'(0)) = g(p) = 0 and (f 0 7')(0) = f(¢71(0)) = f(p) =
Therefore, fg is stationary at p and since fg(p) = 0, we have fg € 55\1217, which implies the

inclusion (mg\]}?p)Q C 55\?@.

Now, the key point is that any constant germ is stationary since the derivative of a
constant function is zero. Consequently, if v is a linear form on (’)1(\]21) vanishing on SJ(\f[?p, then

v(f) = v(f — f(p)),

for all f € O](\]f[?p, where f(p) denotes the germ of constant functions with value f(p). We use

*

this fact to define two functions between ((’)J(\Z?p / 8](\2))* and (mg\lf[?p /55\1217) which are mutual

inverses.

The map from ((’)5\121) /S](\?p)* (mg\l})p /55\'2)p)* is restriction to mg\]f[?p: every linear form v

on (9](\]21) vanishing on S](\’;?p yields a linear form on mg\’?’p that vanishes on 5%1210.

Conversely, for any linear form ¢ on mg\l}?p vanishing on 55\121), define the function v, so that

v(f) = ((f — £(p)),

for any germ f € (9 p Since / is linear, it is clear that v, is also linear. If f is stationary at
p, then f— f(p) is also stationary at p because the derivative of a constant is zero. Obviously,
f — f(p) vanishes at p. It follows that v, vanishes on stationary germs at p.

Using the fact that v(f) = v(f — f(p)), it is easy to check that the above maps between
(Og\?p /S](\?p)* and (mgwp /sgw)p)* are mutual inverses, establishing the desired isomorphism.
Because (Og\l;?p /S M7p) is finite-dimensional, we also have the isomorphism

(k) ~
/'S ) mM p/gM,p

which yields the isomorphims 7, (M) = (mMp/ﬁ o) and T7(M) = mMp/s O

When k = oo, Proposition 3.10 shows that every stationary germ that vanishes at p
belongs to m?w’p. Therefore, when k = oo, we have 5§;f; = m?mp and so, we obtain the result
quoted above (from Warner):

T (M) = Og;‘j; /sﬁfg 2 My, /m3, .

Remarks:

(1) The isomorphism
k k) \x ~v
(ONp/Sirp)” = (mi /507,

yields another proof that the linear forms in (Oj(\f[m / S](\Zp)* are point-derivations, using
the argument from Warner [148] (Lemma 1.16). It is enough to prove that every linear
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form of the form vy is a point-derivation. Indeed, if £ is a linear form on mg\?p vanishing

(k)
on s,/ , we have

v(fg) = ((fg — f(p)g(p))
=(((f - f(p))(g — g(p)) + (f — f(p))g(p) + f(p)(g — 8(P)))
=(((f - f(p))(g —g(p))) +Uf - f(p))glp) + f(p)l(g — g(p))
= v(£)g(p) + £(p)ve(g),

using the fact that ¢((f — f(p))(g — g(p))) = 0 since (mg\]/?p)z C 55\121) and ¢ vanishes on

55(21,, which proves that v, is a point-derivation.

(2) The ideal m M) is in fact the unique maximal ideal of (9 ThlS is because if f € (9
does not vanish at p, then it is an invertible element of (9 M ', and any ideal contammg

mgw)p and f would be equal to (’)Mp, which it absurd. Thus, (’)A]f[)p is a local ring (in
the sense of commutative algebra) called the local ring of germs of C*-functions at p.
These rings play a crucial role in algebraic geometry.

(3) Using the map f — f — f(p), it is easy to see that

oY *Rom® md SY 2Rosl)

Yet one more way of defining tangent vectors will make it a little easier to define tangent
bundles.

Definition 3.16. (Tangent Vectors, Version 3) Given any C*-manifold, M, of dimension n,
with k > 1, for any p € M, consider the triples, (U, ¢, u), where (U, ¢) is any chart at p and
w is any vector in R™. Say that two such triples (U, ¢, u) and (V,1,v) are equivalent iff

) (u

(o™ () =

A tangent vector to M at p is an equivalence class of triples, [(U, ¢, u)], for the above
equivalence relation.

The intuition behind Definition 3.16 is quite clear: The vector u is considered as a tangent
vector to R™ at ¢(p). If (U, ¢) is a chart on M at p, we can define a natural isomorphism,
Ov.pp: R = T,(M), between R™ and T,,(M), as follows: For any u € R”,

Ovopt U — (U, p,u)].

One immediately checks that the above map is indeed linear and a bijection.

The equivalence of this definition with the definition in terms of curves (Definition 3.10)
is easy to prove.
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Proposition 3.13. Let M be any C*-manifold of dimension n, with k > 1. For every
p € M, for every chart, (U,p), at p, if x is any tangent vector (version 1) given by some
equivalence class of Ct-curves, v: | — €, +¢[ — M, through p (i.e., p =~(0)), then the map

z = [(U, 0, (p07)(0))]

is an isomorphism between T,(M)-version 1 and T,(M )-version 3.

Proof. 1f o is another curve equivalent to 7, then (¢ o v)'(0) = (p o ¢)'(0), so the map is
well-defined. It is clearly injective. As for surjectivity, define the curve, v, on M through p
by
Y(t) = ((p) +tu).
Then, (¢ ov)(t) = ¢(p) + tu and
(©07)'(0) = u.
O

After having explored thorougly the notion of tangent vector, we show how a C*-map,
h: M — N, between C* manifolds, induces a linear map, dh,,: T,(M) — Ty, (N), for every
p € M. We find it convenient to use Version 2 of the definition of a tangent vector. So, let
u € T,(M) be a point-derivation on Og\?p that vanishes on S](\’;?p. We would like dh,(u) to
be a point-derivation on 01(\];,)}1(,3) that vanishes on S](\];)h(p). Now, for every germ, g € OE\I/'C,)h(p)’
if g € g is any locally defined function at h(p), it is clear that g o h is locally defined at p
and is C* and that if g, go € g then g o h and g, o h are equivalent. The germ of all locally
defined functions at p of the form g o h, with g € g, will be denoted g o h. Then, we set

dhy,(u)(g) = u(g o h).

Moreover, if g is a stationary germ at h(p), then for some chart, (V,v) on N at ¢ = h(p),
we have (go1¥™1) (¢(q)) = 0 and, for any chart, (U, ), at p on M, we get

(gohow™)(e(p) = (gov™ ) (W(@)(Yohop™)(o(p)) =0,

which means that go h is stationary at p. Therefore, dh,(u) € Ty (M). It is also clear that
dh, is a linear map. We summarize all this in the following definition:

Definition 3.17. Given any two C*-manifolds, M and N, of dimension m and n, respec-
tively, for any C*¥-map, h: M — N, and for every p € M, the differential of h at p or tangent
map, dhy: T,(M) — Ty (N), is the linear map defined so that

dhy(u)(g) = u(g o h),

for every w € T,,(M) and every germ, g € O](\];)h(p). The linear map dh,, is also denoted T),h
(and sometimes, h;, or Dp,h).
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The chain rule is easily generalized to manifolds.

Proposition 3.14. Given any two C*-maps f: M — N and g: N — P between smooth
C*-manifolds, for any p € M, we have

d(go f)p = dgf(p) o dfy.

In the special case where N = R, a C*-map between the manifolds M and R is just a
C*-function on M. It is interesting to see what df, is explicitly. Since N = R, germs (of
functions on R) at ty = f(p) are just germs of C*-functions, g: R — R, locally defined at .
Then, for any u € T,(M) and every germ g at t,

dfp(u)(g) = u(go f).

If we pick a chart, (U, ), on M at p, we know that the (8?51-) form a basis of T,,(M), with

p
1 <i < n. Therefore, it is enough to figure out what df,(u)(g) is when u = (ai ) . In this
p

(1)) 0-22fe

Using the chain rule, we find that

dfy ((ai)) (8) = (ai)p %

df,(u) = u(f) % )

This shows that we can identify df, with the linear form in T;;(M) defined by

case,

»(p)

to

Therefore, we have

df,(u) = u(f), ueT,M,
by identifying T3 R with R. This is consistent with our previous definition of df, as the image
of fin T;(M) = Og@?p/S](\’;?p (as T,(M) is isomorphic to (O](\’;?p/S](\’;?p)*).

Again, even though this is just a restatement of facts we already showed, we state the
following proposition because of its practical usefulness:

Proposition 3.15. Given any C*-manifold, M, of dimension n, with k > 1, for any p € M
and any chart (U, @) at p, the n linear maps,

(dxy)p, .., (dxy),,

form a basis of Ty M, where (dx;),, the differential of x; at p, is identified with the linear
form in TXM such that (dx;),(v) = v(x;), for every v € T,M (by identifying T\R with R).
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In preparation for the definition of the flow of a vector field (which will be needed to
define the exponential map in Lie group theory), we need to define the tangent vector to
a curve on a manifold. Given a C*-curve, ~: ]Ja,b[ — M, on a C*-manifold, M, for any
to €la, b], we would like to define the tangent vector to the curve 7 at ¢y as a tangent vector
to M at p =v(to). We do this as follows: Recall that £ ., Is a basis vector of Ty, (R) = R.

So, define the tangent vector to the curve v at ty, denoted () (or v/'(g), or ‘Z—Z(to)) by
d

;V(to) = d%ﬁo (E ) .

Sometime, it is necessary to define curves (in a manifold) whose domain is not an open
interval. A map, v: [a,b] — M, is a C*-curve in M if it is the restriction of some C*-curve,
v:la—e,b+€[— M, for some (small) € > 0. Note that for such a curve (if £ > 1) the tangent
vector, 4(t), is defined for all ¢ € [a,b]. A continuous curve, v: [a,b] — M, is piecewise C*

iff there a sequence, ag = a,ay,...,a, = b, so that the restriction, ;, of v to each [a;, a;41]
is a C*-curve, for i = 0,...,m — 1. This implies that 7/(a;+1) and v/, ,(a;+1) are defined for
1=20,...,m— 1, but there may be a jump in the tangent vector to v at a;, that is, we may

have vi(a;11) # Vi1 (ai1).

3.3 Tangent and Cotangent Bundles, Vector Fields, Lie
Derivative

Let M be a C*-manifold (with k& > 2). Roughly speaking, a vector field on M is the
assignment, p — X (p), of a tangent vector, X (p) € T,(M), to a point p € M. Generally,
we would like such assignments to have some smoothness properties when p varies in M,
for example, to be C!, for some [ related to k. Now, if the collection, T'(M), of all tangent
spaces, T,(M), was a C'-manifold, then it would be very easy to define what we mean by a
C'-vector field: We would simply require the map, X: M — T(M), to be C*.

If M is a C*manifold of dimension n, then we can indeed make T'(M) into a C*~1-
manifold of dimension 2n and we now sketch this construction.

We find it most convenient to use Version 3 of the definition of tangent vectors, i.e., as
equivalence classes of triples (U, ¢, x), where (U, ) is a chart and x € R™. First, we let
T(M) be the disjoint union of the tangent spaces T,,(M), for all p € M. Formally,

T(M) = {(p.v) | p € M,v € T,(M)}.
There is a natural projection,
m: T(M)— M, with =(p,v)=p.

We still have to give T'(M) a topology and to define a C* !-atlas. For every chart, (U, ),
of M (with U open in M) we define the function, @: 7= (U) — R?", by

P(p,v) = (¢(p), 05, V),
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where (p,v) € #71(U) and 0y, is the isomorphism between R™ and T,(M) described just
after Definition 3.16. It is obvious that @ is a bijection between 7= (U) and »(U) x R™, an
open subset of R?". We give T'(M) the weakest topology that makes all the ¢ continuous,
i.e., we take the collection of subsets of the form @~'(W), where W is any open subset of
©(U) x R™, as a basis of the topology of T'(M). One easily checks that T'(M) is Hausdorff
and second-countable in this topology. If (U, ¢) and (V1)) are two overlapping charts, then
the definition of the equivalence relation on triples (U, ¢, z) and (V, 1, y) immediately implies
that

Oty © 0o = Wo ™)

for all p € U NV, with z = ¢(p) = ¥(p), so the transition map,

Do p(UNV) x R* —s (U N V) x R
is given by
Yo (z) = (o (2), o )i(x),  (z2)€p(UNV) xR,
It is clear that ¢ o ! is a C* '-map. Therefore, T(M) is indeed a C*~'-manifold of

dimension 2n, called the tangent bundle.

Remark: Even if the manifold M is naturally embedded in RY (for some N > n = dim(M)),
it is not at all obvious how to view the tangent bundle, (M), as embedded in RY', for some
suitable N’'. Hence, we see that the definition of an abtract manifold is unavoidable.

A similar construction can be carried out for the cotangent bundle. In this case, we let
T*(M) be the disjoint union of the cotangent spaces Ty (M), that is,

(M) ={(p,w) | p € M,w € T;(M)}.

We also have a natural projection 7: T*(M) — M with 7(p,w) = p, and we can define
charts in several ways. One method used by Warner [148] goes as follows: For any chart,
(U, ), on M, we define the function,

¢: 71 (U) — R*", by

- o=(20)((2))

where (p,w) € 7~ 1(U) and the (%) are the basis of T},(M) associated with the chart (U, ¢).
“p

Again, one can make T*(M) into a C*~l-manifold of dimension 2n, called the cotangent
bundle. We leave the details as an exercise to the reader (Or, look at Berger and Gostiaux
[17]). Another method using Version 3 of the definition of tangent vectors is presented in
Section 7.2. For each chart (U, ¢) on M, we obtain a chart

o N U) — p(U) x R* C R*™
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on T*(M) given by
95*<p7 w) = (@(p)a ezf,go,w(w) (W))
for all (p,w) € 7~ 1(U), where

O pp = 1000, TH(M) — R™,

Here, 6y, ,: Tx(M) — (R")* is obtained by dualizing the map, 0y,,: R" — T,(M) and
t: (R")* — R™ is the isomorphism induced by the canonical basis (ey, ..., e,) of R™ and its
dual basis.

For simplicity of notation, we also use the notation T'M for T'(M) (resp. T*M for T*(M)).
Observe that for every chart, (U, ), on M, there is a bijection

o HU) — U x R,

given by
T (p,v) = (1, 077, (V))-

Clearly, pry o7y = m, on 7 }(U) as illustrated by the following commutative diagram:

N

Thus locally, that is, over U, the bundle T'(M) looks like the product manifold U x R"™. We
say that T'(M) is locally trivial (over U) and we call 7y a trivializing map. For any p € M,
the vector space 7~ 1(p) = {p} x T,(M) = T,(M) is called the fibre above p. Observe that
the restriction of 7y to 77 !(p) is a linear isomorphism between {p} x T,(M) = T,(M) and
{p} x R* =2 R", for any p € M. Furthermore, for any two overlapping charts (U, ¢) and

(V,4), there is a function gyy: U NV — GL(n,R) such that

(v o) (p @) = (p, guv (p)(x))

for all p € UNV and all x € R", with gyv(p) given by

guv(p) = (o),

Obviously, gyy(p) is a linear isomorphism of R™ for all p € U N V. The maps gyv(p) are
called the transition functions of the tangent bundle.

All these ingredients are part of being a vector bundle. For more on bundles, see Chapter
7, in particular, Section 7.2 on vector bundles where the construction of the bundles T'M
and 7™M is worked out in detail. See also the references in Chapter 7.

When M = R", observe that T(M) = M x R™ = R™ x R™, i.e., the bundle T(M) is
(globally) trivial.
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Given a C*-map, h: M — N, between two C*-manifolds, we can define the function,
dh: T(M) — T(N), (also denoted Th, or h,, or Dh) by setting

dh(u) = dhy(u), it weT,(M).

We leave the next proposition as an exercise to the reader (A proof can be found in
Berger and Gostiaux [17]).

Proposition 3.16. Given a C*-map, h: M — N, between two C*-manifolds M and N
(with k > 1), the map dh: T(M) — T(N) is a C*~* map.

We are now ready to define vector fields.

Definition 3.18. Let M be a C**! manifold, with k£ > 1. For any open subset, U of M, a
vector field on U is any section, X, of T(M) over U, i.e., any function, X : U — T (M), such
that 7o X =idy (i.e., X(p) € T,(M), for every p € U). We also say that X is a lifting of U
into T(M). We say that X is a C*-vector field on U iff X is a section over U and a C*-map.
The set of C*-vector fields over U is denoted I'®) (U, T(M)). Given a curve, v: [a,b] — M, a
vector field, X, along v is any section of T'(M) over v, i.e., a C*-function, X : [a,b] — T(M),
such that m o X = . We also say that X [ifts v into T(M).

The above definition gives a precise meaning to the idea that a C*-vector field on M is
an assignment, p — X (p), of a tangent vector, X (p) € T,(M), to a point, p € M, so that
X (p) varies in a C*-fashion in terms of p.

Clearly, I'®)(U, T(M)) is a real vector space. For short, the space I'®) (M, T'(M)) is also
denoted by I'®)(T'(M)) (or X*) (M) or even I'(T(M)) or X(M)).

Remark: We can also define a C?-vector field on U as a section, X, over U which is a
CJ-map, where 0 < j < k. Then, we have the vector space, ') (U, T'(M)), etc .

If M = R™ and U is an open subset of M, then T'(M) = R" x R™ and a section of T'(M)
over U is simply a function, X, such that

X(p) = (p,u), with wueR"

for all p € U. In other words, X is defined by a function, f: U — R" (namely, f(p) = u).
This corresponds to the “old” definition of a vector field in the more basic case where the
manifold, M, is just R"™.

For any vector field X € I'®)(U, T(M)) and for any p € U, we have X (p) = (p,v) for
some v € T,,(M), and it is convenient to denote the vector v by X, so that X (p) = (p, X,).
In fact, in most situations it is convenient to identify X (p) with X, € T,(M), and we will
do so from now on. This amounts to identifying the isomorphic vector spaces {p} x T,,(M)
and T),(M), which we always do. Let us illustrate the advantage of this convention with the
next definition.
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Given any C*-function, f € C*(U), and a vector field, X € T®)(U, T(M)), we define the
vector field, fX, by

(fX>p:f<p)Xpa pEU.

Obviously, fX € T®™(U, T(M)), which shows that T®) (U, T(M)) is also a C*(U)-module.
For any chart, (U, ), on M it is easy to check that the map

0
p— (&ri)p’ pel,

is a C*-vector field on U (with 1 < i < n). This vector field is denoted <%> or %.

Definition 3.19. Let M be a C**! manifold and let X be a C* vector field on M. If U
is any open subset of M and f is any function in C¥(U), then the Lie derivative of f with
respect to X, denoted X (f) or Lx f, is the function on U given by

X(f)p) = Xp(f) = Xp(f), peUl.

Observe that
X(f)p) = dfp(Xp)7

where df,, is identified with the linear form in 7;;(M) defined by
df,(v) = v(f), veT,M,

by identifying T}, R with R (see the discussion following Proposition 3.14). The Lie derivative,
Lx f, is also denoted X[f].

As a special case, when (U, @) is a chart on M, the vector field, %, just defined above
induces the function 5
p ( ) [, pel,
8% »
denoted >(f) or <8Z> f.
It is easy to check that X(f) € CF"1(U). As a consequence, every vector field X €
I®) (U, T(M)) induces a linear map,

Lx: CHU) — CFHU),
given by f— X(f). It is immediate to check that Lx has the Leibniz property, i.e.,

Lx(fg) = Lx(f)g+ fLx(g).

Linear maps with this property are called derivations. Thus, we see that every vector field
induces some kind of differential operator, namely, a linear derivation. Unfortunately, not
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every linear derivation of the above type arises from a vector field, although this turns out to
be true in the smooth case i.e., when k = oo (for a proof, see Gallot, Hulin and Lafontaine
[61] or Lafontaine [93]).

In the rest of this section, unless stated otherwise, we assume that k£ > 1. The following
easy proposition holds (c.f. Warner [148]):

Proposition 3.17. Let X be a vector field on the C**'-manifold, M, of dimension n. Then,
the following are equivalent:

(a) X is C*.
(b) If (U, ) is a chart on M and if fi,..., fn are the functions on U uniquely defined by

X1U=YfA
i=1 v

then each f; is a C*-map.
(c) Whenever U is open in M and f € C*(U), then X(f) € C*1(U).

Given any two C*-vector field, X, Y, on M, for any function, f € C*(M), we defined
above the function X (f) and Y (f). Thus, we can form X (Y (f)) (resp. Y (X(f))), which
are in C¥=2(M). Unfortunately, even in the smooth case, there is generally no vector field,
Z, such that

Z(f) = X(Y(f)), forall feCkM).
This is because X (Y (f)) (and Y (X(f))) involve second-order derivatives. However, if we
consider X (Y (f)) =Y (X(f)), then second-order derivatives cancel out and there is a unique
vector field inducing the above differential operator. Intuitively, XY — Y X measures the
“failure of X and Y to commute.”

Proposition 3.18. Given any C*T'-manifold, M, of dimension n, for any two C*-vector
fields, X,Y, on M, there is a unique C* ‘-vector field, [X,Y], such that

XLYN(f) = X(Y () = Y(X(f), forall fecC (M)

Proof. First we prove uniqueness. For this it is enough to prove that [X,Y] is uniquely
defined on C*(U), for any chart, (U, ). Over U, we know that

"0 "0
X:;Xia—xi and Y:;Yia—xi,

where X;,Y; € C*(U). Then, for any f € C*(M), we have

X)) = X (Z Vi <f>> = Y X )5 (N4 Y X5 ()
o 0 o 0 0 . 0?
YX() = ¥ (Z Xig (f)) = D Yige (60 g (D + 30 X (1)

=1
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However, as f € C¥(M), with k > 2, we have

Z X, ](%Jaxz Z X Jaxzé?xj (),

2,7=1
and we deduce that
X -y = 3 (0 0 - v o)) L ().
=1 8902 J 8% J 8%»
This proves that [X,Y] = XY — Y X is uniquely defined on U and that it is C*~1. Thus, if
[X, Y] exists, it is unique.

To prove existence, we use the above expression to define [X, Y]y, locally on U, for every
chart, (U,¢). On any overlap, U NV, by the uniqueness property that we just proved,
[X, Y]y and [X, Y]y must agree. But then, the [X, Y]y patch and yield a C*~!-vector field
defined on the whole of M. O

Definition 3.20. Given any C*+!-manifold, M, of dimension n, for any two C*-vector fields,
X,Y, on M, the Lie bracket, [X,Y], of X and Y, is the C*~1 vector field defined so that

X Y)(f) = X(Y(f) = Y(X(f), forall fec"'(M).

An an example, in R?, if X and Y are the two vector fields,

0 0 0
X = e + yaZ and Y = 8y
then p

We also have the following simple proposition whose proof is left as an exercise (or, see
Do Carmo [51]):

Proposition 3.19. Given any C**'-manifold, M, of dimension n, for any C*-vector fields,
X,Y,Z, on M, for all f,g € CK(M), we have:

(a) [[X,Y],Z)+[[Y,Z],X]|+[[Z, X],Y]=0 (Jacobi identity).
(b) [X,X]=0.
(¢) [fX,gY] = folX, Y]+ fX(9)Y = gY(f)X.

(d) [—,—] is bilinear.
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As a consequence, for smooth manifolds (k = oo), the space of vector fields, > (T'(M)),
is a vector space equipped with a bilinear operation, [—, —|, that satisfies the Jacobi identity.
This makes I'™)(T(M)) a Lie algebra.

Let ¢: M — N be a diffeomorphism between two manifolds. Then, vector fields can be
transported from N to M and conversely.

Definition 3.21. Let ¢: M — N be a diffeomorphism between two C**! manifolds. For
every C* vector field, Y, on N, the pull-back of Y along ¢ is the vector field, ©*Y, on M,
given by

(SO*Y)p = dSO;(lp) (Yw(p))a pE M.

For every C* vector field, X, on M, the push-forward of X along ¢ is the vector field, ¢, X,
on N, given by

X = (¢7')X,
that is, for every p € M,
(s X)p(p) = dipp(Xp),

or equivalently,

(‘P*X)q = d(:pcp—l(q)(ti_l(q))a q€ N.

It is not hard to check that

Lo.xf=Lx(fop)op™,
for any function f € C*(N).

One more notion will be needed when we deal with Lie algebras.

Definition 3.22. Let ¢: M — N be a C*¥*l-map of manifolds. If X is a C* vector field on
M and Y is a C* vector field on N, we say that X and Y are @-related iff

dpoX =Y op.

The basic result about ¢-related vector fields is:
Proposition 3.20. Let o: M — N be a C**-map of manifolds, let X andY be C* vector
fields on M and let X,,Y; be C* wector fields on N. If X is p-related to X, and Y is
p-related to Yy, then [ X, Y] is p-related to [ X1, Y1].

Proof. Basically, one needs to unwind the definitions, see Warner [148], Chapter 1. ]
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3.4 Submanifolds, Immersions, Embeddings

Although the notion of submanifold is intuitively rather clear, technically, it is a bit tricky.
In fact, the reader may have noticed that many different definitions appear in books and
that it is not obvious at first glance that these definitions are equivalent. What is important
is that a submanifold, N, of a given manifold, M, not only have the topology induced M
but also that the charts of N be somewhow induced by those of M. (Recall that if X is a
topological space and Y is a subset of X, then the subspace topology on'Y or topology induced
by X on Y has for its open sets all subsets of the form Y N U, where U is an arbitary open
subset of X.).

Given m,n, with 0 < m < n, we can view R™ as a subspace of R" using the inclusion
R™ =2 R™x {(0,...,0)} = R™" xR"™ =R",  (z1,...,2m) — (1,...,2Zm,0,...,0).
—— N——
n—m n—m

Definition 3.23. Given a C*-manifold, M, of dimension n, a subset, N, of M is an m-
dimensional submanifold of M (where 0 < m < n) iff for every point, p € N, there is a
chart, (U, ¢), of M, with p € U, so that

e(UNN) =oU)N[R™ x {0n-m}).
(We write 0,,_,,, = (0,...,0).)

The subset, U N N, of Definition 3.23 is sometimes called a slice of (U, ) and we say
that (U, ¢) is adapted to N (See O’Neill [120] or Warner [148]).

@ Other authors, including Warner [148], use the term submanifold in a broader sense than
us and they use the word embedded submanifold for what is defined in Definition 3.23.

The following proposition has an almost trivial proof but it justifies the use of the word
submanifold:

Proposition 3.21. Given a C*-manifold, M, of dimension n, for any submanifold, N, of
M of dimension m < n, the family of pairs (U N N,@ | UNN), where (U, ) ranges over
the charts over any atlas for M, is an atlas for N, where N 1is given the subspace topology.
Therefore, N inherits the structure of a C*-manifold.

In fact, every chart on N arises from a chart on M in the following precise sense:

Proposition 3.22. Given a C*-manifold, M, of dimension n and a submanifold, N, of M
of dimension m < n, for any p € N and any chart, (W,n), of N at p, there is some chart,
(U, ), of M at p so that

p(UNN)=pU)N(R" x{0,-n}) and @ [UNN=n[UNN,
where pe UNN CW.
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Proof. See Berger and Gostiaux [17] (Chapter 2). O]

It is also useful to define more general kinds of “submanifolds.”
Definition 3.24. Let ¢: N — M be a C*-map of manifolds.
(a) The map ¢ is an immersion of N into M iff dip, is injective for all p € N.
(b) The set p(N) is an immersed submanifold of M iff ¢ is an injective immersion.

(c) The map ¢ is an embedding of N into M iff ¢ is an injective immersion such that the
induced map, N — ¢(N), is a homeomorphism, where ¢(N) is given the subspace
topology (equivalently, ¢ is an open map from N into ¢(N) with the subspace topol-
ogy). We say that ¢(IN) (with the subspace topology) is an embedded submanifold of
M.

(d) The map ¢ is a submersion of N into M iff dp, is surjective for all p € N.

@ Again, we warn our readers that certain authors (such as Warner [148]) call ¢(N), in
(b), a submanifold of M! We prefer the terminology immersed submanifold.

The notion of immersed submanifold arises naturally in the framework of Lie groups.
Indeed, the fundamental correspondence between Lie groups and Lie algebras involves Lie
subgroups that are not necessarily closed. But, as we will see later, subgroups of Lie groups
that are also submanifolds are always closed. It is thus necessary to have a more inclusive
notion of submanifold for Lie groups and the concept of immersed submanifold is just what’s
needed.

Immersions of R into R? are parametric curves and immersions of R? into R? are para-
metric surfaces. These have been extensively studied, for example, see DoCarmo [50], Berger
and Gostiaux [17] or Gallier [60].

Immersions (i.e., subsets of the form ¢(N), where N is an immersion) are generally neither
injective immersions (i.e., subsets of the form ¢(/N), where N is an injective immersion) nor
embeddings (or submanifolds). For example, immersions can have self-intersections, as the
plane curve (nodal cubic): z = t?—1;y = t(t*—1). Note that the cuspidal cubic, t — (t%,3),
is an injective map, but it is not an immersion since its derivative at the origin is zero.

Injective immersions are generally not embeddings (or submanifolds) because ¢(N) may
not be homeomorphic to N. An example is given by the Lemniscate of Bernoulli, an injective
immersion of R into R:

t(1 4 %)
r = —,
144
t(1 — ¢
y_( )

1+¢*
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Another interesting example is the immersion of R into the 2-torus, 72 = S* x St C R4,
given by
t — (cost,sint, cos ct,sin ct),

where ¢ € R. One can show that the image of R under this immersion is closed in 72 iff
c is rational. Moreover, the image of this immersion is dense in 72 but not closed iff ¢ is
irrational. The above example can be adapted to the torus in R®*: One can show that the
immersion given by

t— ((2+ cost) cos(V2t), (2 + cost) sin(v/2t),sint),
is dense but not closed in the torus (in R?) given by
(s,t) — ((2+4 coss)cost, (2 + cos s)sint, sin s),
where s,t € R.
There is, however, a close relationship between submanifolds and embeddings.

Proposition 3.23. If N is a submanifold of M, then the inclusion map, 7: N — M, 1is
an embedding. Conversely, if ¢: N — M is an embedding, then o(N) with the subspace
topology is a submanifold of M and ¢ is a diffeomorphism between N and p(N).

Proof. See O’Neill [120] (Chapter 1) or Berger and Gostiaux [17] (Chapter 2). O

In summary, embedded submanifolds and (our) submanifolds coincide. Some authors
refer to spaces of the form ¢(N), where ¢ is an injective immersion, as immersed submanifolds
and we have adopted this terminology. However, in general, an immersed submanifold is not
a submanifold. One case where this holds is when N is compact, since then, a bijective
continuous map is a homeomorphism. For yet a notion of submanifold intermediate between
immersed submanifolds and (our) submanifolds, see Sharpe [140] (Chapter 1).

Our next goal is to review and promote to manifolds some standard results about ordinary
differential equations.

3.5 Integral Curves, Flow of a Vector Field,
One-Parameter Groups of Diffeomorphisms

We begin with integral curves and (local) flows of vector fields on a manifold.

Definition 3.25. Let X be a C*~! vector field on a C*-manifold, M, (k > 2) and let py be a
point on M. An integral curve (or trajectory) for X with initial condition py is a C*~1-curve
~v: I — M, so that

y(t) = X’y(t)l forallt € I, and ~(0) = po,

where I =la,b] C R is an open interval containing 0.

1Recall our convention: if X is a vector field on M, then for every point ¢ € M we identify X (¢) = (¢, X,)
and X,.
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What definition 3.25 says is that an integral curve, v, with initial condition p, is a curve
on the manifold M passing through py and such that, for every point p = (¢) on this curve,
the tangent vector to this curve at p, i.e., ¥(t), coincides with the value, X, of the vector
field X at p.

Given a vector field, X, as above, and a point py € M, is there an integral curve through
po? Is such a curve unique? If so, how large is the open interval I7 We provide some answers
to the above questions below.

Definition 3.26. Let X be a C*~1 vector field on a C*-manifold, M, (k > 2) and let py be
a point on M. A local flow for X at py is a map,

p: JxU—= M,

where J C R is an open interval containing 0 and U is an open subset of M containing py,
so that for every p € U, the curve t — ¢(t, p) is an integral curve of X with initial condition

p.

Thus, a local low for X is a family of integral curves for all points in some small open set
around pg such that these curves all have the same domain, J, independently of the initial
condition, p € U.

The following theorem is the main existence theorem of local flows. This is a promoted
version of a similar theorem in the classical theory of ODE’s in the case where M is an open
subset of R™. For a full account of this theory, see Lang [96] or Berger and Gostiaux [17].

Theorem 3.24. (Ezistence of a local flow) Let X be a C*~! wvector field on a C*-manifold,
M, (k> 2) and let py be a point on M. There is an open interval J C R containing 0 and
an open subset U C M containing pg, so that there is a unique local flow ¢: J x U — M
for X at pg. What this means is that if p1: J x U — M and py: J x U — M are both local
flows with domain J x U, then @1 = @y. Furthermore, ¢ is C*71.

Theorem 3.24 holds under more general hypotheses, namely, when the vector field satisfies
some Lipschitz condition, see Lang [96] or Berger and Gostiaux [17].

Now, we know that for any initial condition, pg, there is some integral curve through py.
However, there could be two (or more) integral curves v;: Iy — M and ~: Iy, — M with
initial condition py. This leads to the natural question: How do ~; and v, differ on I; N 15?7
The next proposition shows they don’t!

Proposition 3.25. Let X be a C*~1 vector field on a C*-manifold, M, (k > 2) and let py be
a point on M. If yy: Iy = M and v5: Iy — M are any two integral curves both with initial
condition pg, then v = v on I N I5.
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Proof. Let Q ={t € 1NIy | 71(t) = 12(t)}. Since v1(0) = 72(0) = po, the set @ is nonempty.
If we show that ) is both closed and open in I; N Iy, as I; N I is connected since it is an
open interval of R, we will be able to conclude that Q) = I; N I.

Since by definition, a manifold is Hausdorff, it is a standard fact in topology that the
diagonal, A = {(p,p) | p € M} C M x M, is closed, and since

Q=1LNLN(7) (4)

and v, and 7, are continuous, we see that () is closed in I1 N I5.

Pick any u € @ and consider the curves 8; and Sy given by

Bi(t) =t +u) and Bo(t) = 2(t +u),

where t € I} — u in the first case and ¢t € I — w in the second. (Here, if I =]a,b[, we have
I —u=la—ub—ul[.) Observe that

Bit) =t +u) = X(n(t+u) = X(5i(t)
and similarly, B2(t) = X (B2(t)). We also have

B1(0) = 71 (u) = 12(u) = £2(0) = ¢,

since u € @ (where vy(u) = y2(w)). Thus, 51: (I1 —u) — M and By: (I —u) — M are
two integral curves with the same initial condition, ¢g. By Theorem 3.24, the uniqueness of
local flow implies that there is some open interval, I C I; N I, — u, such that 3, = 3 on I.

Consequently, v, and 2 agree on I + u, an open subset of (), proving that @) is indeed open
in I1 N Is. O

Proposition 3.25 implies the important fact that there is a unique mazimal integral curve
with initial condition p. Indeed, if {v;: I; = M};ck is the family of all integral curves with
initial condition p (for some big index set, K), if we let I(p) = ;o I, we can define a
curve, v,: I(p) = M, so that

'Yp(t) = 'Yj(t)7 it telj.

Since v; and +; agree on [; N I; for all j,I € K, the curve v, is indeed well defined and it is
clearly an integral curve with initial condition p with the largest possible domain (the open
interval, I(p)). The curve 7, is called the mazimal integral curve with initial condition p
and it is also denoted by 7(p,t). Note that Proposition 3.25 implies that any two distinct
integral curves are disjoint, i.e., do not intersect each other.

Consider the vector field in R? given by

0 0

X =y tal,
yax+x8y
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If we write v(t) = (z(t),y(t)), the differential equation, 4(t) = X (y(t)), is expressed by

(1) = ()
Y0 = o),

)= 0)C)

or, in matrix form,

If we write X = (i) and A = ((1) _01>, then the above equation is written as
X' = AX.
Now, as
A A? A"
=T+t P
1! 2! n!
we get
d, 4 2 A3, A" .
— = A S ¢ t" ---:AtA
A TR TIL A I s A <

so we see that e'p is a solution of the ODE X’ = AX with initial condition X = p, and
by uniqueness, X = ep is the solution of our ODE starting at X = p. Thus, our integral
curve, 7,, through p = (;8) is the circle given by

x\  [cost —sint) (Zo
y) \sint cost vo )
Observe that I(p) = R, for every p € R%

The following interesting question now arises: Given any py € M, if v,,: I(po) — M is the
maximal integral curve with initial condition py and, for any ¢, € I(po), if p1 = v, (t1) € M,
then there is a maximal integral curve, v, : I(p1) — M, with initial condition p;; what is
the relationship between ~,, and 7,,, if any? The answer is given by

Proposition 3.26. Let X be a C*~1 vector field on a C*-manifold, M, (k > 2) and let py
be a point on M. If v,,: I(po) = M is the mazimal integral curve with initial condition py,
for any t; € I(po), if pr = Ypo(t1) € M and vy, : I(p1) — M is the mazimal integral curve
with nitial condition py, then

I(p1) = I(po) —t1 and (1) = Yy, (01)(t) = Vo (t +11),  for allt € I(po) — t1.

Proof. Let ~(t) be the curve given by

Y(t) = Ypo (t +t1), forall t € I(pg) — t1.
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Clearly, ~ is defined on I(pg) — t; and

V() = o (E + 1) = X (9 (4 11)) = X(7(2))

and v(0) = 7,,(t1) = p1. Thus, v is an integal curve defined on I(py) — t; with initial
condition p;. If v was defined on an interval, I D I(py) — ¢; with I # I(po) — t1, then Yro
would be defined on I 4 t; D I(po), an interval strictly bigger than I(py), contradicting the
maximality of I(pg). Therefore, I(py) —t1 = I(p1)- ]

Proposition 3.26 says that the traces ~,,({(po)) and 7,,(I(p1)) in M of the maximal
integral curves ,, and 7, are identical; they only differ by a simple reparametrization

It is useful to restate Proposition 3.26 by changing point of view. So far, we have been
focusing on integral curves, i.e., given any pg € M, we let ¢ vary in I(py) and get an integral
curve, 7,,, with domain I(pg). Instead of holding p, € M fixed, we can hold ¢ € R fixed and
consider the set

Dy(X)={peM|telp)}

i.e., the set of points such that it is possible to “travel for ¢ units of time from p” along
the maximal integral curve, ~,, with initial condition p (It is possible that D;(X) = (). By
definition, if D;(X) # (), the point ~,(t) is well defined, and so, we obtain a map,

OX: Dy(X) — M, with domain D;(X), given by

O (p) = 7 (0).

The above suggests the following definition:

Definition 3.27. Let X be a C*~! vector field on a C*-manifold, M, (k > 2). For any
t € R, let

DiX)={pe M|tel(p)} and D(X)={(t,p) R x M|teI(p)}
and let ®*: D(X) — M be the map given by
¥ (t,p) = (1)

The map ®* is called the (global) flow of X and D(X) is called its domain of definition.
For any ¢ € R such that D;(X) # (), the map, p € Dy(X) — ®*(¢,p) = 7,(t), is denoted by

O (ie., DX (p) = PX(t,p) = 7,(1)).

Observe that
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Also, using the ®;¥ notation, the property of Proposition 3.26 reads
DX o ®) =X, (%)
whenever both sides of the equation make sense. Indeed, the above says

X (2 (p)) = DL (1(1) = 1 (s) = (s +1) = DL, (p).

Using the above property, we can easily show that the ® are invertible. In fact, the
inverse of ®;¥ is ®¥,. First, note that

Do(X)=M and & =id,
because, by definition, ® (p) = ~,(0) = p, for every p € M. Then, (x) implies that

PXodX, =), =df =id,

which shows that ®;*: Dy(X) — D_(X) and ®%,: D_;(X) — Dy(X) are inverse of each
other. Moreover, each ® is a C*~1-diffeomorphism. We summarize in the following propo-
sition some additional properties of the domains D(X), D;(X) and the maps ®;X (for a proof,
see Lang [96] or Warner [148]):

Theorem 3.27. Let X be a C*=* vector field on a C*-manifold, M, (k > 2). The following
properties hold:

(a) For everyt € R, if Dy(X) # 0, then Dy(X) is open (this is trivially true if Dy(X) = 0).

(b) The domain, D(X), of the flow, ®X, is open and the flow is a C*~! map,
OX: D(X) — M.

(c) Each ®F: Diy(X) — D_y(X) is a Ck~L-diffeomorphism with inverse ®~,.

(d) For all s,t € R, the domain of definition of ®X o ®X is contained but generally not
equal to Dy 4(X). However, dom(®X o ®;X) = D, +(X) if s and t have the same sign.
Moreover, on dom(®X o ®X), we have

X o pX — X
O o d =P .

Remarks:

(1) We may omit the superscript, X, and write ® instead of ®* if no confusion arises.

(2) The reason for using the terminology flow in referring to the map ®% can be clarified as
follows: For any ¢ such that D;(X) # 0, every integral curve, 7,, with initial condition
p € Dy(X), is defined on some open interval containing [0,¢], and we can picture these
curves as “flow lines” along which the points p flow (travel) for a time interval ¢. Then,
dX(t,p) is the point reached by “flowing” for the amount of time ¢ on the integral
curve v, (through p) starting from p. Intuitively, we can imagine the flow of a fluid
through M, and the vector field X is the field of velocities of the flowing particles.
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Given a vector field, X, as above, it may happen that D;(X) = M, for all ¢ € R. In this
case, namely, when D(X) = R x M, we say that the vector field X is complete. Then, the &
are diffeomorphisms of M and they form a group. The family {®;* };cr a called a 1-parameter
group of X. In this case, ®* induces a group homomorphism, (R, +) — Diff (M), from the
additive group R to the group of C*~!-diffeomorphisms of M.

By abuse of language, even when it is not the case that D;(X) = M for all ¢, the family
{® }ier is called a local 1-parameter group generated by X, even though it is not a group,
because the composition ®X o ®:X may not be defined.

If we go back to the vector field in R? given by

0
+ o,

X =y
yax dy

since the integral curve, v,(t), through p = (zg) is given by

x\  [cost —sint) (Zo
y) \sint cost v )’
the global flow associated with X is given by

cost —sint
vt - )r

sint cost
and each diffeomorphism, ®;¥, is the rotation,
¥ (cost —sint) ‘
t sint  cost
The 1-parameter group, {® },cr, generated by X is the group of rotations in the plane,
SO(2).

More generally, if B is an n x n invertible matrix that has a real logarithm, A (that is,
if e = B), then the matrix A defines a vector field, X, in R, with

- 0
X = Z(aijxj)a_xi’

ij=1
whose integral curves are of the form,
7p(t) = etAp’
and we have
Y(1) = Bp.

The one-parameter group, {®;X };cr, generated by X is given by {e};cr.

When M is compact, it turns out that every vector field is complete, a nice and useful
fact.
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Proposition 3.28. Let X be a C*1 wvector field on a C*-manifold, M, (k > 2). If M
is compact, then X is complete, i.e., D(X) = R x M. Moreover, the map t — ® is a
homomorphism from the additive group R to the group, Diff (M), of (C¥~1) diffeomorphisms
of M.

Proof. Pick any p € M. By Theorem 3.24, there is a local flow, ¢,: J(p) x U(p) = M,
where J(p) C R is an open interval containing 0 and U(p) is an open subset of M containing
p, so that for all ¢ € U(p), the map t — ¢(t,q) is an integral curve with initial condition ¢
(where t € J(p)). Thus, we have J(p) x U(p) € D(X). Now, the U(p)’s form an open cover
of M and since M is compact, we can extract a finite subcover, (J ger U (q) = M, for some
finite subset, FF C M. But then, we can find € > 0 so that | — e, +¢[ C J(q), for all ¢ € F
and for all t € | — ¢, +¢[ and, for all p € M, if 7, is the maximal integral curve with initial
condition p, then | — €, +€[ C I(p).

For any ¢t €] — ¢, +¢[, consider the integral curve, ,,), with initial condition ~,(t). This
curve is well defined for all t € | — ¢, +¢[, and we have

Y () = (1) = 73 (21),
which shows that ~, is in fact defined for all ¢ € | — 2¢, +2¢[ . By induction, we see that
| — 2%, +2"%[ C I(p),

for all n > 0, which proves that I(p) = R. As this holds for all p € M, we conclude that
D(X) =R x M. O

Remarks:

(1) The proof of Proposition 3.28 also applies when X is a vector field with compact
support (this means that the closure of the set {p € M | X(p) # 0} is compact).

(2) If p: M — N is a diffeomorphism and X is a vector field on M, then it can be shown
that the local 1-parameter group associated with the vector field, ¢, X, is

{po® o }icr.

A point p € M where a vector field vanishes, i.e., X (p) = 0, is called a critical point of X.
Critical points play a major role in the study of vector fields, in differential topology (e.g.,
the celebrated Poincaré—Hopf index theorem) and especially in Morse theory, but we won’t
go into this here (curious readers should consult Milnor [107], Guillemin and Pollack [70]
or DoCarmo [50], which contains an informal but very clear presentation of the Poincaré-
Hopf index theorem). Another famous theorem about vector fields says that every smooth
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vector field on a sphere of even dimension (S**) must vanish in at least one point (the so-
called “hairy-ball theorem.” On S?, it says that you can’t comb your hair without having a
singularity somewhere. Try it, it’s true!).

Let us just observe that if an integral curve, v, passes through a critical point, p, then
is reduced to the point p, i.e., y(t) = p, for all t. Indeed, such a curve is an integral curve
with initial condition p. By the uniqueness property, it is the only one. Then, we see that
if a maximal integral curve is defined on the whole of R, either it is injective (it has no
self-intersection), or it is simply periodic (i.e., there is some T > 0 so that v(¢t + T) = ~(t),
for all ¢ € R and ~ is injective on [0,77), or it is reduced to a single point.

We conclude this section with the definition of the Lie derivative of a vector field with
respect to another vector field.

Say we have two vector fields X and Y on M. For any p € M, we can flow along the
integral curve of X with initial condition p to ®;(p) (for ¢ small enough) and then evaluate
Y there, getting Y (®;(p)). Now, this vector belongs to the tangent space Tg,) (M), but
Y(p) € T,(M). So to “compare” Y (P;(p)) and Y (p), we bring back Y (®.(p)) to T,(M) by
applying the tangent map, d®_,, at ®4(p), to Y (P,(p)) (Note that to alleviate the notation,
we use the slight abuse of notation d®_; instead of d(®_;)s,).) Then, we can form the
difference d®_;(Y (®:(p))) — Y (p), divide by ¢ and consider the limit as ¢ goes to 0.

Definition 3.28. Let M be a C**! manifold. Given any two C* vector fields, X and Y on
M, for every p € M, the Lie derivative of Y with respect to X at p, denoted (LxY),, is
given by

d®_,(Y(®:(p))) = Y(p) _ d

(LxY)p = lim (d®_, (Y (®:(p))))

t—0 t - E =0
It can be shown that (Lx Y'), is our old friend, the Lie bracket, i.e.,
(LxY)p = [X,Y]p.
(For a proof, see Warner [148] or O’Neill [120]).
In terms of Definition 3.21, observe that
(@) Y)) Y () . (Y)Y d
(LxY), = Jim . = lim p = (@YV)m)]

since (P_;)~! = .

3.6 Partitions of Unity

To study manifolds, it is often necessary to construct various objects such as functions, vector
fields, Riemannian metrics, volume forms, etc., by gluing together items constructed on the
domains of charts. Partitions of unity are a crucial technical tool in this gluing process.
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The first step is to define “bump functions” (also called plateau functions). For any
r > 0, we denote by B(r) the open ball

B(r)={(z1,...,2,) ER" | 2% +--- + 22 <1},
and by B(r) = {(z1,...,2,) € R" | 22 + -+ - + 22 < r}, its closure.
Proposition 3.29. There is a smooth function, b: R® — R, so that

1 ifz e B()
b =
() {0 if t € R" — B(2).

Proof. There are many ways to construct such a function. We can proceed as follows:
Consider the function, h: R — R, given by

—1/x
h(:L‘) _ {6 if z >0

0 if x <0.
It is easy to show that h is C*° (but not analytic!). Then, define b: R — R, by
hd — 22 — ... — 22
b(Il,...,ZL’n) = 3 ( 7 5 J7n) .
h(4—af—---—a2)+h(zi+---+22 —1)
It is immediately verified that b satisfies the required conditions. O

Given a topological space, X, for any function, f: X — R, the support of f, denoted
supp f, is the closed set,

supp f = {z € X | f(z) # 0}.

Proposition 3.29 yields the following useful technical result:

Proposition 3.30. Let M be a smooth manifold. For any open subset, U C M, any p € U
and any smooth function, f: U — R, there exist an open subset, V., withp € V' and a smooth
function, f: M — R, defined on the whole of M, so that V is compact,

vV CUu, supp f C U

and B B
flg)=f(qg),  forall qe€V.

Proof. Using a scaling function, it is easy to find a chart, (W, p) at p, so that W C U,
B(3) C (W) and ¢(p) = 0. Let b = bo o, where b is the function given by Proposition
3.29. Then, b is a smooth function on W with support ¢~*(B(2)) € W. We can extend b
outside W, by setting it to be 0 and we get a smooth function on the whole M. If we let
V = ¢ }(B(1)), then V is an open subset around p, V = ¢~ *(B(1)) C W is compact and,
clearly, b=1onV. Therefore, if we set

2y b f(q) ifqgew
f(q)_{oq ! ifgeM—W,

we see that fsatisﬁes the required properties. O]
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If X is a (Hausdorff) topological space, a family, {U, }aer, of subsets U, of X is a cover
(or covering) of X iff X = J,c; Ua. A cover, {Uq}aer, such that each U, is open is an open
cover. If {U, }aer is a cover of X, for any subset, J C I, the subfamily {U, }acs is a subcover
of {Us}aer if X = UueyUas i€, {Uataes is still a cover of X. Given a cover {Vz}ges, we
say that a family {U, }aer is a refinement of {Vi}ge s if it is a cover and if there is a function,

h: I — J,so that U, C Vi), for all a € 1.

A family {U, }.es of subsets of X is locally finite iff for every point, p € X, there is some
open subset, U, with p € U, so that U N U, # § for only finitely many o € I. A space, X,
is paracompact iff every open cover has an open locally finite refinement.

Remark: Recall that a space, X, is compact iff it is Hausdorff and if every open cover
has a finite subcover. Thus, the notion of paracompactess (due to Jean Dieudonné) is a
generalization of the notion of compactness.

Recall that a topological space, X, is second-countable if it has a countable basis, i.e., if
there is a countable family of open subsets, {U;};>1, so that every open subset of X is the
union of some of the U;’s. A topological space, X, if locally compact iff it is Hausdorff and
for every a € X, there is some compact subset, K, and some open subset, U, with a € U
and U C K. As we will see shortly, every locally compact and second-countable topological
space is paracompact.

It is important to observe that every manifold (even not second-countable) is locally
compact. Indeed, for every p € M, if we pick a chart, (U, ¢), around p, then ¢(U) = Q for
some open 2 C R™ (n = dim M). So, we can pick a small closed ball, B(q,¢€) C €, of center
q = ¢(p) and radius €, and as ¢ is a homeomorphism, we see that

pe ¢ '(Blg,¢/2) € ¢ ' (Blg,e)),

where o~ 1(B(q,€)) is compact and ¢~ '(B(q, €/2)) is open.

Finally, we define partitions of unity.

Definition 3.29. Let M be a (smooth) manifold. A partition of unity on M is a family,
{fi}icr, of smooth functions on M (the index set I may be uncountable) such that

(a) The family of supports, {supp f;}icr, is locally finite.
(b) For all i € I and all p € M, we have 0 < f;(p) <1, and

Zfl(p) =1, foreverype M.

Note that condition (b) implies that for every p € M there must be some i € I such that
fi(p) > 0. Thus, {supp f;}ics is a cover of M. If {U,}aecs is a cover of M, we say that the
partition of unity {f;}ics is subordinate to the cover {U,}acy if {supp fi}ics is a refinement
of {Us}acs. When I = J and supp f; C U;, we say that {f;}ics is subordinate to {Uy}aer

with the same index set as the partition of unity.
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In Definition 3.29, by (a), for every p € M, there is some open set, U, with p € U and U
meets only finitely many of the supports, supp f;. So, f;(p) # 0 for only finitely many i € I
and the infinite sum ) ., fi(p) is well defined.

Proposition 3.31. Let X be a topological space which is second-countable and locally com-
pact (thus, also Hausdorff). Then, X is paracompact. Moreover, every open cover has a
countable, locally finite refinement consisting of open sets with compact closures.

Proof. The proof is quite technical, but since this is an important result, we reproduce
Warner’s proof for the reader’s convenience (Warner [148], Lemma 1.9).

The first step is to construct a sequence of open sets, (G;, such that

1. G, is compact,
2. G; C Giy1,
3. X =2, G

As M is second-countable, there is a countable basis of open sets, {U;}i>1, for M. Since M
is locally compact, we can find a subfamily of {U;};>1 consisting of open sets with compact
closures such that this subfamily is also a basis of M. Therefore, we may assume that we
start with a countable basis, {U;};>1, of open sets with compact closures. Set Gy = U; and
assume inductively that

Gp,=U,U---UU,,.

Since G, is compact, it is covered by finitely many of the Uj’s. So, let jry1 be the smallest
integer greater than j; so that
G, CULU---UU;

k+1

and set
Gk+1:U1U"'UUj

Obviously, the family {G,};>; satisfies (1)—(3).

Now, let {U,}aer be an arbitrary open cover of M. For any i > 3, the set G, — Gy is
compact and contained in the open G;41 — G;_5. For each i > 3, choose a finite subcover
of the open cover {U, N (G411 — Ei_g)}aej of G; — G;_1, and choose a finite subcover of the
open cover {U, NG35}aer of the compact set G5. We leave it to the reader to check that this
family of open sets is indeed a countable, locally finite refinement of the original open cover
{Uq }aer and consists of open sets with compact closures. O

k+1°

Remarks:

1. Proposition 3.31 implies that a second-countable, locally compact (Hausdorff) topo-
logical space is the union of countably many compact subsets. Thus, X is countable at
infinity, a notion that we already encountered in Proposition 2.23 and Theorem 2.26.
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The reason for this odd terminology is that in the Alexandroff one-point compactifica-
tion of X, the family of open subsets containing the point at infinity (w) has a countable
basis of open sets. (The open subsets containing w are of the form (M — K) U {w},
where K is compact.)

2. A manifold that is countable at infinity has a countable open cover by domains of
charts. This is because, if M = J,5; K;, where the K; C M are compact, then for any
open cover of M by domains of charts, for every K;, we can extract a finite subcover,
and the union of these finite subcovers is a countable open cover of M by domains
of charts. But then, since for every chart, (U;, ;), the map ¢; is a homeomorphism
onto some open subset of R™, which is second-countable, so we deduce easily that M
is second-countable. Thus, for manifolds, second-countable is equivalent to countable
at infinity.

We can now prove the main theorem stating the existence of partitions of unity. Recall
that we are assuming that our manifolds are Hausdorff and second-countable.

Theorem 3.32. Let M be a smooth manifold and let {U,}aer be an open cover for M.
Then, there is a countable partition of unity, {fi}i>1, subordinate to the cover {U,}acr and
the support, supp f;, of each f; is compact. If one does not require compact supports, then
there is a partition of unity, { fo}acr, subordinate to the cover {U,}acr with at most countably
many of the f, not identically zero. (In the second case, supp fo C U,.)

Proof. Again, we reproduce Warner’s proof (Warner [148], Theorem 1.11). As our manifolds
are second-countable, Hausdorff and locally compact, from the proof of Proposition 3.31, we
have the sequence of open subsets, {G;};>1 and we set Gy = (). For any p € M, let i, be the
largest integer such that p € M — @ip. Choose an «, such that p € U,,; we can find a chart,

(U, ¢), centered at p such that U C U,, N (Gj,42 — G,) and such that B(2) C ¢(U). Define

o, = bop onU
P70 on M —U,
where b is the bump function defined just before Proposition 3.29. Then, 1, is a smooth
function on M which has value 1 on some open subset, W), containing p and has compact
support lying in U C U,, N(Gj,4+2—G;,). For each i > 1, choose a finite set of points, p € M,
whose corresponding opens, W), cover G; — G;_1. Order the corresponding 1, functions in
a sequence, ©;, j = 1,2,... . The supports of the ¢; form a locally finite family of subsets
of M. Thus, the function
= 1
j=1

is well-defined on M and smooth. Moreover, ¥(p) > 0 for each p € M. For each i > 1, set

_u

fiw
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Then, the family, {f;}:>1, is a partition of unity subordinate to the cover {U, }aer and supp f;
is compact for all i > 1.

Now, when we don’t require compact support, if we let f, be identically zero if no f;
has support in U, and otherwise let f, be the sum of the f; with support in U,, then we
obtain a partition of unity subordinate to {U,}se; with at most countably many of the f,
not identically zero. We must have supp f, C U, because for any locally finite family of
closed sets, {Fs}ges, we have Usc; Fis = Upges Fs- O

We close this section by stating a famous theorem of Whitney whose proof uses partitions
of unity:.

Theorem 3.33. (Whitney, 1935) Any smooth manifold (Hausdorff and second-countable),
M, of dimension n is diffeomorphic to a closed submanifold of R?"+1.

For a proof, see Hirsch [77], Chapter 2, Section 2, Theorem 2.14.

3.7 Manifolds With Boundary

Up to now, we have defined manifolds locally diffeomorphic to an open subset of R™. This
excludes many natural spaces such as a closed disk, whose boundary is a circle, a closed ball,
B(1), whose boundary is the sphere, S™ !, a compact cylinder, S* x [0, 1], whose boundary
consist of two circles, a Mdobius strip, etc. These spaces fail to be manifolds because they
have a boundary, that is, neighborhoods of points on their boundaries are not diffeomorphic
to open sets in R™. Perhaps the simplest example is the (closed) upper half space,

H™ = {(z1,...,2,) € R™ | z,, > 0}.
Under the natural embedding R™~! 2 R™~! x {0} < R™, the subset OH™ of H™ defined by
={zreH" |z, =0}

is isomorphic to R™™! and is called the boundary of H™. We also define the interior of H™
as

Int(H™) = H™ — 9H™,

Now, if U and V' are open subsets of H™, where H”™ C R™ has the subset topology, and
if f: U — V is a continuous function, we need to explain what we mean by f being smooth.
We say that f: U — V, as above, is smooth if it has an extension, f U— V', where U and
V are open subsets of R” with U C U and V C V and with f a smooth function. We say
that f is a (smooth) diffeomorphism iff f~! exists and if both f and f~! are smooth, as just
defined.

To define a manifold with boundary, we replace everywhere R by H in Definition 3.1 and
Definition 3.2. So, for instance, given a topological space, M, a chart is now pair, (U, p),
where U is an open subset of M and ¢: U — () is a homeomorphism onto an open subset,
Q= p(U), of H" (for some n, > 1), etc. Thus, we obtain
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Definition 3.30. Given some integer n > 1 and given some k such that k& is either an integer
k> 1ork = oo, a C*-manifold of dimension n with boundary consists of a topological space,
M, together with an equivalence class, A, of C* n-atlases, on M (where the charts are now
defined in terms of open subsets of H"). Any atlas, A, in the equivalence class A is called a
differentiable structure of class C* (and dimension n) on M. We say that M is modeled on
H". When k = oo, we say that M is a smooth manifold with boundary.

It remains to define what is the boundary of a manifold with boundary! By definition, the
boundary, M, of a manifold (with boundary), M, is the set of all points, p € M, such that
there is some chart, (U, pa), with p € U, and ¢, (p) € OH". We also let Int(M) = M — oM
and call it the interior of M.

@ Do not confuse the boundary M and the interior Int(M) of a manifold with bound-
ary embedded in RV with the topological notions of boundary and interior of M as a
topological space. In general, they are different.

Note that manifolds as defined earlier (In Definition 3.3) are also manifolds with bound-
ary: their boundary is just empty. We shall still reserve the word “manifold” for these, but
for emphasis, we will sometimes call them “boundaryless.”

The definition of tangent spaces, tangent maps, etc., are easily extended to manifolds
with boundary. The reader should note that if M is a manifold with boundary of dimension
n, the tangent space, T),M, is defined for all p € M and has dimension n, even for boundary
points, p € dM. The only notion that requires more care is that of a submanifold. For more
on this, see Hirsch [77], Chapter 1, Section 4. One should also beware that the product of two
manifolds with boundary is generally not a manifold with boundary (consider the product
[0, 1] x [0, 1] of two line segments). There is a generalization of the notion of a manifold with
boundary called manifold with corners and such manifolds are closed under products (see
Hirsch [77], Chapter 1, Section 4, Exercise 12).

If M is a manifold with boundary, we see that Int(M) is a manifold without boundary.
What about OM? Interestingly, the boundary, OM, of a manifold with boundary, M, of
dimension n, is a manifold of dimension n — 1. For this, we need the following Proposition:

Proposition 3.34. If M is a manifold with boundary of dimension n, for any p € OM on
the boundary on M, for any chart, (U, ), with p € M, we have p(p) € OH™".

Proof. Since p € OM, by definition, there is some chart, (V,), with p € V and ¢ (p) € 0H".
Let (U,p) be any other chart, with p € M and assume that ¢ = ¢(p) € Int(H"). The
transition map, Yop~t: o(UNV) — (UNV), is a diffeomorphism and g = ¢(p) € Int(H").
By the inverse function theorem, there is some open, W C (U N V) N Int(H") C R", with
q € W, so that 1) o ! maps W homeomorphically onto some subset, €2, open in Int(H"),
with ¢ (p) € Q, contradicting the hypothesis, 1(p) € OH". O

Using Proposition 3.34, we immediately derive the fact that 0M is a manifold of dimen-
sion n — 1. We obtain charts on dM by considering the charts (U NOM, Lo p), where (U, ¢)
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is a chart on M such that U NOM = o Y(OH") # 0 and L: OH" — R"! is the natural
isomorphism (see see Hirsch [77], Chapter 1, Section 4).

3.8 Orientation of Manifolds

Although the notion of orientation of a manifold is quite intuitive it is technically rather
subtle. We restrict our discussion to smooth manifolds (although the notion of orientation
can also be defined for topological manifolds but more work is involved).

Intuitively, a manifold, M, is orientable if it is possible to give a consistent orientation to
its tangent space, T, M, at every point, p € M. So, if we go around a closed curve starting
at p € M, when we come back to p, the orientation of T, M should be the same as when we
started. For exampe, if we travel on a Mobius strip (a manifold with boundary) dragging a
coin with us, we will come back to our point of departure with the coin flipped. Try it!

To be rigorous, we have to say what it means to orient 7, M (a vector space) and what
consistency of orientation means. We begin by quickly reviewing the notion of orientation of
a vector space. Let E be a vector space of dimension n. If uq,...,u, and vq,...,v, are two
bases of E, a basic and crucial fact of linear algebra says that there is a unique linear map,
g, mapping each u; to the corresponding v; (i.e., g(u;) = v;, i = 1,...,n). Then, look at the
determinant, det(g), of this map. We know that det(g) = det(P), where P is the matrix
whose j-th columns consist of the coordinates of v; over the basis us, ..., u,. Either det(g)
is negative or it is positive. Thus, we define an equivalence relation on bases by saying that
two bases have the same orientation iff the determinant of the linear map sending the first
basis to the second has positive determinant. An orientation of E is the choice of one of the
two equivalence classes, which amounts to picking some basis as an orientation frame.

The above definition is perfectly fine but it turns out that it is more convenient, in the long
term, to use a definition of orientation in terms of alternate multi-linear maps (in particular,
to define the notion of integration on a manifold). Recall that a function, h: E¥ — R, is
alternate multi-linear (or alternate k-linear) iff it is linear in each of its arguments (holding
the others fixed) and if

h(...,z,...,x,...) =0,

that is, h vanishes whenever two of its arguments are identical. Using multi-linearity, we
immediately deduce that h vanishes for all k-tuples of arguments, uy, . .., ux, that are linearly
dependent and that h is skew-symmetric, i.e.,

h(...;y,...,x,...) = =h(...,z,...,y,...).
In particular, for k = n, it is easy to see that if uy,...,u, and vy,...,v, are two bases, then
h(vy, ... v,) =det(g)h(ug,. .., uy,),

where ¢ is the unique linear map sending each w; to v;. This shows that any alternating
n-linear function is a multiple of the determinant function and that the space of alternating
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n-linear maps is a one-dimensional vector space that we will denote A" E*.2 We also call
an alternating n-linear map an n-form. But then, observe that two bases uq,...,u, and
v1,...,v, have the same orientation iff

w(ui,...,u,) and w(vy,...,v,) have the same sign for all w € A" E* — {0}

(where 0 denotes the zero n-form). As A" E* is one-dimensional, picking an orientation of
E is equivalent to picking a generator (a one-element basis), w, of A" E*, and to say that
Uy, ..., U, has positive orientation iff w(uy,...,u,) > 0.

Given an orientation (say, given by w € A" E*) of E, a linear map, f: F — FE, is orien-
tation preserving iff w(f(u1),..., f(u,)) > 0 whenever w(uy,...,u,) > 0 (or equivalently, iff
det(f) > 0).

Now, to define the orientation of an n-dimensional manifold, M, we use charts. Given
any p € M, for any chart, (U, ¢), at p, the tangent map, dgp;(lp): R™ — T,M makes sense.
If (e1,...,e,) is the standard basis of R", as it gives an orientation to R™, we can orient
T,M by giving it the orientation induced by the basis dw;(lp)(el), . ,dgp;(lp)(en). Then, the
consistency of orientations of the T, M’s is given by the overlapping of charts. We require that
the Jacobian determinants of all ¢; 0 ;' have the same sign, whenever (U;, ¢;) and (Uj, ¢;)
are any two overlapping charts. Thus, we are led to the definition below. All definitions and
results stated in the rest of this section apply to manifolds with or without boundary.

Definition 3.31. Given a smooth manifold, M, of dimension n, an orientation atlas of M
is any atlas so that the transition maps, ¢} = @; 0 ;! (from ¢;(U; NU;) to ¢;(U; NU;)) all
have a positive Jacobian determinant for every point in ¢;(U; NU;). A manifold is orientable
iff its has some orientation atlas.

Definition 3.31 can be hard to check in practice and there is an equivalent criterion is
terms of n-forms which is often more convenient. The idea is that a manifold of dimension
n is orientable iff there is a map, p — w,, assigning to every point, p € M, a nonzero
n-form, w, € A" Ty M, so that this map is smooth. In order to explain rigorously what it
means for such a map to be smooth, we can define the exterior n-bundle, \" T*M (also
denoted A" M) in much the same way that we defined the bundles TM and T*M. There
is an obvious smooth projection map, 7: A" T*M — M. Then, leaving the details of the
fact that A" T*M can be made into a smooth manifold (of dimension n) as an exercise, a
smooth map, p — wy, is simply a smooth section of the bundle A" T*M, i.e., a smooth map,
w: M — N"T*M, so that 7 ow = id.

2We are using the wedge product notation of exterior calculus even though we have not defined alternating
tensors and the wedge product yet. This is standard notation and we hope that the reader will not be
confused. In fact, in finite dimension, the space of alternating n-linear maps and A" E* are isomorphic. A
thorough treatment of tensor algebra, including exterior algebra, and of differential forms, will be given in
Chapters 22 and 8.
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Definition 3.32. If M is an n-dimensional manifold, a smooth section, w € T'(M, \" T*M),
is called a (smooth) n-form. The set of n-forms, I'(M, \" T*M), is also denoted A"(M).
An n-form, w, is a nowhere-vanishing n-form on M or volume form on M iff w, is a nonzero
form for every p € M. This is equivalent to saying that w,(u,...,u,) # 0, for all p € M
and all bases, w1, ..., uy, of T,M.

The determinant function, (uq,...,u,) — det(uy,...,u,), where the u; are expressed
over the canonical basis (ej,...,e,) of R is a volume form on R". We will denote this
volume form by wg. Another standard notation is dxy A - - A dx,,, but this notation may
be very puzzling for readers not familiar with exterior algebra. Observe the justification
for the term volume form: the quantity det(uq,...,u,) is indeed the (signed) volume of the
parallelepiped

{Mug + -+ Auy, | 0< A <1, 1 <i<n}.

A volume form on the sphere S™ C R"*! is obtained as follows:

wp(ug, ... u,) = det(p, uq, ... uy),

where p € S™ and uy,...u, € T,5". As the u; are orthogonal to p, this is indeed a volume
form.

Observe that if f is a smooth function on M and w is any n-form, then fw is also an
n-form.

Definition 3.33. Let ¢: M — N be a smooth map of manifolds of the same dimension, n,
and let w € A"(N) be an n-form on N. The pull-back, v*w, of w to M is the n-form on M
given by

Sp*wp(ula s 7un) = w@(p)(d¢p<u1)’ s 7d90p(un))v
for all p € M and all w,...,u, € T,M.

One checks immediately that ¢*w is indeed an n-form on M. More interesting is the
following Proposition:

Proposition 3.35. (a) If o: M — N is a local diffeomorphism of manifolds, where dim M =
dim N =n, and w € A"(N) is a volume form on N, then *w is a volume form on M. (b)
Assume M has a volume form, w. Then, for every n-form, n € A"(M), there is a unique
smooth function, f € C®(M), so that n = fw. If n is a volume form, then f(p) # 0 for all
pe M.

Proof. (a) By definition,

‘p*wp(ula s 7“71) = wsﬁ(p)(d@p(ul)’ s 7d90p(un))v

for all p € M and all uy,...,u, € T,M. As ¢ is alocal diffeomorphism, d,¢ is a bijection for
every p. Thus, if uy, ..., u, is a basis, then so is dp,(u1), ..., dp,(u,), and as w is nonzero
at every point for every basis, ¢*w,(uy, ..., u,) # 0.
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(b) Pick any p € M and let (U, ) be any chart at p. As ¢ is a diffecomorphism, by (a), we
see that p~!"w is a volume form on ¢(U). But then, it is easy to see that o1y = g~ w, for
some unique smooth function, g, on ¢(U) and so, n = fyw, for some unique smooth function,
fu, on U. For any two overlapping charts, (U;, ;) and (Uj, ¢;), for every p € U; N Uj, for
every basis ui, ..., u, of T,M, we have

np(ula s 7un) = fi(p)wp<u17 <o 7un) = fj(p)wp(uh <. 7un)7

and as wy(uq,...,u,) # 0, we deduce that f; and f; agree on U; N U;. But, then the f;’s
patch on the overlaps of the cover, {U;}, of M, and so, there is a smooth function, f, defined
on the whole of M and such that f [ U; = f;. As the f;’s are unique, so is f. If n is a volume
form, then 7, does not vanish for all p € M and since w, is also a volume form, w, does not
vanish for all p € M, so f(p) # 0 for all p € M. ]

Remark: If ¢ and 1) are smooth maps of manifolds, it is easy to prove that
(pod)" =4 oy
and that
P (fw) = (feop)p'w,
where f is any smooth function on M and w is any n-form.

The connection between Definition 3.31 and volume forms is given by the following im-
portant theorem whose proof contains a wonderful use of partitions of unity.

Theorem 3.36. A smooth manifold (Hausdorff and second-countable) is orientable iff it
possesses a volume form.

Proof. First, assume that a volume form, w, exists on M, and say n = dim M. For any atlas,
{(Us, v:)}i, of M, by Proposition 3.35, each n-form, ¢, "w, is a volume form on ¢;(U;) C R*
and

o; " w = fiwo,

for some smooth function, f;, never zero on ¢;(U;), where wy is a volume form on R". By
composing ; with an orientation-reversing linear map if necessary, we may assume that for
this new altlas, f; > 0 on ¢;(U;). We claim that the family (U;, ¢;); is an orientation atlas.
This is because, on any (nonempty) overlap, U; N Uj, as w = ¢ (f;wo) and

(pjow; ') = (¥ ') 0¥}, we have
(05097 1) (fjwo) = fiwo,
and by the definition of pull-backs, we see that for every = € ¢,;(U; N Uj;), if we let
y =pjop; (x), then
filz)(wo)z(er, ... en) = (SOj ° 901'_1);<fjw0)(617 o)
fi@)(wo)yd(j 0 07 aler), -, d(wj 0 97 )ulen))
Fi) I (50 07 a)(wo)y(er, - - s en),
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where ey, ..., e, is the standard basis of R™ and J((¢; o ¢; '),) is the Jacobian determinant
of pj o ;" at . As both f;(y) > 0 and f;(x) > 0, we have J((¢; 0 ¢; ').) > 0, as desired.

Conversely, assume that J((pj00;'),) > 0, for all z € ;(U;NU;), whenever U; NU; # 0.
We need to make a volume form on M. For each U;, let

*
w; = P;Wo,

where wy is a volume form on R". As y; is a diffeomorphism, by Proposition 3.35, we see
that w; is a volume form on U;. Then, if we apply Theorem 3.32, we can find a partition of
unity, {f;}, subordinate to the cover {U;}, with the same index set. Let,

w= Z fiw;.

We claim that w is a volume form on M.

It is clear that w is an n-form on M. Now, since every p € M belongs to some U;, check
that on ¢;(U;), we have

o w= D o (fwy) = (Z(fj090i1>°7((pjo@il>>w0

jé€finite set J

and this sum is strictly positive because the Jacobian determinants are positive and as
> ;fi=1and f; > 0, some term must be strictly positive. Therefore, ¢; " is a volume
form on ;(U;) and so, @fp; "w = w is a volume form on U;. As this holds for all U;, we

conclude that w is a volume form on M. OJ

Since we showed that there is a volume form on the sphere, S™, by Theorem 3.36, the
sphere S™ is orientable. It can be shown that the projective spaces, RP", are non-orientable
iff n is even an thus, orientable iff n is odd. In particular, RP? is not orientable. Also, even
though M may not be orientable, its tangent bundle, T'(M), is always orientable! (Prove it).
It is also easy to show that if f: R"" — R is a smooth submersion, then M = f~1(0) is a
smooth orientable manifold. Another nice fact is that every Lie group is orientable.

By Proposition 3.35 (b), given any two volume forms, w; and wy on a manifold, M, there
is a function, f: M — R, never 0 on M such that ws = fw;. This fact suggests the following
definition:

Definition 3.34. Given an orientable manifold, M, two volume forms, w; and wy, on M
are equivalent iff wy = fw; for some smooth function, f: M — R, such that f(p) > 0 for
all p € M. An orientation of M is the choice of some equivalence class of volume forms on
M and an oriented manifold is a manifold together with a choice of orientation. If M is a
manifold oriented by the volume form, w, for every p € M, a basis, (by,...,b,) of T,M is
posively oriented iff w,(by,...,b,) > 0, else it is negatively oriented (where n = dim(M)).
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If M is an orientable manifold, for any two volume forms w; and ws on M, as ws = fw;
for some function, f, on M which is never zero, f has a constant sign on every connected
component of M. Consequently, a connected orientable manifold has two orientations.

We will also need the notion of orientation-preserving diffeomorphism.
Definition 3.35. Let ¢: M — N be a diffeomorphism of oriented manifolds, M and NV,
of dimension n and say the orientation on M is given by the volume form w; while the

orientation on N is given by the volume form w,. We say that ¢ is orientation preserving ift
©*wy determines the same orientation of M as wy.

Using Definition 3.35 we can define the notion of a positive atlas.

Definition 3.36. If M is a manifold oriented by the volume form, w, an atlas for M is positive
iff for every chart, (U, ¢), the diffecomorphism, ¢: U — ¢(U), is orientation preserving, where
U has the orientation induced by M and ¢(U) C R™ has the orientation induced by the
standard orientation on R™ (with dim(M) = n).

The proof of Theorem 3.36 shows

Proposition 3.37. If a manifold, M, has an orientation atlas, then there is a uniquely
determined orientation on M such that this atlas is positive.

3.9 Covering Maps and Universal Covering Manifolds

Covering maps are an important technical tool in algebraic topology and more generally in
geometry. This brief section only gives some basic definitions and states a few major facts.
We apologize for his sketchy nature. Appendix A of O’Neill [120] gives a review of definitions
and main results about covering manifolds. Expositions including full details can be found
in Hatcher [72], Greenberg [66], Munkres [116], Fulton [57] and Massey [104, 105] (the most
extensive).

We begin with covering maps.

Definition 3.37. A map, 7: M — N, between two smooth manifolds is a covering map (or
cover) iff

(1) The map 7 is smooth and surjective.
(2) For any ¢ € N, there is some open subset, V' C N, so that ¢ € V and
~—(V)=Ju,
icl

where the U; are pairwise disjoint open subsets, U; C M, and 7: U; — V is a diffeo-
morphism for every ¢ € I. We say that V is evenly covered.



180 CHAPTER 3. MANIFOLDS

The manifold, M, is called a covering manifold of N.

A homomorphism of coverings, m: M; — N and my: My — N, is a smooth map,
p: My — M, so that
1 = T2 0,

that is, the following diagram commutes:

Ld M, .
R A
N

We say that the coverings m: M; — N and my: My — N are equivalent iff there is a
homomorphism, ¢: M; — M, between the two coverings and ¢ is a diffeomorphism.

M,

As usual, the inverse image, m~!(q), of any element ¢ € N is called the fibre over g, the
space N is called the base and M is called the covering space. As m is a covering map, each
fibre is a discrete space. Note that a homomorphism maps each fibre 7;*(¢) in M; to the
fibre 7, ' (¢(q)) in My, for every q € M;.

Proposition 3.38. Let m1: M — N be a covering map. If N is connected, then all fibres,
71(q), have the same cardinality for all ¢ € N. Furthermore, if 7=1(q) is not finite then it
1s countably infinite.

Proof. Pick any point, p € N. We claim that the set

S={qeN||lr @) ="}
is open and closed.

If ¢ € S, then there is some open subset, V', with ¢ € V, so that 771(V/) is evenly covered
by some family, {U;};cr, of disjoint open subsets, U;, each diffeomorphic to V under 7. Then,
every s € V must have a unique preimage in each U;, so

1] = |7T_1(S)|7 forallse V.
However, as ¢ € S, |77 1(q)| = |7~ (p)|, so
1] = |7~ (p)| = |7 (s)], for all s € V,

and thus, V' C S. Therefore, S is open. Similary the complement of S is open. As N is
connected, S = N.

Since M is a manifold, it is second-countable, that is every open subset can be written as
some countable union of open subsets. But then, every family, {U;}ic;, of pairwise disjoint
open subsets forming an even cover must be countable and since || is the common cardinality
of all the fibres, every fibre is countable. n
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When the common cardinality of fibres is finite it is called the multiplicity of the covering
(or the number of sheets).

For any integer, n > 0, the map, z — 2", from the unit circle S* = U(1) to itself is a
covering with n sheets. The map,

t: +— (cos(2nt),sin(27t)),

is a covering, R — S!, with infinitely many sheets.

It is also useful to note that a covering map, 7: M — N, is a local diffeomorphism (which
means that dm,: T,M — TN is a bijective linear map for every p € M). Indeed, given
any p € M, if ¢ = mw(p), then there is some open subset, V' C N, containing ¢ so that V is
evenly covered by a family of disjoint open subsets, {U; }:c;, with each U; C M diffeomorphic
to V under w. As p € U, for some ¢, we have a diffeomorphism, = [ U;: U; — V/, as required.

The crucial property of covering manifolds is that curves in N can be lifted to M, in a
unique way. For any map, ¢: P — N, a [lift of ¢ through 7 is a map, @: P — M, so that

p=mop,
as in the following commutative diagram:

M

7y

We state without proof the following results:

P

Proposition 3.39. If m: M — N is a covering map, then for every smooth curve, a: I — N,
in N (with 0 € 1) and for any point, ¢ € M, such that w(q) = a(0), there is a unique smooth
curve, a: I — M, lifting o through 7 such that a(0) = q.

Proposition 3.40. Let m: M — N be a covering map and let p: P — N be a smooth
map. For any py € P, any qo € M and any ro € N with 7w(q0) = p(po) = 70, the following
properties hold:

(1) If P is connected then there is at most one lift, o: P — M, of ¢ through 7 such that
¢(po) = qo-

(2) If P is simply connected, then such a lift exists.

M > qq

S

p06P7>N9T0



182 CHAPTER 3. MANIFOLDS

Theorem 3.41. Every connected manifold, M, possesses a simply connected covering map,
w: M — M, that is, with M simply connected. Any two simply connected coverings of N
are equivalent.

In view of Theorem 3.41, it is legitimate to speak of the simply connected cover, M , of
M, also called universal covering (or cover) of M.

Given any point, p € M, let w1 (M, p) denote the fundamental group of M with basepoint
p (see any of the references listed above, in particular, Massey [104, 105]). If ¢: M — N
is a smooth map, for any p € M, if we write ¢ = ¢(p), then we have an induced group
homomorphism
oo (M, p) = w1 (N, q).

Proposition 3.42. If7m: M — N is a covering map, for every p € M, if ¢ = w(p), then the
induced homomorphism, m,: m(M,p) — w1 (N, q), is injective.

The next proposition is a stronger version of part (2) of Proposition 3.40:

Proposition 3.43. Let m: M — N be a covering map and let o: P — N be a smooth map.
For any py € P, any qo € M and any ro € N with w(qo) = @(po) = 10, if P is connected,
then a lift, p: P — M, of ¢ such that p(po) = qo exists iff

@ (m1(P,po)) C m(m1(M, q0)),

as tllustrated in the diagram below

M 7T1(M,q0)
Cal/%jﬂ' //7 L
/ e T
g iff <7
P—=N (P, po) —5= m1(N, 7o)

Basic Assumption: For any covering, m: M — N, if N is connected then we also
assume that M is connected.

Using Proposition 3.42, we get

Proposition 3.44. If n1: M — N is a covering map and N 1is simply connected, then w
is a diffeomorphism (recall that M is connected); thus, M is diffeomorphic to the universal
cover, N, of N.

Proof. Pick any p € M and let ¢ = ¢(p). As N is simply connected, 7 (N, q) = (0). By
Proposition 3.42, since 7,: w1 (M, p) — 71 (N, q) is injective, m1(M,p) = (0) so M is simply
connected (by hypothesis, M is connected). But then, by Theorem 3.41, M and N are
diffeomorphic. O]
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The following proposition shows that the universal covering of a space covers every other
covering of that space. This justifies the terminology “universal covering.”

Proposition 3.45. Say m: M7 — N and 7: My — N are two coverings of N, with N
connected. Every homomorphism, p: My — M,, between these two coverings is a covering

map. As a consequence, if m: N — N is a uniwersal covering of N, then for every covering,
7' M — N, of N, there is a covering, p: N — M, of M.

The notion of deck-transformation group of a covering is also useful because it yields a
way to compute the fundamental group of the base space.

Definition 3.38. If 7: M — N is a covering map, a deck-transformation is any diffeomor-
phism, ¢: M — M, such that m = w o ¢, that is, the following diagram commutes:

XL/M

Note that deck-transformations are just automorphisms of the covering map. The com-
mutative diagram of Definition 3.38 means that a deck transformation permutes every fibre.
It is immediately verified that the set of deck transformations of a covering map is a group
denoted I'; (or simply, I'), called the deck-transformation group of the covering.

M

Observe that any deck transformation, ¢, is a lift of m through 7. Consequently, if M is
connected, by Proposition 3.40 (1), every deck-transformation is determined by its value at
a single point. So, the deck-transformations are determined by their action on each point of
any fixed fibre, 77!(q), with ¢ € N. Since the fibre 77(¢) is countable, T is also countable,
that is, a discrete Lie group. Moreover, if M is compact, as each fibre, 771(g), is compact
and discrete, it must be finite and so, the deck-transformation group is also finite.

The following proposition gives a useful method for determining the fundamental group
of a manifold.

Proposition 3.46. If «: M — M is the universal covering of a connected manifold, M,
then the deck-transformation group, T, is isomorphic to the fundamental group, m (M), of
M.

Remark: When 7: M — M is the universal covering of M, it can be shown that the group
T acts simply and transitively on every fibre, 771(¢). This means that for any two elements,
x,y € 7 %(q), there is a unique deck-transformation, ¢ € I such that o(x) = y. So, there is
a bijection between 71 (M) =T and the fibre 771(q).

Proposition 3.41 together with previous observations implies that if the universal cover
of a connected (compact) manifold is compact, then M has a finite fundamental group. We
will use this fact later, in particular, in the proof of Myers’ Theorem.
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Chapter 4

Construction of Manifolds From
Gluing Data

4.1 Sets of Gluing Data for Manifolds

The definition of a manifold given in Chapter 3 assumes that the underlying set, M, is
already known. However, there are situations where we only have some indirect information
about the overlap of the domains, U;, of the local charts defining our manifold, M, in terms
of the transition functions,

pjit pi(UiNU;) = ;U N U;),
but where M itself is not known. For example, this situation happens when trying to
construct a surface approximating a 3D-mesh. If we let Q;; = ¢;(U; N U;) and Q;; =
©;(U; NUj), then ¢;; can be viewed as a “gluing map”,
wii: Qg — Qg
between two open subets of €2; and €2}, respectively.

For technical reasons, it is desirable to assume that the images, Q; = ¢;(U;) and Q; =
©;(U;), of distinct charts are disjoint but this can always be achieved for manifolds. Indeed,
the map

BZ (.f(fl,...

T Tn
, L) > — —
V1+Zi:1xi V1+Zi:1xi

is a smooth diffeomorphism from R” to the open unit ball B(0,1) with inverse given by

— T1 Tn
B (g, ) — ey — .
V1= wd VI

Since M has a countable basis, using compositions of # with suitable translations, we can
make sure that the €2;’s are mapped diffeomorphically to disjoint open subsets of R".

185
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Remarkably, manifolds can be constructed using the “gluing process” alluded to above
from what is often called sets of “gluing data.” In this chapter, we are going to describe this
construction and prove its correctness in details, provided some mild assumptions on the
gluing data. It turns out that this procedure for building manifolds can be made practical.
Indeed, it is the basis of a class of new methods for approximating 3D meshes by smooth
surfaces, see Siqueira, Xu and Gallier [141].

It turns out that care must be exercised to ensure that the space obtained by gluing
the pieces ;; and (2;; is Hausdorff. Some care must also be exercised in formulating the
consistency conditions relating the ¢;;’s (the so-called “cocycle condition”). This is because
the traditional condition (for example, in bundle theory) has to do with triple overlaps
of the U; = ¢;*(€;) on the manifold, M, (see Chapter 7, especially Theorem 7.4) but in
our situation, we do not have M nor the parametrization maps 6; = ¢; ' and the cocycle
condition on the ¢;;’s has to be stated in terms of the €2;’s and the €};’s.

Note that if the €2;; arise from the charts of a manifold, then nonempty triple intersections
U; NU; NUy, of domains of charts have images ¢;(U; NU; NUy) in Q;, ¢;(U; NU; NUy) in Q,
and ¢ (U; N U; N Uy) in Q4, and since the ¢;’s are bijective maps, we get

e U;NU;NU) =ei(U;NU;NUNU) =i (U;NU;j) N (U NUE) = 45 N Qg
and similarly
iU U; NU) = Q5 N Qg (Ui NU; N Uy) = Qg N0 Qg
and these sets are related. Indeed, we have
w5i(i5 N Q) = ;0 97 (wi(Ui N U) Npi(U; N U))
= p;(U;NU; NUg) = Q)i N Qg
and similar equations relating the other “triple intersections.” In particular,
©ij (i 0 Q) = Qij N L,
which implies that
0 (i 0 Q) = i (i N Qyr) C Qg

This is important, because goj_il(le- N€2jx) is the domain of ¢y; 0 ;; and Qyy, is the domain of
©ki, 50 the condition ¢;;(€2;; N Q) = Q;; N Qg implies that the domain of ¢y, is a subset of
the domain of ¢y; o ;. The definition of gluing data given by Grimm and Hughes [68, 69]
misses the above condition.

Finding an easily testable necessary and sufficient criterion for the Hausdorff condition
appears to be a very difficult problem. We propose a necessary and sufficient condition, but
it is not easily testable in general. If M is a manifold, then observe that difficulties may arise
when we want to separate two distinct point, p,q € M, such that p and ¢ neither belong
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to the same open, 6;(€2;), nor to two disjoint opens, 6;(€2;) and 0;(€);), but instead, to the
boundary points in (9(0;(€2;;)) N 6;(£2)) U (0(0;(€2;:)) NO;(€2;)). In this case, there are some
disjoint open subsets, U, and U,, of M with p € U, and ¢ € U,, and we get two disjoint open
subsets, V, = 0, (U,) € Q; and V, = 0, (U,) C Q;, with 0;(x) = p, 6;(y) = ¢, and such
that z € 9(;) N Q;, y € () N Q;, and no point in V,, N Q; is the image of any point in
Ve Ny, by ;i Since V, and V,, are open, we may assume that they are open balls. This
necessary condition turns out to be also sufficient.

With the above motivations in mind, here is the definition of sets of gluing data.

Definition 4.1. Let n be an integer with n > 1 and let k& be either an integer with &k > 1
or k =o00. A set of gluing data is a triple, G = ((€%)er, (25) G j)erxr, (Vi) j)ek ), satisfying
the following properties, where I is a (nonempty) countable set:

(1) For every i € I, the set ); is a nonempty open subset of R" called a parametrization
domain, for short, p-domain, and the §2; are pairwise disjoint (i.e., £2; N Q; = O for all

i#9)
(2) For every pair (i,7) € I x I, the set §);; is an open subset of €2;. Furthermore, €; = €,
and Q;; # 0 iff Q;; # 0. Each nonempty ;; (with i # j) is called a gluing domain.
(3) If we let
K:{(Z,j)EIXI|QZ]7é®},
then ¢j;: Qi; — Qj; is a C* bijection for every (i,5) € K called a transition function

(or gluing function) and the following condition holds:

(C) For all ’i,j, ]{I, if jS N ij 7£ @, then ()DZJ(Q]@ N Q]k> = Qij N Qik; and QO]W(LZ') =

Condition (c) is called the cocycle condition.

(4) For every pair (i, j) € K, with i # j, for every x € 9(£2;;)NEY; and every y € 9(2;;)NQ;,
there are open balls, V, and Vj, centered at x and y, so that no point of V,, N €); is the
image of any point of V, N Q;; by ¢j;.

Remarks.

(1) In practical applications, the index set, I, is of course finite and the open subsets, ;,
may have special properties (for example, connected; open simplicies, etc.).

(2) We are only interested in the €2;;’s that are nonempty but empty €2;;’s do arise in proofs
and constructions and this is why our definition allows them.

(3) Observe that €2;; C €; and €2;; C Q;. If i # 7, as Q; and Q; are disjoint, so are €);; and
Q

ij-
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(4) The cocycle condition (c¢) may seem overly complicated but it is actually needed to
guarantee the transitivity of the relation, ~, defined in the proof of Proposition 4.1.
Flawed versions of condition (c) appear in the literature, see the discussion after the
proof of Proposition 4.1. The problem is that ¢y; o ¢;; is a partial function whose
domain, ij_il(jS N Qjk), is not necessarily related to the domain, €, of ¢i,. To
ensure transitivity of ~, we must assert that whenever the composition ¢; o ;; has
a nonempty domain, this domain is contained in the domain, €2, of ¢g;, and that

©r; © @ji and @y, agree in @ﬁl(jS N Q).
Since the ¢;; are bijections, condition (c) implies the following conditions:

(a) @i =idg,, for all i € 1.
(b) wij = goj’il, for all (i,j) € K.

To get (a), set i = j = k. Then, (b) follows from (a) and (c) by setting k = i.

(5) If M is a C* manifold (including k = oo), then using the notation of our introduction,
it is easy to check that the open sets €);, (2;; and the gluing functions, ¢;;, satisfy
the conditions of Definition 4.1 (provided that we fix the charts so that the images
of distinct charts are disjoint). Proposition 4.1 will show that a manifold can be
reconstructed from a set of guing data.

The idea of defining gluing data for manifolds is not new. André Weil introduced this
idea to define abstract algebraic varieties by gluing irreducible affine sets in his book [149]
published in 1946. The same idea is well-known in bundle theory and can be found in

standard texts such as Steenrod [142], Bott and Tu [19], Morita [115] and Wells [151] (the
construction of a fibre bundle from a cocycle is given in Chapter 7, see Theorem 7.4).

The beauty of the idea is that it allows the reconstruction of a manifold, M, without
having prior knowledge of the topology of this manifold (that is, without having explicitly
the underlying topological space M) by gluing open subets of R™ (the €2;’s) according to
prescribed gluing instructions (namely, glue €; and €2; by identifying €2;; and €2;; using ¢;;).
This method of specifying a manifold separates clearly the local structure of the manifold
(given by the €2;’s) from its global structure which is specified by the gluing functions.
Furthermore, this method ensures that the resulting manifold is C* (even for k = oo) with
no extra effort since the gluing functions ¢;; are assumed to be C*.

Grimm and Hughes [68, 69] appear to be the first to have realized the power of this latter
property for practical applications and we wish to emphasize that this is a very significant
discovery. However, Grimm [68] uses a condition stronger than our condition (4) to ensure
that the resulting space is Hausdorff. The cocycle condition in Grimm and Hughes [68, 69]
is also not strong enough to ensure transitivity of the relation ~. We will come back to these
points after the proof of Proposition 4.1.

Working with overlaps of open subsets of the parameter domain makes it much easier to
enforce smoothness conditions compared to the traditional approach with splines where the
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parameter domain is subdivided into closed regions and where enforcing smoothness along
boundaries is much more difficult.

Let us show that a set of gluing data defines a C* manifold in a natural way.

Proposition 4.1. For every set of gluing data, G = (($%)er, (%) j)erxis (i), ek ), there
is an n-dimensional C* manifold, Mg, whose transition functions are the p;;’s.

Proof. Define the binary relation, ~, on the disjoint union, [, ; €, of the open sets, €;, as
follows: For all z,y € [[,c; %,

v~y iff (3(i,5) € K)(z € Qj,y € Qji,y = pji(x)).

Note that if x ~ y and x # y, then i # j, as ¢; = id. But then, as z € ;; C Q,,
y € Q; CQyand QNQ; =0 when i # j, if 2 ~y and z,y € Q;, then x = y. We claim
that ~ is an equivalence relation. This follows easily from the cocycle condition. Clearly,
condition 3a of Definition 4.1 ensures reflexivity, while condition 3b ensures symmetry. To
check transitivity, assume that x ~ y and y ~ 2. Then, there are some i, j, k such that
(i) z € Qij, y € QN Qy, z € Qy, and (ii) y = @ji(x) and z = ¢i;(y). Consequently,
;N #0and x € gpj_l-l(jS N€Q,i), so by 3c, we get goj_il(jS N Q) = Qi N Qi C Q. So,
¢ri(z) is defined and by 3c again, ¢g;(x) = @gj 0 wji(x) = 2, i.e., x ~ z, as desired.

Since ~ is an equivalence relation, let
Mg = (H QZ) /|~
iel

Q; — Mg be the quotient map, with p(z) = [z]|, where
Q,; be the

be the quotient set and let p: [J,;
[z] denotes the equivalence class of x Also, for every i € I, let in;: Q; — []
natural injection and let

i€l
Ti:pOiniZ QZ—>Mg

Since we already noted that if x ~ y and z,y € €);, then x = y, we can conclude that every
7; is injective. We give Mg the coarsest topology that makes the bijections, 7;: €; — 7;,(€;),
into homeomorphisms. Then, if we let U; = 7;(€;) and ; = 7, !, it is immediately verified
that the (U;, ¢;) are charts and that this collection of charts forms a C* atlas for Mg. As
there are countably many charts, Mg is second-countable.

To prove that the topology is Hausdorff, we first prove the following:

Claim. For all (i, j) € I x I, we have 7;(€;) N 7;(€;) # 0 iff (4,5) € K and if so,
i(§0) N 75(25) = 7(ij) = 7;(Lsa)
Assume that 7;(€;)N7;(Q;) # 0 and let [z] € 7:(2;)N7;(€Q;). Observe that [z] € 7;(2;)N7;(2)

iff z ~ x and z ~ y, for some z € §2; and some y € );. Consequently, x ~ y, which implies
that (i,j) € K,z € Q;; and y € Q;;. We have [z] € 7,(€;) iff 2 ~ z, for some x € Q;;. Then,
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either i = j and z = x or ¢ # j and z € §2j;, which shows that [z] € 7;(€2;;) and consequently,
we get 7;(€2;) C 7;(€2;;). Since the same argument applies by interchanging i and j, we have
that 7,(€%;) = 7;(Qy:), for all (i,j) € K. Furthermore, because €;; C €, ©;; C €, and
Tz(QU) = Tj(jS)7 for all (Z,j) S K, we also have that TZ(QZ]) = Tj(jS> - Tl(Ql) N Tj(Qj), for
all (i,7) € K.

For the reverse inclusion, if [z] € 7;(€2;) N 7;(€2;), then we know that there is some z € Q;
and some y € j; such that z ~ z and z ~ y, so [z] = [z] € 7;(;) and [z] = [y] € 75(Qy),
and then we get

7i() N 75(5) € 7() = 7;(Qji) -
This proves that if 7;(€;) N 7;(Q;) # 0, then (4, j) € K and
N

() N 7(Qy) = (i) = 75(Qy1) -

Finally, assume that (7, j) € K. Then, for any z € ;; C €Q;, we have y = ¢j;;(z) € Q;; C
Q; and x ~ y, so that 7;(x) = 7;(y), which proves that 7;(€;) N 7;(€2;) # 0. So, our claim is
true and we can use it.

We now prove that the topology of Mg is Hausdorff. Pick [z],[y] € Mg with [z] # [y],
for some x € ; and some y € ;. Either 7;(€;) N 7;(€2;) = 0, in which case, as 7; and 7; are
homeomorphisms, [z] and [y] belong to the two disjoint open sets 7;(€2;) and 7;(€2;). If not,
then by the Claim, (i,j) € K and

7i(Q:) N 75(Q2y) = 7(Qij) = 75(Qja) -
There are several cases to consider:

1. If ¢ = j then x and y can be separated by disjoint opens, V, and V,, and as 7; is
a homeomorphism, [x] and [y] are separated by the disjoint open subsets 7;(V,) and

75 (Vy)-

2. If i # j, 2 € Q — Q5 and y € Q; — Qy;, then n 7 (Q — Qw) and 7;(Q; — Q;;) are disjoint
open subsets separating [z] and [y], where (;; and Q;; are the closures of (;; and €,
respectively.

3. Ifi# j,z € Qyand y € Qy, as [x] # [y] and y ~ ¢;;(y), then x # ¢;;(y). We can
separate = and ;;(y) by disjoint open subsets, V,, and V,,, and [z] and [y] = [¢;;(y)]
are separated by the disjoint open subsets 7;(V;) and 7;(V,,,(y))-

4. If i # 7, 2 € 0(Q;;) NQ; and y € 9(€2;) N2, then we use condition 4 of Definition 4.1.
This condition yields two disjoint open subsets, V, and V,,, with x € V, and y € V,,
such that no point of V,, N ;; is equivalent to any point of V,, N §2y;, and so 7;(V,) and
7;(V,) are disjoint open subsets separating [z] and [y].

Therefore, the topology of Mg is Hausdorff and Mg is indeed a manifold. Finally, it is trivial

to verify that the transition maps of Mg are the original gluing functions, ,;, since ¢; = 7, *

and @;; = @; o ;. u
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It should be noted that as nice as it is, Proposition 4.1 is a theoretical construction that
yields an “abstract” manifold but does not yield any information as to the geometry of this
manifold. Furthermore, the resulting manifold may not be orientable or compact, even if we
start with a finite set of p-domains.

Here is an example showing that if condition (4) of Definition 4.1 is omitted then we
may get non-Hausdorff spaces. Cindy Grimm uses a similar example in her dissertation [68]
(Appendix C2, page 126), but her presentation is somewhat confusing because her €; and
(), appear to be two disjoint copies of the real line in R?, but these are not open in R?!

Let Q) = (—3,—1), Q2 = (1,3), Q2 = (—3,-2), Qo = (1,2) and @9 (z) = = +4. The
resulting space, M, is a curve looking like a “fork”, and the problem is that the images of
—2 and 2 in M, which are distinct points of M, cannot be separated. Indeed, the images of
any two open intervals (—2 —¢, —2+¢€) and (2—1n,2+1n) (for €, > 0) always intersect since
(—2 —min(e, n), —2) and (2 — min(e, n), 2) are identified. Clearly, condition (4) fails.

Cindy Grimm [68] (page 40) uses a condition stronger than our condition (4) to ensure
that the quotient, Mg is Hausdorff, namely, that for all (i,7) € K with ¢ # j, the quotient
(Q; [19;)/ ~ should be embeddable in R™. This is a rather strong condition that prevents
obtaining a 2-sphere by gluing two open discs in R? along an annulus (see Grimm [68],
Appendix C2, page 126).

Grimm uses the following cocycle condition in [68] (page 40) and [69] (page 361):

(¢') For all x € Q5 N Qg
ori(T) = Prj 0 i),

This condition is not strong enough to imply transitivity of the relation ~, as shown by the
following counter-example:

Let Ql = (073)7 QQ = (475)7 Q?) = (679)7 QIQ = (071)7 QlS = (273>7 Q21 = QZ?) = (47 5)7
Q32 = (8,9), Q31 = (6,7), por1(x) = +4, p3a(x) =z +4 and p31(x) = x + 4.

Note that the pairwise gluings yield Hausdorff spaces. Obviously, 32091 () = x+8, for
all z € Qq5, but Q15 N Q3 = 0. Thus, 0.5 ~ 4.5 ~ 8.5, and if the relation ~ was transitive,
then we would conclude that 0.5 ~ 8.5. However, the definition of the relation ~ requires
that ¢31(0.5) be defined, which is not the case. Therefore, the relation ~ is not transitive.
The problem is that because 15 N Q3 = @), condition (¢’) holds vacuously, but it is not
strong enough to ensure that ¢31(0.5) is defined.

Here is another counter-example in which Q5 N Q43 # (), using a disconnected open, €.

Let Ql - (O,B), QQ - (4,5) U (6,7), Qg = (8,11), Q12 - (0,1) U (2,3), ng - (2,3),
le = Qgg = (4,5)U(6,7), 932 = (8,9)U(10, 11), le = (8,9), ()021(33) = 5L'+4, @32(.1') = iL‘+2
on (6,7), s2(x) = +6 on (4,5), s (z) =z +6.

Note that the pairwise gluings yield Hausdorff spaces. Obviously, @32 0 po1(z) =2 +6 =
w31(x) for all x € Q15N Q3 = (2,3). Thus, 0.5 ~ 4.5 ~ 8.5, but 0.5 ¢ 8.5 since ¢31(0.5) is



192 CHAPTER 4. CONSTRUCTION OF MANIFOLDS FROM GLUING DATA

undefined. This time, condition (¢’) holds and is nontrivial since 215 N 43 = (2, 3), but it is
not strong enough to ensure that ¢3;(0.5) is defined.

It is possible to give a construction, in the case of a surface, which builds a compact man-
ifold whose geometry is “close” to the geometry of a prescribed 3D-mesh (see Siqueira, Xu
and Gallier [141]). Actually, we are not able to guarantee, in general, that the parametriza-
tion functions, 6;, that we obtain are injective, but we are not aware of any algorithm that
achieves this.

Given a set of gluing data, G = ((€)er, (45) G j)erxr, (¥5i),j)ek), it is natural to consider
the collection of manifolds, M, parametrized by maps, 6;: 2; — M, whose domains are the
();’s and whose transitions functions are given by the ¢;;, that is, such that

<sz' = 9;1 (@] 01
We will say that such manifolds are induced by the set of gluing data, G.

The proof of Proposition 4.1 shows that the parametrization maps, 7;, satisfy the prop-
erty: () N7;(Q;) # 0 iff (4,7) € K and if so,

() N 75() = 73(Q5) = 75(Q5)-
Furthermore, they also satisfy the consistency condition:
Ti = Tj © Pji,

for all (¢,j) € K. If M is a manifold induced by the set of gluing data, G, because the 6;’s
are injective and ¢j; = 0]._1 o 6;, the two properties stated above for the 7;’s also hold for the
;’s. We will see in Section 4.2 that the manifold, Mg, is a “universal” manifold induced by
G in the sense that every manifold induced by G is the image of Mg by some C* map.

Interestingly, it is possible to characterize when two manifolds induced by the same set
of gluing data are isomorphic in terms of a condition on their transition functions.

Proposition 4.2. Given any set of gluing data, G = ((%)er, ()G jerxr (©ii)ajyek), for
any two manifolds M and M’ induced by G given by families of parametrizations (€, 0;)ier
and (Q, 0})ier, respectively, if f+ M — M' is a C* isomorphism, then there are C* bijections,
pi: Wiy — W, for some open subsets Wiz, W/, C Q;, such that
Pi(x) =pjopjiopi(x),  forall x€Wy,

with @j; = 8]._1 of; and ¢}, = 9;_1 of.. Furthermore, p; = (/"' o fo8;) | Wi; and if ;"o f o
is a bijection from Q; to itself and 0 o f o 0:(€2ij) = Qij, for all i, j, then Wi; = Wi, = Q.

Proof. The composition 9;71 o f o#; is actually a partial function with domain

dom(0 " o fo ;) ={x € Q| bi(x) € F o bi(%)}
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and its “inverse” 6; ' o f~' o @/ is a partial function with domain
dom(f; o f1 o) ={z € Q| 0i(z) € fobi(Q)}
The composition 8;._1 ofobjop;o00 o ftoh isalso a partial function and we let
Wij = Qi Ndom(0; " o fofi0p007 0 f 1 obl),  pi=(0"0fob) W
and Wj; = pi(W;;). Observe that 0; 0 ;; = 0; 0 Hj_l 06; = 6;, that is,
0:; = 0; 0 pji.
Using this, on W;;, we get

pjogpjiopi_l = Qg_lofoé?jogpjio(eg_lofoei)_l
= 6 ofobiop0f o f T od]
— 63_1of09i00;1of71092
1
= 03 09;:902’1‘7

as claimed. The last part of the proposition is clear. O]

Proposition 4.2 suggests defining a notion of equivalence on sets of gluing data which
yields a converse of this proposition.

Definition 4.2. Two sets of gluing data, G = (()er, (). j)erxr, (¥ji)ij)ex) and G =
(Q)er, (j)@gerxr (P5)ag)ek), over the same sets of Qs and §2;;’s are equivalent iff there
is a family of C* bijections, (p;: Q; — Q)ies, such that p;(€;;) = Q;; and

@31(3:) = p;j 0 ;i O pi (), for all z € Qy;,
for all 7, j.
Here is the converse of Proposition 4.2. It is actually nicer than Proposition 4.2 because

we can take Wi; = W/, = Q.

Proposition 4.3. If two sets of gluing data G = ((S%)er, (%) Gjyerxr, (@ji)ajex) and G' =
(Q)er, (j)gerxr () ager) are equivalent, then there is a C* isomorphism, f: Mg —
Mg, between the manifolds induced by G and G'. Furthermore, for, =1/ 0 p;, for alli € I.

Proof. Let fi: 7:(8%) — 7/(€;) be the C* bijection given by

! -1
fi—TiOpiOTi )
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where the p;: €; — ;’s are the maps giving the equivalence of G and G’. If we prove that f;
and f; agree on the overlap, 7;(€2;) N 7;(€2;) = 7,(;) = 7;(;:), then the f; patch and yield
a C* isomorphism, f: Mg — Mg. The conditions of Proposition 4.3 imply that

@i 0 Pi = pj O Pji
and we know that
T = T]/- ) ¢;Z

Consequently, for every [x] € 7;(€;;) = 7:(€;), with x € ;;, we have

file]) = 7jopor([x])
= 1i0p;07; ([gs(x)])
75 0 pj © wji(w)
= T7;0¢};0pi(x)
= 7] 0pi(x)
= 7jopior ([x])

which shows that f; and f; agree on 7;(€2;) N 7;(£2;), as claimed. O

In the next section, we describe a class of spaces that can be defined by gluing data
and parametrization functions, 6;, that are not necessarily injective. Roughly speaking,
the gluing data specify the topology and the parametrizations define the geometry of the
space. Such spaces have more structure than spaces defined parametrically but they are
not quite manifolds. Yet, they arise naturally in practice and they are the basis of efficient
implementations of very good approximations of 3D meshes.

4.2 Parametric Pseudo-Manifolds

In practice, it is often desirable to specify some n-dimensional geometric shape as a subset of
R? (usually for d = 3) in terms of parametrizations which are functions, ;, from some subset
of R™ into R (usually, n = 2). For “open” shapes, this is reasonably well understood but
dealing with a “closed” shape is a lot more difficult because the parametrized pieces should
overlap as smoothly as possible and this is hard to achieve. Furthermore, in practice, the
parametrization functions, ;, may not be injective. Proposition 4.1 suggests various ways
of defining such geometric shapes. For the lack of a better term, we will call these shapes,
parametric pseudo-manifolds.

Definition 4.3. Let n, k,d be three integers with d > n > 1l and £k > 1 or k = co. A
parametric C* pseudo-manifold of dimension n in R? is a pair, M = (G, (6;)ic1), where
G = (()er, ()G jyerxt (@ji)ajek) is a set of gluing data for some finite set, I, and each
0; is a C* function, 6,: Q; — RY, called a parametrization such that the following property
holds:
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(C) For all (i,7) € K, we have
Qi = 9]' (¢] QOJZ

For short, we use terminology parametric pseudo-manifold. The subset, M C RY, given by

M = J6i(<x)
iel
is called the image of the parametric pseudo-manifold, M. When n = 2 and d = 3, we say
that M is a parametric pseudo-surface.

Condition (C) obviously implies that
0i(Shiz) = 0;($52),

for all (z,7) € K. Consequently, 6; and 6, are consistent parametrizations of the overlap,
0;(2;) = 6,(2;). Thus, the shape, M, is covered by pieces, U; = 6;(2;), not necessarily open,
with each U; parametrized by 6; and where the overlapping pieces, U; N Uj, are parametrized
consistently. The local structure of M is given by the #;’s and the global structure is given
by the gluing data. We recover a manifold if we require the ; to be bijective and to satisfy
the following additional conditions:

(C”) For all (i,j) € K,

(C”) For all (i,j) ¢ K,
0;(S2) NO; () = 0.

Even if the 6;’s are not injective, properties (C’) and (C”) would be desirable since they
guarantee that 6;(€2; —Q;;) and 0;(€; —Q;;) are parametrized uniquely. Unfortunately, these
properties are difficult to enforce. Observe that any manifold induced by G is the image of
a parametric pseudo-manifold.

Although this is an abuse of language, it is more convenient to call M a parametric
pseudo-manifold, or even a pseudo-manifold.

We can also show that the parametric pseudo-manifold, M, is the image in R? of the
abstract manifold, Mg.

Proposition 4.4. Let M = (G, (0;)icr) be parametric C* pseudo-manifold of dimension n in
R?, where G = (()er, ()G jyerxt, (@ii)jyex) s a set of gluing data for some finite set, I.
Then, the parametrization maps, 6;, induce a surjective map, ©: Mg — M, from the abstract
manifold, Mg, specified by G to the image, M C R%, of the parametric pseudo-manifold, M,
and the following property holds: For every §2;,

0; =0 o,

where the 7;: Q; — Mg are the parametrization maps of the manifold Mg (see Proposition
4.1). In particular, every manifold, M, induced by the gluing data G is the image of Mg by
amap ©: Mg — M.
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Proof. Recall that

Mg = (HQz>/ ~

i€l
where ~ is the equivalence relation defined so that, for all z,y € [],.; <,
T~y if (H(Z,j) € K)(.CE € Qij; Yy < jS, Yy = g0ﬂ<.’13')>
The proof of Proposition 4.1 also showed that 7;(€2;) N 7;(Q;) # 0 iff (4,7) € K and if so,
(%) N 73(Qy) = 1 (Qyy) = 7;(Qja).-
In particular,
(% — Qi) N 7(Q5 — Qi) =0
for all (i,j) € I x I (4 = Qi = 0 when (4,5) ¢ K). These properties with the fact
that the 7;’s are injections show that for all (4, ) ¢ K, we can define ©;: 7;(€;) — R and
@ji Tl'<Qj) — R4 by
O;([z]) = bi(z), v € O;([y]) =0;(y), y € Q.
For (i,j) € K, as the the 7;’s are injections we can define ©;: 7;(Q; — ;) — R? and
@jl T,;(Qj — sz) — Rd by
Oi([z]) = Oi(x), v € Qi = Qy; O;([y]) = 05(y), y € @ — Q.

It remains to define ©; on 7;(€);;) and ©; on 7;(£2;;) in such a way that they agree on
7;(945) = 7;(€2;;). However, condition (C) in Definition 4.3 says that for all z € €;;,

0i(z) = 0;(p;i(z)).
Consequently, if we define ©; on 7;(€2;;) and ©; on 7;(€2;;) by
Oi([z]) = bi(x), = € Qij,  O4([yl) = 0;(y), y € Qjs,

as & ~ @j;(z), we have

0, ([x]) = bi(x) = 0;(¢;i(x)) = O;([psi(2)]) = 6;([]),

which means that ©; and ©; agree on 7;(€2;;) = 7;(€2;;). But then, the functions, ©;, agree
whenever their domains overlap and so, they patch to yield a function, ©, with domain Mg
and image M. By construction, ; = © o 7; and as a manifold induced by G is a parametric
pseudo-manifold, the last statement is obvious. O

The function, ©: Mg — M, given by Proposition 4.4 shows how the parametric pseudo-
manifold, M, differs from the abstract manifold, Mg. As we said before, a practical method
for approximating 3D meshes based on parametric pseudo surfaces is described in Siqueira,
Xu and Gallier [141].



Chapter 5

Lie Groups, Lie Algebras and the
Exponential Map

5.1 Lie Groups and Lie Algebras

In Chapter 1 we defined the notion of a Lie group as a certain type of manifold embedded in
RY for some N > 1. Now that we have the general concept of a manifold, we can define Lie
groups in more generality. Besides classic references on Lie groups and Lie Algebras, such
as Chevalley [34], Knapp [90], Warner [148], Duistermaat and Kolk [54], Brocker and tom
Dieck [25], Sagle and Walde [130], Helgason [74], Serre [138, 137], Kirillov [87], Fulton and
Harris [58] and Bourbaki [22], one should be aware of more introductory sources and surveys
such as Hall [71], Sattinger and Weaver [135], Carter, Segal and Macdonald [31], Curtis [39],
Baker [13], Rossmann [128], Bryant [26], Mneimné and Testard [112] and Arvanitoyeogos [8].

Definition 5.1. A Lie group is a nonempty subset, GG, satisfying the following conditions:
(a) G is a group (with identity element denoted e or 1).
(b) G is a smooth manifold.

(c¢) G is a topological group. In particular, the group operation, - : G x G — G, and the
inverse map, ~': G — G, are smooth.

We have already met a number of Lie groups: GL(n,R), GL(n,C), SL(n,R), SL(n,C),
O(n), SO(n), U(n), SU(n), E(n,R). Also, every linear Lie group (i.e., a closed subgroup
of GL(n,R)) is a Lie group.

We saw in the case of linear Lie groups that the tangent space to G at the identity,
g = T1G, plays a very important role. In particular, this vector space is equipped with a
(non-associative) multiplication operation, the Lie bracket, that makes g into a Lie algebra.
This is again true in this more general setting.

Recall that Lie algebras are defined as follows:

197
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Definition 5.2. A (real) Lie algebra, A, is a real vector space together with a bilinear map,
[, -]: Ax A — A, called the Lie bracket on A such that the following two identities hold for
all a,b,c € A:

[CL, a] =0,

and the so-called Jacobi identity
[a, b, ¢]] + e, [a, O]} + [b, [¢, a]] = 0.
It is immediately verified that [b,a] = —[a, b].
Let us also recall the definition of homomorphisms of Lie groups and Lie algebras.

Definition 5.3. Given two Lie groups Gy and Gy, a homomorphism (or map) of Lie groups
is a function, f: G; — Ga, that is a homomorphism of groups and a smooth map (between
the manifolds G; and G3). Given two Lie algebras A; and Ay, a homomorphism (or map)
of Lie algebras is a function, f: A; — As, that is a linear map between the vector spaces
A; and A, and that preserves Lie brackets, i.e.,

f([A, B]) = [f(A), f(B)]
for all A, B € Aj;.

An isomorphism of Lie groups is a bijective function f such that both f and f~! are
maps of Lie groups, and an isomorphism of Lie algebras is a bijective function f such that
both f and f~! are maps of Lie algebras.

The Lie bracket operation on g can be defined in terms of the so-called adjoint represen-
tation.

Given a Lie group G, for every a € GG we define left translation as the map, L,: G — G,
such that L,(b) = ab, for all b € G, and right translation as the map, R,: G — G, such
that R,(b) = ba, for all b € G. Because multiplication and the inverse maps are smooth,
the maps L, and R, are diffeomorphisms, and their derivatives play an important role. The
inner automorphisms R,-1 o L, (also written R,-1L, or Ad,) also play an important role.
Note that

R,1Ly(b) = aba™.

The derivative
d(RaflLa)lf TlG — TlG

of R,-1L,: G — G at 1 is an isomorphism of Lie algebras, and since T1G = g, we get a map
denoted
Ad,: g —g.

The map a — Ad, is a map of Lie groups

Ad: G — GL(g),
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called the adjoint representation of G (where GL(g) denotes the Lie group of all bijective
linear maps on g).

In the case of a linear group, one can verify that
Ad(a)(X) = Ad,(X) = aXa™*

for all a € G and all X € g.
The derivative
dAd;: g — gl(g)

of Ad: G — GL(g) at 1 is map of Lie algebras, denoted by

ad: g — gl(g),

called the adjoint representation of g. (Recall that Theorem 1.28 immediately implies that
the Lie algebra, gl(g), of GL(g) is the vector space, End(g, g), of all endomorphisms of g,
that is, the vector space of all linear maps on g).

In the case of a linear group, it can be verified that
ad(A)(B) = [A, B] = AB — BA,

for all A, B € g.

One can also check (in general) that the Jacobi identity on g is equivalent to the fact
that ad preserves Lie brackets, i.e., ad is a map of Lie algebras:

ad([u, v]) = [ad(u), ad(v)],

for all u,v € g (where on the right, the Lie bracket is the commutator of linear maps on g).

This is the key to the definition of the Lie bracket in the case of a general Lie group (not
just a linear Lie group).

Definition 5.4. Given a Lie group, G, the tangent space, g = TG, at the identity with the
Lie bracket defined by
[u, v] = ad(u)(v), for all u,v € g,

is the Lie algebra of the Lie group G. The Lie algebra, g, of a Lie group, G, is also denoted
by L(G) (for instance, when the notation g is already used for something else).

Actually, we have to justify why g really is a Lie algebra. For this, we have

Proposition 5.1. Given a Lie group, G, the Lie bracket, [u, v] = ad(u)(v), of Definition
5.4 satisfies the azioms of a Lie algebra (given in Definition 5.2). Therefore, g with this
bracket is a Lie algebra.
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Proof. The proof requires Proposition 5.9, but we prefer to defer the proof of this Proposition
until section 5.3. Since
Ad: G — GL(g)

is a Lie group homomorphism, by Proposition 5.9, the map ad = dAd; is a homomorphism
of Lie algebras, ad: g — gl(g), which means that

ad([u,v]) = ad(u) o ad(v) — ad(v) o ad(u), for all u,v € g,

since the bracket in gl(g) = End(g,g), is just the commutator. Applying the above to
w € g, we get the Jacobi identity. We still have to prove that [u,u] = 0, or equivalently,
that [v,u] = —[u, v]. For this, following Duistermaat and Kolk [54] (Chapter 1, Section 1),
consider the map

G xG— G: (a,b) — aba 'b".

It is easy to see that its differential at (1,1) is the zero map. We can then compute the
differential w.r.t. b at b = 1 and evaluate at v € g, getting (Ad, — id)(v). Then, the second
derivative w.r.t. a at a = 1 evaluated at u € g is [u, v]. On the other hand if we differentiate
first w.r.t. a and then w.r.t. b, we first get (id — Ad,)(u) and then —[v,u]. As our original
map is smooth, the second derivative is bilinear symmetric, so [u,v] = —[v, u]. O

Remark: After proving that g is isomorphic to the vector space of left-invariant vector fields
on G, we get another proof of Proposition 5.1.

5.2 Left and Right Invariant Vector Fields, the Expo-
nential Map

A fairly convenient way to define the exponential map is to use left-invariant vector fields.

Definition 5.5. If G is a Lie group, a vector field, X, on G is left-invariant (resp. right-
invariant) iff
d(Lq)s(X (D)) = X (Lo(b)) = X (ab), for all a,b € G.

(resp.
! d(Ra)p(X (b)) = X (Ra(b)) = X(ba), forall a,be G.)

Equivalently, a vector field, X, is left-invariant iff the following diagram commutes (and
similarly for a right-invariant vector field):

¢ ) o

X TX
¢ —Z-¢
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If X is a left-invariant vector field, setting b = 1, we see that
X(a) = d(La)1(X (1)),
which shows that X is determined by its value, X (1) € g, at the identity (and similarly for
right-invariant vector fields).
Conversely, given any v € g, we can define the vector field, v¥, by
vi(a) = d(Ly),(v), foralla€ G.
We claim that v* is left-invariant. This follows by an easy application of the chain rule:
vi(ab) = d(Lap)i(v)
= d(Lg o Ly)1(v)
= d(La)p(d(Lp)1(v))
= d(La)y(v"(b)).

Furthermore, v*(1) = v. Therefore, we showed that the map, X +~ X (1), establishes an
isomorphism between the space of left-invariant vector fields on G and g. In fact, the map
G x g — TG given by (a,v) — v¥(a) is an isomorphism between G x g and the tangent
bundle, TG.

Remark: Given any v € g, we can also define the vector field, v, by
vfi(a) = d(R,)1(v), forallacG.

It is easily shown that v® is right-invariant and we also have an isomorphism G x g — TG
given by (a,v) — v%(a).

Another reason why left-invariant (resp. right-invariant) vector fields on a Lie group are
important is that they are complete, i.e., they define a flow whose domain is R x G. To
prove this, we begin with the following easy proposition:

Proposition 5.2. Given a Lie group, G, if X is a left-invariant (resp. right-invariant)
vector field and @ is its flow, then

O(t,g) = g®(t,1) (resp. @(t,g) = ®(t,1)g), for all (t,9) € D(X).
Proof. Write
V(1) = g®(t,1) = Le(P(2, 1)),
Then, 7(0) = ¢g and, by the chain rule
H(t) = d(Lg)a)(®(t, 1)) = d(Ly)awn (X (D(1,1))) = X (Lg(D(1,1))) = X(v(1)).
By the uniqueness of maximal integral curves, y(t) = ®(t, g) for all ¢, and so,
O(t, g) = g®(t,1).

A similar argument applies to right-invariant vector fields. O]
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Proposition 5.3. Given a Lie group, G, for every v € g, there is a unique smooth homo-
morphism, h,: (R,+) — G, such that h,(0) = v. Furthermore, h,(t) is the mazimal integral
curve of both v and v® with initial condition 1 and the flows of v and v¥ are defined for
all t € R.

Proof. Let ®¥(g) denote the flow of v”. As far as defined, we know that

01, (1) = (D7(1)) = Y (1)PL(1),
by Proposition 5.2. Now, if ®}(1) is defined on | — €, €[, setting s = ¢, we see that ®}(1) is
actually defined on | — 2¢,2¢[. By induction, we see that ®f(1) is defined on | — 2"¢, 2"¢[ ,
for all n > 0, and so, ®¥(1) is defined on R and the map ¢ — ®}(1) is a homomorphism,

he: (R, +) = G, with h,(0) = v. Since ®¥(g) = g®?(1), the flow, ®¥(g), is defined for all
(t,g) € R x G. A similar proof applies to vf*. To show that h, is smooth, consider the map

RxGxg— Gxg, where (t,g,v)— (9P/(1),v).
It is immediately seen that the above is the flow of the vector field
(9,v) = (v(9),0),

and thus, it is smooth. Consequently, the restriction of this smooth map to R x {1} x {v},
which is just ¢ — ®}(1) = h,(t), is also smooth.

Assume h: (R, +) — G is a smooth homomorphism with A(0) = v. From
h(t + s) = h(t)h(s) = h(s)h(t),

if we differentiate with respect to s at s = 0, we get

dh

= (8) = (L) (v) = v* (h(1))
and

dh .

(1) = d(Ra(v) = v (n(1).
Therefore, h(t) is an integral curve for v’ and v® with initial condition h(0) = 1 and
h= (1), 0

Since h,: (R,+) — G is a homomorphism, the integral curve, h,, if often referred to as
a one-parameter group. Proposition 5.3 yields the definition of the exponential map.

Definition 5.6. Given a Lie group, G, the exponential map, exp: g — G, is given by

exp(v) = h,(1) = ®J(1), for allv € g.
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We can see that exp is smooth as follows. As in the proof of Proposition 5.3, we have
the smooth map

RxGxg— Gxg, where (tg,v)— (g®}(1),0),
which is the flow of the vector field
(9,v) = (v(9),0).

Consequently, the restriction of this smooth map to {1} x {1} x g, which is just
v — ®Y(1) = exp(v), is also smooth.

Observe that for any fixed t € R, the map
s+ hy(st)
is a smooth homomorphism, h, such that h(O) = tv. By uniqueness, we have
hy(st) = hy(s).
Setting s = 1, we find that
hy(t) = exp(tv), for all v e gandallteR.
Then, differentiating with respect to ¢t at t = 0, we get
v = dexpy(v),

i.e., dexp, = idy. By the inverse function theorem, exp is a local diffeomorphism at 0. This
means that there is some open subset, U C g, containing 0, such that the restriction of exp
to U is a diffeomorphism onto exp(U) C G, with 1 € exp(U). In fact, by left-translation, the
map v — gexp(v) is a local diffeomorphism between some open subset, U C g, containing
0 and the open subset, exp(U), containing g. The exponential map is also natural in the
following sense:

Proposition 5.4. Given any two Lie groups, G and H, for every Lie group homomorphism,
f: G — H, the following diagram commutes:

G-—1-H
expT Texp
g b

Proof. Observe that the map h: t — f(exp(tv)) is a homomorphism from (R, +) to G such
that h(0) = df;(v). Proposition 5.3 shows that f(exp(v)) = exp(dfi(v)). O
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A wuseful corollary of Proposition 5.4 is:

Proposition 5.5. Let G be a connected Lie group and H be any Lie group. For any two
homomorphisms, ¢1: G — H and @o: G — H, if d(¢1)1 = d(v2)1, then @1 = ps.

Proof. We know that the exponential map is a diffeomorphism on some small open subset,
U, containing 0. Now, by Proposition 5.4, for all a € exp(U), we have

pi(a) = expy (d(g;)1(expg'(a))), i=1,2.

Since d(p1)1 = d(p2)1, we conclude that ¢1 = @9 on exps(U). However, as G is connected,
Proposition 2.18 implies that G is generated by exps(U) (we can easily find a symmetric
neighborhood of 1 in expg(U)). Therefore, ¢1 = @2 on G. O

The above proposition shows that if G is connected, then a homomorphism of Lie groups,
¢: G — H, is uniquely determined by the Lie algebra homomorphism, dy;: g — b.

We obtain another useful corollary of Proposition 5.4 when we apply it to the adjoint
representation of G,

Ad: G — GL(g)

and to the conjugation map,
Ad,: G — G,

where Ad,(b) = aba™!. In the first case, dAd; = ad, with ad: g — gl(g) and in the second
case, d(Ad,); = Ad,.

Proposition 5.6. Given any Lie group, G, the following properties hold:

(1)
Ad(exp(u)) = e, for allu € g,

where exp: g — G is the exponential of the Lie group, G, and f s e is the exponential

map given by
ok
o
/=2
k=0

for any linear map (matriz), f € gl(g). Equivalently, the following diagram commutes:

G —4 GL(g)
exp Tfi—mf
g — ol(g).
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(2)
exp(tAd,(u)) = gexp(tu)g ™,

forallueg, all g € G and all t € R. Equivalently, the following diagram commutes:

G ﬂ) G
exp{ ]exp

Since the Lie algebra g = T1G is isomorphic to the vector space of left-invariant vector
fields on G and since the Lie bracket of vector fields makes sense (see Definition 3.20), it
is natural to ask if there is any relationship between, [u, v], where [u, v] = ad(u)(v), and
the Lie bracket, [uf, v], of the left-invariant vector fields associated with u,v € g. The
answer is: Yes, they coincide (via the correspondence u +— u). This fact is recorded in the
proposition below whose proof involves some rather acrobatic uses of the chain rule found in
Warner [148] (Chapter 3), Brocker and tom Dieck [25] (Chapter 1, Section 2), or Marsden
and Ratiu [103] (Chapter 9).

Proposition 5.7. Given a Lie group, G, we have

[u”, v"](1) = ad(u)(v), for allu,v € g.

We can apply Proposition 2.22 and use the exponential map to prove a useful result
about Lie groups. If G is a Lie group, let Gg be the connected component of the identity.
We know Gy is a topological normal subgroup of G and it is a submanifold in an obvious
way, so it is a Lie group.

Proposition 5.8. If G is a Lie group and Gy is the connected component of 1, then Gq is
generated by exp(g). Moreover, Gy is countable at infinity.

Proof. We can find a symmetric open, U, in g in containing 0, on which exp is a diffeo-
morphism. Then, apply Proposition 2.22 to V' = exp(U). That Gq is countable at infinity
follows from Proposition 2.23. O]

5.3 Homomorphisms of Lie Groups and Lie Algebras,
Lie Subgroups
If G and H are two Lie groups and ¢: G — H is a homomorphism of Lie groups, then

dpy: g — b is a linear map between the Lie algebras g and h of G and H. In fact, it is a Lie
algebra homomorphism, as shown below.
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Proposition 5.9. If G and H are two Lie groups and ¢: G — H is a homomorphism of
Lie groups, then
dp o Adg = Adyg odpr, forall g € G,

that is, the following diagram commutes

g
Adgj

g
and dp1: g — b is a Lie algebra homomorphism.
Proof. Recall that

dp1
-

Ny

Ad

-

e(9)

—
dp1

Ny

Ry1L,(b) = aba™', foralla,be

and that the derivative
d(R;—1Ly)1:9—9

of R,-1L, at 1 is an isomorphism of Lie algebras, denoted by Ad,: g — g. The map a — Ad,
is a map of Lie groups
Ad: G — GL(g),

(where GL(g) denotes the Lie group of all bijective linear maps on g) and the derivative
dAd;: g — gl(g)
of Ad at 1 is map of Lie algebras, denoted by
ad: g — gl(g),

called the adjoint representation of g (where gl(g) denotes the Lie algebra of all linear maps
on g). Then, the Lie bracket is defined by

[u, v] = ad(u)(v), for all u,v € g.
Now, as ¢ is a homomorphism, we have
p(Ra-1La(b)) = p(aba™") = p(a)p(b)p(a)™" = Rp)-1 Lo (b)),
and by differentiating w.r.t. b at b = 1 in the direction, v € g, we get
dp1(Ada(v)) = Adga)(der (),

proving the first part of the proposition. Differentiating again with respect to a at a = 1 in
the direction, u € g, (and using the chain rule), we get

der(ad(u)(v)) = ad(de: (u))(de: (v)),
ie.,
dipr[u, v] = [dir(u), dp: (v)],
which proves that dy; is indeed a Lie algebra homomorphism. O]
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Remark: If we identify the Lie algebra, g, of G with the space of left-invariant vector fields
on G, the map dp;: g — b is viewed as the map such that, for every left-invariant vector
field, X, on G, the vector field dp;(X) is the unique left-invariant vector field on H such
that

dp1(X)(1) = de: (X(1)),
i.e., dp1(X) = dp(X(1))E. Then, we can give another proof of the fact that dy, is a Lie
algebra homomorphism using the notion of ¢-related vector fields.

Proposition 5.10. If G and H are two Lie groups and p: G — H is a homomorphism of
Lie groups, if we identify g (resp. b) with the space of left-invariant vector fields on G (resp.
left-invariant vector fields on H ), then,

(a) X and dp(X) are p-related, for every left-invariant vector field, X, on G;
(b) dpi: g — b is a Lie algebra homomorphism.
Proof. The proof uses Proposition 3.20. For details, see Warner [148]. O
We now consider Lie subgroups. As a preliminary result, note that if ¢: G — H is an
injective Lie group homomorphism, then dy,: T,G — T, H is injective for all g € G. As
g = 171G and T,G are isomorphic for all g € G (and similarly for h = Ty H and T}, H for all

h € H), it is sufficient to check that dy;: g — b is injective. However, by Proposition 5.4,
the diagram

G- H
expT Texp
9 )

commutes, and since the exponential map is a local diffeomorphism at 0, as ¢ is injective,
then dy, is injective, too. Therefore, if p: G — H is injective, it is automatically an
immersion.

Definition 5.7. Let G be a Lie group. A set, H, is an immersed (Lie) subgroup of G iff
(a) H is a Lie group;

(b) There is an injective Lie group homomorphism, ¢: H — G (and thus, ¢ is an immer-
sion, as noted above).

We say that H is a Lie subgroup (or closed Lie subgroup) of G iff H is a Lie group that is a
subgroup of G and also a submanifold of G.

Observe that an immersed Lie subgroup, H, is an immersed submanifold, since ¢ is an
injective immersion. However, o(H) may not have the subspace topology inherited from G
and ¢(H) may not be closed.
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An example of this situation is provided by the 2-torus, 7% = SO(2) x SO(2), which can
be identified with the group of 2 x 2 complex diagonal matrices of the form

e
(0 ei92)

where 6,,0, € R. For any ¢ € R, let S, be the subgroup of T2 consisting of all matrices of

the form §
e’ 0
( O eict) ) t € R

It is easily checked that S, is an immersed Lie subgroup of T2 iff ¢ is irrational. However,
when c is irrational, one can show that S, is dense in 7 but not closed.

As we will see below, a Lie subgroup, is always closed. We borrowed the terminology
“immersed subgroup” from Fulton and Harris [58] (Chapter 7), but we warn the reader that
most books call such subgroups “Lie subgroups” and refer to the second kind of subgroups
(that are submanifolds) as “closed subgroups”.

Theorem 5.11. Let G be a Lie group and let (H,p) be an immersed Lie subgroup of G.
Then, ¢ is an embedding iff p(H) is closed in G. As as consequence, any Lie subgroup of G
15 closed.

Proof. The proof can be found in Warner [148] (Chapter 1, Theorem 3.21) and uses a little
more machinery than we have introduced. However, we prove that a Lie subgroup, H, of G

is closed. The key to the argument is this: Since H is a submanifold of GG, there is chart,
(U, ), of G, with 1 € U, so that

p(UNH) = oU) N (B™ X {0n-m})

By Proposition 2.15, we can find some open subset, V C U, with 1 € V, so that V = V!
and V C U. Observe that

(VN H) = (V)N (R™ % {0p-m})

and since V is closed and ¢ is a homeomorphism, it follows that V N H is closed. Thus,
VNH=VNH (asVNH=VNH). Now, pick any y € H. As 1 € V™', the open set yV !
contains y and since y € H, we must have yV ' N H # (. Let x € yV ' N H, then x € H
and y € V. Then, y € V N H, which implies 2= 'y € VN H C VN H =V N H. Therefore,
x 'y € H and since x € H, we get y € H and H is closed. O]

We also have the following important and useful theorem: If GG is a Lie group, say that
a subset, H C G, is an abstract subgroup iff it is just a subgroup of the underlying group of
G (i.e., we forget the topology and the manifold structure).

Theorem 5.12. Let G be a Lie group. An abstract subgroup, H, of G is a submanifold (i.e.,
a Lie subgroup) of G iff H is closed (i.e, H with the induced topology is closed in G).
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Proof. We proved the easy direction of this theorem above. Conversely, we need to prove
that if the subgroup, H, with the induced topology is closed in G, then it is a manifold.
This can be done using the exponential map, but it is harder. For details, see Brocker and
tom Dieck [25] (Chapter 1, Section 3) or Warner [148], Chapter 3. O

5.4 The Correspondence Lie Groups—Lie Algebras

Historically, Lie was the first to understand that a lot of the structure of a Lie group is
captured by its Lie algebra, a simpler object (since it is a vector space). In this short
section, we state without proof some of the “Lie theorems”, although not in their original
form.

Definition 5.8. If g is a Lie algebra, a subalgebra, b, of g is a (linear) subspace of g such
that [u,v] € b, for all u,v € h. If h is a (linear) subspace of g such that [u,v] € b for all
u € h and all v € g, we say that b is an udeal in g.

For a proof of the theorem below, see Warner [148] (Chapter 3) or Duistermaat and Kolk
[54] (Chapter 1, Section 10).

Theorem 5.13. Let G be a Lie group with Lie algebra, g, and let (H,y) be an immersed
Lie subgroup of G with Lie algebra by, then dp1b is a Lie subalgebra of g. Conversely, for
each subalgebra, by, of g, there is a unique connected immersed subgroup, (H, ), of G so that
dprh = H In fact, as a group, ¢(H) is the subgroup of G generated by exp(E). Furthermore,
normal subgroups correspond to ideals.

Theorem 5.13 shows that there is a one-to-one correspondence between connected im-
mersed subgroups of a Lie group and subalgebras of its Lie algebra.

Theorem 5.14. Let G and H be Lie groups with G connected and simply connected and let
g and b be their Lie algebras. For every homomorphism, 1: g — b, there is a unique Lie
group homomorphism, ¢: G — H, so that dp, = 1.

Again a proof of the theorem above is given in Warner [148] (Chapter 3) or Duistermaat
and Kolk [54] (Chapter 1, Section 10).

Corollary 5.15. If G and H are connected and simply connected Lie groups, then G and
H are isomorphic iff g and b are isomorphic.

It can also be shown that for every finite-dimensional Lie algebra, g, there is a connected
and simply connected Lie group, GG, such that g is the Lie algebra of G. This is a consequence
of deep theorem (whose proof is quite hard) known as Ado’s theorem. For more on this, see
Knapp [90], Fulton and Harris [58], or Bourbaki [22].
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In summary, following Fulton and Harris, we have the following two principles of the Lie
group/Lie algebra correspondence:

First Principle: If G and H are Lie groups, with G connected, then a homomorphism of Lie
groups, ¢: G — H, is uniquely determined by the Lie algebra homomorphism, dy;: g — b.

Second Principle: Let G and H be Lie groups with G connected and simply connected and
let g and b be their Lie algebras. A linear map, ¢): g — b, is a Lie algebra map iff there is a
unique Lie group homomorphism, ¢: G — H, so that dyp; = .

5.5 More on the Lorentz Group SOy(n, 1)

In this section, we take a closer look at the Lorentz group SOg(n, 1) and, in particular, at the
relationship between SOq(n, 1) and its Lie algebra, so(n,1). The Lie algebra of SOy(n, 1)
is easily determined by computing the tangent vectors to curves, ¢t — A(t), on SOg(n,1)
through the identity, . Since A(t) satisfies

ATJA =,
differentiating and using the fact that A(0) = I, we get
AT+ JA =0

Therefore,
50(”, 1) = {A € Matn+17n+1(R) | ATJ + JA = O}

This means that JA is skew-symmetric and so,

son. )= { (5 1) € Mitvrsna(®) [ue Ry, 57 =5},

Observe that every matrix A € so(n, 1) can be written uniquely as

(& 0)= (" o)+ (i o)

where the first matrix is skew-symmetric, the second one is symmetric and both belong to
s0(n,1). Thus, it is natural to define

{2 Y
p={<u0T 8) \ueRn}.

and
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It is immediately verified that both € and p are subspaces of so(n, 1) (as vector spaces) and
that € is a Lie subalgebra isomorphic to so(n), but p is not a Lie subalgebra of so(n, 1)
because it is not closed under the Lie bracket. Still, we have

g ce [epCp, [pplCE
Clearly, we have the direct sum decomposition
so(n,1) =¢t&p,

known as Cartan decomposition. There is also an automorphism of so(n, 1) known as the

Cartan involution, namely,
O(A) = —AT,

and we see that
t={Acso(n,1)|0(A)=A} and p={Acso(n,1)|0(A) =—-A}.
Unfortunately, there does not appear to be any simple way of obtaining a formula for
exp(A), where A € so(n, 1) (except for small n—there is such a formula for n = 3 due to

Chris Geyer). However, it is possible to obtain an explicit formula for the matrices in p.
This is because for such matrices, A, if we let w = |ju|| = VuTu, we have

A3 = WPA.
Thus, we get
Proposition 5.16. For every matriz, A € p, of the form

0 wu
()

coshw—1 inh inh2 i
eA (I+ ( =5 )UU,T Snl, wu> B ( /I_I_ smj};wuu‘r smhwu>

we have

- MUT cosh w sinhw,, T *
w HEE cosh w

Proof. Using the fact that A3 = w?A, we easily prove that

AT Sinth+ COShw—1A27

w w?

which is the first equation of the proposition, since

A2 wu' 0 _ wu' 0
V0 uw'w) L0 W)

We leave as an exercise the fact that
(I N (coshw — 1)uuT)2 4 sinh*w -

uu .
w? w?
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Now, it clear from the above formula that each e, with B € p is a Lorentz boost.
Conversely, every Lorentz boost is the exponential of some B € p, as shown below.

Proposition 5.17. Fvery Lorentz boost,

4 (TE ),

UT C

with ¢ = 4/ HvH2 +1, is of the form A = P, for B € p, i.e., for some B € so(n,1) of the

form
0 wu
s (2 )
0 u

(«/I—i— Si“f;wuuT Si“j}“’u) _ (\/I-i-UUT v)

Proof. We need to find some

solving the equation

T

sinh w UT v C

w

cosh w

with w = |jul| and ¢ = {/||v||* +1. When v = 0, we have A = I, and the matrix B = 0
corresponding to u = 0 works. So, assume v # 0. In this case, ¢ > 1. We have to solve the

equation coshw = ¢, that is,
e — 2ce” +1=0.

The roots of the corresponding algebraic equation X? —2¢X 4+ 1 = 0 are

X=c++vc2-1.

As ¢ > 1, both roots are strictly positive, so we can solve for w, say w = log(c++v/¢? — 1) # 0.
Then, sinhw # 0, so we can solve the equation

sinh w
U=,
w
which yields a B € so(n, 1) of the right form with A = e?. O

Remarks:

(1) Tt is easy to show that the eigenvalues of matrices

0 wu
()

are 0, with multiplicity n — 1, ||u|| and — ||u||. Eigenvectors are also easily determined.
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(2) The matrices, B € so(n, 1), of the form

0 0 0
B—|: " i
0 --- 0 «
0 -« a 0

are easily seen to form an abelian Lie subalgebra, a, of so(n, 1) (which means that for
all B,C € a, [B,C] =0, i.e., BC'= CB). One will easily check that for any B € a, as
above, we get

1 -+ 0 0 0
=10 ... 1 0 0

0o - 0 cosha sinha

0 - 0 sinha cosha

The matrices of the form, e, with B € a, form an abelian subgroup, A, of SOg(n, 1)
isomorphic to SOy(1,1). As we already know, the matrices, B € so(n, 1), of the form

B 0

0 0)°
where B is skew-symmetric, form a Lie subalgebra, £, of so(n, 1). Clearly, £ is isomor-
phic to so(n) and using the exponential, we get a subgroup, K, of SOy (n, 1) isomorphic

to SO(n). It is also clear that €N a = (0), but £ & a is not equal to so(n,1). What is
the missing piece? Consider the matrices, N € so(n, 1), of the form

0 —u u
N=|u" 0 0 ,
u' 0 0

where u € R" . The reader should check that these matrices form an abelian Lie
subalgebra, n, of so(n, 1) and that

so(n,1) =t D adn.

This is the Iwasawa decomposition of the Lie algebra so(n, 1). Furthermore, the reader
should check that every N € n is nilpotent; in fact, N®> = 0. (It turns out that n is
a nilpotent Lie algebra, see Knapp [90]). The connected Lie subgroup of SOg(n,1)
associated with n is denoted N and it can be shown that we have the Iwasawa decom-
position of the Lie group SOq(n,1):

SOq(n,1) = KAN.
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It is easy to check that [a,n] C n, so a @ n is a Lie subalgebra of so(n,1) and n is an
ideal of a®n. This implies that /N is normal in the group corresponding to a®n, so AN
is a subgroup (in fact, solvable) of SO¢(n, 1). For more on the Iwasawa decomposition,
see Knapp [90]. Observe that the image, 1, of n under the Cartan involution, 6, is the
Lie subalgebra

0 U U
n= —u" 0 0] |ueR"!
u' 0 0

It is easy to see that the centralizer of a is the Lie subalgebra

m= {(ﬁ 8) € Matn i1 ,01(R) | B € s0(n — 1)}

and the reader should check that
so(n,l)=m@PadnPpn.
We also have
[m,n] Cn,

so m@adn is a subalgebra of so(n, 1). The group, M, associated with m is isomorphic
to SO(n —1) and it can be shown that B = M AN is a subgroup of SOg(n, 1). In fact,

SOy(n,1)/(MAN) = KAN/MAN = K/M = SO(n)/SO(n — 1) = S"*.

It is customary to denote the subalgebra m & a by gg, the algebra n by g; and n by
g-1, so that so(n,1) =m @ a®ndn is also written

so(n,1) =go® g_1 g1

By the way, if N € n, then

1
eN:I+N+§N2,

and since N + 1N? is also nilpotent, eV can’t be diagonalized when N % 0. This
provides a simple example of matrices in SOq(n, 1) that can’t be diagonalized.

Combining Proposition 2.3 and Proposition 5.17, we have the corollary:

Corollary 5.18. Every matriz, A € O(n, 1), can be written as

4= (2 S>e(} 0

where Q € O(n), e = +1 and u € R™.
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Observe that Corollary 5.18 proves that every matrix, A € SOg(n, 1), can be written as
A= Pe®, with P € K2 8S0(n) and S € p,

ie.,

SOq(n,1) = K exp(p),
a version of the polar decomposition for SOy(n, 1).

Now, it is known that the exponential map, exp: so(n) — SO(n), is surjective. So, when
A € SOy(n, 1), since then @) € SO(n) and € = +1, the matrix

(@)

is the exponential of some skew symmetric matrix

B 0
C= <0 O> € so(n, 1),

and we can write A = e“e?, with C' € £ and Z € p. Unfortunately, C' and Z generally
don’t commute, so it is generally not true that A = e“*%. Thus, we don’t get an “easy”
proof of the surjectivity of the exponential, exp: so(n,1) — SOq(n,1). This is not too
surprising because, to the best of our knowledge, proving surjectivity for all n is not a simple
matter. One proof is due to Nishikawa [119] (1983). Nishikawa’s paper is rather short, but
this is misleading. Indeed, Nishikawa relies on a classic paper by Djokovic [49], which itself
relies heavily on another fundamental paper by Burgoyne and Cushman [27], published in
1977. Burgoyne and Cushman determine the conjugacy classes for some linear Lie groups
and their Lie algebras, where the linear groups arise from an inner product space (real or
complex). This inner product is nondegenerate, symmetric, or hermitian or skew-symmetric
of skew-hermitian. Altogether, one has to read over 40 pages to fully understand the proof
of surjectivity.

In his introduction, Nishikawa states that he is not aware of any other proof of the
surjectivity of the exponential for SOg(n, 1). However, such a proof was also given by Marcel
Riesz as early as 1957, in some lectures notes that he gave while visiting the University of
Maryland in 1957-1958. These notes were probably not easily available until 1993, when
they were published in book form, with commentaries, by Bolinder and Lounesto [127].

Interestingly, these two proofs use very different methods. The Nishikawa-Djokovic—
Burgoyne and Cushman proof makes heavy use of methods in Lie groups and Lie algebra,
although not far beyond linear algebra. Riesz’s proof begins with a deep study of the
structure of the minimal polynomial of a Lorentz isometry (Chapter III). This is a beautiful
argument that takes about 10 pages. The story is not over, as it takes most of Chapter IV
(some 40 pages) to prove the surjectivity of the exponential (actually, Riesz proves other
things along the way). In any case, the reader can see that both proofs are quite involved.
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It is worth noting that Milnor (1969) also uses techniques very similar to those used by
Riesz (in dealing with minimal polynomials of isometries) in his paper on isometries of inner
product spaces [108].

What we will do to close this section is to give a relatively simple proof that the exponen-
tial map, exp: s0(1,3) — SOy(1,3), is surjective. In the case of SOy(1,3), we can use the
fact that SL(2,C) is a two-sheeted covering space of SOg(1,3), which means that there is
a homomorphism, ¢: SL(2,C) — SOy(1,3), which is surjective and that Ker ¢ = {—1,1).
Then, the small miracle is that, although the exponential, exp: s[(2,C) — SL(2,C), is not
surjective, for every A € SL(2,C), either A or —A is in the image of the exponential!

Proposition 5.19. Given any matrix

B= (‘CL b) € s1(2,C),

—a
let w be any of the two complex roots of a®> + be. If w # 0, then

sinh w

e =coshw I + B,

W

and e = I + B if a*> + bc = 0. Furthermore, every matriv A € SL(2,C) is in the image of
the exponential map, unless A = —I + N, where N is a nonzero nilpotent (i.e., N> = 0 with
N #0). Consequently, for any A € SL(2,C), either A or —A is of the form eB, for some

B e sl(2,C).
Proof. Observe that
A? = (a b) (“ b ) = (a® + be)l.
¢c —a)\c —a
Then, it is straighforward to prove that

sinh w

eP = coshw I + B,

w

where w is a square root of a? + bc is w # 0, otherwise, e = I + B.

Let 8
(6%
4= (v 5)

be any matrix in SL(2,C). We would like to find a matrix, B € sl(2,C), so that A = e?. In
view of the above, we need to solve the system

sinh w
coshw + a = «
w
sinh w
coshw — a = 0
w
sinh w
b =
w
sinh w
c = .

W
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From the first two equations, we get

coshw = ot
2
sinh w a—0
a g
w 2

Thus, we see that we need to know whether complex cosh is surjective and when complex
sinh is zero. We claim:

(1) cosh is surjective.
(2) sinhz = 0 iff z = n7i, where n € Z.
Given any ¢ € C, we have coshw = c iff
e —2ec+1=0.
The corresponding algebraic equation
Z—2c¢Z+1=0
has discriminant 4(c* — 1) and it has two complex roots

J=ctvVc?-1

where v/c2 — 1 is some square root of ¢2 — 1. Observe that these roots are never zero.
Therefore, we can find a complex log of ¢ + v/¢? — 1, say w, so that ¥ = c+ 2 —11is a
solution of e — 2e“c + 1 = 0. This proves the surjectivity of cosh.

We have sinhw = 0 iff €% = 1; this holds iff 2w = n2ni, i.e., w = nmi.

Observe that

ol inh nmi
=0 A0 but =1 whenn =0,
nmi nmi
We know that
a+ 90
coshw = 5

can always be solved.

Case 1. If w # nmi, with n # 0, then

sinh w

£0

w

and the other equations can also be solved (this includes the case w = 0). We still have to
check that
a® + be = w’.
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a+d

This is because, using the fact that coshw = *3*, ad — 8y = 1, and cosh® w — sinh?w = 1,

we have

(0= 6Pw? Bt
4 sinh? w sinh? w
~ wi(a? + 0% — 200 + 453y)
B 4 sinh? w
w(a? + 62 4+ 2ad — 4(ad — 7))
4 sinh? w
w’((a+96)* — 4(ad — B7))
B 4sinh? w
 4dw*(cosh’w — 1)
B 4sinh® w

= w2.

a® 4 be =

Therefore, in this case, the exponential is surjective. It remains to examine the other case.

Case 2. Assume w = nmi, with n # 0. If n is even, then e = 1, which implies
a+0=2.

However, ad — fy = 1 (since A € SL(2,C)), so we deduce that A has the double eigenvalue,
1. Thus, N = A — I is nilpotent (i.e., N*> = 0) and has zero trace; but then, N € sl(2,C)
and

N=I+N=I+A-1=A.
If n is odd, then e¥ = —1, which implies

a+d=-2.

In this case, A has the double eigenvalue —1 and A 4+ I = N is nilpotent. So, A= —I+ N,
where N is nilpotent. If N # 0, then A cannot be diagonalized. We claim that there is no
B € sl(2,C) so that e = A.

Indeed, any matrix, B € sl(2,C), has zero trace, which means that if \; and Ay are the
eigenvalues of B, then \; = —Xy. If Ay # 0, then \; # )y so B can be diagonalized, but
then e? can also be diagonalized, contradicting the fact that A can’t be diagonalized. If
A = Ay = 0, then e? has the double eigenvalue +1, but A has eigenvalues —1. Therefore,
the only matrices A € SL(2, C) that are not in the image of the exponential are those of the
form A = —I + N, where N is a nonzero nilpotent. However, note that —A =1 — N s in
the image of the exponential. O]

Remark: If we restrict our attention to SL(2,R), then we have the following proposition
that can be used to prove that the exponential map, exp: s0(1,2) — SOy(1,2), is surjective:
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Proposition 5.20. Given any matrix

B= (‘CL b) € sI(2,R),

—a
if a® + be > 0, then let w = Va? + be > 0, and if a*> + be < 0, then let w = \/—(a? + bc) > 0
(i.e., w? = —(a®> +bc)). In the first case (a® +bc > 0), we have

B sinh w

e” =coshwl + B,
w
and in the second case (a® + bc < 0), we have
eB = coswl + —= B,
w

If a®> + bc = 0, then P = I + B. Furthermore, every matriz A € SL(2,R) whose trace
satisfies tr(A) > —2 is in the image of the exponential map, unless A = —I1 + N with N # 0
nilpotent. Consequently, for any A € SL(2,R), either A or —A is of the form B, for some
B € sl(2,R).

Proof. For any matrix

—a

B= (Z b) € sl(2,R),

some simple calcuations show that if a® + bc > 0, then

inh
eP = coshw I + i u}B
w
with w = v/a2 + be > 0, and if a? + be < 0, then
i
B =coswl + 1an
w

with w = \/—(a? +bc) > 0 (and e? = I + B when a® + bc = 0). Let

_(a B
4= (v 5)
be any matrix in SL(2,R).
First, assume that o + 0 > 2. We would like to find a matrix, B € sl(2,R), so that
A = eP. In view of the above, we need to solve the system

sinh w
coshw +

a = «
w

sinh w

a = 0

coshw —
w

sinh w

b= p

w
sinh w

c = .
w
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From the first two equations, we get

)
coshw = ot
2
sinh w a—0
a =
w 2

As in the proof of Proposition 5.19, coshw = ¢ iff ¢ is a root of the quadratic equation

Z* —2cZ +1=0.
This equation has a real roots iff ¢ > 1, and since ¢ = %S and o + 0 > 2, our equation

has real roots. Furthermore, the root ¢+ +/¢? — 1 is greater than 1, so log ¢ is a positive real
number. Then, as in the proof of Proposition 5.19, we find solutions of our system above.

Moreover, these solutions are real and satisfy a? + bc = w?.

Let us now consider the case where —2 < o+ ¢ < 2. This time, we try to solve the
system

sin w
Ccosw + a=«
w
sin w
CoS W — a=20
w
Sin w
b=p
w
sin w
w
We get
a+9
CoSw =
2
sin w a—90
a =
w 2

Because —2 < a4+ § < 2, the first equation has (real) solutions, and we may assume that
0<w<2m.

If w =0 is a solution, then a + 8 = 2 and we already know that N = A — [ is nilpotent
and that e¥ = I + N = A. If w = 7, then a + = —2 and we know that N = A + [ is
nilpotent. If N =0, then A = —I, and otherwise we already know that A = —I + N is not
in the image of the exponential.

If 0 < w < 7, then sinw # 0 and the other equations have a solution. We still need to
check that

a’® + be = —w?.
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a+d
2

ad — By =1, and cos? w + sinw = 1, we have
(a0 — §)2w? N Bryw?
4sin? w sin? w
w?(a? + 6% — 2ad + 487)
4 sinh? w
w(a? + 62 4 2ad — 4(ad — (7))
4sin® w

w((a +0)* — 4(ad — B7))

Because cosw =

a4 be =

4sin? w
4w (cos’w — 1)
B 4sin?w

- —CL)2.

This proves that every matrix A € SL(2,R) whose trace satisfies tr(A) > —2 is in the image
of the exponential map, unless A = —I + N with N = 0 nilpotent. O

We now return to the relationship between SL(2,C) and SOq(1, 3). In order to define a
homomorphism, ¢: SL(2,C) — SOq(1, 3), we begin by defining a linear bijection, h, between
R* and H(2), the set of complex 2 x 2 Hermitian matrices, by

t+x y—1iz
R e I

Those familiar with quantum physics will recognize a linear combination of the Pauli matri-
ces! The inverse map is easily defined and we leave it as an exercise. For instance, given a

Hermitian matrix
a b
c d

t:a+d,x:a_d, etc.
2 2

Next, for any A € SL(2,C), we define a map, l4: H(2) — H(2), via

we have

S— ASA".

(Here, A* = ZT.) Using the linear bijection, h: R* — H(2), and its inverse, we obtain a
map, lor,: R* — R*, where
lory=htolyoh.

As ASA* is hermitian, we see that [4 is well defined. It is obviously linear and since
det(A) =1 (recall, A € SL(2,C)) and

t+x y—iz\ _ 2 o 2 9
det(y+z’z t—x)_t T =yt — 27,
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we see that lors preserves the Lorentz metric! Furthermore, it is not hard to prove that
SL(2,C) is connected (use the polar form or analyze the eigenvalues of a matrix in SL(2, C),
for example, as in Duistermatt and Kolk [54] (Chapter 1, Section 1.2)) and that the map

w: A lory

is a continuous group homomorphism. Thus, the range of ¢ is a connected subgroup of
SOy(1,3). This shows that ¢: SL(2,C) — SOq(1, 3) is indeed a homomorphism. It remains
to prove that it is surjective and that its kernel is {/, —1}.

Proposition 5.21. The homomorphism, ¢: SL(2,C) — SOq(1,3), is surjective and its
kernel is {I,—1}.

Proof. Recall that from Theorem 2.6, the Lorentz group SOq(1,3) is generated by the ma-
trices of the form

((1) 2) with P € SO(3)

and the matrices of the form

cosha sinha 0 0
sinha cosha 0 0
0 0 10
0 0 01

Thus, to prove the surjectivity of ¢, it is enough to check that the above matrices are in the
range of . For matrices of the second kind, the reader should check that

does the job. For matrices of the first kind, we recall that the group of unit quaternions,
q = al + bi+ cj + dk, can be viewed as SU(2), via the correspondence

a1+bi+cj+dkn—>(a+2b c+zd)7

—c+1id a—1b

where a,b,c,d € R and a? + b* + ¢ + d*> = 1. Moreover, the algebra of quaternions, H, is
the real algebra of matrices as above, without the restriction a® + b* 4+ ¢? + d? = 1 and R?
is embedded in H as the pure quaternions, i.e., those for which a = 0. Observe that when

a =0,
b etidy (b d—ic\ .
(-C—Fid —zb)z(d+w b )Zh(oab7dac>'

Therefore, we have a bijection between the pure quaternions and the subspace of the hermi-

tian matrices
b d—ic
d+ic —b
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for which a = 0, the inverse being division by ¢, i.e., multiplication by —i. Also, when ¢ is a
unit quaternion, let ¢ = al — bi — c¢j — dk, and observe that § = ¢~!. Using the embedding
R? < H, for every unit quaternion, ¢ € SU(2), define the map, p,: R* — R3 by

pe(X) = qXq=qXq ",

for all X € R® < H. Then, it is well known that p, is a rotation (i.e., p, € SO(3))
and, moreover, the map ¢ — p,, is a surjective homomorphism, p: SU(2) — SO(3), and
Ker o = {I,—I} (For example, see Gallier [60], Chapter 8).

Now, consider a matrix, A, of the form

1 0 .
(0 P) with P € SO(3).

We claim that we can find a matrix, B € SL(2,C), such that ¢(B) = lorg = A. We claim
that we can pick B € SU(2) C SL(2,C). Indeed, if B € SU(2), then B* = B™!, so

B t—i-g: Yy—1z) pe _y 10 B i z—i-.zy 5l
y+iz t—=x 01 —z 4y —ix

The above shows that lorg leaves the coordinate ¢t invariant. The term

B( 1 . zfiy) 5!

—zZ+wy -

is a pure quaternion corresponding to the application of the rotation pp induced by the
quaternion B to the pure quaternion associated with (z,y,z) and multiplication by —i is

just the corresponding hermitian matrix, as explained above. But, we know that for any
P € SO(3), there is a quaternion, B, so that pgp = P, so we can find our B € SU(2) so that

1 0
lorg = (O P) =A.

Finally, assume that ¢(A) = I. This means that
ASA* =5,

for all hermitian matrices, S, defined above. In particular, for S = I, we get AA* =1, i.e.,
A € SU(2). We have
AS =5A

for all hermitian matrices, S, defined above, so in particular, this holds for diagonal matrices

of the form
t+x 0
0 t—a)’

with t +x # t — x. We deduce that A is a diagonal matrix, and since it is unitary, we must
have A = +1. Therefore, Ker p = {1, —1I}. O
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Remark: The group SL(2,C) is isomorphic to the group Spin(1,3), which is a (simply-
connected) double-cover of SOy(1,3). This is a standard result of Clifford algebra theory,
see Brocker and tom Dieck [25] or Fulton and Harris [58]. What we just did is to provide a
direct proof of this fact.

We just proved that there is an isomorphism
However, the reader may recall that SL(2,C)/{I,—I} = PSL(2,C) = Méb". Therefore,
the Lorentz group is isomorphic to the Mobius group.

We now have all the tools to prove that the exponential map, exp: so(1,3) — SOq(1,3),
is surjective.

Theorem 5.22. The exponential map, exp: s0(1,3) — SOg(1, 3), is surjective.

Proof. First, recall from Proposition 5.4 that the following diagram commutes:

SL(2,C) —= S0(1,3).

exp T T exp

5[(2, C) d—<.01>50(17 3)

Pick any A € SOq(1,3). By Proposition 5.21, the homomorphism ¢ is surjective and as
Kery = {I,—1}, there exists some B € SL(2,C) so that

p(B) = p(=B) = A.
Now, by Proposition 5.19, for any B € SL(2,C), either B or — B is of the form ¢“, for some
C € sl(2,C). By the commutativity of the diagram, if we let D = dyp1(C) € s0(1,3), we get
A = p(£e¥) = 1) = D

with D € so(1, 3), as required. ]

Remark: We can restrict the bijection, h: R* — H(2), defined earlier to a bijection between
R? and the space of real symmetric matrices of the form

t+z oy
y t—=x)

Then, if we also restrict ourselves to SL(2,R), for any A € SL(2,R) and any symmetric
matrix, S, as above, we get a map

S ASAT.

The reader should check that these transformations correspond to isometries in SOy(1,2)
and we get a homomorphism, ¢: SL(2,R) — SOq(1,2). Just as SL(2,C) is connected, the
group SL(2,R) is also connected (but not simply connected, unlike SL(2,C)). Then, we
have a version of Proposition 5.21 for SL(2,R) and SOy(1,2):
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Proposition 5.23. The homomorphism, ¢: SL(2,R) — SOq(1,2), is surjective and its
kernel is {I,—1}.

Using Proposition 5.23, Proposition 5.20, and the commutative diagram

SL(2,R) — S0(1,2),

exp T T exp

sl(2,R) ——=s0(1,2)

®1
we get a version of Theorem 5.22 for SOy (1, 2):

Theorem 5.24. The exponential map, exp: s0(1,2) — SOy(1,2), is surjective.

Also observe that SOg(1,1) consists of the matrices of the form
A cosha sinha
~ \sinha cosha

and a direct computation shows that

sinha cosh«

0 «
! 0 _(cosh& sinha)

Thus, we see that the map exp: so(1,1) — SOy(1, 1) is also surjective. Therefore, we have
proved that exp: so(1,n) — SOg(1,n) is surjective for n = 1,2,3. This actually holds for
all n > 1, but the proof is much more involved, as we already discussed earlier.

5.6 More on the Topology of O(p,q) and SO(p, q)

It turns out that the topology of the group, O(p, ¢), is completely determined by the topology
of O(p) and O(q). This result can be obtained as a simple consequence of some standard
Lie group theory. The key notion is that of a pseudo-algebraic group.

Consider the group, GL(n, C), of invertible n x n matrices with complex coefficients. If
A = (ag) is such a matrix, denote by zy; the real part (resp. yx;, the imaginary part) of ay

(s0, g = T + Yks)-

Definition 5.9. A subgroup, G, of GL(n,C) is pseudo-algebraic iff there is a finite set of
polynomials in 2n? variables with real coefficients, {P;( X1, ..., X2, Y1, ..., Yy2)}_,, so that

A= (z+iyn) € G iff P11, Ty Y11, - Ynn) =0, fori=1,... ¢
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Recall that if A is a complex n x n-matrix, its adjoint, A*, is defined by A* = (A)T.
Also, U(n) denotes the group of unitary matrices, i.e., those matrices, A € GL(n,C), so
that AA* = A*A = I, and H(n) denotes the vector space of Hermitian matrices, i.e., those
matrices, A, so that A* = A. Then, we have the following theorem which is essentially a
refined version of the polar decomposition of matrices:

Theorem 5.25. Let G be a pseudo-algebraic subgroup of GL(n,C) stable under adjunction
(i.e., we have A* € G whenever A € G). Then, there is some integer, d € N, so that G is
homeomorphic to (GNU(n)) x RY. Moreover, if g is the Lie algebra of G, the map

(Un)NG) x (H(n)Ng) — G, given by (U, H) > Ue,
1s a homeomorphism onto G.

Proof. A proof can be found in Knapp [90], Chapter 1, or Mneimné and Testard [112],
Chapter 3. O

We now apply Theorem 5.25 to determine the structure of the space O(p,q). We know
that O(p, q) consists of the matrices, A, in GL(p + ¢,R) such that

AL A=1,,

and so, O(p, q) is clearly pseudo-algebraic. Using the above equation, it is easy to determine
the Lie algebra, o(p, q), of O(p,q). We find that o(p, q) is given by

o(p,q) = { (:;((j iz) ‘ XlT = —Xy, X3T =—X3, Xo arbitrary}

where X is a p X p matrix, X3 is a ¢ X ¢ matrix and X5 is a p X ¢ matrix. Consequently, it
immediately follows that

X .
o(p,q) NH(p+q) = { ( OT 2> ‘ Xy arbltrary}7
X, 0
a vector space of dimension pq.
Some simple calculations also show that

O(p,a) NU(p+q) = { (ﬁl )(32) ' X1€0(p), Xz € O(Q)} = 0(p) x O(q).

Therefore, we obtain the structure of O(p, q):

Proposition 5.26. The topological space O(p,q) is homeomorphic to O(p) x O(q) x RP1.
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Since O(p) has two connected components when p > 1, we see that O(p,q) has four
connected components when p,q > 1. It is also obvious that

SO(p,q)NU(p+q) = { ()él )?2) ’ X; € 0(p), X, €0(q), det(X)det(Xs) = 1}.

This is a subgroup of O(p) x O(q) that we denote S(O(p) x O(q)). Furthermore, it is easy

to show that so(p, q) = o(p, q). Thus, we also have

Proposition 5.27. The topological space SO(p, q) is homeomorphic to S(O(p) x O(q)) x RP4.

Observe that the dimension of all these spaces depends only on p+ ¢: It is (p + ¢q)(p +
g —1)/2. Also, SO(p,q) has two connected components when p,q > 1. The connected
component of I,,, is the group SOy(p, q). This latter space is homeomorphic to SO(p) x
SO(q) x RP2.

Theorem 5.25 gives the polar form of a matrix A € O(p, q¢): We have
A=Ue® with U€cO(p)x0(g) and S €so(p,q)NS(p+q),

where U is of the form

U= <§ g) , with PeO(p) and @ € O(q)

and so(p, q) N S(p + q) consists of all (p + q) X (p+ ¢q) symmetric matrices of the form

0 X
SZ(XT 0)7

with X an arbitrary p x ¢ matrix. It turns out that it is not very hard to compute explicitly
the exponential, e¥, of such matrices (see Mneimné and Testard [112]). Recall that the
functions cosh and sinh also make sense for matrices (since the exponential makes sense)
and are given by

€A—|-€_A A2 A2k
h(A) =" % a2 4.
cosh(A) 5 + 5 +--+ (2h)] +
and A A A3 A2k+1
et —e”
nh(A) = — — % A2 o 2
sinh(4) > LTI Y T
We also set
sinh(A) —I+A2+ N A% N
A 3! (2k+1)! ’

which is defined for all matrices, A (even when A is singular). Then, we have
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Proposition 5.28. For any matriz S of the form

0 X
(2 3)

we have )
. T\&
cosh((XXT)%) sinh((XX )2)X
e = 1 (XxT)z
sinh(XTX)2)X T cosh((XTX)%)
(XTX)2

Proof. By induction, it is easy to see that

g2 _ ((XXT)’f 0 )

0 (X X )’C
and _
g _ (0 (XXTPX
(X X )kX T 0 ’
The rest is left as an exercise. O

Remark: Although at first glance, ¢ does not look symmetric, but it is!

As a consequence of Proposition 5.28, every matrix, A € O(p, q), has the polar form

T\1 sinh((XXT)%)X
A= P 0 COSh((XXl )?) (XXT)2
0 @ sinh((XTX)f)XT cosh((XTX)%)
(XTX)z

with P € O(p), @ € O(q) and X an arbitrary p X ¢ matrix.

5.7 Universal Covering Groups

Every connected Lie group, G, is a manifold and, as such, from results in Section 3.9, it has
a universal cover, m: G — G, where G is simply connected. Tt is possible to make G into a
group so that G is a Lie group and 7 is a Lie group homomorphism. We content ourselves
with a sketch of the construction whose details can be found in Warner [148], Chapter 3.

Consider the map, «: GxG— G, given by

a(@,b) = r(@m ()",

for all 'd,g € 6’, and pick some ¢ € 7 !(e). Since Gx G is simply connected, it follows by
Proposition 3.40 that there is a unique map, a: G X G — G, such that

a=moa and e=a(ee).
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For all Zi,g € é, define B B B B
b ! =a(eb), ab = a(a,b™). (%)
Using Proposition 3.40, it can be shown that the above operations make G into a group and

as « is smooth, into a Lie group. Moreover, ™ becomes a Lie group homomorphism. We
summarize these facts as

Theorem 5.29. Every connected Lie group has a simply connected covering map, : G — G,
where G s a Lie group and 7 1s a Lie group homomorphism.

The group, é is called the universal covering group of GG. Consider D = ker w. Since the
fibres of 7 are countable The group D is a countable closed normal subgroup of G that is,
a discrete normal subgroup of G. It follows that G = G /D, where G is a simply connected

Lie group and D is a discrete normal subgroup of G.

We conclude this section by stating the following useful proposition whose proof can be
found in Warner [148] (Chapter 3, Proposition 3.26):

Proposition 5.30. Let ¢: G — H be a homomorphism of connected Lie groups. Then ¢ is
a covering map iff dp.: g — b is an isomorphism of Lie algebras.

For example, we know that su(2) = s0(3), so the homomorphism from SU(2) to SO(3)
provided by the representation of 3D rotations by the quaternions is a covering map.
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Chapter 6

The Derivative of exp and Dynkin’s
Formula

6.1 The Derivative of the Exponential Map

We know that if [X,Y] = 0, then exp(X + Y) = exp(X) exp(Y'), but this generally false if
X and Y do not commute. For X and Y in a small enough open subset, U, containing 0,
we know that exp is a diffeomorphism from U to its image, so the function, y: U x U — U,
given by
H(X,Y) = log(exp(X) exp(Y))

is well-defined and it turns out that, for U small enough, it is analytic. Thus, it is natural to
seek a formula for the Taylor expansion of y near the origin. This problem was investigated
by Campbell (1897/98), Baker (1905) and in a more rigorous fashion by Hausdorff (1906).
These authors gave recursive identities expressing the Taylor expansion of u at the origin
and the corresponding result is often referred to as the Campbell-Baker-Hausdorff Formula.
F. Schur (1891) and Poincaré (1899) also investigated the exponential map, in particular
formulae for its derivative and the problem of expressing the function u. However, it was
Dynkin who finally gave an explicit formula (see Section 6.3) in 1947.

The proof that y is analytic in a suitable domain can be proved using a formula for the
derivative of the exponential map, a formula that was obtained by F. Schur and Poincaré.
Thus, we begin by presenting such a formula.

First, we introduce a convenient notation. If A is any real (or complex) n X n matrix,
the following formula is clear:

! tA - Ak
/06 dtzz(kJrl)!'

k=0
If A is invertible, then the right-hand side can be written explicitly as

G A=

k=0

231
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and we also write the latter as
oA

—1 - A
A :;(mm ()

0

Even if A is not invertible, we use (*) as the definition of EAA_I .

We can use the following trick to figure out what (dx exp)(Y) is:

d
exp(X +€Y) = —

(dy exp)(¥) = L -

de

dRexp(X—i-eY) (1) )

e=0 e=0

since by Proposition 5.2, the map, s = Rexps(x+ey) is the flow of the left-invariant vector
field (X 4+ €Y)* on G. Now, (X + €Y’ is an e-dependent vector field which depends on ¢
in a C! fashion. From the theory of ODE’s; if p — v.(p) is a smooth vector field depending
in a C' fashion on a real parameter e and if ® denotes its flow (after time), then the map
e — &4 is differentiable and we have

0 ¢ v,
= c()(P_ ) — (P .
5ea) = [ (3G (@3 ds

See Duistermaat and Kolk [54], Appendix B, Formula (B.10). Using this, the following is
proved in Duistermaat and Kolk [54] (Chapter 1, Section 1.5):

Proposition 6.1. Given any Lie group, G, for any X € g, the linear map,
dexpx: g — Tepx)G, is given by

6adX -1

1
dexpy = (dRexp(x))1 0 /U s X 1 = (dRexp(X))loW

1 Cen J _ e—adX
- (dLeXP(X)>1O/O € dXdS = (dLexp(X))loW.

Remark: If GG is a matrix group of n X n matrices, we see immediately that the derivative
of left multiplication (X — L, X = AX) is given by

(dLa)xY = AY,

for all n x n matrices, X,Y. Consequently, for a matrix group, we get

]_e—adX
d - —=—
eXpy =€ ( X )

Now, if A is a real matrix, it is clear that the (complex) eigenvalues of fol es4ds are of

the form
et —1

A
where A ranges over the (complex) eigenvalues of A. Consequently, we get

(=1 ifA=0),



6.2. THE PRODUCT IN LOGARITHMIC COORDINATES 233

Proposition 6.2. The singular points of the exponential map, exp: g — G, that is, the set
of X € g such that dexpy is singular (not invertible) are the X € g such that the linear
map, ad X : g — @, has an eigenvalue of the form k2wi, with k € Z and k # 0.

Another way to describe the singular locus, X, of the exponential map is to say that it
is the disjoint union

where 3 is the algebraic variety in g given by
Yy ={X eg|det(ad X — 27 [) = 0}.

For example, for SL(2,R),

¥ = {(i _ba) € sl(2) | a® + be = —7r2},

a two-sheeted hyperboloid mapped to —1 by exp.

Let g. = g — X be the set of X € g such that ea;dXX_I
of g containing 0.

is invertible. This is an open subset

6.2 The Product in Logarithmic Coordinates

Since the map,

eadX -7

ad X
is invertible for all X € g, = g — X, in view of the chain rule, the inverse of the above map,

X —

ad X
X = ead X _ I’
is an analytic function from g, to gl

(g,9). Let g2 be the subset of g x g. consisting of all
(X,Y) such that the solution, t — Z(t
(

), of the differential equation
dZ(t)  ad Z(t)

it~ ez~ %)

with initial condition Z(0) = Y (€ g.), is defined for all ¢t € [0, 1]. Set

X, Y)=2(1), (X,Y)eg,.

The following theorem is proved in Duistermaat and Kolk [54] (Chapter 1, Section 1.6,
Theorem 1.6.1):
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Theorem 6.3. Given any Lie group G with Lie algebra, g, the set g* is an open subset of
g x g containing (0,0) and the map, pu: g> — g, is real-analytic. Furthermore, we have

exp(X) eXp(Y) = eXp(N(*X? Y))? <X7 Y) € Qz,

where exp: g — G. If g is a complex Lie algebra, then p is complex-analytic.

We may think of 1 as the product in logarithmic coordinates. It is explained in Duister-
maat and Kolk [54] (Chapter 1, Section 1.6) how Theorem 6.3 implies that a Lie group can
be provided with the structure of a real-analytic Lie group. Rather than going into this, we
will state a remarkable formula due to Dynkin expressing the Taylor expansion of u at the
origin.

6.3 Dynkin’s Formula

As we said in Section 6.3, the problem of finding the Taylor expansion of y near the origin
was investigated by Campbell (1897/98), Baker (1905) and Hausdorff (1906). However, it
was Dynkin who finally gave an explicit formula in 1947. There are actually slightly different
versions of Dynkin’s formula. One version is given (and proved convergent) in Duistermaat
and Kolk [54] (Chapter 1, Section 1.7). Another slightly more explicit version (because it
gives a formula for the homogeneous components of p(X,Y)) is given (and proved convergent)
in Bourbaki [22] (Chapter II, §6, Section 4) and Serre [137] (Part I, Chapter IV, Section 8).
We present the version in Bourbaki and Serre without proof. The proof uses formal power
series and free Lie algebras.

Given X,Y € g2, we can write

o0

WX, Y) =3 2 (XY,

n=1

where z,(X,Y) is a homogeneous polynomial of degree n in the non-commuting variables
X, Y.
Theorem 6.4. (Dynkin’s Formula) If we write u(X,Y) =3 "% 2z,(X,Y), then we have

n=1

1
WX Y) =~ D (5,(X.Y) +2,(X.Y),
pt+g=n

with

g,57)= 3 #((ﬂ(mxw (adY)qz’) (ad X)pm>m

| | |
p1+-+DPm=p =1 Di: qi- Pm:

(I1+"'+Qm—1=tI*1
Pi+q¢i>1, pm=>1,m>1
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and

goen- Y B (f[(adX”" (ad”‘“)m.

| A

p1+"'+p'm71:p71 =1 pZ ql
g1t tqm-1=q
pitqi>1, m>1

As a concrete illustration of Dynkin’s formula, after some labor, the following Taylor
expansion up to order 4 is obtained:
1

pXY) = XY 4 [V XX Y] 4 Y[V X~ X [V XY

+ higher order terms.

Observe that due the lack of associativity of the Lie bracket quite different looking ex-
pressions can be obtained using the Jacobi identity. For example,

_[Xv [Y7 [X7 Ym = [Ya [X7 [Yv Xm

There is also an integral version of the Campbell-Baker-Hausdorff formula, see Hall [71]
(Chapter 3).
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Chapter 7

Bundles, Riemannian Manifolds and
Homogeneous Spaces, 11

7.1 Fibre Bundles

We saw in Section 2.2 that a transitive action, -: G x X — X, of a group, G, on a set,
X, yields a description of X as a quotient G/G,, where G, is the stabilizer of any element,
xr € X. In Theorem 2.26, we saw that if X is a “well-behaved” topological space, G is a
“well-behaved” topological group and the action is continuous, then G/G, is homeomorphic
to X. In particular the conditions of Theorem 2.26 are satisfied if G is a Lie group and
X is a manifold. Intuitively, the above theorem says that G can be viewed as a family of
“fibres”, GG, all isomorphic to G, these fibres being parametrized by the “base space”, X,
and varying smoothly when x moves in X. We have an example of what is called a fibre
bundle, in fact, a principal fibre bundle. Now that we know about manifolds and Lie groups,
we can be more precise about this situation.

Although we will not make extensive use of it, we begin by reviewing the definition of a
fibre bundle because we believe that it clarifies the notions of vector bundles and principal
fibre bundles, the concepts that are our primary concern. The following definition is not the
most general but it is sufficient for our needs:

Definition 7.1. A fibre bundle with (typical) fibre, F', and structure group, G, is a tuple,
¢ =(E,m, B, F,G), where E, B, F' are smooth manifolds, 7: £ — B is a smooth surjective
map, G is a Lie group of diffeomorphisms of F' and there is some open cover, U = (Uy)aer,
of B and a family, ¢ = (¢4 )aer, of diffecomorphisms,

Yo: m HUy) = Uy X F.
The space, B, is called the base space, E is called the total space, F is called the (typical)

fibre, and each ¢, is called a (local) trivialization. The pair, (Uy, ¢a), is called a bundle
chart and the family, {(Uy, pa)}, is a trivializing cover. For each b € B, the space, 7—1(b),

237
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is called the fibre above b; it is also denoted by Ej, and 7~1(U,) is also denoted by E | U,.
Furthermore, the following properties hold:

(a) The diagram
Uy x F

\/

commutes for all a € I, where p;: U, x F — U, is the first projection. Equivalently,
for all (b,y) € U, x F,

mo @, (b,y) =b.

For every (U,, ) and every b € U,, because p; o 9, = m (by (a)), the restriction
of o, to E, = 77 1(b) is a diffeomorphism between E, and {b} x F, so we have the
diffeomorphism

Pab: Eb — F

given by
0as(Z) = (P20 ¢a)(Z)

for all Z € E,. Furthermore, for all U,,Us in U such that U, N Uz # 0, for every
b € U, NUg, there is a relationship between ¢, ; and ¢z, which gives the twisting of
the bundle:

(b) The diffeomorphism,
Pap O gpg’}): F— F,

is an element of the group G.
(c) The map, gosg: Uy NUps — G, defined by
gaﬁ<b) = Pa,b © @g};

is smooth. The maps g,s are called the transition maps of the fibre bundle.

A fibre bundle, £ = (F,m, B, F,G), is also referred to, somewhat loosely, as a fibre bundle
over B or a G-bundle and it is customary to use the notation

F— F — B,

or

Sy
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even though it is imprecise (the group G is missing!) and it clashes with the notation for
short exact sequences. Observe that the bundle charts, (U,, ¢, ), are similar to the charts of
a manifold.

Actually, Definition 7.1 is too restrictive because it does not allow for the addition of
compatible bundle charts, for example, when considering a refinement of the cover, . This
problem can easily be fixed using a notion of equivalence of trivializing covers analogous to
the equivalence of atlases for manifolds (see Remark (2) below). Also Observe that (b) and
(c) imply that the isomorphism, pq 05" : (UsNUg) X F — (Uy NUg) X F, is related to the
smooth map, gag: U, NUg — G, by the identity

Pa © QOBI(ZL I) = (bv gaﬁ(b)<x>>7
for all b € U, NUg and all z € F.

Note that the isomorphism, ¢, o cpglz (UaNUg) x F'— (UyNUg) x F, describes how the
fibres viewed over Ug are viewed over U,. Thus, it might have been better to denote g,5 by
g5, so that

9o = 985O Paps
where the subscript, «, indicates the source and the superscript, 3, indicates the target.

Intuitively, a fibre bundle over B is a family, £ = (Ej)pep, of spaces, Ej, (fibres) indexed
by B and varying smoothly as b moves in B, such that every Fj is diffeomorphic to F. The
bundle, F = B x F', where 7 is the first projection, is called the trivial bundle (over B). The
trivial bundle, B x F, is often denoted €”". The local triviality condition (a) says that locally,
that is, over every subset, U,, from some open cover of the base space, B, the bundle ¢ | U,
is trivial. Note that if G is the trivial one-element group, then the fibre bundle is trivial. In
fact, the purpose of the group G is to specify the “twisting” of the bundle, that is, how the
fibre, Ej, gets twisted as b moves in the base space, B.

A Mobius strip is an example of a nontrivial fibre bundle where the base space, B, is
the circle S' and the fibre space, F', is the closed interval [—1,1] and the structural group
is G = {1,—1}, where —1 is the reflection of the interval [—1, 1] about its midpoint, 0. The
total space, F, is the strip obtained by rotating the line segment [—1, 1] around the circle,
keeping its midpoint in contact with the circle, and gradually twisting the line segment so
that after a full revolution, the segment has been tilted by 7. The reader should work out
the transition functions for an open cover consisting of two open intervals on the circle.

A Klein bottle is also a fibre bundle for which both the base space and the fibre are the
circle, S'. Again, the reader should work out the details for this example.

Other examples of fibre bundles are:
(1) SO(n+ 1), an SO(n)-bundle over the sphere S™ with fibre SO(n). (for n > 0).

(2) SU(n + 1), an SU(n)-bundle over the sphere S?"*! with fibre SU(n) (for n > 0).
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(3) SL(2,R), an SO(2)-bundle over the upper-half space H, with fibre SO(2).

(4) GL(n,R), an O(n)-bundle over the space, SPD(n), of symmetric, positive definite
matrices, with fibre O(n).

(5) GL*(n,R), an SO(n)-bundle over the space, SPD(n), of symmetric, positive definite
matrices, with fibre SO(n).

(6) SO(n + 1), an O(n)-bundle over the real projective space RP" with fibre O(n) (for
n > 0).

(7) SU(n + 1), an U(n)-bundle over the complex projective space CP" with fibre U(n)
(for n > 0).

(8) O(n), an O(k) x O(n — k)-bundle over the Grassmannian, G(k,n) with fibre
O(k) x O(n — k).

(9) SO(n) an S(O(k) x O(n — k))-bundle over the Grassmannian, G(k,n) with fibre
S(O(k) x O(n — k)).

(10) From Section 2.5, we see that the Lorentz group, SOg(n, 1), is an SO(n)-bundle over
the space, H; (1), consisting of one sheet of the hyperbolic paraboloid, H,(1), with
fibre SO(n).

Observe that in all the examples above, F' = (G, that is, the typical fibre is identical to the
group G. Special bundles of this kind are called principal fibre bundles.

Remarks:

(1) The above definition is slightly different (but equivalent) to the definition given in Bott
and Tu [19], page 47-48. Definition 7.1 is closer to the one given in Hirzebruch [78].
Bott and Tu and Hirzebruch assume that G acts effectively on the left on the fibre,
F'. This means that there is a smooth action, -: G x F — F, and recall that G acts
effectively on F' iff for every g € G,

it g-x=2 forallz € F, then g=1.
Every g € GG induces a diffeomorphism, ¢,: F' — F', defined by
pg(z) =g -z,
for all z € F'. The fact that G acts effectively on F' means that the map, g — ¢y, is

injective. This justifies viewing G as a group of diffeomorphisms of F', and from now
on, we will denote y4(x) by g(z).
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(2) We observed that Definition 7.1 is too restrictive because it does not allow for the

addition of compatible bundle charts. We can fix this problem as follows: Given a
trivializing cover, {(U,, ¢a)}, for any open, U, of B and any diffeomorphism,

o: 7 HU) = U x F,

we say that (U, ) is compatible with the trivializing cover, {(Uy, ¢a)}, iff whenever
UNU, # 0, there is some smooth map, g,: U NU, — G, so that

pow, (b,x) = (b ga(b)(2)),

forallb e UNU, and all x € F'. Two trivializing covers are equivalent iff every bundle
chart of one cover is compatible with the other cover. This is equivalent to saying that
the union of two trivializing covers is a trivializing cover. Then, we can define a fibre
bundle as a tuple, (E, 7, B, F,G,{(Uy, a)}), where {(U,, vs)} is an equivalence class
of trivializing covers. As for manifolds, given a trivializing cover, {(U,, ¥a)}, the set of
all bundle charts compatible with {(Us,, ¢»)} is a maximal trivializing cover equivalent

to {(Uaa 9004)}'

A special case of the above occurs when we have a trivializing cover, {(U,, ¢4 )}, with
U = {U,} an open cover of B and another open cover, V = (Vj3)ges, of B which is a
refinement of /. This means that there is a map, 7: J — I, such that Vg C U, for
all 3 € J. Then, for every Vg € V, since Vg C U, (g), the restriction of ¢, to Vs is a
trivialization

gpm (V) = Vg x F

and conditions (b) and (c) are still satisfied, so (V3, ) is compatible with {(Us, o)}

(3) (For readers familiar with sheaves) Hirzebruch defines the sheaf, G, where I'(U, G,)

is the group of smooth functions, g: U — G, where U is some open subset of B and
G is a Lie group acting effectively (on the left) on the fibre F. The group operation
on I'(U, G) is induced by multiplication in G, that is, given two (smooth) functions,
g:U—>Gand h: U — G,

forall be U.

Beware that gh is not function composition, unless G itself is a group of functions,
which is the case for vector bundles.

Our conditions (b) and (c) are then replaced by the following equivalent condition: For
all Uy, Ug in U such that U, N Uz # 0, there is some g,5 € I'(U, N Us, Go) such that

Pa 0 @5 (b,x) = (b, gap(b)(x)),

forallbe U,NUs and all z € F..
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(4) The family of transition functions (g,s) satisfies the cocycle condition,

9a5(0)g5,(b) = gay (D),

for all a, 8, such that U, NUsNU, # 0 and all b € U, NUzNU,,. Setting o = § =,
we get

Jaa = id,
and setting v = «, we get

980 = s
Again, beware that this means that gg,(b) = g;&(b), where go_lﬂl(b) is the inverse of
9sa(b) in G. In general, g;ﬁl is not the functional inverse of gg,.

The classic source on fibre bundles is Steenrod [142]. The most comprehensive treatment
of fibre bundles and vector bundles is probably given in Husemoller [83]. However, we can
hardly recommend this book. We find the presentation overly formal and intuitions are
absent. A more extensive list of references is given at the end of Section 7.5.

Remark: (The following paragraph is intended for readers familiar with Cech cohomology.)
The cocycle condition makes it possible to view a fibre bundle over B as a member of a
certain (Cech) cohomology set, H'(B,G), where G denotes a certain sheaf of functions from
the manifold B into the Lie group G, as explained in Hirzebruch [78], Section 3.2. However,
this requires defining a noncommutative version of Cech cohomology (at least, for H'), and
clarifying when two open covers and two trivializations define the same fibre bundle over B,
or equivalently, defining when two fibre bundles over B are equivalent. If the bundles under
considerations are line bundles (see Definition 7.6), then H'(B,G) is actually a group. In
this case, G = GL(1,R) = R* in the real case and G = GL(1,C) = C* in the complex case
(where R* =R — {0} and C* = C—{0}), and the sheaf G is the sheaf of smooth (real-valued
or complex-valued) functions vanishing nowhere. The group, H'(B,G), plays an important
role, especially when the bundle is a holomorphic line bundle over a complex manifold. In
the latter case, it is called the Picard group of B.

The notion of a map between fibre bundles is more subtle than one might think because
of the structure group, G. Let us begin with the simpler case where G = Diff (F"), the group
of all smooth diffeomorphisms of F'.

Definition 7.2. If §& = (Fy,m, By, F,Diff(F)) and & = (Esy, me, B, F, Diff (F')) are two
fibre bundles with the same typical fibre, F', and the same structure group, G = Diff(F)),
a bundle map (or bundle morphism), f: & — &, is a pair, f = (fg, fp), of smooth maps,
fEI FE, — E, and fBI Bl — BQ, such that

(a) The following diagram commutes:
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(b) For every b € By, the map of fibres,
fe 1 art(0): 77 () — 75 ' (f5(D)),

is a diffeomorphism (preservation of the fibre).

A bundle map, f: & — &, is an isomorphism if there is some bundle map, g: & — &, called
the inverse of f such that

gEOfE:ld and fEOgEZId

The bundles & and & are called isomorphic. Given two fibre bundles, & = (Ey, 1, B, F, G)
and & = (Esy, mo, B, F, ), over the same base space, B, a bundle map (or bundle morphism),
f:& — &, is apair, f = (fg, fB), where fp = id (the identity map). Such a bundle map is
an isomorphism if it has an inverse as defined above. In this case, we say that the bundles
& and & over B are isomorphic.

Observe that the commutativity of the diagram in Definition 7.2 implies that fp is
actually determined by fr. Also, when f is an isomorphism, the surjectivity of m; and
o implies that

ggo fg=id and fgogp =id.

Thus, when f = (fg, fg) is an isomorphism, both fr and fp are diffeomorphisms.

Remark: Some authors do not require the “preservation” of fibres. However, it is automatic
for bundle isomorphisms.

When we have a bundle map, f: & — &, as above, for every b € B, for any trivializations
Yo: T H(Uy) = Uy x F of & and @ 75 (V) = Va x F of &, with b € U, and fp(b) € V3,
we have the map,

(10,/6’ o fE o gp;ll (Ua N f;l(V5)) x F— V/g x F.

Consequently, as ¢, and ¢, are diffeomorphisms and as f is a diffeomorphism on fibres, we
have a map, pag: Us N f5' (V) — Diff(F), such that

0 frowa (b,x) = (fB(b), pas(b)(2)),

for all b € U, N f5'(Vs) and all # € F. Unfortunately, in general, there is no garantee that
Pap(b) € G or that it be smooth. However, this will be the case when & is a vector bundle
or a principal bundle.

Since we may always pick U, and Vj so that fg C Vg, we may also write p, instead
Yy y B B Y p
of pa g, with p,: Uy, — G. Then, observe that 1ocally, fE is given as the composition

~ s —1

AT U) -2 Uy x F—2 oV F i

w3 (V)

z (b, z) (f5(0), pa(b)(2)) —= ¢~ (f5(b). pa(b)(2)),
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with fo(b, ) = (f5(b), pa(b)(z)), that is,
fe(z) = & (f(b), pa(b)(x)),  with z € 77 (Ua) and (b,2) = @a(2).

Conversely, if (fg, fp) is a pair of smooth maps satisfying the commutative diagram of Defini-
tion 7.2 and the above conditions hold locally, then as ¢, gp%‘l and p, () are diffeomorphisms
on fibres, we see that fg is a diffeomorphism on fibres.

In the general case where the structure group, G, is not the whole group of diffeomor-
phisms, Diff(F), following Hirzebruch [78], we use the local conditions above to define the
“right notion” of bundle map, namely Definition 7.3. Another advantage of this definition
is that two bundles (with the same fibre, structure group, and base) are isomorphic iff they
are equivalent (see Proposition 7.1 and Proposition 7.2).

Definition 7.3. Given two fibre bundles, & = (Ey, m, By, F,G) and & = (Es, 7o, Bs, F, G),
a bundle map, f: & — &, is a pair, f = (fg, fg), of smooth maps, fr: F; — F5 and
fB: By — Bsy, such that

(a) The diagram

commutes.

(b) There is an open cover, U = (Uy,)aer, for By, an open cover, V = (Vj3)ges, for Bs,
a family, © = (@a)acr, of trivializations, p,: 77 (Uy) — Uq x F, for &, a family,
¢ = () pe, of trivializations, ¢ : 75 (V) — Vax F, for &, such that for every b € B,
there are some trivializations, ¢, : 7, ' (U,) — U, x F and IR 75 (V) = Va x F, with
f8(Us) € V3, b € U, and some smooth map,

pa: Uy — G,
such that o o fpo @ ': Uy x F = V, x F is given by
5y 0 5 (b,2) = (fn(b), pa(b) (1))
forallbe U, and all x € F.

A bundle map is an isomorphism if it has an inverse as in Definition 7.2. If the bundles &
and & are over the same base, B, then we also require fp = id.

As we remarked in the discussion before Definition 7.3, condition (b) insures that the
maps of fibres,

fe Lat(b): m () = my ' (fo(b),
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are diffeomorphisms. In the special case where & and & have the same base, By = By = B,
we require fp = id and we can use the same cover (i.e., Y = V) in which case condition (b)
becomes: There is some smooth map, p,: U, — G, such that

Yoo fowa (bx) = (b, pa(b)(2)),
forallbe U, and all x € F.

We say that a bundle, &, with base B and structure group G is trivial iff £ is isomorphic
to the product bundle, B x F'| according to the notion of isomorphism of Definition 7.3.

We can also define the notion of equivalence for fibre bundles over the same base space, B
(see Hirzebruch [78], Section 3.2, Chern [33], Section 5, and Husemoller [83], Chapter 5). We
will see shortly that two bundles over the same base are equivalent iff they are isomorphic.

Definition 7.4. Given two fibre bundles, & = (Ey, 7, B, F,G) and & = (Es, m, B, F, G),
over the same base space, B, we say that & and & are equivalent if there is an open cover,
U = (Uy)acr, for B, a family, ¢ = (pa)acs, of trivializations, ¢,: 7' (Uy) — U, x F, for
¢1, a family, ¢ = (¢))aer, of trivializations, ¢, : 7, '(U,) — U, x F, for &, and a family,
(Pa)acr, of smooth maps, p,: U, — G, such that

G (D) = pa(B)gas(B)ps(®) ", Torall b€ Uy MU,

Since the trivializations are bijections, the family (p4)aes is unique. The following propo-
sition shows that isomorphic fibre bundles are equivalent:

Proposition 7.1. If two fibre bundles, & = (Ey, 71, B, F,G) and & = (Es, m, B, F, G), over
the same base space, B, are isomorphic, then they are equivalent.

Proof. Let f: & — & be a bundle isomorphism. Then, we know that for some suitable open
cover of the base, B, and some trivializing families, (¢,) for & and (¢!,) for &, there is a
family of maps, p,: U, — G, so that

Yoo fopat(bx) = (b, pa(b)(x)),
for all b € U, and all € F'. Recall that
Yo © 05 (b, ) = (b, gap(b)(2)),

for all b € U, NUg and all x € F. This is equivalent to

5 (0,2) = 05 (b, gap(b)(2)),

so it is notationally advantageous to introduce v, such that 1, = ¢_'. Then, we have

¥p(b, ) = Ya(b, gap(b)(x))



246 CHAPTER 7. BUNDLES, RIEMANNIAN METRICS, HOMOGENEOUS SPACES

and
¢o o fopl(bx) = (b, pa(b)(z))
becomes
th(b? x) = fil o %(b, pa(b)(l‘)).
We have
Up(b, ) = (b, gas(0)(2)) = 71 0 9, (D, pa(b) (gas(b)(2)))
and also

bp(b,x) = [ o gs(b, ps(D)(w)) = f~ 0 (b, ghg(b) (ps(D)(2)))
from which we deduce
Pa(b)(gas(b)(@)) = g,5(b)(ps(b)(2)),
that is
G5 () = palB)gas(B)ps ()™, forall be Uy MU,

as claimed. O

Remark: If § = (Fy,m, By, F,G) and & = (Fa, ma, Bs, F, G) are two bundles over different
bases and f: & — & is a bundle isomorphism, with f = (fg, fr), then fr and fp are
diffeomorphisms and it is easy to see that we get the conditions

ggﬂ(fB(b)) = pa(b)gaﬁ(b)pﬂ(b)_lv for all b € Uy N Up.

The converse of Proposition 7.1 also holds.

Proposition 7.2. If two fibre bundles, & = (Ey,m, B, F,G) and & = (Ey, m, B, F, G), over
the same base space, B, are equivalent then they are isomorphic.

Proof. Assume that & and & are equivalent. Then, for some suitable open cover of the
base, B, and some trivializing families, (¢, ) for & and (¢)) for &, there is a family of maps,
pa: Uy — G, so that

95(8) = pa(B)gas(Bps (), for all b€ Uy U

which can be written as
9o (0)p3(b) = pa(D)gas (D).

For every U,, define f, as the composition

~ ;-1

U, x F

N (Uy) 22> Uy x F

2 (b,2) —— (b, pa(b)(2)) —= ¢, (b, pa(b)(2)),
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that is,
fa(2) = & (b, pa(B)(@)),  with 2 € m ! (Ua) and (b,7) = pa(2).
Clearly, the definition of f, implies that
P © fa 0 00 (b)) = (b, pa(b)(2)),

for all b € U, and all x € F' and, locally, f, is a bundle isomorphism with respect to p,. If
we can prove that any two f, and fs agree on the overlap, U, N Ug, then the f,’s patch and
yield a bundle map between &; and &. Now, on U, N Ug,

Pa © 9051([% ZL’) = <b7 ga[g(b)(l’))

yields
w5 (b,2) = ¢3! (b, gap(b)(2))-
We need to show that for every z € U, N Ug,
fal2) = @, (0, pa(B) () = ¢ (b, (D) (")) = fa(2),
where ¢, (2) = (b,x) and pg(z) = (b, 2').
From z = gogl(b, 2') = ;1 (b, gap(b)(2))), we get
T = gaﬂ(b)(x/)'

We also have
o (0, ps(0) () = @ (b ghs(B) (ps(b) ("))
and since g,,5(0)pp(b) = pa(b)gas(b) and x = gap(b)(z’) we get

2 (0. ps(0)(@)) = @ (b, pa(B)(gas(®) (@) = @~ (b, pa(b)(x)),

as desired. Therefore, the f,’s patch to yield a bundle map, f, with respect to the family
of maps, p,: U, — G. The map f is bijective because it is an isomorphism on fibres but it
remains to show that it is a diffeomorphism. This is a local matter and as the ¢, and ¢/,

are diffeomorphisms, it suffices to show that the map, f;: U, x F— U, x F, given by

(b, ) = (b, pa(b)(2))-

is a diffeomorphism. For this, observe that in local coordinates, the Jacobian matrix of this

( >

where [ is the identity matrix and J(p, (b)) is the Jacobian matrix of p,(b). Since p,(b)

is a diffeomorphism, det(J) # 0 and by the Inverse Function Theorem, the map f, is a
diffeomorphism, as desired. O
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Remark: If in Proposition 7.2, £ = (B, m, By, F,G) and & = (Es, s, By, F),G) are two
bundles over different bases and if we have a diffeomorphism, fz: B; — Bs, and the condi-
tions

Gos(F5(0)) = palB)gusBps(h) ™, for all be UnN U
hold, then there is a bundle isomorphism, (fg, fg) between & and &,.

It follows from Proposition 7.1 and Proposition 7.2 that two bundles over the same base
are equivalent iff they are isomorphic, a very useful fact. Actually, we can use the proof of
Proposition 7.2 to show that any bundle morphism, f: & — &, between two fibre bundles
over the same base, B, is a bundle isomorphism. Because a bundle morphism, f, as above
is fibre preserving, f is bijective but it is not obvious that its inverse is smooth.

Proposition 7.3. Any bundle morphism, f: & — &, between two fibre bundles over the
same base, B, 1s an isomorphism.

Proof. Since [ is bijective, this is a local matter and it is enough to prove that each,
fa: Uy x F— U, x F, is a diffeomorphism, since f can be written as

f:gp:x_loj’zogpon

with B
fa<b> (E) = <b7 pa(b)(ﬂf))
However, the end of the proof of Proposition 7.2 shows that J}; is a diffeomorphism. O]

Given a fibre bundle, ¢ = (E,w, B, F,G), we observed that the family, ¢ = (gag), of
transition maps, g.5: Uy N Uz — G, induced by a trivializing family, ¢ = (¢4 )aer, relative
to the open cover, U = (Uy)aey, for B satisfies the cocycle condition,

9ap(0)g5+(b) = gary (),

for all v, 8,y such that U,NUzNU, # @ and all b € U,NUgNU,. Without altering anything,
we may assume that g,g is the (unique) function from ) to G when U,NUg = 0. Then, we call
a family, g = (gag)(a,p)crx1, @s above a U-cocycle, or simply, a cocycle. Remarkably, given
such a cocycle, g, relative to U, a fibre bundle, {,, over B with fibre, F', and structure group,
G, having g as family of transition functions, can be constructed. In view of Proposition 7.1,
we say that two cocycles, g = (gag)(a,8)cixr a0d §' = (gap)(a,8)crx1, are equivalent if there is
a family, (pa)acr, of smooth maps, p,: U, — G, such that

9o (b) = pa(b)gas(b)ps(b) ", for all b € U, N Us.

Theorem 7.4. Given two smooth manifolds, B and F', a Lie group, G, acting effectively
on F, an open cover, U = (Uy)acr, of B, and a cocycle, g = (gap)(apcixi, there is a
fibre bundle, {, = (E,m, B, F,G), whose transition maps are the maps in the cocycle, g.
Furthermore, if g and ¢’ are equivalent cocycles, then &, and £y are isomorphic.
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Proof sketch. First, we define the space, Z, as the disjoint sum
Z=1Jv.xF.

We define the relation, ~, on Z x Z, as follows: For all (b,z) € Us x F and (b,y) € U, X F,
it U, N Us # 0,
(b,x) = (byy) il y= gas(b)().

We let F = Z/ ~, and we give FE the largest topology such that the injections,

Na: Uy X F — Z, are smooth. The cocycle condition insures that ~ is indeed an equivalence
relation. We define 7: E — B by w([b,z]) = b. If p: Z — E is the the quotient map, observe
that the maps, pon,: U, X F — E, are injective, and that

Topon,(b ) =0

Thus,
pong: Uy x F— 7 4U,)

is a bijection, and we define the trivializing maps by setting

o= (pona)"

It is easily verified that the corresponding transition functions are the original g,g. There are
some details to check. A complete proof (the only one we could find!) is given in Steenrod
[142], Part I, Section 3, Theorem 3.2. The fact that &, and £, are equivalent when g and
¢ are equivalent follows from Proposition 7.2 (see Steenrod [142], Part I, Section 2, Lemma
2.10). O

Remark: (The following paragraph is intended for readers familiar with Cech cohomology.)
Obviously, if we start with a fibre bundle, £ = (E, 7, B, F,G), whose transition maps are
the cocycle, g = (gap), and form the fibre bundle, ,, the bundles ¢ and &, are equivalent.
This leads to a characterization of the set of equivalence classes of fibre bundles over a base
space, B, as the cohomology set, H' (B, G). In the present case, the sheaf, G, is defined such
that I'(U, G) is the group of smooth maps from the open subset, U, of B to the Lie group,
G. Since G is not abelian, the coboundary maps have to be interpreted multiplicatively. If
we define the sets of cochains, C*(U,G), so that

=[[oW.), C'Ww.6)=]]W.nUs), C’W,G) = [] 6U0.NUsNT,),

a<f a<fB<y

etc., then it is natural to define,

50: CO(Z/{, g) — Cl(uvg)a
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by
(009)as = 9o ' 95,
for any g = (ga), with g, € I'(U,,G). As to

o1 C'(U,G) — C*(U, G),
since the cocycle condition in the usual case is

Jap + 948y = Gary,

we set
(019)asy = GBI Jar

for any g = (gap), With gas € I'(U, N U, G). Note that a cocycle, g = (gap), is indeed an
element of Z'(U,G), and the condition for being in the kernel of

61 CHU,G) — C*(U,G)

is the cocycle condition,

9ap(b)g5+(b) = gar(b),
for all b € U, NUg N U,. In the commutative case, two cocycles, g and ¢', are equivalent if
their difference is a boundary, which can be stated as

glaﬁ_}_pﬁ = Gap t Pa = Pa + Gap,

where p, € T'(U,, G), for all @ € I. In the present case, two cocycles, g and ¢, are equivalent
iff there is a family, (pa)acr, With p, € I'(U,, G), such that

s (b) = Pa(b)gas(b)ps(b) ™",

for all b € U, N Ug. This is the same condition of equivalence defined earlier. Thus, it is
easily seen that if g,h € Z*(U,G), then &, and &, are equivalent iff g and h correspond to
the same element of the cohomology set, H'(U,G). As usual, H'(B,G) is defined as the
direct limit of the directed system of sets, H YU, G), over the preordered directed family of
open covers. For details, see Hirzebruch [78], Section 3.1. In summary, there is a bijection
between the equivalence classes of fibre bundles over B (with fibre F' and structure group G)
and the cohomology set, H'(B,G). In the case of line bundles, it turns out that H'(B, G) is
in fact a group.

As an application of Theorem 7.4, we define the notion of pullback (or induced) bundle.
Say £ = (E,m, B, F,G) is a fibre bundle and assume we have a smooth map, f: N — B. We
seek a bundle, f*¢, over N, together with a bundle map, (f*, f): f*¢ — &,

el E
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where, in fact, f*F is a pullback in the categorical sense. This means that for any other
bundle, &', over N and any bundle map,

|~

E’ E
NT‘ B,

there is a unique bundle map, (P,id): & — f*¢ so that (f', f) = (f* f)o (f’,id). Thus,
there is an isomorphism (natural),

Hom(¢', €) = Hom(¢,' f*¢).

As a consequence, by Proposition 7.3, for any bundle map betwen & and &,

;

NTB,

|~

E/
s

there is an isomorphism, £’ = f*¢€.

The bundle, f*¢, can be constructed as follows: Pick any open cover, (U,), of B, then
(f~Y(U,)) is an open cover of N and check that if (gag) is a cocycle for &, then the maps,
gap o f: f7H(Us) N f7H(Us) — G, satisty the cocycle conditions. Then, f*¢ is the bundle
defined by the cocycle, (gap © f). We leave as an exercise to show that the pullback bundle,
f*&, can be defined explicitly if we set

fTE={(n,e) e Nx E| f(n) =mn(e)},
7 = pry and f* = pro. For any trivialization, ga: 7 (Ua) — Uy x F, of € we have
(7)) (7 (Ua) = {(n,e) e N x E | n € f7H(Ua),e € 7' (f(n))},
and so, we have a bijection, F: (7)1 (f~(Ua)) — f~1(Ua) x F, given by
Pa(n, e) = (n,pra(va(e))).

By giving f*E the smallest topology that makes each ¢, a diffeomorphism, @,, is a trivial-
ization of f*¢ over f~1(U,) and f*¢ is a smooth bundle. Note that the fibre of f*¢ over a
point, n € N, is isomorphic to the fibre, 771(f(n)), of £ over f(n). If g: M — N is another
smooth map of manifolds, it is easy to check that

(fog)é=g"(fr).
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Given a bundle, £ = (E, 7, B, F,G), and a submanifold, IV, of B, we define the restriction
of ¢ to N as the bundle, £ | N = (77 }(N),n | 7~ Y(N), B, F,G).

Experience shows that most objects of interest in geometry (vector fields, differential
forms, etc.) arise as sections of certain bundles. Furthermore, deciding whether or not a
bundle is trivial often reduces to the existence of a (global) section. Thus, we define the
important concept of a section right away.

Definition 7.5. Given a fibre bundle, £ = (F,m, B, F, G), a smooth section of £ is a smooth
map, s: B — E, so that m o s = idg. Given an open subset, U, of B, a (smooth) section of
¢ over U is a smooth map, s: U — FE, so that w o s(b) = b, for all b € U; we say that s is
a local section of £. The set of all sections over U is denoted I'(U, £) and T'(B, ) (for short,
['(€)) is the set of global sections of &.

Here is an observation that proves useful for constructing global sections. Let s: B — F
be a global section of a bundle, £&. For every trivialization, ¢,: 7 1(U,) — U, x F, let
Sa: Uy — E and o,: U, — F be given by

Sa = 8 rUa and Oaq = P72 0 Pq © Sa;

so that

5a(b) = 95 (b, 04(D)).
Obviously, 7o s, = id, so s, is a local section of ¢ and o, is a function, o,: U, — F. We
claim that on overlaps, we have

a(b) = gap(b)os(b).

Indeed, recall that
Pa © 9051(b7 z) = (b, gaﬂ(b)‘x)?

forallbe U,NUg and all z € F and as s, = s | U, and sg = s | Ug, s, and sg agree on
Uy N Ug. Consequently, from

sa(b) = ¢3! (b,04(b) and  s5(b) = ¢ (b,05(D)),
we get
o (b,0a(b)) = sa(b) = s5(b) = 05" (b,75(D)) = " (b, gap(b) s (b)),
which implies 0,(b) = gas(b)os(b), as claimed.
Conversely, assume that we have a collection of functions, o,: U, — F, satisfying

a(b) = gap(b)os(b)

on overlaps. Let s,: U, — E be given by

Sa(b) = ¢4 (b, 0a(b)).
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Each s, is a local section and we claim that these sections agree on overlaps, so they patch
and define a global section, s. We need to show that

sa(b) = ¢, (b,0a(b)) = ¢5" (b, 05(b)) = s5(b),

for b € U, N Usg, that is,
(bv Ua(b)) = Pa © SO,EI(ba gﬂ(b))v

and since @, o gpgl(b, o5(b)) = (b, 9ap(b)os(b)) and by hypothesis, 0,(b) = gas(b)os(b), our
equation s,(b) = sz(b) is verified.

There are two particularly interesting special cases of fibre bundles:

(1) Vector bundles, which are fibre bundles for which the typical fibre is a finite-dimensional
vector space, V', and the structure group is a subgroup of the group of linear isomor-
phisms (GL(n,R) or GL(n,C), where n = dim V).

(2) Principal fibre bundles, which are fibre bundles for which the fibre, F', is equal to the
structure group, GG, with G acting on itself by left translation.

First, we discuss vector bundles.

7.2 Vector Bundles

Given a real vector space, V', we denote by GL(V') (or Aut(V')) the vector space of linear
invertible maps from V to V. If V has dimension n, then GL(V) has dimension n?. Obviously,
GL(V) is isomorphic to GL(n, R), so we often write GL(n, R) instead of GL(V') but this may
be slightly confusing if V' is the dual space, W* of some other space, W. If V' is a complex
vector space, we also denote by GL(V') (or Aut(V')) the vector space of linear invertible maps
from V' to V but this time, GL(V') is isomorphic to GL(n,C), so we often write GL(n, C)
instead of GL(V).

Definition 7.6. A rank n real smooth vector bundle with fibre V' is a tuple, £ = (E,m, B, V),
such that (E,m, B,V,GL(V)) is a smooth fibre bundle, the fibre, V', is a real vector space of
dimension n and the following conditions hold:

(a) For every b € B, the fibre, 771(b), is an n-dimensional (real) vector space.

(b) For every trivialization, ¢, : 771(U,) — U, x V, for every b € U,, the restriction of ¢,
to the fibre, 771(b), is a linear isomorphism, 7~ (b) — V.

A rank n complex smooth vector bundle with fibre V is a tuple, & = (E,m, B, V), such
that (£, 7, B,V,GL(V)) is a smooth fibre bundle such that the fibre, V, is an n-dimensional
complex vector space (viewed as a real smooth manifold) and conditions (a) and (b) above
hold (for complex vector spaces). When n = 1, a vector bundle is called a line bundle.
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The trivial vector bundle, E = B x V, is often denoted €. When V = R*, we also
use the notation €*. Given a (smooth) manifold, M, of dimension n, the tangent bundle,
T M, and the cotangent bundle, T* M, are rank n vector bundles. Indeed, in Section 3.3, we
defined trivialization maps (denoted 7y7) for TM. Let us compute the transition functions
for the tangent bundle, TM, where M is a smooth manifold of dimension n. Recall from
Definition 3.16 that for every p € M, the tangent space, T, M, consists of all equivalence
classes of triples, (U, ¢, x), where (U, ) is a chart with p € U, « € R", and the equivalence
relation on triples is given by

U p,2) = (V,byy) iff (oo ), (2) =y
We have a natural isomorphism, 0y, ,: R" — T, M, between R™ and T,M given by
Ov.pp: ©— [(U,p, )], r € R"™.
Observe that for any two overlapping charts, (U, ¢) and (V,),
9‘21&,]7 0Oy pp= (Yo @-1)/2

for all p e U NV, with z = ¢(p) = 1(p). We let TM be the disjoint union,

T™ = | J T,M,
peEM

define the projection, m: TM — M, so that w(v) = p if v € T,M, and we give T'M the
weakest topology that makes the functions, @: 7=1(U) — R?*", given by

P(v) = (pom(v), 05, 1) (V)

continuous, where (U, ¢) is any chart of M. Each function, ¢: 7= 1(U) — ¢(U) x R" is a
homeomorphism and given any two overlapping charts, (U, ¢) and (V,v), since

9;’1”, 0 0ypp = (o t)., with z = p(p) = 1(p), the transition map,

Vo pUNV) xR — p(UNV) x R,
is given by
Vo (za) = (op ' (2),(ep )i(x),  (22)€pUNV)XR"
It is clear that QZ o 1 is smooth. Moreover, the bijection,

e m N (U) = U x R,

given by
T (v) = (7(0), 014 2y (V)
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satisfies pry o 7y = ™ on m1(U) and is a linear isomorphism restricted to fibres, so it is a
trivialization for 7M. For any two overlapping charts, (U, ¢o) and (Us, ¢3), the transition
function, g.5: Uy N Us — GL(n,R), is given by

9as(P) = (Pa © 05" )iy
We can also compute trivialization maps for 7*M. This time, 7% M is the disjoint union,

"M = | T;M

peEM

and 7: T*M — M is given by m(w) = p if w € Ty M, where Ty M is the dual of the tangent
space, T, M. For each chart, (U, ), by dualizing the map, 0y ,,: R — T,,M, we obtain an
1somorphlsm 00 pp: TpM — (R™)*. Composing 67, , , with the 1som0rphlsm v (RM)* - R”
(induced by the canomcal basis (e, ..., e,) of R" and its dual basis), we get an isomorphism,

Ofpp = 1000, TrM — R™. Then, deﬁne the bijection,

" HU) — p(U) x R* C R*™,

by
P (W) = (pom(w), 07w (W),
with w € 771(U). We give T* M the weakest topology that makes the functions ¢* continuous
and then each function, ¢*, is a homeomorphism. Given any two overlapping charts, (U, ¢)
and (V,1), as
9V1ﬁp 0 Opp = (o™ )go(p)

by dualization we get

9;@1) (9\/1/) p) = el—lJ—cpp (QV},Z)p) = ((Q/] © @_1);(p))Ta

then
O © (0 o) = (W0 ™)) )Y,
and so
100y, 0 (00,,) ot =10 (hop ), ) e,
that is,

0;1/,71, © (Ql*f,cp,p)_l =to(((¥o ‘P_l):p(p))—r)_l oL,
Consequently, the transition map,
Do () p(UNV) xR — p(UNV) x RY,

is given by

Vo (@) Nz a) = (o (2), o ((Wop ™)) )T o (x),  (2,2) E9(UNV) xR
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If we view (¢ o p 1) as a matrix, then we can forget ¢ and the second component of

P o (F) 7z ) is (Yo p™))T) e
We also have trivialization maps, 75;: 7= H(U) — U x (R™)*, for T*M given by
Tl?(w) = (7'('((,;)), eg]r,ga,w(w) (w))a
for all w € 771 (U). The transition function, 95 Ua NUs — GL(n, R), is given by
9as(P)() = 70, (Tf}ﬁp)_l(n)
- 9;}& "Pa,T (el}rﬁ PB,T (n))fl(n)
1

= ((Ql;i,gpa,ﬂ'(n) QU/J#’/%W(W))T)_ <n>
= (a0 95 o) )7 (),

with n € (R™)*. Also note that GL(n,R) should really be GL((R™)*), but GL((R")*) is
isomorphic to GL(n,R). We conclude that

9as(P) = (gas(p)")™",  for every p € M.

This is a general property of dual bundles, see Property (f) in Section 7.3.

Maps of vector bundles are maps of fibre bundles such that the isomorphisms between
fibres are linear.

Definition 7.7. Given two vector bundles, & = (Ey,m, By, V) and & = (Ey, ma, B, V),
with the same typical fibre, V| a bundle map (or bundle morphism), f: & — &, is a pair,
f = (fg, fB), of smooth maps, fr: £y — F5 and fg: By — By, such that

(a) The following diagram commutes:

(b) For every b € By, the map of fibres,

fo Tt (b): mt(b) = w5 (f(D)),
is a bijective linear map.

A bundle map isomorphism, f: & — &, is defined as in Definition 7.2. Given two vector
bundles, & = (Ey, 71, B, V) and & = (FEy, me, B, V'), over the same base space, B, we require
fp =id.
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Remark: Some authors do not require the preservation of fibres, that is, the map

fe T t(b): mt(b) = my  (f5(D))

is simply a linear map. It is automatically bijective for bundle isomorphisms.

Note that Definition 7.7 does not include condition (b) of Definition 7.3. However,
because the restrictions of the maps ., ¢} and f to the fibres are linear isomorphisms,
it turns out that condition (b) (of Definition 7.3) does hold. Indeed, if f5(U,) C V3, then

o fop iUy xV — Vg xV

is a smooth map and, for every b € B, its restriction to {b} x V is a linear isomorphism
between {b} x V and {fg(b)} x V. Therefore, there is a smooth map, p,: U, — GL(n,R),
so that

P o fopy (b,x)=(fo(b),pa(b)(2))
and a vector bundle map is a fibre bundle map.

A holomorphic vector bundle is a fibre bundle where E, B are complex manifolds, V is a
complex vector space of dimension n, the map 7 is holomorphic, the ¢, are biholomorphic,
and the transition functions, g,3, are holomorphic. When n = 1, a holomorphic vector
bundle is called a holomorphic line bundle.

Definition 7.4 also applies to vector bundles (just replace G by GL(n,R) or GL(n,C))
and defines the notion of equivalence of vector bundles over B. Since vector bundle maps
are fibre bundle maps, Propositions 7.1 and 7.2 immediately yield

Proposition 7.5. Two vector bundles, & = (Ey, 1, B,V) and & = (Ey, m, B, V), over the
same base space, B, are equivalent iff they are isomorphic.

Since a vector bundle map is a fibre bundle map, Proposition 7.3 also yields the useful
fact:

Proposition 7.6. Any vector bundle map, f: & — &, between two vector bundles over the
same base, B, is an isomorphism.

Theorem 7.4 also holds for vector bundles and yields a technique for constructing new
vector bundles over some base, B.

Theorem 7.7. Given a smooth manifold, B, an n-dimensional (real, resp. complex) vector
space, V', an open cover, U = (Uy)acr of B, and a cocycle, g = (gap)(agycixr (with

Ggap: Uy NUsg — GL(n,R), resp. gap: Uy NUsg — GL(n,C)), there is a vector bundle,
& = (E,m, B, V), whose transition maps are the maps in the cocycle, g. Furthermore, if g
and g’ are equivalent cocycles, then &, and £y are equivalent.
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Observe that a coycle, g = (gag)(a,8)cix1, is given by a family of matrices in GL(n,R)
(resp. GL(n,C)).

A vector bundle, &, always has a global section, namely the zero section, which assigns
the element 0 € 771(b), to every b € B. A global section, s, is a non-zero section iff s(b) # 0
for all b € B. It is usually difficult to decide whether a bundle has a nonzero section.
This question is related to the nontriviality of the bundle and there is a useful test for
triviality. Assume £ is a trivial rank n vector bundle. Then, there is a bundle isomorphism,
f: BxV — & For every b € B, we know that f(b, —) is a linear isomorphism, so for any
choice of a basis, (e1,...,e,) of V, we get a basis, (f(b,e1),..., f(b,e,)), of the fibre, 7~1(b).
Thus, we have n global sections, s; = f(—,e1),..., 8, = f(—, en), such that (s1(b), ..., s,(b))
forms a basis of the fibre, 771(b), for every b € B.

Definition 7.8. Let £ = (E,m,B,V) be a rank n vector bundle. For any open subset,

U C B, an n-tuple of local sections, (s1,...,s,), over U is called a frame over U iff
(s1(D),...,sn(D)) is a basis of the fibre, 7=1(b), for every b € U. If U = B, then the s;
are global sections and (sy,...,s,) is called a frame (of £).

The notion of a frame is due to Elie Cartan who (after Darboux) made extensive use of
them under the name of moving frame (and the moving frame method). Cartan’s terminology
is intuitively clear: As a point, b, moves in U, the frame, (s1(b),. .., $,(b)), moves from fibre
to fibre. Physicists refer to a frame as a choice of local gauge.

The converse of the property established just before Definition 7.8 is also true.

Proposition 7.8. A rank n vector bundle, &, is trivial iff it possesses a frame of global
sections.

Proof. We only need to prove that if ¢ has a frame, (sq,...,s,), then it is trivial. Pick a
basis, (e1,...,€,), of V and define the map, f: B x V — &, as follows:

f(b,v) = Zvisi(b),

where v = """ v;e;. Clearly, f is bijective on fibres, smooth, and a map of vector bundles.
By Proposition 7.6, the bundle map, f, is an isomorphism. O

As an illustration of Proposition 7.8 we can prove that the tangent bundle, T'S*, of the
circle, is trivial. Indeed, we can find a section that is everywhere nonzero, i.e. a non-vanishing
vector field, namely

s(cosf,sinf) = (—sin @, cos ).

The reader should try proving that 7'S? is also trivial (use the quaternions). However, T'S?
is nontrivial, although this not so easy to prove. More generally, it can be shown that T'S™ is
nontrivial for all even n > 2. It can even be shown that S, S® and S” are the only spheres
whose tangent bundle is trivial. This is a rather deep theorem and its proof is hard.
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Remark: A manifold, M, such that its tangent bundle, T'M, is trivial is called parallelizable.

The above considerations show that if & is any rank n vector bundle, not necessarily
trivial, then for any local trivialization, p,: 7~ 1(U,) — U, X V, there are always frames
over U,. Indeed, for every choice of a basis, (e1,...,e,), of the typical fibre, V| if we set

sO(b) = ot (bye)),  bEU, 1<i<n,

then (s§,...,s%) is a frame over U,.

Given any two vector spaces, V and W, both of dimension n, we denote by Iso(V, W)
the space of all linear isomorphisms between V' and W. The space of n-frames, F(V), is the
set of bases of V. Since every basis, (vy,...,v,), of V is in one-to-one correspondence with
the map from R" to V given by e; — v;, where (e, ..., e,) is the canonical basis of R" (so,
e; =(0,...,1,...0) with the 1 in the ith slot), we have an isomorphism,

F(V) = Iso(R", V).
(The choice of a basis in V" also yields an isomorphism, Iso(R", V') = GL(n,R), so
F(V) = GL(n,R).)

For any rank n vector bundle, £, we can form the frame bundle, F(£), by replacing the
fibre, 771(b), over any b € B by F(x~1(b)). In fact, F|(£) can be constructed using Theorem
7.4. Indeed, identifying F'(V') with Iso(R", V'), the group GL(n,R) acts on F(V) effectively
on the left via

A-v=voA"

(The only reason for using A~! instead of A is that we want a left action.) The resulting
bundle has typical fibre, F(V) = GL(n,R), and turns out to be a principal bundle. We will
take a closer look at principal bundles in Section 7.5.

We conclude this section with an example of a bundle that plays an important role in
algebraic geometry, the canonical line bundle on RP™. Let HX C RP" x R"*! be the subset,

H® = {(L,v) e RP" x R"™ | v e L},

where RP" is viewed as the set of lines, L, in R™*! through 0, or more explicitly,

HY = {((wo: -+ 20), Mo, -, 7)) | (w0: --+: 2,) € RP", X € R}.
Geometrically, HX consists of the set of lines, [(zo, ..., 2,)], associated with points,
(zg: -+ : x,), of RP". If we consider the projection, 7: HX — RP", of HX onto RP", we see

that each fibre is isomorphic to R. We claim that HE is a line bundle. For this, we exhibit
trivializations, leaving as an exercise the fact that H is a manifold.

Recall the open cover, Uy, ..., U,, of RP", where

Ui={(xo: ---:2,) € RP" | x; # 0}.
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Then, the maps, ¢;: 7 1(U;) — U; x R, given by

il(T0r -+ ), M@0y -y mn)) = (o7 -+ ¢ 20, Azi)
are trivializations. The transition function, g;;: U; N U; — GL(1,R), is given by

Z;
gij(@o: -+ wn)(u) = 2.
J

where we identify GL(1,R) and R* = R — {0}.

Interestingly, the bundle HX is nontrivial for all n > 1. For this, by Proposition 7.8 and
since HY is a line bundle, it suffices to prove that every global section vanishes at some point.
So, let o be any section of HX. Composing the projection, p: S* — RP", with o, we get a
smooth function, s = o op: S — HE, and we have

since s(—z) = s(x). As S™ is connected and f is continuous, by the intermediate value
theorem, there is some x such that f(x) = 0, and thus, o vanishes, as desired.

The reader should look for a geometric representation of H. It turns out that HY is
an open Mobius strip, that is, a Mobius strip with its boundary deleted (see Milnor and
Stasheff [111], Chapter 2). There is also a complex version of the canonical line bundle on
CP", with

H, ={(L,v) € CP" x C"*! |v € L},

where CP" is viewed as the set of lines, L, in C**! through 0. These bundles are also
nontrivial. Furthermore, unlike the real case, the dual bundle, [, is not isomorphic to H,,.
Indeed, H; turns out to have nonzero global holomorphic sections!

7.3 Operations on Vector Bundles

Because the fibres of a vector bundle are vector spaces all isomorphic to some given space, V,
we can perform operations on vector bundles that extend familiar operations on vector spaces,
such as: direct sum, tensor product, (linear) function space, and dual space. Basically, the
same operation is applied on fibres. It is usually more convenient to define operations on
vector bundles in terms of operations on cocycles, using Theorem 7.7.

(a) (Whitney Sum or Direct Sum)

If ¢ = (F,m, B,V) is a rank m vector bundle and ¢’ = (E', 7', B, W) is a rank n vector
bundle, both over the same base, B, then their Whitney sum, {® ¢, is the rank (m+n)
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(b)

(d)

(e)

(f)
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vector bundle whose fibre over any b € B is the direct sum, £, & Ej, that is, the vector
bundle with typical fibre V@& W (given by Theorem 7.7) specified by the cocycle whose

matrices are ( )
Gap b 0 > b
) e U,NU;3.
< 0 gfw(b) f

(Tensor Product)

If ¢ =(E,m, B,V) is arank m vector bundle and {' = (E', 7', B, W) is a rank n vector
bundle, both over the same base, B, then their tensor product, £ ® £, is the rank mn
vector bundle whose fibre over any b € B is the tensor product, £, ® Ej, that is, the
vector bundle with typical fibre V@ W (given by Theorem 7.7) specified by the cocycle
whose matrices are

9ap(b) ® ghg(b), b€ UsNUs.

(Here, we identify a matrix with the corresponding linear map.)

(Tensor Power)

If ¢ = (E,m,B,V) is a rank m vector bundle, then for any & > 0, we can define the
tensor power bundle, £2¥, whose fibre over any b € £ is the tensor power, E}?k and with
typical fibre V. (When k = 0, the fibre is R or C). The bundle £%* is determined
by the cocycle

92 (b), be U, NUs.

(Exterior Power)

If £ = (E,7,B,V) is a rank m vector bundle, then for any & > 0, we can define the
exterior power bundle, /\kﬁ , whose fibre over any b € £ is the exterior power, /\k Ey
and with typical fibre A* V. The bundle A" ¢ is determined by the cocycle

k
N Gas(d),  beUsNUs.

Using (a), we also have the ezterior algebra bundle, \§ = @, A€ (When k = 0,
the fibre is R or C).

(Symmetric Power) If £ = (E, 7, B, V) is a rank m vector bundle, then for any k£ > 0,
we can define the symmetric power bundle, Sym® ¢, whose fibre over any b € ¢ is the
exterior power, Sym* F, and with typical fibre Sym* V. (When k = 0, the fibre is R
or C). The bundle Sym®¢ is determined by the cocycle

Sym”* gas(b), beU,NUs.

(Dual Bundle) If ¢ = (E, 7, B, V) is a rank m vector bundle, then its dual bundle, £*,
is the rank m vector bundle whose fibre over any b € B is the dual space, £, that is,
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the vector bundle with typical fibre V* (given by Theorem 7.7) specified by the cocycle
whose matrices are

(gaﬂ(b)T)il, beU,N Uﬁ.

The reason for this seemingly complicated formula is this: For any trivialization,
0o T HU,) = U, x V, for any b € B, recall that the restriction, @,p: 7 1(b) = V,
of cpa to 7~1(b) is a linear isomorphism. By dualization we get a map,

Pap: V* = (m71(b))*, and thus, ¢ , for £ is given by

Ohp = (o) (771 (b)) = V™.
As ghs(b) = ©h 0 (phy) ", we get

925(6) = Y b) OQ%b
(S%b) O‘Pab)

(
(
(©55) " ©©ap)”"
(
(

1

(Qpabogpﬁl) ) '

gaﬁ( ) )

as claimed.

(g) (Hom Bundle)

If ¢ = (E,7,B,V) is a rank m vector bundle and ¢ = (E', 7', B,W) is a rank n
vector bundle, both over the same base, B, then their Hom bundle, Hom(,&'), is
the rank mn vector bundle whose fibre over any b € B is Hom(E,, E}), that is, the
vector bundle with typical fibre Hom(V,W). The transition functions of this bun-
dle are obtained as follows: For any trivializations, ¢,: 7~ 5(U,) — U, x V and
ol (ﬂ’)_l(Ua) — U, x W, for any b € B, recall that the restrictions, @, p: 7 1(b) — V
and ¢/, ,: (') (b) — W are linear isomorphisms. Then, we have a linear isomorphism,
O™ Hom(r~1(b), (') ~1(b)) — Hom(V, W), given by

Pas (f) = Capofovny,  f €Hom(z™'(b), (7)7(b).

Then, g,8™(b) = ¢ag™ o (wh5™) 7"

(h) (Tensor Bundle of type (r,s))

If ¢ = (FE,m B,V) is a rank m vector bundle, then for any r, s > 0, we can define the
bundle, 7™* £, whose fibre over any b € £ is the tensor space T"* Ej, and with typical
fibre T™° V. The bundle T"*¢ is determined by the cocycle

a5 () ® ((gas(0) )7H* (), bEUaNUs.
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In view of the canonical isomorphism, Hom(V, W) = V* ® W it is easy to show that
Hom(&,&'), is isomorphic to & ® &' Similarly, £** is isomorphic to . We also have the
isomorphism

TE 2 € @ (¢)°

@ Do not confuse the space of bundle morphisms, Hom(¢,¢'), with the Hom bundle,
Hom(&,&'). However, observe that Hom(&, £') is the set of global sections of Hom/(&,&').

As an illustration of (d), consider the exterior power, A" T*M, where M is a manifold of
dimension n. We have trivialization maps, 77;: 7~ H(U) — U x \"(R™)*, for \" T*M given
by

T;(w> = (71'(&)), /\ 65,90,71‘(0.7) (W)),

for all w € 7~1(U). The transition function, gé\;: U, NUz = GL(n,R), is given by

T

g (1) (@) = (AN (a0 95" )W),

for all w € 7~1(U). Consequently,

T

9l () = N(gas®)) ™,
for every p € M, a special case of (h).

For rank 1 vector bundles, that is, line bundles, it is easy to show that the set of equiv-
alence classes of line bundles over a base, B, forms a group, where the group operation is
®, the inverse is * (dual) and the identity element is the trivial bundle. This is the Picard
group of B.

In general, the dual, £*, of a bundle is not isomorphic to the original bundle, E. This is
because, V* is not canonically isomorphic to V' and to get a bundle isomorphism between &
and £*, we need canonical isomorphisms between the fibres. However, if £ is real, then (using
a partition of unity) £ can be given a Euclidean metric and so, £ and £* are isomorphic.

@ It is not true in general that a complex vector bundle is isomorphic to its dual because
a Hermitian metric only induces a canonical isomorphism between E* and E, where E
is the conjugate of F, with scalar multiplication in E given by (z,w) — wz.

Remark: Given a real vector bundle, &, the complexification, &c, of £ is the complex vector
bundle defined by

§c = € ®r €,
where ec = B x C is the trivial complex line bundle. Given a complex vector bundle, &, by

viewing its fibre as a real vector space we obtain the real vector bundle, é&g. The following
facts can be shown:
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(1) For every real vector bundle, &,
((c)r = EDE.
(2) For every complex vector bundle, &,

((r)c =EDE™

The notion of subbundle is defined as follows:

Definition 7.9. Given two vector bundles, £ = (E, 7, B,V) and ¢ = (FE', 7', B,V’), over
the same base, B, we say that & is a subbundle of £ iff FE is a submanifold of E', V is a
subspace of V' and for every b € B, the fibre, 771(b), is a subspace of the fibre, () ~1(b).

If £ is a subbundle of ¢, we can form the quotient bundle, &'/, as the bundle over B
whose fibre at b € B is the quotient space (7/)7(b)/7~1(b). We leave it as an exercise
to define trivializations for &'/¢. In particular, if N is a submanifold of M, then T'N is a
subbundle of TM [ N and the quotient bundle (TM | N)/TN is called the normal bundle
of N in M.

7.4 Metrics on Bundles, Riemannian Manifolds,
Reduction of Structure Groups, Orientation

Fortunately, the rich theory of vector spaces endowed with a Euclidean inner product can,
to a great extent, be lifted to vector bundles.

Definition 7.10. Given a (real) rank n vector bundle, £ = (E,w, B, V), we say that ¢ is
Fuclidean iff there is a family, ((—, —))sep, of inner products on each fibre, 771(b), such
that (—, —), depends smoothly on b, which means that for every trivializing map,

0o: T HUy) = U, x V, for every frame, (sq,...,s,), on Uy, the maps

b <Si(b),8j<b)>b, be Uaa 1< Z?.] <n

are smooth. We say that (—, —) is a Fuclidean metric (or Riemannian metric) on £. If £
is a complex rank n vector bundle, ¢ = (E, 7, B, V), we say that & is Hermitian iff there is
a family, ((—, —)3)pep, of Hermitian inner products on each fibre, 771(b), such that (—, —),
depends smoothly on b. We say that (—, —) is a Hermitian metric on . For any smooth
manifold, M, if T'M is a Euclidean vector bundle, then we say that M is a Riemannian
manifold.

If M is a Riemannian manifold, the smoothness condition on the metric, {(—, =), }penm,
on T'M, can be expressed a little more conveniently. If dim(M) = n, then for every chart,
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(U, p), since d(p;(lp): R™ — T,M is a bijection for every p € U, the n-tuple of vector fields,
(S1,...,5n), with s;(p) = dgog;(lp)(ei), is a frame of TM over U, where (ey,...,e,) is the
canonical basis of R". Since every vector field over U is a linear combination, > ., f;s;, for
some smooth functions, f;: U — R, the condition of Definition 7.10 is equivalent to the fact
that the maps,

p = (dpg (e dogg(e))y, P EU, 1<i,j<n,
are smooth. If we let © = (p), the above condition says that the maps,
z = (doy (e, dpr (€)) g1y, e p(U), 1<4,5<mn,

are smooth.

If M is a Riemannian manifold, the metric on T'M is often denoted g = (g,)pen- In a
chart, (U, ), using local coordinates, we often use the notation, g = Zij gijdx; ® dxj, or
simply, g = > _;; gijdridx;, where

9i(p) = <(8i,~)p’ (a%y)p>p

For every p € U, the matrix, (g;;(p)), is symmetric, positive definite.

The standard Euclidean metric on R”, namely,
g=dx]+ - +da2,

makes R” into a Riemannian manifold. Then, every submanifold, M, of R™ inherits a metric
by restricting the Euclidean metric to M. For example, the sphere, S"~!, inherits a metric
that makes S"~! into a Riemannian manifold. It is a good exercise to find the local expression
of this metric for S? in polar coordinates.

A nontrivial example of a Riemannian manifold is the Poincaré upper half-space, namely,
the set H = {(z,y) € R? | y > 0} equipped with the metric

dx? + dy?
g=—75—
Yy
A way to obtain a metric on a manifold, N, is to pull-back the metric, g, on another man-
ifold, M, along a local diffeomorphism, ¢: N — M. Recall that ¢ is a local diffeomorphism

iff
dgpp: TPN — TﬂmM

is a bijective linear map for every p € N. Given any metric g on M, if ¢ is a local diffeo-
morphism, we define the pull-back metric, p*g, on N induced by ¢ as follows: For all p € NV,
for all u,v € TN,

(£*9)p(,v) = Gom)(dipp(u), dipp(v)).
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We need to check that (¢*¢), is an inner product, which is very easy since dy, is a linear
isomorphism. Our map, @, between the two Riemannian manifolds (IV, ¢*g) and (M, g) is a
local isometry, as defined below.

Definition 7.11. Given two Riemannian manifolds, (M, g;) and (Ms, g2), a local isometry
is a smooth map, ¢: M; — My, such that dp,: T,,M; — T, M, is an isometry between the
Euclidean spaces (T,M1, (g1)p) and (T, M2, (92)4()), for every p € M;, that is,

(91)p(u, ) = (92) ) (dep(u), dpy(v)),

for all w,v € T,M; or, equivalently, p*gs = ¢g1. Moreover, ¢ is an isometry iff it is a local
isometry and a diffeomorphism.

The isometries of a Riemannian manifold, (M, g), form a group, Isom(M, g), called the
isometry group of (M,g). An important theorem of Myers and Steenrod asserts that the
isometry group, Isom(M, g), is a Lie group.

Given a map, ¢: M; — M, and a metric g; on M, in general, ¢ does not induce any
metric on M,. However, if ¢ has some extra properties, it does induce a metric on M,. This
is the case when M, arises from M, as a quotient induced by some group of isometries of
M. For more on this, see Gallot, Hulin and Lafontaine [61], Chapter 2, Section 2.A.

Now, given a real (resp. complex) vector bundle, £, provided that B is a sufficiently nice
topological space, namely that B is paracompact (see Section 3.6), a Euclidean metric (resp.
Hermitian metric) exists on £. This is a consequence of the existence of partitions of unity
(see Theorem 3.32).

Theorem 7.9. Every real (resp. complex) vector bundle admits a Euclidean (resp. Hermi-
tian) metric. In particular, every smooth manifold admits a Riemannian metric.

, 82, over U,.

For every b € U,, the basis, (s{(b),...,s%(b)) defines a Euclidean (resp. Hermitian) inner

ren

product, (—, =), on the fibre 771(b), by declaring (s¢(b), ..., s%(b)) orthonormal w.r.t. this
inner product. (For x = Y " z;5%(b) and y = Y1, y;52(b), let (@, y)p = > iy TiYs, vESP.
(T, y)p = >, xY;, in the complex case.) The (—, —), (with b € U,) define a metric on
71(U,), denote it (—, —),. Now, using Theorem 3.32, glue these inner products using a

partition of unity, (f,), subordinate to (U,), by setting

(@,9) =D fal@, ¥)a-

Proof. Let (U,) be a trivializing open cover for £ and pick any frame, (s{,...,s

We verify immediately that (—, —) is a Euclidean (resp. Hermitian) metric on &. O

The existence of metrics on vector bundles allows the so-called reduction of structure
group. Recall that the transition maps of a real (resp. complex) vector bundle, &, are
functions, gas: U, N Usg — GL(n,R) (resp. GL(n,C)). Let GL"(n,R) be the subgroup
of GL(n,R) consisting of those matrices of positive determinant (resp. GL¥(n,C) be the
subgroup of GL(n,C) consisting of those matrices of positive determinant).
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Definition 7.12. For every real (resp. complex) vector bundle, &, if it is possible to find a
cocycle, g = (gap), for & with values in a subgroup, H, of GL(n,R) (resp. of GL(n,C)), then
we say that the structure group of & can be reduced to H. We say that £ is orientable if its
structure group can be reduced to GL*(n,R) (resp. GL"(n,C)).

Proposition 7.10. (a) The structure group of a rank n real vector bundle, &, can be re-
duced to O(n); it can be reduced to SO(n) iff € is orientable.

(b) The structure group of a rank n complex vector bundle, &, can be reduced to U(n); it
can be reduced to SU(n) iff € is orientable.

Proof. We prove (a), the proof of (b) being similar. Using Theorem 7.9, put a metric on .
For every U, in a trivializing cover for £ and every b € B, by Gram-Schmidt, orthonormal
bases for 771(b) exit. Consider the family of trivializing maps, @n: 71 (U,) — U, X V,
such that @,,: 77 1(b) — V maps orthonormal bases of the fibre to orthonormal bases of
V. Then, it is easy to check that the corresponding cocycle takes values in O(n) and if £ is
orientable, the determinants being positive, these values are actually in SO(n). O

Remark: If ¢ is a Euclidean rank n vector bundle, then by Proposition 7.10, we may assume
that & is given by some cocycle, (gas), where go5(b) € O(n), for all b € U, N Ug. We saw in
Section 7.3 (f) that the dual bundle, £*, is given by the cocycle

(gap(®) ), be U, NUs.

As gas(b) is an orthogonal matrix, (gas(b) ") ™! = gas(b), and thus, any Euclidean bundle is
isomorphic to its dual. As we noted earlier, this is false for Hermitian bundles.

Let £ = (E, 7, B,V) be a rank n vector bundle and assume ¢ is orientable. A family of
trivializing maps, @, : 7 H(U,) — U, X V, is oriented iff for all a, 3, the transition function,
gap(b) has positive determinant for all b € U, N Uz. Two oriented families of trivializing
maps, po: ™ (Uy) — Uy X V and vg: 71 (W3) — W, x V, are equivalent iff for every
b € U, N W, the map pry o, 0 wﬁ’l I {b} x V: V — V has positive determinant. It
is easily checked that this is an equivalence relation and that it partitions all the oriented
families of trivializations of £ into two equivalence classes. Either equivalence class is called
an orientation of .

If M is a manifold and £ = T'M, the tangent bundle of £, we know from Section 7.2 that
the transition functions of T'M are of the form

9as(P) (1) = (Pa © 05" ) (1),

where each ¢, : U, — R" is a chart of M. Consequently, T'M is orientable iff the Jacobian of
(pa © 9051)20 (p) 18 Positive, for every p € M. This is equivalent to the condition of Definition
3.31 for M to be orientable. Therefore, the tangent bundle, T'M, of a manifold, M, is

orientable iff M is orientable.
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@ The notion of orientability of a vector bundle, £ = (E, 7, B, V), is not equivalent to the
orientability of its total space, E. Indeed, if we look at the transition functions of the
total space of T'M given in Section 7.2, we see that T'M, as a manifold, is always orientable,
even if M is not orientable. Yet, as a bundle, T'M is orientable iff M.

On the positive side, if £ = (F,m, B, V) is an orientable vector bundle and its base, B, is
an orientable manifold, then E is orientable too.

To see this, assume that B is a manifold of dimension m, £ is a rank n vector bundle
with fibre V', let ((Uy,%4))a be an atlas for B, let p,: 71 (U,) — U, X V be a collection of
trivializing maps for £ and pick any isomorphism, ¢: V' — R". Then, we get maps,

(Vo X 1) 0 pq: T H(Uy) — R™ x R™.

It is clear that these maps form an atlas for E. Check that the corresponding transition
maps for E are of the form

(z,y) = (g o U, (2), gap(Vy ' (2))y).
Moreover, if B and & are orientable, check that these transition maps have positive Jacobian.

The fact that every bundle admits a metric allows us to define the notion of orthogonal
complement of a subbundle. We state the following theorem without proof. The reader is
invited to consult Milnor and Stasheff [111] for a proof (Chapter 3).

Proposition 7.11. Let & and n be two vector bundles with & a subbundle of n. Then, there
exists a subbundle, £+, of 1, such that every fibre of £+ is the orthogonal complement of the
fibre of & in the fibre of n, over every b € B and

nREDE

In particular, if NV is a submanifold of a Riemannian manifold, M, then the orthogonal
complement of TN in TM [ N is isomorphic to the normal bundle, (T'M | N)/T'N.

Remark: It can be shown (see Madsen and Tornehave [101], Chapter 15) that for every
real vector bundle, &, there is some integer, k, such that ¢ has a complement, 7, in €, where
¥ = B x R¥ is the trivial rank k vector bundle, so that

Edn=¢.

This fact can be used to prove an interesting property of the space of global sections, I'(§).
First, observe that I'(£) is not just a real vector space but also a C*°(B)-module (see Section
22.19). Indeed, for every smooth function, f: B — R, and every smooth section, s: B — F,
the map, fs: B — E, given by

(f5)(b) = f(b)s(b),  be B,
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is a smooth section of £. In general, I'(¢) is not a free C*°(B)-module unless ¢ is trivial.
However, the above remark implies that

L) ®T(n) = T("),

where I'(¢*) is a free C°°(B)-module of dimension dim(§) + dim(n). This proves that I'(¢)
is a finitely generated C'*°(B)-module which is a summand of a free C*°(B)-module. Such
modules are projective modules, see Definition 22.9 in Section 22.19. Therefore, I'(§) is a

finitely generated projective C*°(B)-module. The following isomorphisms can be shown (see
Madsen and Tornehave [101], Chapter 16):

Proposition 7.12. The following isomorphisms hold for vector bundles:

L(Hom(E,m))

I

Homee () (I'(€), I'(n))

LEon) = T'(E) c=m ')
['(€") = Homew(p)(I'(§),C*(B)) = (I'(§)"
PN = A T©)
C>=(B)

7.5 Principal Fibre Bundles

We now consider principal bundles. Such bundles arise in terms of Lie groups acting on
manifolds.

Definition 7.13. Let GG be a Lie group. A principal fibre bundle, for short, a principal
bundle, is a fibre bundle, £ = (E, 7, B, G, G), in which the fibre is G and the structure group
is also G, viewed as its group of left translations (ie., G acts on itself by multiplication on
the left). This means that every transition function, g.z: U, N Uz — G, satisfies

gap(b)(h) = g(b)h,  for some g(b) € G,

for all b € U, NUg and all h € G. A principal G-bundle is denoted § = (E, 7, B, G).

Note that G in gu5: Uy N Ug — G is viewed as its group of left translations under the
isomorphism, g — L, and so, g,s(b) is some left translation, L,(b). The inverse of the above
isomorphism is given by L — L(1), so g(b) = gas(b)(1). In view of these isomorphisms, we
allow ourself the (convenient) abuse of notation

Yap (b)(h) = gaﬁ(b)ha

where, on the left, g,z(b) is viewed as a left translation of G and on the right, as an element
of G.
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When we want to emphasize that a principal bundle has structure group, GG, we use the
locution principal G-bundle.

It turns out that if £ = (E,m, B, G) is a principal bundle, then G acts on the total space,
E on the right. For the next proposition, recall that a right action, -: X x G — X, is free
iff for every g € G, if g # 1, then x - g # x for all z € X.

Proposition 7.13. If ¢ = (E, 7, B,G) is a principal bundle, then there is a right action of
G on E. This action takes each fibre to itself and is free. Moreover, E/G is diffeomorphic
to B.

Proof. We show how to define the right action and leave the rest as an exercise. Let
{(Ua, ¥a)} be some trivializing cover defining . For every z € E, pick some U, so that
7(z) € U, and let ¢, (2) = (b, h), where b = 7(z) and h € G. For any g € G, we set

z-g9 =" (b hg).

If we can show that this action does not depend on the choice of U,, then it is clear that
it is a free action. Suppose that we also have b = 7(z) € Us and that pg(z) = (b,h'). By
definition of the transition functions, we have

W = gsa®)h and ps(z- g) = (b, gsa(b) (h9)).

However,
98a(0)(hg) = (gsa(b)h)g = H'g,
hence
z-g=g5 (b,1g),
which proves that our action does not depend on the choice of U,. O

Observe that the action of Proposition 7.13 is defined by

£-g = 30;1(67 Qpa,b<z)g)7 with b= W(Z),

for all z € F and all g € G. 1t is clear that this action satisfies the following two properties:
For every (Ua, ¢a),

(1) n(z-g) =m(z) and
(2) pa(z-9) =pa(z) g, forall z€ E and all g € G,

where we define the right action of G on U, x G so that (b,h) - g = (b, hg). We say that ¢,
is G-equivariant (or equivariant).

The following proposition shows that it is possible to define a principal G-bundle using
a suitable right action and equivariant trivializations:



7.5. PRINCIPAL FIBRE BUNDLES 271

Proposition 7.14. Let E be a smooth manifold, G a Lie group and let -: E X G — E be a
smooth right action of G on E and assume that

(a) The right action of G on E is free;

(b) The orbit space, B = E/G, is a smooth manifold under the quotient topology and the
projection, 7: E — E /G, is smooth;

(c) There is a family of local trivializations, {(Ua, ¢a)}, where {U,} is an open cover for
B = E/G and each
o: T HUy) = Uy x G

1s an equivariant diffeomorphism, which means that

Palz - g) = QOQ(Z) 9,
for all z € m=(U,) and all g € G, where the right action of G on U, x G is
Then, ¢ = (E, 7, E/G,G) is a principal G-bundle.

Proof. Since the action of G on FE is free, every orbit, b = z - (G, is isomorphic to G and so,
every fibre, 771(b), is isomorphic to G. Thus, given that we have trivializing maps, we just
have to prove that G acts by left translation on itself. Pick any (b, h) in U x G and let
z € m1(Ug) be the unique element such that pg(z) = (b, h). Then, as

(2 9) =ps(2) - g, forall geG,
we have
ws(5'(b,h) - g) = pp(z-g) = s(z) - g = (bh) - g,

which implies that
w5 (b,h) - g =@5'((b,h) - g).
Consequently,

Pa 095 (b,h) = o 005 ((0,1) - h) = alps (b, 1) - h) = o 0 05 (b, 1) - h,

and since

a0 @y (b,h) = (b,gap(b)(h)) and @405 (b,1) = (b, gas(b)(1))

we get
9a5(0)(h) = gap(b)(1)h.
The above shows that g.s(b): G — G is the left translation by g,z(b)(1) and thus, the

transition functions, g.s(b), constitute the group of left translations of G' and ¢ is indeed a
principal G-bundle. [
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Brocker and tom Dieck [25] (Chapter I, Section 4) and Duistermaat and Kolk [54] (Ap-
pendix A) define principal bundles using the conditions of Proposition 7.14. Propositions
7.13 and 7.14 show that this alternate definition is equivalent to ours (Definition 7.13).

It turns out that when we use the definition of a principal bundle in terms of the conditions
of Proposition 7.14, it is convenient to define bundle maps in terms of equivariant maps. As
we will see shortly, a map of principal bundles is a fibre bundle map.

Definition 7.14. If & = (Ey,m, B1,G) and & = (Fs, o, By, G) are two principal bundles
a bundle map (or bundle morphism), f: & — &, is a pair, f = (fg, fB), of smooth maps
fE: E, — E5 and fB: B; — B5 such that

(a) The following diagram commutes:

BlT By

(b) The map, fg, is G-equivariant, that is,
fela-g) = fe(a)- g, for all @ € E; and all g € G.

A bundle map is an isomorphism if it has an inverse as in Definition 7.2. If the bundles
& and & are over the same base, B, then we also require fg = id.

At first glance, it is not obvious that a map of principal bundles satisfies condition (b) of
Definition 7.3. If we define f,: U, x G = V3 X G by

fa = SO/B OfE 080;17
then locally, fg is expressed as
-1 =
fE = SO,IB © fa © Pa-
Furthermore, it is trivial that if a map is equivariant and invertible then its inverse is equiv-
ariant. Consequently, since

fa:gp/IBOon(pglj

as o1, ¢ and fp are equivariant, f; is also equivariant and so, ﬁ is a map of (trivial)
principal bundles. Thus, it it enough to prove that for every map of principal bundles,

w: Uy x G = Vg xG,
there is some smooth map, p,: U, — G, so that
o(b,9) = (fB(b), pa(b)(9)), forall be U, and all g € G.

Indeed, we have the following
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Proposition 7.15. For every map of trivial principal bundles,
0: Uy x G — Vg xG,
there are smooth maps, fg: Uy, = Vg and ro: U, — G, so that
(b, g) = (f(b),ra(b)g), for allbe U, and all g € G.

In particular, ¢ is a diffeomorphism on fibres.

Proof. As ¢ is a map of principal bundles,
o(b, 1) = (fB(b), ra(b)), for all b € U,

for some smooth maps, fg: U, — V3 and r,: U, — G. Now, using equivariance, we get

©(b,9) = p((b,1)g) = p(g,1) - g = (fB(b),7(D)) - g = (fB(D),7a(b)g),

as claimed. n

Consequently, the map, p,: U, — G, given by
Pa(D)(g) =7a(b)g forallbe U, and all g € G

satisfies

o(b,g9) = (fa(b), pa(b)(9)), foralbe U, and all g € G

and a map of principal bundles is indeed a fibre bundle map (as in Definition 7.3). Since a
principal bundle map is a fibre bundle map, Proposition 7.3 also yields the useful fact:

Proposition 7.16. Any map, f: & — &, between two principal bundles over the same base,
B, is an isomorphism.

Even though we are not aware of any practical applications in computer vision, robotics,
or medical imaging, we wish to digress briefly on the issue of the triviality of bundles and
the existence of sections.

A natural question is to ask whether a fibre bundle, £, is isomorphic to a trivial bundle.
If so, we say that £ is trivial. (By the way, the triviality of bundles comes up in physics, in
particular, field theory.) Generally, this is a very difficult question, but a first step can be
made by showing that it reduces to the question of triviality for principal bundles.

Indeed, if £ = (E, 7, B, F,G) is a fibre bundle with fibre, F', using Theorem 7.4, we
can construct a principal fibre bundle, P(§), using the transition functions, {gas}, of £, but
using G itself as the fibre (acting on itself by left translation) instead of F'. We obtain the
principal bundle, P(§), associated to &. For example, the principal bundle associated with
a vector bundle is the frame bundle, discussed at the end of Section 7.3. Then, given two
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fibre bundles £ and £, we see that £ and & are isomorphic iff P(§) and P({’) are isomorphic
(Steenrod [142], Part I, Section 8, Theorem 8.2). More is true: The fibre bundle ¢ is trivial
iff the principal fibre bundle P(&) is trivial (this is easy to prove, do it! Otherwise, see
Steenrod [142], Part I, Section 8, Corollary 8.4). Morever, there is a test for the triviality of
a principal bundle, the existence of a (global) section.

The following proposition, although easy to prove, is crucial:

Proposition 7.17. If £ is a principal bundle, then & is trivial iff it possesses some global
section.

Proof. If f: B x G — £ is an isomorphism of principal bundles over the same base, B, then
for every g € G, the map b — f(b, g) is a section of &.

Conversely, let s: B — E be a section of £&. Then, observe that the map, f: B x G — &,
given by
f(b,g) = s(b)g

is a map of principal bundles. By Proposition 7.16, it is an isomorphism, so £ is trivial. [

Generally, in geometry, many objects of interest arise as global sections of some suitable
bundle (or sheaf): vector fields, differential forms, tensor fields, etc.

Given a principal bundle, £ = (E, 7, B, G), and given a manifold, F, if G acts effectively
on F from the left, again, using Theorem 7.4, we can construct a fibre bundle, {[F], from
¢, with F' as typical fibre and such that {[F] has the same transitions functions as £. In
the case of a principal bundle, there is another slightly more direct construction that takes
us from principal bundles to fibre bundles (see Duistermaat and Kolk [54], Chapter 2, and
Davis and Kirk [40], Chapter 4, Definition 4.6, where it is called the Borel construction).
This construction is of independent interest so we describe it briefly (for an application of
this construction, see Duistermaat and Kolk [54], Chapter 2).

As € is a principal bundle, recall that G acts on E from the right, so we have a right
action of G on E X F', via

(Z>f) g = (Zg,g_lf)
Consequently, we obtain the orbit set, £ x F// ~, denoted E X F, where ~ is the equivalence
relation

(2 /)~ () iff geG) =29 ['=g7"])
Note that the composed map,
ExF ™ FE - B,

factors through F x¢g F, since
m(pri(z, f) =7(z) =7(z - g) = w(pri(z- 9,97 - f)).

Let p: E xXg F — B be the corresponding map. The following proposition is not hard to
show:
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Proposition 7.18. If ¢ = (E,m, B,G) is a principal bundle and F is any manifold such
that G acts effectively on F from the left, then, {[F| = (E X¢ F,p, B, F,G) is a fibre bundle
with fibre F' and structure group G and £[F] and & have the same transition functions.

Let us verify that the charts of £ yield charts for £[F]. For any U, in an open cover for
B, we have a diffeomorphism

Oo: T H(Uy) = Uy x G,
Observe that we have an isomorphism
(Uy x G) xg F 2 U, X F,
where, as usual, G acts on U, x G via (z,h) - g = (z, hg), an isomorphism
p~ (Ua) =17 (Ua) %6 T
and that ¢, induces an isomorphism
N U,) xg F 2% (Uy x G) xg F.

So, we get the commutative diagram

Uy == U,

which yields a local trivialization for £[F]. It is easy to see that the transition functions of
¢[F] are the same as the transition functions of &.

The fibre bundle, {[F], is called the fibre bundle induced by £. Now, if we start with a
fibre bundle, &, with fibre, F', and structure group, G, if we make the associated principal
bundle, P(§), and then the induced fibre bundle, P(£)[F], what is the relationship between
¢ and P(§)[F)?

The answer is: £ and P(§)[F] are equivalent (this is because the transition functions are
the same.)

Now, if we start with a principal G-bundle, £, make the fibre bundle, [F], as above, and
then the principal bundle, P(£[F]), we get a principal bundle equivalent to . Therefore, the
maps

= &F] and £ P(E),

are mutual inverses and they set up a bijection between equivalence classes of principal G-
bundles over B and equivalence classes of fibre bundles over B (with structure group, G).
Moreover, this map extends to morphisms, so it is functorial (see Steenrod [142], Part I,
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Section 2, Lemma 2.6-Lemma 2.10). As a consequence, in order to “classify” equivalence
classes of fibre bundles (assuming B and G fixed), it is enough to know how to classify
principal G-bundles over B. Given some reasonable conditions on the coverings of B, Milnor
solved this classification problem, but this is taking us way beyond the scope of these notes!

The classical reference on fibre bundles, vector bundles and principal bundles, is Steenrod
[142]. More recent references include Bott and Tu [19], Madsen and Tornehave [101], Morita
[115], Griffith and Harris [67], Wells [151], Hirzebruch [78], Milnor and Stasheff [111], Davis
and Kirk [40], Atiyah [10], Chern [33], Choquet-Bruhat, DeWitt-Morette and Dillard-Bleick
[37], Hirsh [77], Sato [134], Narasimham [118], Sharpe [140] and also Husemoller [83], which
covers more, including characteristic classes.

Proposition 7.14 shows that principal bundles are induced by suitable right actions but
we still need sufficient conditions to guarantee conditions (a), (b) and (c). Such conditions
are given in the next section.

7.6 Homogeneous Spaces, 11

Now that we know about manifolds and Lie groups, we can revisit the notion of homogeneous
space given in Definition 2.8, which only applied to groups and sets without any topology
or differentiable structure.

Definition 7.15. A homogeneous space is a smooth manifold, M, together with a smooth
transitive action, -: G X M — M, of a Lie group, GG, on M.

In this section, we prove that G is the total space of a principal bundle with base space
M and structure group, GG, the stabilizer of any x € M.

If M is a manifold, G is a Lie group and -: M x G — M is a smooth right action, in
general, M /G is not even Hausdorff. A sufficient condition can be given using the notion
of a proper map. If X and Y are two Hausdorff topological spaces,! a continuous map,
p: X — Y is proper iff for every topological space, Z, the map ¢ x id: X x Z =Y x Z is
a closed map (A map, f, is a closed map iff the image of any closed set by f is a closed set).
If we let Z be a one-point space, we see that a proper map is closed. It can be shown (see
Bourbaki, General Topology [23], Chapter 1, Section 10) that a continuous map, ¢: X — Y,
is proper iff ¢ is closed and if ¢~!(y) is compact for every y € Y. If ¢ is proper, it is easy
to show that ¢ ' (K) is compact in X whenever K is compact in Y. Moreover, if Y is also
locally compact, then Y is compactly generated, which means that a subset, C, of Y is closed
iff K NC is closed in C for every compact subset K of Y (see Munkres [116]). In this case
(Y locally compact), ¢ is a closed map iff ¢~1(K) is compact in X whenever K is compact

1Tt is not necessary to assume that X and Y are Hausdorff but, if X and/or Y are not Hausdorff, we
have to replace “compact” by “quasi-compact.” We have no need for this extra generality.
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in Y (see Bourbaki, General Topology [23], Chapter 1, Section 10).? In particular, this is
true if Y is a manifold since manifolds are locally compact. Then, we say that the action,
- M x G — M, is proper iff the map,

MxG— MxM, (z,9)~ (z,z-g),

is proper.

If G and M are Hausdorff and G is locally compact, then it can be shown (see Bourbaki,
General Topology [23], Chapter 3, Section 4) that the action -: M x G — M is proper iff
for all z,y € M, there exist some open sets, V, and V, in M, with € V, and y € V,;, so
that the closure, K, of the set K = {g € G | V- gNV, # (0} is compact in G. In particular,
if G has the discrete topology, this conditions holds iff the sets {g € G | V,-gNV, # 0}
are finite. Also, if G is compact, then K is automatically compact, so every compact group
acts properly. If the action, -: M x G — M, is proper, then the orbit equivalence relation is
closed since it is the image of M x G in M x M, and so, M /G is Hausdorff. We then have
the following theorem proved in Duistermaat and Kolk [54] (Chapter 1, Section 11):

Theorem 7.19. Let M be a smooth manifold, G be a Lie group and let -: M x G — M
be a right smooth action which is proper and free. Then, M/G is a principal G-bundle of
dimension dim M — dim G.

Theorem 7.19 has some interesting corollaries. Let G be a Lie group and let H be a
closed subgroup of GG. Then, there is a right action of H on G, namely

GxH-—G, (g,h)— gh,

and this action is clearly free and proper. Because a closed subgroup of a Lie group is a Lie
group, we get the following result whose proof can be found in Brécker and tom Dieck [25]
(Chapter I, Section 4) or Duistermaat and Kolk [54] (Chapter 1, Section 11):

Corollary 7.20. If G is a Lie group and H is a closed subgroup of G, then, the right action
of H on G defines a principal H-bundle, £ = (G,7,G/H, H), where m: G — G/H 1is the
canonical projection. Moreover, 7 is a submersion, which means that dm, is surjective for
all g € G (equivalently, the rank of dmy is constant and equal to dim G/H, for all g € G).

Now, if -: G x M — M is a smooth transitive action of a Lie group, GG, on a manifold,
M, we know that the stabilizers, G, are all isomorphic and closed (see Section 2.5, Remark
after Theorem 2.26). Then, we can let H = G, and apply Corollary 7.20 to get the following
result (mostly proved in in Brécker and tom Dieck [25] (Chapter I, Section 4):

Proposition 7.21. Let -: G x M — M be smooth transitive action of a Lie group, G, on a
manifold, M. Then, G/G, and M are diffeomorphic and G is the total space of a principal
bundle, & = (G, m, M, G,), where G, is the stabilizer of any element x € M.

2Duistermaat and Kolk [54] seem to have overlooked the fact that a condition on Y (such as local
compactness) is needed in their remark on lines 5-6, page 53, just before Lemma 1.11.3.
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Thus, we finally see that homogeneous spaces induce principal bundles. Going back to
some of the examples of Section 2.2, we see that

1) SO(n + 1) is a principal SO(n)-bundle over the sphere S™ (for n > 0).

(1) (

(2) SU(n + 1) is a principal SU(n)-bundle over the sphere S***! (for n > 0).
(3) SL(2,R) is a principal SO(2)-bundle over the upper-half space, H.

(4)

4) GL(n,R) is a principal O(n)-bundle over the space SPD(n) of symmetric, positive
definite matrices.

(5) GL*(n,R), is a principal SO(n)-bundle over the space, SPD(n), of symmetric, posi-
tive definite matrices, with fibre SO(n).

(6) SO(n+ 1) is a principal O(n)-bundle over the real projective space RP" (for n > 0).

(7) SU(n + 1) is a principal U(n)-bundle over the complex projective space CP" (for
n >0).

(8) O(n) is a principal O(k) x O(n — k)-bundle over the Grassmannian, G(k,n).
(9) SO(n) is a principal S(O(k) x O(n — k))-bundle over the Grassmannian, G(k,n).

(10) From Section 2.5, we see that the Lorentz group, SOg(n,1), is a principal SO(n)-
bundle over the space, H, (1), consisting of one sheet of the hyperbolic paraboloid
H,.(1).

Thus, we see that both SO(n+ 1) and SOg(n, 1) are principal SO(n)-bundles, the differ-
ence being that the base space for SO(n + 1) is the sphere, S™, which is compact, whereas
the base space for SOg(n, 1) is the (connected) surface, H.7 (1), which is not compact. Many
more examples can be given, for instance, see Arvanitoyeogos [8].



Chapter 8

Differential Forms

8.1 Differential Forms on Subsets of R" and de Rham
Cohomology

The theory of differential forms is one of the main tools in geometry and topology. This
theory has a surprisingly large range of applications and it also provides a relatively easy
access to more advanced theories such as cohomology. For all these reasons, it is really an
indispensable theory and anyone with more than a passible interest in geometry should be
familiar with it.

The theory of differential forms was initiated by Poincaré and further elaborated by Elie
Cartan at the end of the nineteenth century. Differential forms have two main roles:

(1) Describe various systems of partial differential equations on manifolds.

(2) To define various geometric invariants reflecting the global structure of manifolds or
bundles. Such invariants are obtained by integrating certain differential forms.

As we will see shortly, as soon as one tries to define integration on higher-dimensional
objects, such as manifolds, one realizes that it is not functions that are integrated but instead,
differential forms. Furthermore, as by magic, the algebra of differential forms handles changes
of variables automatically and yields a neat form of “Stokes formula”.

Our goal is to define differential forms on manifolds but we begin with differential forms
on open subsets of R™ in order to build up intuition.

Differential forms are smooth functions on open subset, U, of R", taking as values al-
ternating tensors in some exterior power, A”(R™)*. Recall from Sections 22.14 and 22.15,
in particular, Proposition 22.24, that for every finite-dimensional vector space, E, the iso-
morphisms, p: A"(E*) — Alt"(E;R), induced by the linear extensions of the maps given
by

oy A Ao ) (g, - up) = det(u(u;))

279
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yield a canonical isomorphism of algebras, pu: A(E*) — Alt(E), where

Alt(E) = P Alt"(E; R)

n>0

and where Alt"(F;R) is the vector space of alternating multilinear maps on R™. In view
of these isomorphisms, we will identify w and u(w) for any w € A"(E*) and we will write
w(us, ..., u,) as an abbrevation for p(w)(uy, ..., uy).

Because Alt(R™) is an algebra under the wedge product, differential forms also have a
wedge product. However, the power of differential forms stems from the exterior differential,
d, which is a skew-symmetric version of the usual differentiation operator.

Definition 8.1. Given any open subset, U, of R", a smooth differential p-form on U, for
short, p-form on U, is any smooth function, w: U — AP(R")*. The vector space of all
p-forms on U is denoted AP(U). The vector space, A(U) = @, AP(U), is the set of

differential forms on U.

Observe that A°(U) = C*°(U,R), the vector space of smooth functions on U and
AYU) = C>=(U, (R™)*), the set of smooth functions from U to the set of linear forms on R".
Also, AP(U) = (0) for p > n.

Remark: The space, A*(U), is also denoted A®*(U). Other authors use 2*(U) instead of
AP(U) but we prefer to reserve QP for holomorphic forms.

Recall from Section 22.12 that if (eq,...,e,) is any basis of R and (e7, ..., e}) is its dual
basis, then the alternating tensors,

ep=¢e; N---Nej

ip’

form basis of A”(R™)*, where I = {i1,...,i,} € {1,...,n}, with iy < --- < i,. Thus, with
respect to the basis (eq,...,e,), every p-form, w, can be uniquely written

w(z) = filx)es, A Aej =>  fi(z)e;  wel,
I I

where each f; is a smooth function on U. For example, if U = R? — {0}, then

-y * x

x2+y2€1 x2—|—y2 63

w(r,y) =

is a 2-form on U, (with e; = (1,0) and e; = (0, 1)).

We often write w, instead of w(z). Now, not only is A*(U) a vector space, it is also an
algebra.
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Definition 8.2. The wedge product on A*(U) is defined as follows: For all p,q > 0, the
wedge product, A: A?(U) x AY(U) — APTI(U), is given by

(wAN)(z) =w(x) An(z), z e U
For example, if w and n are one-forms, then
(W An)z(u,v) = we(u) Ane(v) — we(v) Ane(u).

For f € A%(U) = C*(U,R) and w € AP(U), we have f Aw = fw. Thus, the algebra,
A*(U), is also a C*°(U, R)-module,

Proposition 22.22 immediately yields
Proposition 8.1. For all forms w € AP(U) and n € AYU), we have
nAw=(=1)"wAn.
We now come to the crucial operation of exterior differentiation. First, recall that if
f: U — V is a smooth function from U C R" to a (finite-dimensional) normed vector space,

V', the derivative, f': U — Hom(R™, V'), of f (also denoted, Df) is a function where f'(x)
is a linear map, f’(x) € Hom(R™, V'), for every x € U, and such that

Ofi
S Uiy, 1<i<n,
— axj
where (ey,...,e,) is the canonical basis of R™ and (uq, ..., u,) is a basis of V. The m x n

matrix,

Of;
(@%) 7

is the Jacobian matriz of f. We also write f.(u) for f'(x)(u). Observe that since a p-form
is a smooth map, w: U — AP(R™)*, its derivative is a map,

p

WU — Hom(R",/\(R”)*),

such that ! is a linear map from R" to A’(R")*, for every x € U. By the isomorphism,
A’(R™)* =2 AltP(R™; R), we can view w/, as a linear map, w,: R™ — Alt?(R";R), or equiva-
lently, as a multilinear form, w’: (R")?*! — R, which is alternating in its last p arguments.
The exterior derivative, (dw),, is obtained by making ! into an alternating map in all of
its p + 1 arguments.
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Definition 8.3. For every p > 0, the exterior differential, d: AP(U) — APTL(U), is given

by
p+1
(doo)p(ur, . tpar) = > (=1 () (un, iy g,
i=1
for all w € AP(U) and all uy, ..., u,41 € R", where the hat over the argument u; means that

it should be omitted.

One should check that (dw), is indeed alternating but this is easy. If necessary to avoid
confusion, we write d?: AP?(U) — AP (U) instead of d: AP(U) — APTY(U).

Remark: Definition 8.3 is the definition adopted by Cartan [29, 30]' and Madsen and
Tornehave [101]. Some authors use a different approach often using Propositions 8.2 and 8.3
as a starting point but we find the approach using Definition 8.3 more direct. Furthermore,
this approach extends immediately to the case of vector valued forms.

For any smooth function, f € A%(U) = C=(U,R), we get

dfe(u) = fo(u).

Therefore, for smooth functions, the exterior differential, df , coincides with the usual deriva-
tive, f (we identify A'(R™)* and (R™)*). For any 1-form, w € A'(U), we have

duws (u, v) = wy(u)(v) — W (v) (u).
It follows that the map
(u,v) = wy(u)(v)
is symmetric iff dw = 0.
For a concrete example of exterior differentiation, if

-y * T

w(z,y) = mel m%

check that dw = 0.

The following observation is quite trivial but it will simplify notation: On R", we have
the projection function, pr;: R — R, with pr;(uy,...,u,) = u;. Note that pr; = ef, where
(é1,...,€,) is the canonical basis of R™. Let z;: U — R be the restriction of pr; to U. Then,
note that x} is the constant map given by

zi(x) = pry, zeU.

'We warn the reader that a few typos have crept up in the English translation, Cartan [30], of the orginal
version Cartan [29].
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It follows that dx; = «/ is the constant function with value pr; = e}. Now, since every p-form,
w, can be uniquely expressed as

wx:ZfI(a:)e;/\“'/\e:p:Zf[(x)e; :UGUv
I I

using Definition 8.2, we see immediately that w can be uniquely written in the form

w:ZfI(:E) drg, A - Ndw;,, (%)
I

where the f; are smooth functions on U.
Observe that for f € A°(U) = C>*(U,R), we have
—~af .. — of

i=1

Proposition 8.2. For every p form, w € AP(U), with w = fdx;, A--- Adx;,, we have
dw = df Ndx;, N\ -+ Ndx,.

Proof. Recall that w, = fej A--- A € = fej, so

wy(u) = fr(u)e] = dfo(u)e]
and by Definition 8.3, we get

p+1

dwg (U, ..., Upp1) = Z(—l)i_ldfx(ui)e}(ul, e Uiy Uppr) = (dfe Nep)(ur, - Uptr),

=1

where the last equation is an instance of the equation stated just before Proposition 22.24. [
We can now prove
Proposition 8.3. For allw € A?(U) and all n € AYU),
dwAn) =dwAn+ (=1)Pw Adn.

Proof. In view of the unique representation, (%), it is enough to prove the proposition when
w = fej and n = ge’. In this case, as w An = fge] A e, by Proposition 8.2, we have
dwAnn) = d(fg) NepNej
= ((df)g + f(dg)) Nej Ne;
= (df)ger Nej+ f(dg) Nep Nej
= (df)er ANges+ (=1)"F Nep A(dg) Nej
= dwAn+(—1)Pw Adn,

as claimed. n
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We say that d is an anti-derivation of degree —1. Finally, here is the crucial and almost
magical property of d:

Proposition 8.4. For every p > 0, the composition AP(U) N APTHT) N APT2(U) s
identically zero, that 1s,
dod=0,

or, using superscripts, dP** o dP = 0.

Proof. 1t is enough to prove the proposition when w = fej. We have

dw, = df, N e] = 8_301(x>€1 Nep+ -+ 8xn(:v)en/\el.
Asej Nej = —ej Nej and ef ANef =0, we get
(dod)w = 2 axiaxj(a:)ei NesNer
4,7=1
0*f o*f
= — TAeiNe; =0,

Z (al’lal'] (x) (%cjaxl (1’)) i ej €1

1<]
since partial derivatives commute (as f is smooth). O

Propositions 8.2, 8.3 and 8.4 can be summarized by saying that A*(U) together with the
product, A, and the differential, d, is a differential graded algebra. As A*(U)) = @, A?(U)
and d?: AP(U) — AP (U), we can view d = (d?) as a linear map, d: A*(U) — A*(U), such
that

dod=0.

The diagram
A(U) =5 ANU) — -+ — AHU) =5 AP(U) =5 APPHU) — -

is called the de Rham complex of U. It is a cochain complex.

Let us consider one more example. Assume n = 3 and consider any function, f € A°(U).

We have o7 o o
and the vector
of of of
ox’ Oy 0Oz

is the gradient of f. Next, let
w = Pdr 4+ Qdy + Rdz
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be a 1-form on some open, U C R3?. An easy calculation yields

_(OR  0Q oP OR 0Q 0P
dw—(ay 8z>dy/\dz+(8z 8x)d2/\dx+(8x 8y)dx/\dy.

The vector field given by
oR 09 0P _or 09 or
oy 0z 90z Ox’ 0Ox Oy
is the curl of the vector field given by (P, Q, R). Now, if
n = Ady Ndz+ Bdz N\ dx + Cdx N\ dy

is a 2-form on R3, we get

0A 0B 0C
dn = (%—Fa—yﬁ‘a) de Ndy N dz.

The real number,

04 0B oC
or Oy 0z
is called the divergence of the vector field (A, B, C'). When is there a smooth field, (P, @, R),

whose curl is given by a prescribed smooth field, (A, B,C)? Equivalently, when is there a
1-form, w = Pdx + Qdy + Rdz, such that

dw =n= Ady Ndz + Bdz N\ dx + Cdx N dy?

By Proposition 8.4, it is necessary that dn = 0, that is, that (A, B, C) has zero divergence.
However, this condition is not sufficient in general; it depends on the topology of U. If U is
star-like, Poincaré’s Lemma (to be considered shortly) says that this condition is sufficient.

Definition 8.4. A differential form, w, is closed iff dw = 0, ezxact iff w = dn, for some
differential form, n. For every p > 0, let

ZP(U) ={w € AP(U) | dw = 0} = Kerd: AP(U) — APTH(U),
be the vector space of closed p-forms, also called p-cocycles and for every p > 1, let
BP(U)={we A(U) | In € A7(U), w=dn} =Imd: AP~ (U) — AP(V),

be the vector space of exact p-forms, also called p-coboundaries. Set B°(U) = (0). Forms in
AP(U) are also called p-cochains. As BP(U) C ZP(U) (by Proposition 8.4), for every p > 0,
we define the p'" de Rham cohomology group of U as the quotient space

Hpg(U) = Z°(U)/B"(U).

An element of HY i (U) is called a cohomology class and is denoted [w], where w € ZP(U) is a
cocycle. The real vector space, Hp (U) = D, HY R (U), is called the de Rham cohomology
algebra of U.
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We often drop the subscript pr and write H?(U) for H{ 5 (U) (resp. H*(U) for Hr(U))
when no confusion arises. Proposition 8.4 shows that every exact form is closed but the
converse is false in general. Measuring the extent to which closed forms are not exact is the
object of de Rham cohomology. For example, if we consider the form

Y _de+ -2y,

on U = R?—{0}, we have dw = 0. Yet, it is not hard to show (using integration, see Madsen
and Tornehave [101], Chapter 1) that there is no smooth function, f, on U such that df = w.
Thus, w is a closed form which is not exact. This is because U is punctured.

Observe that H*(U) = Z°(U) = {f € C*(U,R) | df = 0}, that is, H°(U) is the space of
locally constant functions on U, equivalently, the space of functions that are constant on the
connected components of U. Thus, the cardinality of H°(U) gives the number of connected
components of U. For a large class of open sets (for example, open sets that can be covered
by finitely many convex sets), the cohomology groups, H?(U), are finite dimensional.

Going back to Definition 8.4, we define the vector spaces Z*(U) and B*(U) by

Z*U) =P z°(U) and B*(U)=EHBU).

p>0 p>0

Now, A*(U) is a graded algebra with multiplication, A. Observe that Z*(U) is a subalgebra
of A*(U), since
dwAn)=dwAn+(—1)PwAdn,

so dw = 0 and dn = 0 implies d(w A ) = 0. Furthermore, B*(U) is an ideal in Z*(U),
because if w = dn and d7 = 0, then

dint) =dn AT+ (1) IpAdr=wAT,

with n € AP~Y(U). Therefore, Hy = Z*(U)/B*(U) inherits a graded algebra structure from
A*(U). Explicitly, the multiplication in HYy is given by

[w] [n] = [w An].

It turns out that Propositions 8.3 and 8.4 together with the fact that d coincides with
the derivative on A°(U) characterize the differential, d.

Theorem 8.5. There is a unique linear map, d: A*(U) — A*(U), with d = (d?) and
d?: AP(U) — APTY(U) for every p > 0, such that

(1) df = f', for every f € A(U) = C>(U,R).
(2) dod=0.
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(3) For every w € AP(U) and every n € AY(U),

dwAn)=dwAn+ (—=1)’w A dn.

Proof. Existence has already been shown so we only have to prove uniqueness. Let d be
another linear map satisfying (1)—(3). By (1), df = 6f = f/, if f € A°(U). In particular,
this hold when f = x;, with z;: U — R the restriction of pr; to U. In this case, we know
that dz; = e}, the constant function, e} = pr;. By (2), def = 0. Using (3), we get dej = 0,
for every nonempty subset I C {1,...,n}. If w = fe}, by (3), we get

w=0f Nej+ fANde;=0f Nep =df Nej = dw.

Finally, since every differential form is a linear combination of special forms, fre}, we conclude
that 6 = d. n

We now consider the action of smooth maps, ¢: U — U’, on differential forms in A*(U").
We will see that ¢ induces a map from A*(U’) to A*(U) called a pull-back map. This
correspond to a change of variables.

Recall Proposition 22.21 which states that if f: £ — F'is any linear map between two
finite-dimensional vector spaces, F and F', then

u((i\fT)(w)>(u1,...,up) = pu(w)(f(ur), ..., flup)), w € /p\F*, Uty ... Uy € E.

We apply this proposition with ' =R" F =R™ and f = ¢ (z € U), and get

i((AGDT) @) (s o) = i) o) o)), w € A(V), € B

This gives us the behavior of A?(¢”)" under the identification of A?(R)* and Alt"(R™; R) via
the isomorphism p. Consequently, denoting A?(".) " by ¢*, we make the following definition:
Definition 8.5. Let U C R™ and V' C R™ be two open subsets. For every smooth map,
p: U =V, for every p > 0, we define the map, ¢*: A?(V) — AP(U), by

P (W) (U, - - vy Up) = Weay (P (), -, @5 (up)),
for all w € AP(V), all z € U and all uy,...,u, € R". We say that ¢*(w) (for short, p*w) is
the pull-back of w by .

As ¢ is smooth, ¢g*w is a smooth p-form on U. The maps ¢*: AP(V) — AP(U) induce a
map also denoted ¢*: A*(V) — A*(U). Using the chain rule, we check immediately that

id* = id,
(Yop) = ¢ oy
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As an example, consider the constant form, w = ef. We claim that ¢*e; = dyp;, where
©; = prio . Indeed,

For another example, assume U and V' are open subsets of R", w = fdzi A--- Adx,, and
write © = (y), with x coordinates on V' and y coordinates on U. Then

(P*w)y = f(p(y)) det (ggf (y)) dyi N -+ Ndy, = f(e(y)I(@)y dys A -+ A dys,

where

)y = det (G240

is the Jacobian of p at y € U.

Proposition 8.6. Let U CR" and V C R™ be two open sets and let ¢: U — V' be a smooth
map. Then

(1) o*(wAnN) =g w A, for allw e AP(V) and alln € AI(V).
(ii) o*(f) = fo, forall f € A°(V).

(111) dp*(w) = ¢*(dw), for all w € AP(V), that is, the following diagram commutes for all
p=>0:

A(V) —E Ar(U)

d| Jo

APV —Ze APHL(U),

Proof. We leave the proof of (i) and (ii) as an exercise (or see Madsen and Tornehave [101],
Chapter 3). First, we prove (iii) in the case w € A%(V). Using (i) and (ii) and the calculation
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just before Proposition 8.6, we have
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For the case where w = fej, we know that dw = df A ej. We claim that

This is because

d*(e7)

d(o* (€],

> (=1

ret(e ) A

de*(e7) = 0.

- Aet(e,))

ip

since p*(€j,) = dip;, and d o d = 0. Consequently,

d(e™(f) Ny*(e)) = d(¢™ f) A o™ (e]).

Then, we have

ANd(g (€ )) A== Apt(e,) =

289

@ (dw) = @*(df) N p*(e) = d(p"f) ANp™(e7) = d(@™(f) N p™(er)) = d(¢"(fer)) = d(p*w).

Since every differential form is a linear combination of special forms, fej, we are done.

]

The fact that d and pull-back commutes is an important fact: It allows us to show that a
map, ¢: U — V, induces a map, H*(p): H*(V) — H*(U), on cohomology and it is crucial
in generalizing the exterior differential to manifolds.

To a smooth map, ¢: U — V| we associate the map, H?(y): H?(V) — H?(U), given by
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This map is well defined because if we pick any representative, w + dn in the cohomology
class, [w], specified by the closed form, w, then

dp*w = *dw =0
S0 p*w is closed and

" (w+dn) = ¢"w + " (dn) = p*w + de™y,

so HP(¢)([w]) is well defined. It is also clear that

H () ([w][n]) = H? (@) (W) H()([n]),

which means that H*(¢) is a homomorphism of graded algebras. We often denote H*(yp)
again by ¢*.

We conclude this section by stating without proof an important result known as the
Poincaré Lemma. Recall that a subset, S C R"™ is star-shaped iff there is some point, ¢ € S,
such that for every point, = € S, the closed line segment, [c, z], joining ¢ and x is entirely
contained in S.

Theorem 8.7. (Poincaré’s Lemma) If U C R™ is any star-shaped open set, then we have
H?(U) = (0) for p > 0 and H°(U) = R. Thus, for every p > 1, every closed form w € AP(U)
is exact.

Proof. Pick ¢ so that U is star-shaped w.r.t. ¢ and let g: U — U be the constant function
with value c¢. Then, we see that

« |0 if we AP(U), with p > 1,
TUZVw(e) ifwe AU),

where w(c) denotes the constant function with value w(c). The trick is to find a family of
linear maps, h?: AP(U) — AP~1(U), for p > 1, with h® = 0, such that

doh? + Wl od=1id — ¢*, p>0

called a chain homotopy. Indeed, if w € AP(U) is closed and p > 1, we get dh’w = w, so w is
exact and if p = 0, we get hldw = 0 = w — w(c), so w is constant. It remains to find the AP,
which is not obvious. A construction of these maps can be found in Madsen and Tornehave
[101] (Chapter 3), Warner [148] (Chapter 4), Cartan [30] (Section 2) Morita [115] (Chapter
3). O

In Section 8.2, we promote differential forms to manifolds. As preparation, note that
every open subset, U C R"”, is a manifold and that for every x € U the tangent space, T, U,
to U at x is canonically isomorphic to R™. It follows that the tangent bundle, TU, and the
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cotangent bundle, T*U, are trivial, namely, TU = U x R™ and T*U = U x (R™)*, so the
bundle,

k k
NTU=Ux AR,
is also trivial. Consequently, we can view A*(U) as the set of smooth sections of the vector

bundle, A" T*(U). The generalization to manifolds is then to define the space of differential
p-forms on a manifold, M, as the space of smooth sections of the bundle, /\k T*M.

8.2 Differential Forms on Manifolds

Let M be any smooth manifold of dimension n. We define the vector bundle, A T*M, as

the direct sum bundle,
n k
ANTM=E N\TM,
k=0

see Section 7.3 for details.

Definition 8.6. Let M be any smooth manifold of dimension n. The set, A¥(M), of
smooth differential k-forms on M is the set of smooth sections, T'(M, A" T*M), of the bundle
A"T*M and the set, A*(M), of all smooth differential forms on M is the set of smooth
sections, I'(M, A T* M), of the bundle A\ T*M.

Recall that a smooth section of the bundle A* T*M is a smooth funtion w: M — A* T*M
such that w(p) € A* TxM for all p € M.

Observe that A°(M) = C>*(M,R), the set of smooth functions on M, since the bundle
/\0 T*M is isomorphic to M x R and smooth sections of M x R are just graphs of smooth
functions on M. We also write C*(M) for C*(M,R). If w € A*(M), we often write w, for
w(p)-

Definition 8.6 is quite abstract and it is important to get a more down-to-earth feeling by
taking a local view of differential forms, namely, with respect to a chart. So, let (U, ) be a
local chart on M, with ¢: U — R™, and let x; = pr; o ¢, the ith local coordinate (1 < i < n)
(see Section 3.2). Recall that by Proposition 3.9, for any p € U, the vectors

9 9
0x; p"”’ 0z, ),

form a basis of the tangent space, T,,M. Furthermore, by Proposition 3.15 and the discussion
following Proposition 3.14, the linear forms, (dx1)y, ..., (dv,), form a basis of T M, (where
(dx;)p, the differential of z; at p, is identified with the linear form such that df,(v) = v(f),
for every smooth function f on U and every v € T,M). Consequently, locally on U, every
k-form, w € A*(M), can be written uniquely as

w=Y_fidz, A Adxy, =Y frdzy,  peU,
I 1
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where [ = {iy,....ix} C {1,...,n}, with 4y < ... < i and do; = dz; A --- Ndz,.
Furthermore, each f; is a smooth function on U.

Remark: We define the set of smooth (r,s)-tensor fields as the set, I'(M,T™*(M)), of
smooth sections of the tensor bundle T"*(M) = T®" M ® (T*M)®*. Then, locally in a chart
(U, ), every tensor field w € I'(M,T™*(M)) can be written uniquely as

inyin O 9
W= F5 s<87i1>®'--®(8xi)®di€j1®-~®dfﬁjs-

The operations on the algebra, A T* M, yield operations on differential forms using point-
wise definitions. If w,n € A*(M) and A € R, then for every z € M,

(w + 77):0 = Wyt
M)z = Awg
(WA = Wi ANy

Actually, it is necessary to check that the resulting forms are smooth but this is easily done
using charts. When, f € A°(M), we write fw instead of f A w. It follows that A*(M) is a
graded real algebra and a C*°(M )-module.

Proposition 8.1 generalizes immediately to manifolds.

Proposition 8.8. For all forms w € A" (M) and n € A*(M), we have

nAw=(=1)"wAn.

For any smooth map, ¢: M — N, between two manifolds, M and N, we have the
differential map, dyp: TM — TN, also a smooth map and, for every p € M, the map
dep: TyM — T, N is linear. As in Section 8.1, Proposition 22.21 gives us the formula

u (/k\(dsop)T) (o)) (s ) = @) (dipy(n), - diy(wr),  w € AF(N),

for all uy, ..., u; € T,M. This gives us the behavior of A*(di,)T under the identification of
/\k Ty M and Alt*(T,,M;R) wvia the isomorphism . Here is the extension of Definition 8.5
to differential forms on a manifold.

Definition 8.7. For any smooth map, ¢: M — N, between two smooth manifolds, M and
N, for every k > 0, we define the map, ¢*: A¥(N) — A¥(M), by

90*(("})17(“17 s ’uk> - w@(l’)(dgpp(ul)v s 7d9017(uk))7

for all w € A*(N), all p € M, and all uy,...,u, € T,M. We say that ¢*(w) (for short, ¢*w)
is the pull-back of w by .
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The maps ¢*: A¥(N) — A*¥(M) induce a map also denoted ¢*: A*(N) — A*(M). Using
the chain rule, we check immediately that
id* = id,
(Vo) = ¢ ou”.

We need to check that ¢*w is smooth and for this, it is enough to check it locally on a
chart, (U, ). On U, we know that w € A*(M) can be written uniquely as

w:Zf[dxil/\---/\d:v,-k, pelU,
I

with f; smooth and it is easy to see (using the definition) that

P'w = (fro@)d(zi, o) A+ Ad(x;, 0 ),
I

which is smooth.

Remark: The fact that the pull-back of differential forms makes sense for arbitrary smooth
maps, ¢: M — N, and not just diffeomorphisms is a major technical superiority of forms
over vector fields.

The next step is to define d on A*(M). There are several ways to proceed but since
we already considered the special case where M is an open subset of R", we proceed using
charts.

Given a smooth manifold, M, of dimension n, let (U, ) be any chart on M. For any
w € AF(M) and any p € U, define (dw), as follows: If k = 0, that is, w € C®(M), let
(dw), = dw,, the differential of w at p

and if £ > 1, let
(dw)p = " (d((wil)*wh(p))pa

where d is the exterior differential on A*(o(U)). More explicitly, (dw), is given by

(dw)p(ulv s 7uk+1) = d(((lpil)*w)w(ﬁ)(d@p(ul)a - 7d90p(uk+1>>7

for every p € U and all uy,...,upy1 € T,M. Observe that the above formula is still valid
when & = 0 if we interpret the symbold d in d((¢™1)*w),) = d(wop ™), as the differential.

Since p~!: p(U) — U is map whose domain is an open subset, W = o(U), of R", the
form (o7 !)*w is a differential form in A*(W), so d((¢!)*w) is well-defined. We need to
check that this definition does not depend on the chart, (U, ¢). For any other chart, (V, ),
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with U NV # 0, the map 6 = 1 o o~ ! is a diffeomorphism between the two open subsets,
eUNV)and p(UNV), and ¢ =0 o p. Let x = ¢(p). We need to check that

d((™ ") w)aldepp(un), - -, dipp(us1)) = d(( ™) w)a(dibp(un), - ., dibp(urs1)),

for every p e UNV and all uy,...,ux1 € T,M. However,

A((¥7) ' w)a(dip(ur), - ., dip (1)) = d((¢™" 0071) w)a(d(0 0 @)p(wr), - ., d(0 0 ) (urs1)),

and since

and, by Proposition 8.6 (iii),

d(((071)" 0 (¢7))w) = d((07)"((¢™")'w)) = (07)"(d((¢™")"w)),

and then

(7)™ ") w))o) (d(0 0 @)p(ur), . .., d(B 0 ©)p(urs1))
= d((¢™")"w)a (A0 o) (d(0 0 ©)p(u1)), - - (A o) (d(B © @) (ur+1)))-

As (d9 1)) (d(0 0 p)p(u;)) = d(@ o (0 0 ¢))p(u;) = dpp(u;), by the chain rule, we obtain

A7) w)a(dp(ua), ., dibp(ursn)) = d(( ™) w)a(dipp(un), - -, dipp(urs1)),

as desired.

Observe that (dw), is smooth on U and as our definition of (dw), does not depend on
the choice of a chart, the forms (dw) | U agree on overlaps and yield a differential form, dw,
defined on the whole of M. Thus, we can make the following definition:

Definition 8.8. If M is any smooth manifold, there is a linear map, d: A*(M) — A*1(M),
for every k > 0, such that, for every w € A¥(M), for every chart, (U, ¢), for every p € U, if
k =0, that is, w € C*°(M), then

(dw), = dw,, the differential of w at p,

else if k£ > 1, then
(dw)p = " (d((‘:pil)*w%(p))pa

where d is the exterior differential on A*((U)) from Definition 8.3. We obtain a linar map,
d: A*(M) — A*(M), called exterior differentiation.
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Propositions 8.3, 8.4 and 8.6 generalize to manifolds.
Proposition 8.9. Let M and N be smooth manifolds and let ¢: M — N be a smooth map.
(1) For allw € A" (M) and all n € A*(M),
dlwAn)=dwAn+(=1)"wAdn.
(2) For every k > 0, the composition A*(M) -2 A1 (M) —Ls AF2(M) is identically

zero, that is,
dod=0.

(3) o*(wAnN) = w A @™, for allw € A"(N) and all n € A*(N).

(4) ¢*(f) = fo, for all f € A°(N).

(5) do*(w) = ¢*(dw), for all w € A¥(N), that is, the following diagram commutes for all
k>0:

AH(N) —F— AH(M)
| Jo
AR (N) £ AL,

Proof. 1t is enough to prove these properties in a chart, (U, ), which is easy. We only check
(2). We have

(d(dw)), = d(*(d((p™"Yw))),
la(@ (v @y w))
’ [d<d((<ﬂil)*w))¢(p)]

w(p)} P

Il
©

I
©

p

Il
o

as (p71)*op* = (pop ) =id* = id and dod = 0 on forms in A*(p(U)), with p(U) C
R™.

O

As a consequence, Definition 8.4 of the de Rham cohomology generalizes to manifolds.
For every manifold, M, we have the de Rham complex,

AM) -5 AN M) — - AN L AR () L AN (M) — -

and we can define the cohomology groups, HEg (M), and the graded cohomology algebra,
HYR(M). For every k > 0, let

Z8M) = {w e A*(M) | dw = 0} = Kerd: A*(M) — A*TH(M),
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be the vector space of closed k-forms and for every k > 1, let
B*(M) = {we A*(M) | In € AAHM), w=dn} =Imd: A (M) — A*(M),

be the vector space of exact k-forms and set BY(M) = (0). Then, for every k > 0, we define
the k™ de Rham cohomology group of M as the quotient space

Hpg (M) = Z*(M)/B*(M).

The real vector space, Hg (M) = @, Hir(M), is called the de Rham cohomology algebra
of M. We often drop the subscript, pr, when no confusion arises. Every smooth map,
¢: M — N, between two manifolds induces an algebra map, ¢*: H*(N) — H*(M).

Another important property of the exterior differential is that it is a local operator, which
means that the value of dw at p only depends of the values of w near p. More precisely, we
have

Proposition 8.10. Let M be a smooth manifold. For every open subset, U C M, for any
two differential forms, w,n € A*(M), ifw | U =mn U, then (dw) | U = (dn) | U.

Proof. By linearity, it is enough to show that if w [ U = 0, then (dw) [ U = 0. The crucial
ingredient is the existence of “bump functions”. By Proposition 3.30 applied to the constant
function with value 1, for every p € U, there some open subset, V' C U, containing p and a
smooth function, f: M — R, such that supp f C U and f =1 on V. Consequently, fw is a
smooth differential form which is identically zero and by Proposition 8.9 (1),

d(fw) =df Nw+ fdw,

which, evaluated ap p, yields
0=0Aw,+ ldw,,

that is, dw, = 0, as claimed. O

As in the case of differential forms on R”, the operator d is uniquely determined by the
properties of Theorem 8.5.

Theorem 8.11. Let M be a smooth manifold. There is a unique linear local operator
d: A*(M) — A*(M), with d = (d*) and d*: A¥(M) — A¥TY(M) for every k > 0, such
that

(1) (df), = df,, where df, is the differential of f at p € M, for every
feA(M)=C>®(M).

(2) dod =0.
(3) For every w € A"(M) and every n € A*(M),

dlwAn)=dwAn+(=1)"wAdn.
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Proof. Existence has already been established. It is enough to prove uniqueness locally. If
(U, ) is any chart and z; = pr; o ¢ are the corresponding local coordinate maps, we know
that every k-form, w € A¥(M), can be written uniquely as

w=Y_ fidx, A---Adr;,  peU.
I

Consequently, the proof of Theorem 8.5 will go through if we can show that ddx;, | U = 0,
since then,

The problem is that dx;; is only defined on U. However, using Proposition 3.30 again,
for every p € U, there some open subset, V' C U, containing p and a smooth function,
J: M — R, such that supp f C U and f =1 on V. Then, fx; is a smooth form defined on
M such that fz; [V =z [V, so by Proposition 8.10 (applied twice),

0=dd(fz;;) |V =ddx;, |V,

which concludes the proof. O]

Remark: A closer look at the proof of Theorem 8.11 shows that it is enough to assume
ddw = 0 on forms w € A°(M) = C=(M).

Smooth differential forms can also be defined in terms of alternating C°°(M )-multilinear
maps on smooth vector fields. Let w € AP(M) be any smooth k-form on M. Then, w induces
an alternating multilinear map

Wi X(M) x -+ x X(M) — C(M)

[ J
~~
k

as follows: For any k smooth vector fields, Xi,..., X} € X(M),

WXy, X)) = Wp(Xa(p)s - -, Xi(p))-

This map is obviously alternating and R-linear, but it is also C°°(M)-linear, since for every

fe=(M),
w(Xp, .o [ X X)) (p) = wp(Xa(p), -, [(0)Xi(p), -+, Xi(p))
- f(p)wP(X1<p>7'"7Xi(p)7"'7Xk(p))
= (fw)p(Xi(p), .-, Xi(p), .-, Xx(p))-

(Recall, that the set of smooth vector fields, X(M), is a real vector space and a C*°(M)-
module.)

9 .

Interestingly, every alternating C'*°(M )-multilinear maps on smooth vector fields deter-
mines a differential form. This is because w(Xj, ..., X;)(p) only depends on the values of
Xl;---an at D.



298 CHAPTER 8. DIFFERENTIAL FORMS

Proposition 8.12. Let M be a smooth manifold. For every k > 0, there is an isomor-
phism between the space of k-forms, A*(M), and the space, Altgoo(M) (X(M)), of alternating
C®(M)-multilinear maps on smooth vector fields. That is,

AF(M) 2 Altgroo () (X(M)),
viewed as C*°(M)-modules.

Proof. Let ®: X(M) x -+ x X(M) — C*(M) be an alternating C°°(M )-multilinear map.

i

g

k
First, we prove that for any vector fields Xi,..., Xy and Yi,..., Y}, for every p € M, if
Xi(p) = Yi(p), then
O(Xy,...,Xk)(p) = 2(Y1,...,Yi)(p).

Observe that

(X1, X)) —D(Yi, o Ye) = (X1 — Vi, Xoyo ooy Xi) + B(Yi, X — Yo, Xs, ooy X)
FO(Yh, Yo, Xs — Yo, oo, Xi) 4+
+ (Y1, ..., Yo, Xpoy — Vi1, Xi)
+--+ OV, Y, Xk — Vi)

As a consequence, it is enough to prove that if X;(p) = 0, for some i, then

Without loss of generality, assume i = 1. In any local chart, (U, ¢), near p, we can write

= 0
Xl :Zlfla_xzu

and as X;(p) = 0, we have f;(p) =0, for i = 1,...,n. Since the expression on the right-hand
side is only defined on U, we extend it using Proposition 3.30, once again. There is some
open subset, V' C U, containing p and a smooth function, h: M — R, such that supph C U
and h =1 on V. Then, we let h; = hf;, a smooth function on M, Y; = ha%i, a smooth vector

field on M, and we have h; [V = f; [V and Y; | V = 6%1 | V. Now, it it obvious that
X1 =) hYi+(1-h)X,
i=1
on V', so as ® is C°(M)-multilinear, h;(p) = 0 and h(p) = 1, we get

Q(X17X27 s 7Xk)(p) = ®<Z hl}/’b + (1 - h2)X17X27 s an‘)(p>
=1

n

= D h)P(Yi, Xy, Xi)(p) + (1= B2 ()) (X1, Xa, ., Xi)(p) = 0,

=1
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as claimed.

Next, we show that ® induces a smooth differential form. For every p € M, for any
ui,...,up € T,M, we can pick smooth functions, f;, equal to 1 near p and 0 outside some
open near p so that we get smooth vector fields, X7, ..., X, with Xy(p) = up. We set

wp(ul, ce ,uk) = (I)(Xl, N ,Xk)(p)

As we proved that ®(X,..., Xy)(p) only depends on Xi(p) = uq,...,Xp(p) = uy, the
function w, is well defined and it is easy to check that it is smooth. Therefore, the map,
® — w, just defined is indeed an isomorphism. O

Remarks:

(1) The space, Homeeo(pr)(X(M), C>(M)), of all C*° (M )-linear maps, X(M) — C*(M),
is also a C°(M)-module called the dual of X(M) and sometimes denoted X*(M).
Proposition 8.12 shows that as C*°(M)-modules,

AN(M) = Homeoe (a) (X(M), C(M)) = X*(M).

(2) A result analogous to Proposition 8.12 holds for tensor fields. Indeed, there is an
isomorphism between the set of tensor fields, I'(M, T"%(M)), and the set of C*°(M)-
multilinear maps,

®: AN(M) x - x ANM) X X(M) x -+ x X(M) — C%(M),

where A'(M) and X(M) are C°°(M)-modules.

Recall from Section 3.3 (Definition 3.19) that for any function, f € C*°(M), and every
vector field, X € X(M), the Lie derivative, X[f] (or X (f)) of f w.r.t. X is defined so that

X[f]p = dfp(X(p))-

Also recall the notion of the Lie bracket, [X,Y], of two vector fields (see Definition 3.20).
The interpretation of differential forms as C°°(M)-multilinear forms given by Proposition
8.12 yields the following formula for (dw)(X7, ..., Xk11), where the X; are vector fields:

Proposition 8.13. Let M be a smooth manifold. For every k-form, w € A*(M), we have

k+1
(dw) (X1, Xpgr) = D (1) 7 Xifw(X1, o, X X))

=1

+ Z<_1)i+jw<[Xian]aX1a s 75(\1'7 cee 7Xj7 cee 7Xk+1)]7

1<j

for all vector fields, Xi,..., Xpi1 € X(M):
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Proof sketch. First, one checks that the right-hand side of the formula in Proposition 8.13
is alternating and C'*°(M)-multilinear. For this, use Proposition 3.19 (c¢). Consequently, by
Proposition 8.12, this expression defines a (k + 1)-form. Second, it is enough to check that
both sides of the equation agree on charts, (U, ¢). Then, we know that dw can be written
uniquely as

w = f[dl’Z /\/\dl’z eU.
D Judz, .op
1

Also, as differential forms are C'°°(M )-multilinear, it is enough to consider vector fields of

the form X; = 8%. However, for such vector fields, [X;, X;] = 0, and then it is a simple

Ji
matter to check that the equation holds. For more details, see Morita [115] (Chapter 2). [

In particular, when k = 1, Proposition 8.13 yields the often used formula:
dw(X,Y) = X[w(Y)] = Yw(X)] - w([X,Y]).

There are other ways of proving the formula of Proposition 8.13, for instance, using Lie
derivatives.

Before considering the Lie derivative of differential forms, L xw, we define interior multi-
plication by a vector field, i(X)(w). We will see shortly that there is a relationship between
Lx, i(X) and d, known as Cartan’s Formula.

Definition 8.9. Let M be a smooth manifold. For every vector field, X € X(M), for all
k > 1, there is a linear map, i(X): A*(M) — A*1(M), defined so that, for all w € A*(M),
for all p € M, for all uy,...,up_y € T,M,

(U X)w)p(ur, ...y up—1) = wp(Xp, ur, ..., ug—1).

Obviously, i(X) is C°°(M)-linear in X and it is easy to check that i(X)w is indeed a
smooth (k — 1)-form. When k = 0, we set ¢(X)w = 0. Observe that i(X)w is also given by

(i{(X)w)p = i(Xp)wp, pE M,

where (X)) is the interior product (or insertion operator) defined in Section 22.17 (with
i(X,)w, equal to our right hook, w, L X,). As a consequence, by Proposition 22.28, the
operator i(X) is an anti-derivation of degree —1, that is, we have

i(X)(wAn) = (((X)w) An+ (=1)"w A (@{(X)n),

for all w € A"(M) and all n € A*(M).

Remark: Other authors, including Marsden, use a left hook instead of a right hook and
denote i(X)w as X Jw.



8.3. LIE DERIVATIVES 301

8.3 Lie Derivatives

We just saw in Section 8.2 that for any function, f € C°°(M), and every vector field,
X € X(M), the Lie derivative, X[f] (or X(f)) of f w.r.t. X is defined so that

X[zﬂp = dfp(Xp)'

Recall from Definition 3.28 and the observation immediately following it that for any mani-
fold, M, given any two vector fields, X,Y € X(M), the Lie derivative of X with respect to
Y is given by
(@), % d
_ P _ Y e

(LxY), = Jim —— = (@)
where ®, is the local one-parameter group associated with X (& is the global flow associated
with X, see Definition 3.27, Theorem 3.27 and the remarks following it) and ®; is the
pull-back of the diffeomorphism ®; (see Definition 3.21). Furthermore, recall that

LxY =[X,Y].
We claim that we also have
_ (@) = flp) _ d .
Xl = Jim SR < @00

with @} f = f o ®; (as usual for functions).
Recall from Section 3.5 that if ® is the flow of X, then for every p € M, the map,
t — ®4(p), is an integral curve of X through p, that is

Oi(p) = X(P(p)),  Polp) =p,

in some open set containing p. In particular, éo(p) = X,. Then, we have

b RED®) I () (@)~ (P0(p))
t—s0 t t—0 t

d
= EU o ®y(p)) L
= dfp((i)0<p)) = dfp(Xp) = Xp[f]-

We would like to define the Lie derivative of differential forms (and tensor fields). This
can be done algebraically or in terms of flows, the two approaches are equivalent but it seems
more natural to give a definition using flows.

Definition 8.10. Let M be a smooth manifold. For every vector field, X € X(M), for every
k-form, w € A¥(M), the Lie derivative of w with respect to X, denoted Lxw is given by

: (‘I’?W)p —W  d .,
= o, T o]

where ®fw is the pull-back of w along ®; (see Definition 8.7).
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Obviously, Lx: A¥(M) — A¥(M) is a linear map but it has many other interesting
properties. We can also define the Lie derivative on tensor fields as a map,
Lx:T'(M,T7*(M)) — I'(M,T"*(M)), by requiring that for any tensor field,

O{:X1®"'®Xr®w1®"'®wsy
where X; € X(M) and w; € A' (M),
Pra=' X, ® - QDX @Dw @@ D,

where ®;X; is the pull-back of the vector field, X;, and ®;w; is the pull-back of one-form,
wj, and then setting

Pra) —a
(Lxa), = lim (1 )p p_d

t—0 t - E (Q):a)

p
t=0

So, as long we can define the “right” notion of pull-back, the formula giving the Lie derivative
of a function, a vector field, a differential form and more generally, a tensor field, is the same.

The Lie derivative of tensors is used in most areas of mechanics, for example in elasticity
(the rate of strain tensor) and in fluid dynamics.

We now state, mostly without proofs, a number of properties of Lie derivatives. Most
of these proofs are fairly straightforward computations, often tedious, and can be found in
most texts, including Warner [148], Morita [115] and Gallot, Hullin and Lafontaine [61].

Proposition 8.14. Let M be a smooth manifold. For every vector field, X € X(M), the
following properties hold:

(1) For allw € A"(M) and alln € A%(M),
Lx(wAn)=(Lxw)An+wA (Lxn),
that is, Lx s a derivation.

(2) For all w € A¥(M), for allYy,...,Y;, € X(M),

k
Lx(w(Y1,...,Y3)) = (Lxw)(Y1, ..., Yi) + > _w(Yi,...,Yiq, LxV;, Vi, ... V2).
i=1

(8) The Lie derivative commutes with d:

LXOd:dOLx.
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Proof. We only prove (2). First, we claim that if ¢: M — M is a diffeomorphism, then for
every w € A¥(M), for all Xi,..., X € X(M),

(P w) (X1, Xi) = @ (W) X1, .., (97 1) Xk)), (%)

where (¢!)* X is the pull-back of the vector field, X; (also equal to the push-forward, . X,
of X;, see Definition 3.21). Recall that

((@71)*1/)1) = dS%—l(p) (Yw‘l(p))v

for any vector field, Y. Then, for every p € M, we have

(Pw(Xy, .., X)) (p) = weg)(dep(Xi(p )) ©p(Xi(p)))
= We) (dpe-1(om) ( @), - - dpo1(omn (Xn( ™ (0(p))
= wy(p) (¢~ X ) @) -0 (7 1)*Xk) »)
= (W™ X1, (7)) XR)) 0 9) (D)
= W)Xy, (07 X)) (D),

since for any function, g € C*°(M), we have ¢p*g = g o ¢.
We know that

Xolf] = tli{lo t
and for any vector field, Y,
(X, Y], = (LxY), = i >, ~ Y
) P_(X )p_tglof'

Since the one-parameter group associated with —X is ®_, (this follows from ®_; o &, = id),
we have

oY) —-Y,
lim M:_[X,y],
t p

t—0

Now, using ®; ! = ®_, and (*), we have

(Lxw)(Vay... . Y2) = lim (Qjw) (Y1, ..., Yi) —w(1,.... ¥})

t—0 t
gy B 08 Y)) —w(Y, V)
t—0 n
g B 0 Y)) — B, YE)
t—0 n
+ lim q):<w<}/1’ o ’Yk)> — CU(YL - ;Yk>
t—0 t .

Call the first term A and the second term B. Then, as

t—0 t ’
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we have
B = X[w(yvla s 7Yk)]

As to A, we have
) (w(Pr,Y, ..., 05, Y})) — &) (w(Vs, ..., Y3))

A = lim
t—0 t
. * w<q)it}/177q)ttyk)_w<}/l7a}/k)
= lim P,
t—0 t
— lim (w(q)*_tYl,...,q)*_tYk) —w(Yy, ®*,Ys, ... ,CID*_tYk)>
t—s0 t
. % w(}/laq)itif%aq)ttyk) _W(Y17}67q)tt}/é7"'7(bttyk>
+ lim &y
t—0 t
Yi,.... Y 1,95V —w(Yy,....Y,
+ + lim @: ((U( 1 y Lhk—1y ¥ _¢ k) OJ( 1 ) k))
t—0 t
k
= > wh,...,—-[X,Y],... V).
i=1
When we add up A and B, we get
k
A+B = Xw®,. .. Y)]=) wl,...,[X.Y],.. . V)
i=1
= (LXM)(E,...,Yk),
which finishes the proof. n

Part (2) of Proposition 8.14 shows that the Lie derivative of a differential form can be
defined in terms of the Lie derivatives of functions and vector fields:

k
(Lxw)(Y1,....Ye) = Lyx(w(Xi,....Y2) = > w(Vi,...,Yie, LxY;, Yiey, ... V)
i=1
k
= Xw®,... .Y = > wi,... Yo, [X, Y], Vi, ..., VR).
i=1

The following proposition is known as Cartan’s Formula:

Proposition 8.15. (Cartan’s Formula) Let M be a smooth manifold. For every vector field,
X € X(M), for every w € A*(M), we have

Lxw=1(X)dw + d(i(X)w),

that is, Lx = i(X)od+doi(X).
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Proof. If k = 0, then Lxf = X|[f] = df(X) for a function, f, and on the other hand,
i(X)f =0 and ¢(X)df = df(X), so the equation holds. If £ > 1, then by Proposition 8.13,
we have

(i(X)dw)(Xy,. .., Xp) = dw(X, Xl,...,Xk)

= X[w(X,.. +Z WX, X1, X, X))

k
+ ) (“Vw(X, X)), X, X, X

j=1

+ D (DMK XL X X X X X,

1<J

On the other hand, again by Proposition 8.13, we have

k
(X)) (X, Xi) = SO (1) XX, X, Ko, X))
i=1
+ ) (D) (X (X X)X X X X,
1<j
Adding up these two equations, we get
(((X)dw + di( X)) w(Xq, ..., X)) = X[w(Xq,. .., Xp)]
k
+ Z(—l)ZW([X, Xi]7X17 s 7Xi7 s 7Xk)
i=1
k
= Xw(Xy,.. =) w(Xy, L XX X)) = (Lxw) (X0, Xa),
=1
as claimed. O]

The following proposition states more useful identities, some of which can be proved
using Cartan’s formula:

Proposition 8.16. Let M be a smooth manifold. For all vector fields, X,Y € X(M), for
all w € A*(M), we have

(1) Lyi(Y) —i(Y)Lx = i([X,Y)).
(2) LxLyu} — LyLXw == L[X7y]w.
(3) Lyi(X)w = i(X)Lxw.
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(4) Lixw = fLxw +df Ni(X)w, for all f € C*(M).

(5) For any diffeomorphism, ¢: M — N, for all Z € X(N) and all § € A*(N),

@ LzB = Ly«z0"f.

Finally, here is a proposition about the Lie derivative of tensor fields. Obviously, tensor
product and contraction of tensor fields are defined pointwise on fibres, that is

(a®pB)y, = @B

(cijo)p = cijoy,
for all p € M, where ¢; ; is the contraction operator of Definition 22.5.

Proposition 8.17. Let M be a smooth manifold. For every vector field, X € X(M), the
Lie derivative, Lx: T'(M,T**(M)) — T'(M,T**(M)), is the unique linear local operator
satisfying the following properties:

(1) Lxf = X[f] = df(X), for all f € C>=(M).
(2) LxY =[X,Y], for allY € X(M).

(8) Lx(a® ) = (Lxa) ® B+ a® (Lx(), for all tensor fields, « € T'(M,T™*(M)) and
g e (M, T (M)), that is, Lx is a derivation.

(4) For all tensor fields « € T'(M,T"*(M)), with r,s > 0, for every contraction operator,
Ci,j;
Lx(cij(a)) = cij(Lxa).

The proof of Proposition 8.17 can be found in Gallot, Hullin and Lafontaine [61] (Chapter
1). The following proposition is also useful:

Proposition 8.18. For every (0, q)-tensor, S € T'(M, (T*)®4(M)), we have

(LxS) (X1, ..., X,) = X[S(X1,..., X,)] — iS(Xl, XX LX),

i=1

forall Xy,...,X,, X € X(M).

There are situations in differential geometry where it is convenient to deal with differential
forms taking values in a vector space. This happens when we consider connections and the
curvature form on vector bundles and principal bundles and when we study Lie groups,
where differential forms valued in a Lie algebra occur naturally.
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8.4 Vector-Valued Differential Forms

Let us go back for a moment to differential forms defined on some open subset of R". In
Section 8.1, a differential form is defined as a smooth map, w: U — AP(R")*, and since we
have a canonical isomorphism,

p
p AR = AR R),

such differential forms are real-valued. Now, let F' be any normed vector space, possibly
infinite dimensional. Then, Alt’(R™; F') is also a normed vector space and by Proposition
22.33, we have a canonical isomorphism

TR (;\(R"Y) ® F — AItP(R™; F).

Then, it is natural to define differential forms with values in F' as smooth maps,
w: U — AItP(R™; F). Actually, we can even replace R™ with any normed vector space, even
infinite dimensional, as in Cartan [30], but we do not need such generality for our purposes.

Definition 8.11. Let F' by any normed vector space. Given any open subset, U, of R", a
smooth differential p-form on U with values in F', for short, p-form on U, is any smooth
function, w: U — Alt?(R"; F'). The vector space of all p-forms on U is denoted AP(U; F').
The vector space, A*(U; F') = D,5, AP(U; '), is the set of differential forms on U with
values in F.

Observe that A%(U; F) = C=(U, F), the vector space of smooth functions on U with
values in F' and AY(U; F') = C=(U,Hom(R™, F)), the set of smooth functions from U to the
set of linear maps from R™ to F'. Also, A?(U; F) = (0) for p > n.

Of course, we would like to have a “good” notion of exterior differential and we would like
as many properties of “ordinary” differential forms as possible to remain valid. As will see in
our somewhat sketchy presentation, these goals can be achieved except for some properties
of the exterior product.

Using the isomorphism
p
[ (/\(R”)*) ® F — AltP(R™; F)

and Proposition 22.34, we obtain a convenient expression for differential forms in A*(U; F').
If (e1,...,6,) is any basis of R™ and (e},...,e’) is its dual basis, then every differential

rn

p-form, w € AP(U; F'), can be written uniquely as

w(m)zzefl/\---/\efp@)fl(x):Z(ﬁ@f](x) xeU,

1 1
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where each f;: U — F'is a smooth function on U. By Proposition 22.35, the above property
can be restated as the fact every differential p-form, w € AP(U; F'), can be written uniquely
as

w(x):Zefl/\---/\efp~f1(J:), zeU.
I

where each f;: U — F' is a smooth function on U.

As in Section 22.15 (following H. Cartan [30]) in order to define a multiplication on
differential forms we use a bilinear form, ®: F' x G — H. Then, we can define a multipli-
cation, Ag, directly on alternating multilinear maps as follows: For f € Alt"(R"; F)) and

g € Alt"(R™; ),

(f Ao g)(ury ..oy Uppyn) = Z sgn(0) P(f(Uo1), - - - Us(m))s I (Uo(mt1)s - - - s Uo(mn)))s

oeshuffle(m,n)

where shuffle(m, n) consists of all (m, n)-“shuffles”, that is, permutations, o, of {1,...m+n},
such that o(1) < --- < o(m) and o(m+1) < --- < a(m +n).

Then, we obtain a multiplication,
No: AP(U; F) x AYU;G) — AU H),
defined so that, for any differential forms, w € A?(U; F) and n € AY(U; G),
(W Ao N)z = Wa Ao T zeU.

In general, not much can be said about Ag unless ® has some additional properties. In
particular, Ag is generally not associative. In particular, there is no analog of Proposition 8.1.
For simplicity of notation, we write A for Ag. Using ®, we can also define a multiplication,

AU F) x AU, G) — AP(U; H),
given by
(w- alur, ... up) = Plwe(us, ..., up), f(x)),

for all z € U and all uy,...,u, € R". This multiplication will be used in the case where
F =R and G = H, to obtain a normal form for differential forms.

Generalizing d is no problem. Observe that since a differential p-form is a smooth map,
w: U — AItP(R™; F), its derivative is a map,

w': U — Hom(R", Alt’(R"; F)),

such that w/, is a linear map from R™ to Alt’(R"™; F'), for every z € U. We can view w!, as
a multilinear map, w’: (R")P*! — F which is alternating in its last p arguments. As in
Section 8.1, the exterior derivative, (dw),, is obtained by making w/ into an alternating map
in all of its p 4+ 1 arguments.
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Definition 8.12. For every p > 0, the exterior differential, d: A?(U; F) — APTYU; F), is
given by

Pt
(dw)z(ur, ... upp1) = Z(—l)z_lw;(ui)(ul, o Wy ey Uppn),s
i=1
for all w € AP(U; F') and all uy,...,u,+1 € R”, where the hat over the argument u; means

that it should be omitted.
For any smooth function, f € A°(U; F) = C>=(U, F), we get

dfe(u) = f,(u).

Therefore, for smooth functions, the exterior differential, df , coincides with the usual deriva-
tive, f’. The important observation following Definition 8.3 also applies here. If z;: U — R
is the restriction of pr; to U, then 2} is the constant map given by

zi(x) = pry, zeU.

It follows that dz; = 2 is the constant function with value pr; = ef. As a consequence, every
p-form, w, can be uniquely written as

Wy = Z drg, N Ndrg, @ fr(x)
I

where each f;: U — F is a smooth function on U. Using the multiplication, -, induced by
the scalar multiplication in F' (®(A, f) = Af, with A € R and f € F), we see that every
p-form, w, can be uniquely written as

I

As for real-valued functions, for any f € A%(U; F) = C=(U, F), we have

)= Y- S

and so,
af =S da; - 2L

In general, Proposition 8.3 fails unless F' is finite-dimensional (see below). However for
any arbitrary F, a weak form of Proposition 8.3 can be salvaged. Again, let ®: F x G — H
be a bilinear form, let -: A?(U; F') x A°(U; G) — AP(U; H) be as defined before Definition
8.12 and let Ag be the wedge product associated with ®. The following fact is proved in
Cartan [30] (Section 2.4):
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Proposition 8.19. For allw € A?(U; F) and dall f € A°(U;G), we have

dw- f) = (dw) - f +w Ao df.

Fortunately, d o d still vanishes but this requires a completely different proof since we
can’t rely on Proposition 8.2 (see Cartan [30], Section 2.5). Similarly, Proposition 8.2 holds
but a different proof is needed.

Proposition 8.20. The composition AP(U; F) -5 AMY(U: F) —% AP*2(U: F) is identi-
cally zero for every p > 0, that is,
dod=0,

or using superscripts, dP* o dP = 0.

To generalize Proposition 8.2, we use Proposition 8.19 with the product, -, and the wedge

product, Ag, induced by the bilinear form, ®, given by scalar multiplication in F', that, is
O\, f)=Af,forall e Rand all f € F.

Proposition 8.21. For every p form, w € AP(U; F'), with w = dx;, A--- Ndx;, - f, we have
dw = dxi, N+ Ndx;, Np df,

where N is the usual wedge product on real-valued forms and Np is the wedge product asso-
ciated with scalar multiplication in F.

More explicitly, for every x € U, for all uy,...,up11 € R", we have

p+1

(dwy)(u, ..., upy1) = Z(—l)i_l(dxil A Ndag) ) o (U Ty o Upyr ) df 5 (U5).

i=1
If we use the fact that
df =3 du, -

we see easily that

dw = Zdajil A Ndxg, Ndwj - 3_:16]-’
7=1
the direct generalization of the real-valued case, except that the “coefficients” are functions
with values in F'.

The pull-back of forms in A*(V, F) is defined as before. Luckily, Proposition 8.6 holds
(see Cartan [30], Section 2.8).

Proposition 8.22. Let U C R™ and V' C R™ be two open sets and let ¢: U — V be a
smooth map. Then
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(i) p*(wAn) =@ wAen, for allwe AP(V; F) and alln € AY(V; F).

(ii) ©*(f) = fo, forall f € A°(V;F).
(iii) do*(w) = ¢*(dw), for all w € AP(V; F), that is, the following diagram commutes for
all p > 0:
AP(Vi F) —2—~ AP(U; F)
dl ld

APV F) £ A (U F).

Let us now consider the special case where F' has finite dimension m. Pick any basis,
(fi,.-., fm), of F. Then, as every differential p-form, w € AP(U; F'), can be written uniquely
as

w(x):Zefl/\---/\efp~f1(x), zeU.
I
where each f;: U — F is a smooth function on U, by expressing the f; over the basis,

(f1,--., fm), we see that w can be written uniquely as
m
w=Y w-fi
i=1
where w1, ...,w,, are smooth real-valued differential forms in AP(U;R) and we view f; as

the constant map with value f; from U to F. Then, as

m

wy(u) = D (Wh)a(u) i,

=1

for all u € R™, we see that
dw =" duw; - fi
i=1

Actually, because dw is defined independently of bases, the f; do not need to be linearly
independent; any choice of vectors and forms such that

k
w=Y w-fi
=1

will do.

Given a bilinear map, ®: F'xG — H, asimple calculation shows that for allw € AP(U; F)
and all n € AP(U; G), we have

when= ZZwi/\nj'@(fi,gj)y

i=1 j=1
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withw =" w;- f; and n = Z;"zll n;-g;, where (fi1,..., fm) is a basis of F' and (g1, ..., gm)
is a basis of G. From this and Proposition 8.3, it follows that Proposition 8.3 holds for
finite-dimensional spaces.

Proposition 8.23. If F,G, H are finite dimensional and ®: F' x G — H s a bilinear map,
then For allw € AP(U; F) and all n € AY(U;G),

dw Ao n) =dw Ne 1+ (—1)Pw Ag dn.

On the negative side, in general, Proposition 8.1 still fails.

A special case of interest is the case where FF = G = H = g is a Lie algebra and
®(a,b) = [a,b], is the Lie bracket of g. In this case, using a basis, (f1,..., f;), of g if we
write w = >, o f; and i = 3, B, f;, we have

w,n| = Zai A Bilfis fil,

where, for simplicity of notation, we dropped the subscript, ®, on [w, 7] and the multiplication
sign, -. Let us figure out what [w,w] is for a one-form, w € A'(U, g). By definition,

= sz Aw;lfi, fil,

w, wj(u,v) = Z(wi/\wj)(u,v)[fi,fj]
= @il (v) — woh )i ]
= Zwi(u)wj flvf] sz WJ fﬂfj]
= [Zwi(u)fi_zwj v) f5] = Zwi v i—ZWjW)fJ]
= [w(w),w)] - [wv),w(u)]
= 2[w(u),w(v)].
Therefore,

[w, w](u,v) = 2]w(u), w)].

Note that in general, [w,w] # 0, because w is vector valued. Of course, for real-valued forms,
[w,w] = 0. Using the Jacobi identity of the Lie algebra, we easily find that

[[w, w],w] = 0.
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The generalization of vector-valued differential forms to manifolds is no problem, except
that some results involving the wedge product fail for the same reason that they fail in the
case of forms on open subsets of R".

Given a smooth manifold, M, of dimension n and a vector space, F, the set, A*(M; F),
of differential k-forms on M with values in F' is the set of maps, p — w,, with

wp € (/\k T;M) ® F = Alt*(T,M; F), which vary smoothly in p € M. This means that the
map

p= wp(Xl(p)a s >Xk(p))

is smooth for all vector fields, X7,..., X} € X(M). Using the operations on vector bundles
described in Section 7.3, we can define A*(M; F') as the set of smooth sections of the vector

bundle, (/\k T*M) ® ep, that is, as

AR(M; F) = r((/k\T*M) ®EF>,

where ep is the trivial vector bundle, ez = M x F. In view of Proposition 7.12 and since
[(ep) = C®(M; F) and A*(M) = F(/\k T*M), we have

AR(MF) = F((;\T*M>®6F)

= F(/k\ T*M) ®Rcoo(ar) L'(er)

= AMM) @cear) C°(M; F)

k

N\ (C(TM))* @coeany C(M; F)
C>(M)
> Altgee ) (X(M); C*(M; F)).

I

with all of the spaces viewed as C°°(M )-modules. Therefore,
AF(M; F) 2 AF(M) @y O (M; F) 2 Alth ) (X(M); C¥(M; F),

which reduces to Proposition 8.12 when F' = R. The reader may want to carry out the
verification that the theory generalizes to manifolds on her/his own. In Section 11.1, we
will consider a generalization of the above situation where the trivial vector bundle, g, is
replaced by any vector bundle, ¢ = (E,w, B, V'), and where M = B.

In the next section, we consider some properties of differential forms on Lie groups.
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8.5 Differential Forms on Lie Groups and
Maurer-Cartan Forms

Given a Lie group, G, we saw in Section 5.2 that the set of left-invariant vector fields on G
is isomorphic to the Lie algebra, g = T1G, of G (where 1 denotes the identity element of G).
Recall that a vector field, X, on G is left-invariant iff

d(La)o(Xp) = X0 = Xab,
for all a,b € G. In particular, for b = 1, we get
Xa — d(La>1<X1).

which shows that X is completely determined by its value at 1. The map, X — X (1), is an
isomorphism between left-invariant vector fields on G and g.

The above suggests looking at left-invariant differential forms on G. We will see that the
set of left-invariant one-forms on G is isomorphic to g*, the dual of g, as a vector space.

Definition 8.13. Given a Lie group, G, a differential form, w € A*(G), is left-invariant iff
Liw=uw, for all a € G,

where L’ w is the pull-back of w by L, (left multiplication by a). The left-invariant one-forms,
w € AYQ), are also called Maurer-Cartan forms.

For a one-form, w € A*(G), left-invariance means that
(Law)g(u) = wr,g(d(La)gu) = weg(d(La)gu) = wy(u),
for all a,g € G and all u € T,G. For a = g~ !, we get
wy(u) = wi(d(Lyg-1)gu) = w (d(Lgl)gu)a
which shows that w, is completely determined by its value at g = 1.

We claim that the map, w — wq, is an isomorphism between the set of left-invariant
one-forms on G and g*.

First, for any linear form, o € g*, the one-form, o, given by
L —
ag (U) = a(d<Lg 1)9u)
is left-invariant, because

(Lhof)g(u) = o,
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Second, we saw that for every one-form, w € A'(G),

wy(u) = wi(d(L,")gu),

Y

so w; € g* is the unique element such that w = w¥, which shows that the map a — o is an
isomorphism whose inverse is the map, w — wj.

Now, since every left-invariant vector field is of the form X = u”, for some unique, u € g,
where u” is the vector field given by u*(a) = d(L,)1u, and since

Wag(d(La)gu) = wy(u),
for g =1, we get wy(d(Ly)1u) = wi(u), that is
W(X)azwl(u>v a €@,

which shows that w(X) is a constant function on G. It follows that for every vector field, Y,

(not necessarily left-invariant),
Y{w(X)] = 0.

Recall that as a special case of Proposition 8.13, we have
dw(X,Y) = X[w(Y)] = Yw(X)] - w([X, Y]).

Consequently, for all left-invariant vector fields, X, Y, on G, for every left-invariant one-form,
w, we have

dw(X,Y) = —w([X,Y]).

If we identify the set of left-invariant vector fields on G with g and the set of left-invariant
one-forms on G with g*, we have

dw(X,Y) = —w([X,Y])), weg, XY eg.
We summarize these facts in the following proposition:
Proposition 8.24. Let G be any Lie group.

(1) The set of left-invariant one-forms on G is isomorphic to g*, the dual of the Lie algebra,
g, of G, via the isomorphism, w — wy.

(2) For every left-invariant one form, w, and every left-invariant vector field, X, the value
of the function w(X) is constant and equal to wy(X7).

(3) If we identify the set of left-invariant vector fields on G with g and the set of left-
inwvariant one-forms on G with g*, then

dw(X,Y)=-w(X,Y]), weg, X, Yeg.
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Pick any basis, X1, ..., X,, of the Lie algebra, g, and let wy,...,w, be the dual basis of

g*. Then, there are some constants, cfj, such that

X0, Xj] =) e X
k=1

The constants, cfj are called the structure constants of the Lie algebra, g. Observe that

k k

As wi([Xp, Xg]) = ¢, and dw;(X,Y) = —w;([X,Y]), we have
Z Chpwj A wi(Xp, Xg) = Z i (w5 (Xp)win(Xg) — wj(Xg)wi (X))
Z Cj‘kwj (Xp)wi(Xq) — Z Cé'kwj(Xq>Wk<Xp)

= D i (Xp)wi(X,) + Z s (Xo)won (X)

1 i __o.d
= Cpg + Cpg = Zcp,q’

so we get the equations
1 .
dw; = —5 Z c;kwj A W,
.k

known as the Maurer-Cartan equations.

These equations can be neatly described if we use differential forms valued in g. Let wyc
be the one-form given by

(wae)g(u) = d(L, ") gu, g€ G, ueT,G.

The same computation that showed that o is left-invariant if o € g shows that wyc is
left-invariant and, obviously, (wyc); = id.

Definition 8.14. Given any Lie group, G, the Maurer-Cartan form on G is the g-valued
differential 1-form, wyc € A'(G, g), given by

(WMC)g = d(Lgl)g> geG.

Recall that for every g € G, conjugation by ¢ is the map given by a — gag™!, that is,
a+ (Lyo Ry-1)a, and the adjoint map, Ad(g): g — g, associated with g is the derivative of
Lgyo Ry at 1, that is, we have

Ad(g)(u) = d(Lgy o Ry-1)1(u), u € g.

Furthermore, it is obvious that L, and Rj, commute.
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Proposition 8.25. Given any Lie group, G, for all g € G, the Maurer-Cartan form, wyc,
has the following properties:

(1) (wmc)r = id.

(2) For all g € G,
R;wMC = Ad(gil) O WhMC-

(3) The 2-form, dw € A*(G,g), satisfies the Maurer-Cartan equation,
1

dwnc = _§[WM07WMC]~
Proof. Property (1) is obvious.

(2) For simplicity of notation, if we write w = wyic, then

(Rgw)n = whg o d(Ry)n
= d( hg)hg o d(Ry)n
d(Ly, hg o Rg)n
d((Lh oL ) ° Rg)n
(Ly
(
(L

= d g Lo Ry
dL;loR oL,M),
d(Lg-10Ry)y 0d(L, Y
Ad(g™) o wp,

as claimed.

(3) We can easily express wyic in terms of a basis of g. If X1,..., X, is a basis of g and
Wi, ..., w, is the dual basis, then by Proposition 8.24 (2) and part (1) of Proposition 8.25,
we have wyc(X;) = (wme)1(X;) = X, fori = 1,...,r, so wyc is given by

wpe = w1 Xy + - Fwe X,

under the usual identification of left-invariant vector fields (resp. left-invariant one forms)
with elements of g (resp. elements of g*) and, for simplicity of notation, with the sign -
omitted between w; and X;. Using this expression for wyic, a simple computation shows that
the Maurer-Cartan equation is equivalent to

1
dwyic = — 3 [wne, wacl,

as claimed. n

In the case of a matrix group, G C GL(n,R), it is easy to see that the Maurer-Cartan
form is given explicitly by
wyae =g 'dg, g €G.
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Thus, it is a kind of logarithmic derivative of the identity. For n = 2, if we let
_ (o b

B 1 dda — Bdy  6df — Bdo
b —fy \—vda+ady —ydf+add)”

we get

wMC

Remarks:

(1) The quantity, dwyc + 3[wmc, wac] 18 the curvature of the connection wyc on G. The
Maurer-Cartan equation says that the curvature of the Maurer-Cartan connection is
zero. We also say that wyc is a flat connection.

(2) As dwyc = —%[ch,ch], we get
dlwmc, wwc] = 0,

which yields

[[wmc, wac), wme] = 0.

It is easy to show that the above expresses the Jacobi identity in g.

(3) As in the case of real-valued one-forms, for every left-invariant one-form, w € A!(G, g),
we have

wy(u) = wi(d(Ly")gu) = wi((wne)gw),

forall g € G and all u € T,G and where w; : g — g is a linear map. Consequently, there
is a bijection between the set of left-invariant one-forms in A'(G, g) and Hom(g, g).

(4) The Maurer-Cartan form can be used to define the Darboux derivative of a map,
f: M — G, where M is a manifold and G is a Lie group. The Darboux derivative of
f is the g-valued one-form, wy € A'(M, g), on M given by

Wy = f*ch.

Then, it can be shown that when M is connected, if f; and f5 have the same Darboux
derivative, wy, = wy,, then fo = Ljo fi, for some g € G. Elie Cartan also characterized
which g-valued one-forms on M are Darboux derivatives (dw + 3w, w] = 0 must hold).
For more on Darboux derivatives, see Sharpe [140] (Chapter 3) and Malliavin [102]
(Chapter IIT).
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8.6 Volume Forms on Riemannian Manifolds and Lie
Groups

Recall from Section 7.4 that a smooth manifold, M, is a Riemannian manifold iff the vector
bundle, T'M, has a Euclidean metric. This means that there is a family, ((—, —),)pem, of
inner products on each tangent space, T, M, such that (—, —), depends smoothly on p, which
can be expessed by saying that that the maps

x> (do (), doy (€)1, T EQU), 1<i,j<n

are smooth, for every chart, (U, ), of M, where (eq,...,e,) is the canonical basis of R". We
let

9ij (ZE) = <dg0:;1 (62'), dgp:;l (ej)>g0*1(m)
and we say that the n x n matrix, (g;;(x)), is the local expression of the Riemannian metric

on M at x in the coordinate patch, (U, ¢).

For orientability of manifolds, volume forms and related notions, please refer back to
Section 3.8. If a Riemannian manifold, M, is orientable, then there is a volume form on M
with some special properties.

Proposition 8.26. Let M be a Riemannian manifold with diim(M) = n. If M is orientable,
then there is a uniquely determined volume form, Voly,, on M with the following properties:

(1) For every p € M, for every positively oriented orthonormal basis (b, ..., b,) of T,M,
we have

Volyr(by, ..., by) = 1.

(2) In every orientation preserving local chart, (U, ), we have

((p™1)*Volur)g = y/det(gij(q)) dzy A -+ N, g € p(U).

Proof. (1) Say the orientation of M is given by w € A"(M). For any two positively oriented
orthonormal bases, (by,...,b,) and (b},...,t)), in T,M, by expressing the second basis over

the first, there is an orthogonal matrix, C' = (¢;;), so that

n
/ § :

bi = Cijbj-
=1

We have
wp(by, ..., b)) = det(C)wy (b, . . ., by),
and as these bases are positively oriented, we conclude that det(C) = 1 (as C' is orthogonal,
det(C') = £1). As a consequence, we have a well-defined function, p: M — R, with p(p) > 0
for all p € M, such that
p(p) = wyp(br, ..., by),
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for every positively oriented orthonormal basis, (by,...,b,), of T,M. If we can show that p
is smooth, then Voly; = p~lw is the required volume form.

Let (U, ¢) be a positively oriented chart and consider the vector fields, X, on ¢(U) given
by
X;(q) =de;(e;), qepl), 1<j<n.

Then, (X1(q),...,Xn(q)) is a positively oriented basis of T,-1(4). If we apply Gram-Schmidt
orthogonalization we get an upper triangular matrix, A(q) = (a;;(¢)), of smooth functions
on ¢(U) with a;(q) > 0 such that

n

bia) = Y ay(9)X;(q),  1<i<m,

j=1

and (b1(q),...,bn(q)) is a positively oriented orthonormal basis of T,-1(,. We have

ple™Hq) = weri(Bri(9),- -, bulq))
= det(A(q))wp-1(9)(X1(q), - - -, Xu(q))
det(A(q)) (¢ ) wyler, .., en),

which shows that p is smooth.

(2) If we repeat the end of the proof with w = Vol,;, then p = 1 on M and the above
formula yield
(e~ 1)*Volpr), = (det(A(q))) 'day A -+ Ada,.

If we compute (b;(q), bx(q))p-1(¢), We get

n n

Ot = (bi(a), br(@))om1() = D Y s (@)95(@)ara(a),

j=1 1=1

and so, I = A(q)G(q)A(q)", where G(q) = (gu(q)). Thus, (det(A(q)))?det(G(q)) = 1 and
since det(A(q)) = [, @ii(¢) > 0, we conclude that

(det(A(q)))™" = y/det(gy;(q)),

which proves the formula in (2). O

We saw in Section 3.8 that a volume form, wy, on the sphere S C R**! is given by

(wo)p(ur, . .. up) = det(p, ug, . .. uy),

where p € S™ and uy,...u, € T,5". To be more precise, we consider the n-form,
wo € A"(R™!) given by the above formula. As

(WQ)IJ(@l, e ,é\i, e 7€n+1) = (—1)2'71})“
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where p = (p1, ..., Pns1), We have

n+1
(wo)p = Z(_1>i—lpi dzi Ao Ada A A dTpes.
i=1

Let i: S — R"! be the inclusion map. For every p € S™, and every basis, (u, ..., u,),
of T,5", the (n + 1)-tuple (p,us,...,u,) is a basis of R™"! and so, (wp), # 0. Hence,
wo [ S™ = i*wp is a volume form on S™. If we give S™ the Riemannian structure induced by
R™*! then the discussion above shows that

Volgn = wy | S™.

Let r: R"™ — {0} — S™ be the map given by
T
r(r) = —
]
and set
w = 1"Volgn,
a closed n-form on R"*! — {0}. Clearly,
w [ S™ = Volgn.

Furthermore

We(tr, .. un) = (Wo)p@)(dra(ur), ... dry(uy,))
= =) " det(x, dro(wy), . . ., dra(un)).

We leave it as an exercise to prove that w is given by

n+1 .
Z(—l)l’lxi dry AN~ ANdxy N Ndx,yq.
i=1

1
Wy = ——=
]
We know that there is a map, w: S™ — RP", such that 71([p]) consist of two antipodal
points, for every [p] € RP". It can be shown that there is a volume form on RP" iff n is
even, in which case,

* (VOlR]pm) = VOISn.
Thus, RP" is orientable iff n is even.

Let G be a Lie group of dimension n. For any basis, (w1, ...,w,), of the Lie algebra, g,
of GG, we have the left-invariant one-forms defined by the w;, also denoted w;, and obviously,
(w1, ...,wy,) is a frame for TG. Therefore, w = wy A -+ Aw, is an n-form on G that is never
zero, that is, a volume form. Since pull-back commutes with A, the n-form w is left-invariant.
We summarize this as

Proposition 8.27. Fvery Lie group, G, possesses a left-invariant volume form. Therefore,
every Lie group is orientable.
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Chapter 9

Integration on Manifolds

9.1 Integration in R”

As we said in Section 8.1, one of the raison d’étre for differential forms is that they are the
objects that can be integrated on manifolds. We will be integrating differential forms that
are at least continuous (in most cases, smooth) and with compact support. In the case of
forms, w, on R™, this means that the closure of the set, {x € R" | w, # 0}, is compact.
Similarly, for a form, w € A*(M), where M is a manifod, the support, supp,,(w), of w is the
closure of the set, {p € M | w, # 0}. We let A}(M) denote the set of differential forms with
compact support on M. If M is a smooth manifold of dimension n, our ultimate goal is to
define a linear operator,

/ AN (M) — R,
M
which generalizes in a natural way the usual integral on R™.
In this section, we assume that M = R", or some open subset of R”. Now, every n-form
(with compact support) on R™ is given by
we = f(x)dxy A+ ANdzy,

where f is a smooth function with compact support. Thus, we set

/ w= flz)dzy - - - dx,,
n Rn

where the expression on the right-hand side is the usual Riemann integral of f on R™.
Actually, we will need to integrate smooth forms, w € A”(U), with compact support defined
on some open subset, U C R" (with supp(w) C U). However, this is no problem since we
still have

wy = f(x)dxy A+ Ndxy,

where f: U — R is a smooth function with compact support contained in U and f can be
smoothly extended to R™ by setting it to 0 on R™ —supp(f). We write fU w for this integral.

323
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It is crucial for the generalization of the integral to manifolds to see what the change of
variable formula looks like in terms of differential forms.

Proposition 9.1. Let ¢: U — V be a diffeomorphism between two open subsets of R™.
If the Jacobian determinant, J(v)(x), has a constant sign, § = +1 on U, then for every

we AY(V), we have
/ Yrw =9 / w.
U v

Proof. We know that w can be written as
wy = f(x)dxy A+ Ndxy, x eV,
where f: V' — R has compact support. From the example before Proposition 8.6, we have

(P'w)y = floW)J(p)ydyr A--- A dyn
= 0f(eW)IJ(@)yldyr A~ -+ A dyn.

On the other hand, the change of variable formula (using ¢) is
(@) oy day = [ FoW) ()] -
U

o(U)

so the formula follows. O

We will promote the integral on open subsets of R” to manifolds using partitions of unity:.

9.2 Integration on Manifolds

Intuitively, for any n-form, w € A”(M), on a smooth n-dimensional oriented manifold, M,
the integral, [ 1 W, 18 computed by patching together the integrals on small-enough open
subsets covering M using a partition of unity. If (U, ) is a chart such that supp(w) C U,
then the form (¢™")*w is an n-form on R™ and the integral, [, (¢™")"w, makes sense. The
orientability of M is needed to ensure that the above integrals have a consistent value on
overlapping charts.

Remark: It is also possible to define integration on non-orientable manifolds using densities
but we have no need for this extra generality.

Proposition 9.2. Let M be a smooth oriented manifold of dimension n. Then, there exists
a unique linear operator,

[ aan —w

with the following property: For anyw € AZ(M), if supp(w) C U, where (U, ¢) is a positively

oriented chart, then
Jo={ e ()
M o(U)
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Proof. First, assume that supp(w) C U, where (U, p) is a positively oriented chart. Then,

we wish to set
/ w= / () w.
M o(U)

However, we need to prove that the above expression does not depend on the choice of the
chart. Let (V,4) be another chart such that supp(w) C V, so that supp(w) C U NV. The
map, 0 = 1 o ¢! is a diffeomorphism from W = (U NV) to W = 4(U NV) and, by
hypothesis, its Jacobian determinant is positive on W. Since

supp, (9™ )*w) W,  suppyy () w) € W/,
and 0* o (Y1) *w = (p71)* o ¥* o (Y1) *w = (¢7)*w, Proposition 9.1 yields

| wye= [ e@ye = [ e

In the general case, using Theorem 3.32, for every open cover of M by positively oriented
charts, (U;, i), we have a partition of unity, (p;):er, subordinate to this cover. Recall that

as claimed.

supp(p;) C U;, i€l

Thus, p;w is an n-form whose support is a subset of U;. Furthermore, as ). p; = 1,
w = Z piw.
i
Define

=3 / s

where each term in the sum is defined by

/piw=/ (o) piw,
U; i(Us)

where (U;, ;) is the chart associated with ¢ € I. It remains to show that /(w) does not
depend on the choice of open cover and on the choice of partition of unity. Let (V},;)
be another open cover by positively oriented charts and let (6;);c; be a partition of unity
subordinate to the open cover, (V;). Note that

/PiHjWZ/ pit;w,
Ui v

J

since supp(p;fjw) C U; NV, and as } 3, p; =1 and >, 0; = 1, we have

;/Uipiw_;j/(]ipiejw_;j/vjpﬁjw—;/vj%w,

proving that I(w) is indeed independent of the open cover and of the partition of unity. The
uniqueness assertion is easily proved using a partition of unity. O
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The integral of Definition 9.2 has the following properties:

Proposition 9.3. Let M be an oriented manifold of dimension n. The following properties
hold:

(1) If M is connected, then for every n-form, w € AZ(M), the sign of [,,w changes when
the orientation of M 1is reversed.

(2) For every n-form, w € AZ(M), if supp(w) C W, for some open subset, W, of M, then

fom Lo

where W 1s given the orientation induced by M.

(3) If o: M — N 1is an orientation-preserving diffeomorphism, then for every w € AZ(N),

we have
/w:/ wrw.
N M

Proof. Use a partition of unity to reduce to the case where supp(w) is contained in the
domain of a chart and then use Proposition 9.1 and (}) from Proposition 9.2. O

The theory or integration developed so far deals with domains that are not general
enough. Indeed, for many applications, we need to integrate over domains with boundaries.

9.3 Integration on Regular Domains and
Stokes’ Theorem

Given a manifold, M, we define a class of subsets with boundaries that can be integrated on,
and for which Stokes’ Theorem holds. In Warner [148] (Chapter 4), such subsets are called
reqular domains and in Madsen and Tornehave [101] (Chapter 10) they are called domains
with smooth boundary.

Definition 9.1. Let M be a smooth manifold of dimension n. A subset, N C M, is called a
domain with smooth boundary (or codimension zero submanifold with boundary) iff for every
p € M, there is a chart, (U, ¢), with p € U, such that

p(UNN) =pU)NH", (%)
where H" is the closed upper-half space,

H" = {(x1,...,2,) € R" | &, > 0}.
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Note that (x) is automatically satisfied when p is an interior or an exterior point of N,
since we can pick a chart such that ¢(U) is contained in an open half space of R™ defined
by either =, > 0 or =, < 0. If p is a boundary point of N, then ¢(p) has its last coordinate
equal to 0. If M is orientable, then any orientation of M induces an orientation of ON, the
boundary of N. This follows from the following proposition:

Proposition 9.4. Let ¢: H* — H" be a diffeomorphism with everywhere positive Jaco-
bian determinant. Then, ¢ induces a diffeomorphism, ®: OH" — OH", which, viewed as a
diffeomorphism of R"™! also has everywhere positive Jacobian determinant.

Proof. By the inverse function theorem, every interior point of H" is the image of an interior
point, so ¢ maps the boundary to itself. If ¢ = (¢1,...,p,), then

o = (@1(1’1, . ,.l’n_l,()), e ,QOn_l(l'l, e 71771—1;0))7

since @ (21, ...,2,-1,0) = 0. It follows that %%(xl,...,xn_l,O) =0,fori=1,...,n—1,
and as ¢ maps H" to itself,

don

a:n(xl,...,l'n_1,0> > 0.

Now, the Jacobian matrix of ¢ at ¢ = p(p) € OH" is of the form

dp, =

and since g%:(q) > 0 and by hypothesis det(dy,) > 0, we have det(d®,) > 0, as claimed. [

In order to make Stokes’ formula sign free, if R” has the orientation given by dxiA- - -Adx,,,
then H" is given the orientation given by (—1)"dxy A --+ Adx,_1 if n > 2 and —1 for n = 1.
This choice of orientation can be explained in terms of the notion of outward directed tangent
vector.

Definition 9.2. Given any domain with smooth boundary, N C M, a tangent vector,
w € T,M, at a boundary point, p € ON, is outward directed iff there is a chart, (U, ¢), with
p € U and o(UNN) = p(U) N H" and such that dp,(w) has a negative n'" coordinate

pra(dpp(w)).
Let (V,4) be another chart with p € V. Then, the transition map,
O=vopt:pUNV)—=ypUNV)

induces a map
oUNV)NH" — (UNV)NH"
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which restricts to a diffeomorphism
O: pUNV)NoH" — (U NV)NoH".

The proof of Proposition 9.4 shows that the Jacobian matrix of df, at ¢ = ¢(p) € OH" is of

the form
*

g, = |

*

0 0 Pafg)

with 8 = (0y,...,6,) and that 89"( ) > 0. As dip, = d(¢p o p~ 1), 0 dp,, we see that for any
w € T,M with pr,(de,(w)) < 0, we also have pr, (diy,(w )) < 0. Therefore, the negativity
condition of Definition 9.2 does not depend on the chart at p. The following proposition is
then easy to show:

Proposition 9.5. Let N C M be a domain with smooth boundary where M 1is a smooth
manifold of dimension n.

(1) The boundary, ON, of N is a smooth manifold of dimension n — 1.

(2) Assume M is oriented. If n > 2, there is an induced orientation on ON determined as
follows: For every p € ON, if vi € T,M is an outward directed tangent vector then a
basis, (va,...,v,) for T,0N is positively oriented iff the basis (v1,vs,...,vy,) for T,M
is positively oriented. When n =1, every p € ON has the orientation +1 iff for every
outward directed tangent vector, vi € T,M, the vector vy is a positively oriented basis

of T,M.

If M is oriented, then for every n-form, w € A?(M), the integral [, w is well-defined.
More precisely, Proposition 9.2 can be generalized to domains with a smooth boundary. This
can be shown in various ways. In Warner, this is shown by covering N with special kinds of
open subsets arising from regular simplices (see Warner [148], Chapter 4). In Madsen and
Tornehave [101], it is argued that integration theory goes through for continuous n-forms
with compact support. If ¢ is a volume form on M, then for every continuous function with

compact support, f, the map
f= I ( / fo

is a linear positive operator (which means that I(f) > 0 for f > 0). By Riesz’ representation
theorem, I, determines a positive Borel measure, pu,, which satisfies

t@m%zéﬁa
o

Then, we can set



9.4. INTEGRATION ON RIEMANNIAN MANIFOLDS AND LIE GROUPS 329

where 1y is the function with value 1 on N and 0 outside N.

Another way to proceed is to prove an extension of Proposition 9.1 using a slight gener-
alization of the change of variable formula:

Proposition 9.6. Let p: U — V be a diffeomorphism between two open subsets of R™ and
assume that ¢ maps U NH"™ to V NH". Then, for every smooth function, f: V — R, with
compact support,

/Vman(x)dxl..-dxn = /Uman(sO(y)) 1T(0)y| dys - - dyp.

We now have all the ingredient to state Stokes’s formula. We omit the proof as it can
be found in many places (for example, Warner [148], Chapter 4, Bott and Tu [19], Chapter
1, and Madsen and Tornehave [101], Chapter 10). The proof is fairly easy and it is not
particularly illuminating, although one has to be very careful about matters of orientation.

Theorem 9.7. (Stokes’ Theorem) Let N C M be a domain with smooth boundary where
M is a smooth oriented manifold of dimension n, give ON the orientation induced by M
and let i: ON — M be the inclusion map. For every differential form with compact support,

w e A (M), we have
/ w = / dw.
ON N

In particular, if N = M s a smooth oriented manifold with boundary, then

/ i*w:/dw
oM M

and if M s a smooth oriented manifold without boundary, then

/dw:O.
M

Of course, i*w is the restriction of w to AN and for simplicity of notation, i*w is usually
written w and Stokes’ formula is written

/ w:/dw.
AN N

9.4 Integration on Riemannian Manifolds and
Lie Groups

We saw in Section 8.6 that every orientable Riemannian manifold has a uniquely defined
volume form, Voly, (see Proposition 8.26). Given any smooth function, f, with compact
support on M, we define the integral of f over M by

| 1= 5yl
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Actually, it is possible to define the integral, [ A f> even if M is not orientable but we do
not need this extra generality. If M is compact, then [ v = | o Volyy is the volume of M
(where 1,/ is the constant function with value 1).

If M and N are Riemannian manifolds, then we have the following version of Proposition
9.3 (3):

Proposition 9.8. If M and N are oriented Riemannian manifolds and if p: M — N 1is an
orientation preserving diffeomorphism, then for every function, f € C®(N), with compact
support, we have

/fVolN:/ f o] det(dp)| Volu,
N M

where fop | det(dy)| denotes the function, p — f(p(p))|det(dyy)|, with de,: T,M — T, N.
In particular, if ¢ is an orientation preserving isometry (see Definition 7.11), then

/fVOlN:/ fO(pVOlM
N M

We often denote [,, f Vola by [,, f(t)dt.

If G is a Lie group, we know from Section 8.6 that G is always orientable and that
G possesses left-invariant volume forms. Since dim(A” g*) = 1 if dim(G) = n and since
every left-invariant volume form is determined by its value at the identity, the space of left-
invariant volume forms on G has dimension 1. If we pick some left-invariant volume form,
w, defining the orientation of G, then every other left-invariant volume form is proportional
to w. Given any smooth function, f, with compact support on G, we define the integral of

f over G (w.r.t. w) by
/Gf:/wa.

This integral depends on w but since w is defined up to some positive constant, so is the
integral. When G is compact, we usually pick w so that

/wzl.
G

For every g € (G, as w is left-invariant, Liw = w, so L, is an orientation-preserving
diffeomorphism and by Proposition 9.3 (3),

[ gw= [ Ly,
G G
so, using Proposition 8.9, we get

[ 1= o= [ L0 = [ Ltz [ Lire= [rore= [ for,
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|1=] 1o,

It is then natural to ask when our integral is right-invariant, that is, when

/Gf:/GfoRg.

Observe that Rjw is left-invariant, since

The property

is called left-invariance.

LyRyw =R Lyw = Rw.

It follows that Rjw is some constant multiple of w, and so, there is a function, A:G =R
such that

Clearly,
' A(gh) = A(g)A(h),

so A is a homomorphism of GG into R,. The function A is called the modular function of G.
Now, by Proposition 9.3 (3), as R} is an orientation-preserving diffeomorphism,

/G fu = /G R (fw) = /G Rif Riw = /G (f o Ry)A(g)w
| 1e=a0) [ (1o Ry

It follows that if w; is any left-invariant volume form on G and if w, is any right-invariant
volume form on G, then

or, equivalently,

wr(g) = cA(g M wi(g),

for some constant ¢ # 0. Indeed, if let w(g) = A(g")wi(g), then by Proposition 8.9 we have

) =
((hg)™") Ry
(h)A(g ) A(R)wy
= A(g )wla

which shows that w is right-invariant and thus, w.(g) = cA(g~")wi(g), as claimed (since
A(g™) = £A(g™1)). Actually, it is not difficult to prove that

A(g) = |det(Ad(g™))|.

Rw = A
A



332 CHAPTER 9. INTEGRATION ON MANIFOLDS

For this, recall that Ad(g) = d(Ly o Ry~1);. For any left-invariant n-form, w € A" g*, we
claim that

(Riw)n = det(Ad(g™"))wn,
which shows that A(g) = |det(Ad(¢g™!))|. Indeed, for all vy, ..., v, € TG, we have

(Ryw)n(vi, .- vn)

= wig(d(Bg)n(v1), ..., d(Rg)n(vn))
= why(d(Lgo Lg-1 0 Ryo Ly o Ly-1)p(v1),...,d(Lgo Ly-10Ry0 Ly o Lp-1)x(vy))
—whg(d(LhOL oLy10Ry0Lp-1)p(v1),...,d(LpoLyo Ly10Rgo0 Ly-1),(vy))
—wwwu%g Lg-10Rgo Ly-1)n(vy), .. (L@OL 10 Ry o Lp-1)n(vn))
= Wiy (d(Lng)1(Ad(g 1)( (Ln=1)n (Ul)» ,d(Lng)1 (Ad(g™")(d(Ln-1)n(vn))))
= (Lpgwh (A (9 (L1 )n(v1)), - >f\d(g (A Ln-1)n(vn)))
— o (Ad(g ™) (AL, 1> < >> A (L) (02)
— det(Ad(g™)) wr (L) 01), -, (L))
= det(Ad(g™")) (L}-1w)n (211, CeyUp)
= det(Ad(g™")) wn(vr, ..., vp),

where we used the left-invariance of w twice.

Consequently, our integral is right-invariant iff A = 1 on G. Thus, our integral is not
always right-invariant. When it is, i.e. when A = 1 on G, we say that G is unimodular.
This happens in particular when G is compact, since in this case,

1:/GwZ/Glcw=/GA(g)wZA(g)/GMZA(g),

for all ¢ € G. Therefore, for a compact Lie group, G, our integral is both left and right
invariant. We say that our integral is bi-invariant.

As a matter of notation, the integral [, f = [, fw is often written [, f(g)dg. Then,
left-invariance can be expressed as

/G f(g)dg = /G F(hg)dg
/G f(g)dg = /G f(gh)dg.

for all h € G. If w is left-invariant, then it can be shown (see Dieudonné [48], Chapter XIV,

Section 3) that
/G F(g™H) AW )dg = /G £(9)dg

and right-invariance as
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Consequently, if G is unimodular, then

/G Flg™\)dg = /G 1(9)dg.

In general, if G is not unimodular, then w; # w,. A simple example is the group, G, of
affine transformations of the real line, which can be viewed as the group of matrices of the
form

a b
A—(O 1), a,b,e R, a # 0.

Then, it it is easy to see that the left-invariant volume form and the right-invariant volume

form on G are given by
_dadb _dadb

Y w'r )

a? a

wi
and so, A(A) = |a7!|.

Remark: By the Riesz’ representation theorem, w defines a positive measure, p,,, which

satisfies
[ s = [t
el G

Using what we have shown, this measure is left-invariant. Such measures are called left Haar
measures and similarly, we have right Haar measures. It can be shown that every two left
Haar measures on a Lie group are proportional (see Knapp, [90], Chapter VIII). Given a left
Haar measure, pu, the function, A, such that

p(Bgh) = Alg)u(h)

for all g, h € G is the modular function of G. However, beware that some authors, including
Knapp, use A(g™!) instead of A(g). As above, we have

A(g) = | det(Ad(g™"))|-

Beware that authors who use A(g™!) instead of A(g), give a formula where Ad(g) appears
instead of Ad(¢g™'). Again, G is unimodular iff A = 1. It can be shown that compact,
semisimple, reductive and nilpotent Lie groups are unimodular (for instance, see Knapp,
[90], Chapter VIII). On such groups, left Haar measures are also right Haar measures (and
vice versa). In this case, we can speak of Haar measures on G. For more details on Haar
measures on locally compact groups and Lie groups, we refer the reader to Folland [55]
(Chapter 2), Helgason [73] (Chapter 1) and Dieudonné [48] (Chapter XIV).
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Chapter 10

Distributions and the Frobenius
Theorem

10.1 Tangential Distributions, Involutive Distributions

Given any smooth manifold, M, (of dimension n) for any smooth vector field, X, on M,
we know from Section 3.5 that for every point, p € M, there is a unique maximal integral
curve through p. Furthermore, any two distinct integral curves do not intersect each other
and the union of all the integral curves is M itself. A nonvanishing vector field, X, can be
viewed as the smooth assignment of a one-dimensional vector space to every point of M,
namely, p — RX, C T,M, where RX, denotes the line spanned by X,. Thus, it is natural
to consider the more general situation where we fix some integer, r, with 1 <r < n and we
have an assignment, p — D(p) C T,M, where D(p) is some r-dimensional subspace of T,
such that D(p) “varies smoothly” with p € M. Is there a notion of integral manifold for
such assignments? Do they always exist?

It is indeed possible to generalize the notion of integral curve and to define integral
manifolds but, unlike the situation for vector fields (r = 1), not every assignment, D, as
above, possess an integral manifold. However, there is a necessary and sufficient condition
for the existence of integral manifolds given by the Frobenius Theorem. This theorem has
several equivalent formulations. First, we will present a formulation in terms of vector fields.
Then, we will show that there are advantages in reformulating the notion of involutivity
in terms of differential ideals and we will state a differential form version of the Frobenius
Theorem. The above versions of the Frobenius Theorem are “local”. We will briefly discuss
the notion of foliation and state a global version of the Frobenius Theorem.

Since Frobenius’ Theorem is a standard result of differential geometry, we will omit most
proofs and instead refer the reader to the literature. A complete treatment of Frobenius’
Theorem can be found in Warner [148], Morita [115] and Lee [99].

Our first task is to define precisely what we mean by a smooth assignment, p — D(p) C
T,M, where D(p) is an r-dimensional subspace.

335
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Definition 10.1. Let M be a smooth manifold of dimension n. For any integer r, with
1 < r < n, an r-dimensional tangential distribution (for short, a distribution) is a map,
D: M — TM, such that

(a) D(p) € T,M is an r-dimensional subspace for all p € M.

(b) For every p € M, there is some open subset, U, with p € U, and r smooth vector fields,
Xi,...,X,, defined on U, such that (X;(q),...,X,(q)) is a basis of D(q) for all ¢ € U.
We say that D is locally spanned by Xq,...,X,.

An immersed submanifold, N, of M is an integral manifold of D iff D(p) = T,N, for all
p € N. We say that D is completely integrable iff there exists an integral manifold of D
through every point of M.

We also write D,, for D(p).

Remarks:
(1) An r-dimensional distribution, D, is just a smooth subbundle of T'M.

(2) An integral manifold is only an immersed submanifold, not necessarily an embedded
submanifold.

(3) Some authors (such as Lee) reserve the locution “completely integrable” to a seemingly
strongly condition (See Lee [99], Chapter 19, page 500). This condition is in fact
equivalent to “our” definition (which seems the most commonly adopted).

(4) Morita [115] uses a stronger notion of integral manifold, namely, an integral manifold
is actually an embedded manifold. Most of the results, including Frobenius Theorem
still hold but maximal integral manifolds are immersed but not embedded manifolds
and this is why most authors prefer to use the weaker definition (immersed manifolds).

Here is an example of a distribution which does not have any integral manifolds: This is
the two-dimensional distribution in R?® spanned by the vector fields

0 0 0

We leave it as an exercise to the reader to show that the above distribution is not integrable.

The key to integrability is an involutivity condition. Here is the definition.

Definition 10.2. Let M be a smooth manifold of dimension n and let D be an r-dimensional
distribution on M. For any smooth vector field, X, we say that X belongs to D (or lies in
D) ift X, € D,, for all p € M. We say that D is involutive iff for any two smooth vector
fields, X, Y, on M, if X and Y belong to D, then [X,Y] also belongs to D.
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Proposition 10.1. Let M be a smooth manifold of dimension n. If an r-dimensional dis-
tribution, D, is completely integrable, then D is involutive.

Proof. A proof can be found in in Warner [148] (Chapter 1), and Lee [99] (Proposition 19.3).
These proofs use Proposition 3.20. Another proof is given in Morita [115] (Section 2.3) but
beware that Morita defines an integral manifold to be an embedded manifold. O

In the example before Definition 10.1, we have

0

0z’

so this distribution is not involutive. Therefore, by Proposition 10.1, this distribution is not
completely integrable.

[X’Y] ==

10.2 Frobenius Theorem

Frobenius’ Theorem asserts that the converse of Proposition 10.1 holds. Although we do not
intend to prove it in full, we would like to explain the main idea of the proof of Frobenius’
Theorem. It turns out that the involutivity condition of two vector fields is equivalent to the
commutativity of their corresponding flows and this is the crucial fact used in the proof.

Given a manifold, M, we sa that two vector fields, X and Y are mutually commutative

iff [X,Y] = 0. For example, on R?, the vector fields % and g are commutative but g and
Y x

xa@ are not.
Y

Recall from Definition 3.27 that we denote by ®* the (global) flow of the vector field,
X. For every p € M, the map, t — ®%(¢,p) = 7,(¢) is the maximal integral curve through
p. We also write ®;(p) for ®X(¢,p) (dropping X). Recall that the map, p — ®;(p), is a
diffeomorphism on its domain (an open subset of M). For the next proposition, given two
vector fields, X and Y, we will write ® for the flow associated with X and W for the flow
associated with Y.

Proposition 10.2. Given a manifold, M, for any two smooth vector fields, X and Y, the
following conditions are equivalent:

(1) X andY are mutually commutative (i.e. [X,Y]=0).
(2) Y is invariant under @, that is, (P;),.Y =Y, whenever the left-hand side is defined.
(8) X is invariant under Vg, that is, (V). X = X, whenever the left-hand side is defined.
(4) The maps ©; and U, are mutually commutative. This means that

B0V, = U, 0d,

for all s, t such that both sides are defined.
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(5) LxY =0.
(6) LyX =0.
(In (5) LxY is the Lie derivative and similarly in (6).)

Proof. A proof can be found in Lee [99] (Chapter 18, Proposition 18.5) and in Morita [115]
(Chapter 2, Proposition 2.18). For example, to prove the implication (2) = (4), we observe
that if ¢ is a diffeomorphism on some open subset, U, of M, then the integral curves of .Y
through a point p € M are of the form o+, where v is the integral curve of Y through o =*(p).
Consequently, the local one-parameter group generated by .Y is {poW,0p!}. If we apply
this to p = ®;, as (®,),Y =Y, we get &, 0 U 0®; ' = ¥, and hence, ®, 0¥, = U, 0®,. [

In order to state our first version of the Frobenius Theorem we make the following
definition:

Definition 10.3. Let M be a smooth manifold of dimension n. Given any smooth r-
dimensional distribution, D, on M, a chart, (U, ¢), is flat for D iff

e(U)=2U xU"CR" x R"™",

where U’ and U” are connected open subsets such that for every p € U, the distribution D

is spanned by the vector fields
0 0

a—xl, ey a—xr
If (U, ) is flat for D, then it is clear that each slice of (U, ¢),

SC:{qEU|xr+1:C7’+17'--7xn:Cn}7

is an integral manifold of D, where z; = pr; o ¢ is the i*"-coordinate function on U and
c=(Cry1,-..,c,) € R*7 is a fixed vector.

Theorem 10.3. (Frobenius) Let M be a smooth manifold of dimension n. A smooth r-
dimensional distribution, D, on M s completely integrable iff it is involutive. Furthermore,
for every p € U, there is flat chart, (U, p), for D with p € U, so that every slice of (U, ) is
an integral manifold of D.

Proof. A proof of Theorem 10.3 can be found in Warner [148] (Chapter 1, Theorem 1.60),
Lee [99] (Chapter 19, Theorem 19.10) and Morita [115] (Chapter 2, Theorem 2.17). Since we
already have Proposition 10.1, it is only necessary to prove that if a distribution is involutive
then it is completely integrable. Here is a sketch of the proof, following Morita.

Pick any p € M. As D is a smooth distribution, we can find some chart, (U, ), with
p € U, and some vector fields, Y7,...,Y,, so that Y;(q),...,Y,.(¢) are linearly independent
and span D, for all ¢ € U. Locally, we can write

Y;:Zaija_mj’ Z:L...,T’.
7j=1
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Since the Y; are linearly independent, by renumbering the coordinates if necessary, we may
assume that the r x r matrices

Alq) = (a;j(q)) qeU

are invertible. Then, the inverse matrices, B(q) = A™'(q) define r x r functions, b;;(¢) and
let

X; = wa =1,

Now, in matrix form,

Y o
[=( B)
Y, =,

for some r x (n — r) matrix, R and

so we get
X, o
: (I BR)| : |,
0
Xr’n %
that is,
X; = 3xz+ Z Cij 77— (‘)x] i=1,...,n7, (%)
j=r+1
where the ¢;; are functions defined on U. Obviously, Xi,..., X, are linearly independent

and they span D, for all ¢ € U. Since D is involutive, there are some functions, f, defined
on U, so that

[Xi, X)] Z S Xk
On the other hand, by (x), each [X;, Xj] is a linear combination of 8%“, cee %. Therefore,
fr =0, for k =1,...,r, which shows that
[XZ,X]] :0, 1§i,j§7',
that is, the vector fields X, ..., X, are mutually commutative.

Let @ be the local one-parameter group associated with X;. By Proposition 10.2 (4),
the ®; commute, that is,

Pl o ®) = & o B} 1<4,5 <,
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whenever both sides are defined. We can pick a sufficiently open subset, V', in R" containing
the origin and define the map, ®: V' — U by

O(ty,...,t.) = CI)%I 0---0 CD;(p).

Clearly, ® is smooth and using the fact that each X; is invariant under each ®J, for j # i,

and
v (2} = x,(p)
P 8tl - 1 p Y

we get

a0, (2) = x00.

As Xi,..., X, are linearly independent, we deduce that d®,: ToR" — T,,M is an injection
and thus, we may assume by shrinking V' if necessary that our map, &: V — M, is an
embedding. But then, N = ®(V') is a submanifold of M and it only remains to prove that
N is an integral manifold of D through p.

Obviously, T,N = D,, so we just have to prove that T, N = D,N for all ¢ € N. Now, for
every ¢ € N, we can write

q=®(ty,...,t,) = (I)%l o---0®; (p),
for some (ty,...,t,) € V. Since the ® commute, for any i, with 1 < i < r, we can write
q:q)iioq)%l oc~~oq)§;lloq)ij+11 o---0®} (p).

If we fix all the t; but ¢; and vary ¢; by a small amount, we obtain a curve in N through ¢
and this is an orbit of ®!. Therefore, this curve is an integral curve of X; through ¢ whose
velocity vector at ¢ is equal to X;(q) and so, X;(q) € T,N. Since the above reasoning holds
for all 7, we get T,N = D, as claimed. Therefore, N is an integral manifold of D through
p. O

In preparation for a global version of Frobenius Theorem in terms of foliations, we state
the following Proposition proved in Lee [99] (Chapter 19, Proposition 19.12):

Proposition 10.4. Let M be a smooth manifold of dimension n and let D be an involutive
r-dimensional distribution on M. For every flat chart, (U, ), for D, for every integral
manifold, N, of D, the set NNU 1is a countable disjoint union of open parallel k-dimensional
slices of U, each of which is open in N and embedded in M.

We now describe an alternative method for describing involutivity in terms of differential
forms.
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10.3 Differential Ideals and Frobenius Theorem

First, we give a smoothness criterion for distributions in terms of one-forms.

Proposition 10.5. Let M be a smooth manifold of dimensionn and let D be an assignment,
p+— D, CT,M, of some r-dimensional subspace of T,M, for allp € M. Then, D is a smooth
distribution iff for every p € U, there is some open subset, U, with p € U, and some linearly
independent one-forms, wy,...,w,_,, defined on U, so that

D,={ueT,M| (w),(u) ="+ = (wnr)g(u) =0}, forallqeU.

Proof. Proposition 10.5 is proved in Lee [99] (Chapter 19, Lemma 19.5). The idea is to either
extend a set of linearly independent differential one-forms to a coframe and then consider
the dual frame or to extend some linearly independent vector fields to a frame and then take
the dual basis. O]

Proposition 10.5 suggests the following definition:

Definition 10.4. Let M be a smooth manifold of dimension n and let D be an r-dimensional
distibution on M. Some linearly independent one-forms, wy,...,w,_,, defined some open
subset, U C M, are called local defining one-forms for D if

Dy={ueT/,M| (w)4(u) ="+ = (whr)g(u) = 0}, for all g € U.
We say that a k-form, w € A*(M), annihilates D iff
we(X1(q), -+, Xr(q)) = 0,
for all ¢ € M and for all vector fields, X;,..., X,, belonging to D. We write
(D) = {w € A*(M) | wy(Xi(q), .-, X,(q)) = 0},

for all ¢ € M and for all vector fields, X1, ..., X,, belonging to D and we let
(D) = EPH*D).
k=1

Thus, J(D) is the collection of differential forms that “vanish on D.” In the classical
terminology, a system of local defining one-forms as above is called a system of Pfaffian
equations.

It turns out that J(D) is not only a vector space but also an ideal of A®*(M).

A subspace, J, of A*(M) is an ideal iff for every w € J, we have 6 A w € J for every
6 e A*(M).
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Proposition 10.6. Let M be a smooth n-dimensional manifold and D be an r-dimensional
distribution. If J(D) is the space of forms annihilating D then the following hold:

(a) I(D) is an ideal in A*(M).

(b) 3(D) is locally generated by n — r linearly independent one-forms, which means: For
every p € U, there is some open subset, U C M, with p € U and a set of linearly
independent one-forms, wy,...,w,_,, defined on U, so that

(i) If w € 3%(D), then w | U belongs to the ideal in A*(U) generated by wi, ..., W, ,
that s,

n—r
w = g 0; N\ wj, on U,
i=1

for some (k — 1)-forms, 0; € A*=1(U).

(ii) If w € A¥(M) and if there is an open cover by subsets U (as above) such that for
every U in the cover, w | U belongs to the ideal generated by wq, ..., W, ., then
w e J(D).

(c) If 3 C A*(M) is an ideal locally generated by n — r linearly independent one-forms,
then there exists a unique smooth r-dimensional distribution, D, for which 3 = J(D).

Proof. Proposition 10.6 is proved in Warner (Chapter 2, Proposition 2.28). See also Morita
[115] (Chapter 2, Lemma 2.19) and Lee [99] (Chapter 19, page 498-500). O

In order to characterize involutive distributions, we need the notion of differential ideal.

Definition 10.5. Let M be a smooth manifold of dimension n. An ideal, 3 C A*(M), is a
differential ideal iff it is closed under exterior differentiation, that is

dw €3 whenever w €7,

which we also express by dJ C 7.

Here is the differential ideal criterion for involutivity.

Proposition 10.7. Let M be a smooth manifold of dimension n. A smooth r-dimensional
distribution, D, is involutive iff the ideal, I(D), is a differential ideal.

Proof. Proposition 10.7 is proved in Warner [148] (Chapter 2, Proposition 2.30), Morita
[115] (Chapter 2, Proposition 2.20) and Lee [99] (Chapter 19, Proposition 19.19). Here
is one direction of the proof. Assume J(D) is a differential ideal. We know that for any
one-form, w,

dw(X,Y) = X(w(Y)) = Y(w(X)) = w([X,Y]),
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for any vector fields, X,Y. Now, if wq,...,w,_, are linearly independent one-forms that
define D locally on U, using a bump function, we can extend wy,...,w,_, to M and then
using the above equation, for any vector fields X, Y belonging to D, we get

wi([X,Y]) = X(wi(Y)) = Y(wi(X)) — dwi(X,Y) =0,

and since w;(X) = w;(Y) = dw;(X,Y) =0, we get w;([X,Y]) =0 fori=1,...,n—r, which
means that [X, Y] belongs to D. O

Using Proposition 10.6, we can give a more concrete criterion: D is involutive iff for
every local defining one-forms, wy, ..., w,_,, for D (on some open subset, U), there are some
one-forms, w;; € A'(U), so that

n—r
dwi:Zwij/\wj (Z:L,?’L—T)
j=1

The above conditions are often called the integrability conditions.

Definition 10.6. Let M be a smooth manifold of dimension n. Given any ideal 3 C A*(M),
an immersed manifold, (M, 1), of M is an integral manifold of J iff

Yrw =0, for all w € 7.

A connected integral manifold of the ideal J is maximal iff its image is not a proper subset
of the image of any other connected integral manifold of J.

Finally, here is the differential form version of the Frobenius Theorem.

Theorem 10.8. (Frobenius Theorem, Differential Ideal Version) Let M be a smooth mani-
fold of dimension n. If 3 C A*(M) is a differential ideal locally generated by n — r linearly
independent one-forms, then for every p € M, there exists a unique mazximal, connected,
integral manifold of J through p and this integral manifold has dimension r.

Proof. Theorem 10.8 is proved in Warner [148]. This theorem follows immediately from
Theorem 1.64 in Warner [148]. O

Another version of the Frobenius Theorem goes as follows:

Theorem 10.9. (Frobenius Theorem, Integrability Conditions Version) Let M be a smooth
manifold of dimension n. An r-dimensional distribution, D, on M is completely integrable
iff for every local defining one-forms, wq,...,wn_, for D (on some open subset, U), there
are some one-forms, w;; € AY(U), so that we have the integrability conditions

n—r
dwi:Zwij/\wj (Z:L,?’L—T)
j=1

There are applications of Frobenius Theorem (in its various forms) to systems of partial
differential equations but we will not deal with this subject. The reader is advised to consult
Lee [99], Chapter 19, and the references there.
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10.4 A Glimpse at Foliations and a Global Version of
Frobenius Theorem

All the maximal integral manifolds of an r-dimensional involutive distribution on a manifold,
M, yield a decomposition of M with some nice properties, those of a foliation.

Definition 10.7. Let M be a smooth manifold of dimension n. A family, F = {F,}a, of
subsets of M is a k-dimensional foliation iff it is a family of pairwise disjoint, connected,
immersed k-dimensional submanifolds of M, called the leaves of the foliation, whose union
is M and such that, for every p € M, there is a chart, (U, ), with p € U, called a flat chart
for the foliation and the following property holds:

p(U)=2U xU"CR xR,

where U’ and U” are some connected open subsets and for every leaf, F,, of the foliation, if
FoNU # 0, then F, NU is a countable union of k-dimensional slices given by

Tr4+1 = Cry1y -+, Tn = Cp,

for some constants, ¢,11,...,¢, € R.

The structure of a foliation can be very complicated. For instance, the leaves can be
dense in M. For example, there are spirals on a torus that form the leaves of a foliation
(see Lee [99], Example 19.9). Foliations are in one-to-one correspondence with involutive
distributions.

Proposition 10.10. Let M be a smooth manifold of dimension n. For any foliation, F, on
M, the family of tangent spaces to the leaves of F forms an involutive distribution on M.

The converse to the above proposition may be viewed as a global version of Frobenius
Theorem.

Theorem 10.11. Let M be a smooth manifold of dimension n. For every r-dimensional
smooth, involutive distribution, D, on M, the family of all maximal, connected, integral
manifolds of D forms a foliation of M.

Proof. The proof of Theorem 10.11 can be found in Lee [99] (Theorem 19.21). O



Chapter 11

Connections and Curvature in Vector
Bundles

11.1 Connections and Connection Forms in
Vector Bundles and Riemannian Manifolds

Given a manifold, M, in general, for any two points, p,q € M, there is no “natural” isomor-
phism between the tangent spaces T, M and T, M. More generally, given any vector bundle,
¢ = (F,m, B,V), for any two points, p,q € B, there is no “natural” isomorphism between
the fibres, £, = 7 !(p) and E, = 7 '(¢q). Given a curve, c: [0,1] — M, on M (resp. a curve,
c: [0,1] — E, on B), as c(t) moves on M (resp. on B), how does the tangent space, Ty M
(resp. the fibre E.; = 7 '(c(t))) change as ¢(t) moves?

If M = R", then the spaces T.;)R" are canonically isomorphic to R" and any vector,
v € TyoR™ =2 R™, is simply moved along ¢ by parallel transport, that it, at c(t), the tangent
vector, v, also belongs to TcyR"™. However, if M is curved, for example, a sphere, then it
is not obvious how to “parallel transport” a tangent vector at ¢(0) along a curve c¢. A way
to achieve this is to define the notion of parallel vector field along a curve and this, in turn,
can be defined in terms of the notion of covariant derivative of a vector field (or covariant
derivative of a section, in the case of vector bundles).

Assume for simplicity that M is a surface in R*. Given any two vector fields, X and Y
defined on some open subset, U C R3, for every p € U, the directional derivative, DxY (p),
of Y with respect to X is defined by

If f: U — R is a differentiable function on U, for every p € U, the directional derivative,
X[fl(p) (or X(f)(p)), of f with respect to X is defined by

X[f)(p) = lim 1@ TEXD) = 7(2)

t—0 t
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We know that X|[f](p) = df,(X(p)).

It is easily shown that DxY(p) is R-bilinear in X and Y, is C*°(U)-linear in X and
satisfies the Leibnitz derivation rule with respect to Y, that is:

Proposition 11.1. The directional derivative of vector fields satisfies the following proper-
ties:

(p) = Dx,Y(p)+ Dx,Y(p)
(p) = fDxY(p)
Dx(Y1+Ys)(p) = DxYi(p)+ DxYa(p)
)p) = X[fIpY(p)+ f(p)DxY (p),

for all X, X1, X5,Y,Y1,Ys € X(U) and all f € C(U).

Now, if p € U where U C M is an open subset of M, for any vector field, Y, defined
on U (Y(p) € T,M, for all p € U), for every X € T,M, the directional derivative, DxY (p),
makes sense and it has an orthogonal decomposition,

DxY(p) = VxY(p) + (Dn)xY (p),

where its horizontal (or tangential) component is VxY (p) € T,M and its normal component
is (Dy)xY (p). The component, VxY(p), is the covariant derivative of Y with respect to
X € T,M and it allows us to define the covariant derivative of a vector field, Y € X(U),
with respect to a vector field, X € X(M), on M. We easily check that VxY satisfies the
four equations of Proposition 11.1.

In particular, Y, may be a vector field associated with a curve, c: [0,1] — M. A wvector
field along a curve, c, is a vector field, Y, such that Y (c(t)) € T, M, for all t € [0,1]. We
also write Y (t) for Y (c(t)). Then, we say that Y is parallel along c iff Vg5, = 0 along c.

The notion of parallel transport on a surface can be defined using parallel vector fields
along curves. Let p,q be any two points on the surface M and assume there is a curve,
c: [0,1] — M, joining p = ¢(0) to ¢ = ¢(1). Then, using the uniqueness and existence
theorem for ordinary differential equations, it can be shown that for any initial tangent
vector, Yy € T,M, there is a unique parallel vector field, Y, along ¢, with Y (0) = Y. If
we set Y7 = Y(1), we obtain a linear map, Yy — Y, from T,M to T, M which is also an
isometry.

As a summary, given a surface, M, if we can define a notion of covariant derivative,
V:X(M)xX(M) — X(M), satisfying the properties of Proposition 11.1, then we can define
the notion of parallel vector field along a curve and the notion of parallel transport, which
yields a natural way of relating two tangent spaces, T,M and T, M, using curves joining p
and g. This can be generalized to manifolds and even to vector bundles using the notion
of connection. We will see that the notion of connection induces the notion of curvature.
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Moreover, if M has a Riemannian metric, we will see that this metric induces a unique
connection with two extra properties (the Levi-Civita connection).

Given a manifold, M, as X(M) = T'(M,TM) = T'(TM), the set of smooth sections of the
tangent bundle, M, it is natural that for a vector bundle, ¢ = (E,r, B,V), a connection
on & should be some kind of bilinear map,

X(B) x I'(§) — I'(¢),

that tells us how to take the covariant derivative of sections.

Technically, it turns out that it is cleaner to define a connection on a vector bundle, &,
as an R-linear map,

V:I(§) = AY(B) @c ) T'(€), (*)
that satisfies the “Leibnitz rule”

V(fs)=df ® s+ fVs,

with s € T'(¢) and f € C*(B), where I'(¢) and A'(B) are treated as C*(B)-modules. Since
AYB) =T(B,T*B) = I'(T*B) and, by Proposition 7.12,
AY(B) @cw(m) T(€) = T(T"B) ®c=n) I(€)
I(T*B®¢)
C(Hom(TB,¢€))
Homee () (I'(T'B), I'(€))
Homeee () (X(B), I'(€)),

the range of V can be viewed as a space of I'(§)-valued differential forms on B. Milnor and
Stasheff [111] (Appendix C) use the version where

e 1R

I

V:T() - T(T"B®YE)

and Madsen and Tornehave [101] (Chapter 17) use the equivalent version stated in (x). A
thorough presentation of connections on vector bundles and the various ways to define them
can be found in Postnikov [126] which also constitutes one of the most extensive references
on differential geometry. Set

A'(€) = AY(B;€) = AN (B) @cee () T'(€)

and, more generally, for any ¢ > 0, set

Q) = A (B = A(B) 00wy 1) =D ((AT'B) 06).

Obviously, A°(¢) =T'(¢) (and recall that A°(B) = C*(B)). The space of differential forms,
AY(B; €), with values in T'(€) is a generalization of the space, A'(M, F), of differential forms
with values in F' encountered in Section 8.4.
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If we use the isomorphism
AY(B) ®cm(p) T(€) = Homee () (X(B), T(€)),
then a connection is an R-linear map,
Vi T(€) — Homes ) (X(B),T'()),
satisfying a Leibnitz-type rule or equivalently, an R-bilinear map,
V:X(B) xT'(§) — I'(¢),

such that, for any X € X(B) and s € I'(€), if we write Vxs instead of V(X s), then the
following properties hold for all f € C*°(B):

Vsz = fVXS
Vx(fs) = X|[fls+ fVxs.

This second version may be considered simpler than the first since it does not involve a
tensor product. Since

AY(B) = T(T*B) = Homew 5(2(B), C%(B)) = X(B)"
using Proposition 22.36, the isomorphism
a: AYB) ®Rcee(p) I'(§) = Homeeo () (X(B),T'(§))
can be described in terms of the evaluation map,
Evy: A'(B) @ce(s) I'(&) = (&),

given by
Evyx(w®s) = w(X)s, X € X(B), we AY(B), seT(¢).

Namely, for any 6 € A'(B) @ce(p) I'(£),
a(0)(X) = Evx(0).
In particular, the reader should check that
Bvx(df @ 5) = X[fls.
Then, it is easy to see that we pass from the first version of V, where
V:T(€) = AY(B) @cs(p) T'(§) (%)

with the Leibnitz rule
V(fs)=df ® s+ fVs,
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to the second version of V, denoted V', where
V' X(B) x T(&) - T(©), (+4)
is R-bilinear and where the two conditions

bxs = fVis
Vi(fs) = X[fls+ [Vis

hold, via the equation
,X = EVX oV.

From now on, we will simply write V xs instead of V'ys, unless confusion arise. As summary
of the above discussion, we make the following definition:

Definition 11.1. Let £ = (E, 7, B, V) be a smooth real vector bundle. A connection on &
is an R-linear map,

V:T(€&) = AY(B) ®cw(p) T'(€) (%)

such that the Leibnitz rule
V(fs)=df @ s+ fVs

holds, for all s € I'(¢) and all f € C*°(B). For every X € X(B), we let
VX = EVX oV

and for every s € I'(§), we call Vs the covariant derivative of s relative to X. Then, the
family, (Vx), induces a R-bilinear map also denoted V,

Vi X(B) x T(€) = I'(©), (+)
such that the following two conditions hold:

Vsz = fVXS
Vx(fs) = X[fls+ fVxs,

for all s € I'(€), all X € X(B) and all f € C*(B). We refer to (%) as the first version of a
connection and to (xx) as the second version of a connection.

Observe that in terms of the A%(£)’s, a connection is a linear map,
VAN E) — AN,

satisfying the Leibnitz rule. When £ = T'B, a connection (second version) is what is known
as an affine connection on a manifold, B.



350 CHAPTER 11. CONNECTIONS AND CURVATURE IN VECTOR BUNDLES

Remark: Given two connections, V! and V2, we have
Vfs) = Vi(fs)=df @ s+ Vs —df @ s — fV?s = f(V's — V?s),
which shows that V! — V? is a C>(B)-linear map from I'(§) to A'(B) ®ce(p) (). However

Hommew 5) (A°(€), A'(€) = Homews)(T(€), A'(B) @cns) T(€))

I'(
= T(€)* ®coo(n) (A(B) Qo5 (6))
>~ AY(B) @ce(p) (T(E)* ®C°°(B) ()
(

I%¢

A'(B) ®ce(5) Homeee () (L(€), T(€))
A'(B) @ceo () D(Hom(€,€))
A'(Hom(E, ).

Therefore, V! — V? € AY(Hom(&,€)), that is, it is a one-form with values in T'(Hom(€, €)).
But then, the vector space, I'(Hom(§,&)), acts on the space of connections (by addition)
and makes the space of connections into an affine space. Given any connection, V and any
one-form, w € T'(Hom(&,€)), the expression V + w is also a connection. Equivalently, any
affine combination of connections is also a connection.

1%

A basic property of V is that it is a local operator.

Proposition 11.2. Let £ = (E, 7, B,V) be a smooth real vector bundle and let V be a
connection on §. For every open subset, U C B, for every section, s € I'(§), if s=0 on U,
then Vs =0 on U, that is, V is a local operator.

Proof. By Proposition 3.30 applied to the constant function with value 1, for every p € U,
there is some open subset, V' C U, containing p and a smooth function, f: B — R, such
that supp f C U and f =1 on V. Consequently, fs is a smooth section which is identically
zero. By applying the Leibnitz rule, we get

=V(fs)=df ®s+ fVs,
which, evaluated at p yields (Vs)(p) =0, since f(p) =1 and df =0 on V. O

As an immediate consequence of Proposition 11.2, if s; and s, are two sections in I'(¢)
that agree on U, then sy — sy is zero on U, so V(s1 — $3) = V1 — Vg is zero on U, that is,
Vs and Vsy agree on U.

Proposition 11.2 also implies that a connection, V, on &, restricts to a connection, V | U
on the vector bundle, £ | U, for every open subset, U C B. Indeed, let s be a section of &
over U. Pick any b € U and define (Vs)(b) as follows: Using Proposition 3.30, there is some
open subset, V; C U, containing b and a smooth function, f;: B — R, such that supp fi C U
and f; =1 on Vi so, let s; = fis, a global section of £. Clearly, s; = s on Vi, and set

(Vs)(b) = (Vs1)(b).
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This definition does not depend on (Vi, f1), because if we had used another pair, (V3, f2), as
above, since b € V; N V5, we have

51 = f15s =5 = fas = 59 on VNV,

so, by Proposition 11.2,
(Vs1)(b) = (Vs2)(b).

It should also be noted that (Vxs)(b) only depends on X (b), that is, for any two vector
fields, X,Y € X(B), if X(b) = Y (b) for some b € B, then

(Vxs)(b) = (Vys)(b), for every s € T'(€).

As above, by linearity, it it enough to prove that if X (b) = 0, then (Vxs)(b) = 0. To prove
this, pick any local trivialization, (U, ¢), with b € U. Then, we can write

d

X1U=>) X 0

ox;
i=1 v

However, as before, we can find a pair, (V, f), withb eV C U, suppf C U and f=1onV,
so that f% is a smooth vector field on B and f% agrees with % onV, fori=1,....,n.

Clearly, fX; € C>*(B) and fX; agrees with X; on V so if we write X = f2X, then

0
a.fCi

d
X=X=) fXf
=1

and we have
d
fVxs=Vgs=D> fXiV;o s
i=1

Since X;(b) =0 and f(b) = 1, we get (Vxs)(b) =0, as claimed.

Using the above property, for any point, p € B, we can define the covariant derivative,
(Vus)(p), of a section, s € I'(§), with respect to a tangent vector, u € T,B. Indeed, pick any
vector field, X € X(B), such that X (p) = u (such a vector field exists locally over the domain
of a chart and then extend it using a bump function) and set (V,s)(p) = (Vxs)(p). By the
above property, if X (p) = Y(p), then (Vxs)(p) = (Vys)(p) so (Vus)(p) is well-defined.
Since V is a local operator, (V,s)(p) is also well defined for any tangent vector, u € T,,B,
and any local section, s € T'(U,§), defined in some open subset, U, with p € U. From now
on, we will use this property without any further justification.

Since £ is locally trivial, it is interesting to see what V [ U looks like when (U, ¢) is a
local trivialization of €.
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Fix once and for all some basis, (vq,...,v,), of the typical fibre, V' (n = dim(V')). To
every local trivialization, ¢: 771(U) — U x V, of ¢ (for some open subset, U C B), we
associate the frame, (s,...,s,), over U given by

si(b) = go_l(b, v;), beU.

Then, every section, s, over U, can be written uniquely as s = Y, f;s;, for some functions

fi € C=(U) and we have

n

Vs =Y V(fisi) =Y (dfi @5+ fiVs,).
i=1

i=1

On the other hand, each Vs; can be written as
VSZ‘ == sz‘j X Sj,
j=1
for some n X n matrix, w = (w;;), of one-forms, w;; € A*(U), so we get
Vs = dei ® s; + Zfivsi = dei ® s + Z fiwij ® sj = Z(dfj + Zfiwij) @ $;.
i=1 i=1 i=1 ij=1 j=1 i=1
With respect to the frame, (s1,...,s,), the connection V has the matrix form

V(fla---afn) = (dfl,,dfn) + (fla'--afn)w

and the matrix, w = (w;;), of one-forms, w;; € AY(U), is called the connection form or
connection matriz of V with respect to ¢: 7~1(U) — U x V. The above computation
also shows that on U, any connection is uniquely determined by a matrix of one-forms,
w;; € AY(U). In particular, the connection on U for which

Vs =0,...,Vs, =0,

corresponding to the zero matrix is called the flat connection on U (w.r.t. (S1,...,55)).
@ Some authors (such as Morita [115]) use a notation involving subscripts and superscripts,
namely

n
VSi = E wi@sj.
Jj=1

But, beware, the expression w = (wf ) denotes the n x n-matrix whose rows are indexed by
j and whose columns are indexed by i! Accordingly, if § = wn, then

(9;- = Z w,in;?.
k

The matrix, (w?) is thus the transpose of our matrix (w;;). This has the effects that some of
the results differ either by a sign (as in w A w) or by a permutation of matrices (as in the
formula for a change of frame).
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Remark: If (0, ...,0,) is the dual frame of (s, ..., s,), that is, §; € A*(U), is the one-form
defined so that
Gl(b)(sj(b)) = 5ij> forall be lj7 1< Z,] < n,

then we can write w;, = Z?Zl Ffﬂj and so,
VSZ' = Z Ffz(ej ® Sk),
k=1
where the T'%; € C*°(U) are the Christoffel symbols.
Proposition 11.3. Every vector bundle, &, possesses a connection.

Proof. Since £ is locally trivial, we can find a locally finite open cover, (U, )a, of B such that
71(U,) is trivial. If (f,) is a partition of unity subordinate to the cover (U,), and if V¢ is
any flat connection on & [ U,, then it is immediately verified that

vy s
is a connection on &. O]

If oo : 7 HU,) = Uy xV and pg: 71 (Us) — Ug x V are two overlapping trivializations,
we know that for every b € U, N Ug, we have

Pa © Sﬁgl(b, ’LL) = (b, gaﬁ(b)u)7
where ga5: Uy, N Ug — GL(V) is the transition function. As
(1051(67 U) = (10(;1(67 gaﬁ<b>u)7

if (s1,...,sy) is the frame over U, associated with ¢, and (t1,...,t,) is the frame over Uy
associated with g, we see that
n
ti = Z 9355
j=1

where gos = (gij)-
Proposition 11.4. With the notations as above, the connection matrices, w, and wg respec-
twely over U, and Ug obey the tranformation rule

Ws = JapWalus + (A9ap)gus,
where dgas = (dgij).

To prove the above proposition, apply V to both side of the equations

ti = Z 9ijSj
j=1

and use w, and wg to express Vt; and Vs;. The details are left as an exercise.
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@ In Morita [115] (Proposition 5.22), the order of the matrices in the equation of Proposi-
tion 11.4 must be reversed.

If £ =TM, the tangent bundle of some smooth manifold, M, then a connection on T'M,
also called a connection on M is a linear map,

V: X(M) — AYM) ®coo(ary £(M) = Homeeo () (X(M), (X(M)),

since ['(T'M) = X(M). Then, for fixed Y € X(M), the map VY is C*°(M)-linear, which
implies that VY is a (1,1) tensor. In a local chart, (U, ¢), we have

0 = 0
\V4 ) = Ik _—
B(zi (89@) P " &ck’

1

where the Ffj are Christoffel symbols.

The covariant derivative, Vx, given by a connection, V, on T'M, can be extended to a
covariant derivative, V'’ defined on tensor fields in I'(M, T"*(M)), for all r, s > 0, where

TS (M) =T M @ (T*M)®*.

We already have Vy” = Vx and it is natural to set VY'f = X[f] = df(X). Recall that
there is an isomorphism between the set of tensor fields, T'(M,T™*(M)), and the set of
C°°(M)-multilinear maps,

O ANM) x o x ANM) X X(M) X -+ x X(M) — C%(M),

where A'(M) and X(M) are C°°(M)-modules.

The next proposition is left as an exercise. For help, see O’Neill [120], Chapter 2, Propo-
sition 13 and Theorem 15.

Proposition 11.5. for every vector field, X € X(M), there is a unique family of R-linear
map, V" T(M,T™*(M)) — T'(M,T"*(M)), with r,s > 0, such that

(a) VY'f = df(X), for all f € C®°(M) and VY’ = Vx, for all X € X(M).

(b) V1528 @ T) = Vi L(S) @ T + S @ V™ (T), for all S € T'(M,T™*1(M)) and
all T e T(M,T™%2(M)).

(¢) Vi " ey(S)) = ¢ij(V(S)), for all S € T(M,T™*(M)) and all contractions, ci;, of
L(M, T (M)).

Furthermore,
(VEO)(Y) = X[0(Y)] - 0(VxY),
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for all XY € X(M) and all one-forms, § € A*(M) and for every S € T'(M,T"*(M)), with
r+ s> 2, the covariant derivative, V' (S), is given by

(V?{SS)(QD e 707’7X17 R 7Xs) = X[S(elv cee ae’rle? s ’XS)]

=3 80y, VX0, 0, X, X)
=1

forall Xy,..., X, € X(M) and all one-forms, 0y, ...,0, € A (M).

We define the covariant differential, V"*S, of a tensor, S € I'(M,T"*(M)), as the
(r,s + 1)-tensor given by

(V“S)(@l, e ,QT,X, Xl; RPN 7Xs) = (VSQSS)(GM e ,Qr,Xl, e 7Xs>7

for all X, X; € X(M) and all §; € A'(M). For simplicity of notation we usually omit the
superscripts r and s. In particular, for S = g, the Riemannian metric on M (a (0, 2) tensor),
we get

Vx(9)(Y, Z) = d(g(Y, 2))(X) — g(VxY, Z) = g(Y,Vx Z),

for all X|Y,Z € X(M). We will see later on that a connection on M is compatible with a
metric, g, iff Vx(g) = 0.

Everything we did in this section applies to complex vector bundles by considering com-
plex vector spaces instead of real vector spaces, C-linear maps instead of R-linear map, and
the space of smooth complex-valued functions, C*°(B;C) = C'*(B)®rC. We also use spaces
of complex-valued differentials forms,

Ai(B;C) = A (B) @coe(p) C°(B;C) = P((/\ T*B) ® e}c),
where €} is the trivial complex line bundle, B x C, and we define A’(£) as
A'(€) = AY(B; C) ®cos (i) T(E).

A connection is a C-linear map, V: T'(¢) — A'(&), that satisfies the same Leibnitz-type rule
as before. Obviously, every differential form in A’(B;C) can be written uniquely as w + in,
with w,n € AY(B). The exterior differential,

d: AY(B;C) — A (B;C)
is defined by d(w+1in) = dw +idn. We obtain complex-valued de Rham cohomology groups,

Hpr(M;C) = Hjr (M) ®g C.
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11.2 Curvature, Curvature Form and Curvature Ma-
trix
If ¢ = B x V is the trivial bundle and V is a flat connection on &, we obviously have
VxVy = VyVx = Vixy,

where [X,Y] is the Lie bracket of the vector fields X and Y. However, for general bundles
and arbitrary connections, the above fails. The error term,

R(X,Y)=VxVy —VyVx — Vixy,

measures what’s called the curvature of the connection. The curvature of a connection also
turns up as the failure of a certain sequence involving the spaces A(£) to be a cochain
complex. Recall that a connection on £ is a linear map

Vi A (€) = AN(E)

satisfying a Leibnitz-type rule. It is natural to ask whether V can be extended to a family
of operators, d¥: A'(¢) — A™L(&), with properties analogous to d on A*(B).

This is indeed the case and we get a sequence of map,

0— A% L A 5 () — - — A D AT — -

but in general, d¥ o d¥Y = 0 fails. In particular, d¥ o V = 0 generally fails. The term
KY = dY oV is the curvature form (or tensor) of the connection V. As we will see it yields
our previous curvature, R, back.

Our next goal is to define dV. For this, we first define an C°°(B)-bilinear map
A AYE) x Al(n) — AT (€ @)

as follows:
(WRSHAN(TRt)=(WAT)®R (s®1),

where w € A(B), T € A/(B), s € ['(£), and t € I'(n), where we used the fact that

L ®n) =T(£) @ces) I'(n).

First, consider the case where £ = ¢! = B x R, the trivial line bundle over B. In this case,
A (€) = AY(B) and we have a bilinear map

A AY(B) x A (n) — A" (n)

given by
WA (T®t)=(wAT)®t.
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For 7 = 0, we have the bilinear map
A A(B) x T'(n) — A(n)

given by
WAL =w®T.

It is clear that the bilinear map
A A"(B) x A%(n) — A""(n)
has the following properties:

(WAT)ANO = wA(TAD)
1IN0 = 0,

for all w € AY(B),7 € A(B), 6 € A¥(¢) and where 1 denotes the constant function in
C>°(B) with value 1.

Proposition 11.6. For every vector bundle, &, for all 7 > 0, there is a unique R-linear map
(resp. C-linear if & is a complex VB), d¥: AV (€) — AITL(E), such that

(i) d¥ =V forj=0.
(i) d¥(wAt) =dwAt+ (=1)wAdVt, for allw € A(B) and all t € AI(£).
Proof. Recall that A7 (€) = A7 (B) ®cee(py I'(€) and define dv: A/(B) x '(§) — ATF(E) by
dY(w,s) =dw® s+ (—1)Jw A Vs,

for all w € A/(B) and all s € I'(¢). We claim that dV induces an R-linear map on A’(¢) but
there is a complication as dV is not C'°°(B)-bilinear. The way around this problem is to use
Proposition 22.37. For this, we need to check that dV satisfies the condition of Proposition
22.37, where the right action of C*°(B) on A’(B) is equal to the left action, namely wedging:

fAw=wAf  feC®B)=AB), we AB).
As A is C%°(B)-bilinear and 7 ® s = 7 A s for all 7 € A(B) and all s € T'(£), we have

dV(wf,s) = dwf)®@s+(=1)(wf) A Vs
dwf) A s+ (=1) fu A Vs
= ((dw)f + (=1)YwAdf) As+ (=1) fw A Vs
fdw A s+ (=1YwAdf ANs+ (=1 fw A Vs
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and

dV(w, fs) = dw® (fs)+ (=1)w A V(fs)
= dw A (fs)+ (—=1)YwAV(fs)
= fdwAs+ (—1)YwA (df @ s+ fVs)
= fdwAs+ (=1)wA (df As+ fVs)
= fdwAs+ (=1)YwAdf Ns+ (=1 fw A Vs.
Thus, d¥(wf,s) = d¥(w, fs), and Proposition 22.37 shows that dV: A/(£) — A7(€) is a

well-defined R-linear map for all j > 0. Furthermore, it is clear that d¥ = V for j = 0. Now,
for w e AY(B) and t =7 ® s € A(£) we have

(WA (T®Rs) = dV(WAT)®8))
= dwAT)®@s+ (=) (wAT)AVs
= (dwAT)@s+ (-1 (wAdr)®@s+ (=1)"(wAT)AVs
= doAN(T®@s+ (D) 'wA(dr®s)+(=1)"wA (1 AVs)
= dwA(T®8)+ (—DiwAd¥ (T As),
= dwoA(T®8)+ (=) wAdY(T®s),

which proves (ii). O
As a consequence, we have the following sequence of linear maps:

0 — A%() 5 AL() 5 AX() —> -+ — A(E) S AFE) — -
but in general, d¥ o dY = 0 fails. Although generally d¥ o V = 0 fails, the map d¥ o V is
C*°(B)-linear. Indeed,
(@Y oV)(fs) = dY(df @ s+ fVs)
= dV(df Ns+ f AVs)
= ddf Ns —df ANVs+df AVs+ fAdY(Vs)
= f(dV o V)(s)).

Therefore, d¥ o V: A%(&) — A%(€) is a C*°(B)-linear map. However, recall that just before
Proposition 11.2 we showed that

Homcae() (A" (§), A'(€)) = A'(Hom(§,€)),
therefore, d¥ oV € A%(Hom(&,€)), that is, d¥ oV is a two-form with values in T'(Hom/(§, £)).

Definition 11.2. For any vector bundle, £, and any connection, V, on &, the vector-valued
two-form, RY = d¥ oV € A% (Hom(&,€)) is the curvature form (or curvature tensor) of the
connection V. We say that V is a flat connection iff RV = 0.
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For simplicity of notation, we also write R for RV. The expression RV is also denoted 'V
or KV. As in the case of a connection, we can express RV locally in any local trivialization,
o:m HU) = UxV,of & Since RV =d¥ oV € A*(§) = A/(B) ®cw(p) L(€), if (s1,...,5,)
is the frame associated with (¢, U), then

RV(SZ‘) = Z Qij X Sj,
j=1

for some matrix, Q = (;;), of two forms, Q;; € A*(B). We call Q = (;;) the curvature
matriz (or curvature form) associated with the local trivialization. The relationship between
the connection form, w, and the curvature form, 2, is simple:

Proposition 11.7. (Structure Equations) Let & be any vector bundle and let V be any
connection on &. For every local trivialization, p: 7= (U) — U x V, the connection matriz,
w = (wjj), and the curvature matriz, @ = (§;), associated with the local trivialization,
(p,U), are related by the structure equation:

Q=dw—wAw.
Proof. By definition,

V(si) = sz’j ® 55,
j=1
so if we apply dV and use property (ii) of Proposition 11.6 we get
FV(s) = S e s
k=1
= Z dv(wij X Sj)
j=1
= Zdwij X Sj — Zwi]’ A VS]'
J=1 J=1
= Zdwij X S; — Zwij A ijk X Sk
j=1 j=1 k=1
= Zdwik ® S — Z(szj A wjk) & Sk,
k=1 k=1 j=1

and so,

n
Qi = dwit, — g wij N\ Wik,

j=1
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which, means that
Q=dw—wAw,

as claimed. O

@ Some other texts, including Morita [115] (Theorem 5.21) state the structure equations
as
N =dw+wAw.

Although this is far from obvious from Definition 11.2, the curvature form, RV, is related
to the curvature, R(X,Y), defined at the beginning of Section 11.2. For this, we define the
evaluation map

Evxy: A*(Hom(¢,€)) — A" (Hom(,€)) = T'(Hom(s,¢)),

as follows: For all X,V € X(B), allw ® h € A*(Hom(&,§)) = A*(B) Qc=(p) ['(Hom(&,€)),
set
vay(w X h) = CL)(X, Y)h

It is clear that this map is C°°(B)-linear and thus well-defined on A?(Hom(,€)). (Recall
that A°(Hom(&,€)) = T(Hom(§,§)) = Homeeo () (L(E),T(§)).) We write

RYy = Evxy(RY) € Homce () (I(€),T()).

Proposition 11.8. For any vector bundle, &, and any connection, V, on &, for all X|Y €
X(B), if we let
R(X> Y) =VxoVy —-VyoVyx— V[X,Y],
then
R(X,Y) = RY,.

Proof sketch. First, check that R(X,Y) is C*°(B)-linear and then work locally using the
frame associated with a local trivialization using Proposition 11.7. [

Remark: Proposition 11.8 implies that R(Y, X) = —R(X,Y’) and that R(X,Y)(s) is
C>°(B)-linear in X,Y and s.

If oo: 7 HUs) = Uy x V and @g: 1 (Ug) — Ug x V are two overlapping trivializa-
tions, the relationship between the curvature matrices €2, and €2, is given by the following
proposition which is the counterpart of Proposition 11.4 for the curvature matrix:

Proposition 11.9. If¢,: 71 (U,) = U, xV and pg: 71 (Us) — UsxV are two overlapping
trivializations of a vector bundle, &, then we have the following transformation rule for the
curvature matrices Qo and Qg:

QB = gaBQag;/;a
where gop: Uy N U — GL(V) is the transition function.
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Proof sketch. Use the structure equations (Proposition 11.7) and apply d to the equations
of Proposition 11.4. O

Proposition 11.7 also yields a formula for d2, know as Bianchi’s identity (in local form).

Proposition 11.10. (Bianchi’s Identity) For any vector bundle, £, any connection, V, on
&, if w and Q) are respectively the connection matriz and the curvature matriz, in some local

trivialization, then
dAV=wAQ—QANw.

Proof. 1f we apply d to the structure equation, 2 = dw — w A w, we get

dQY = ddw —dw Aw+w A dw
= —(Q+twAw)AwF+WA(Q+wAw)
= QAw—wAWAWF+FWAQFWAWAW
= wAQ—-—QAw,

as claimed. n

We conclude this section by giving a formula for d¥ o dV (¢), for any t € A*(£). Consider
the special case of the bilinear map

A AE) x A(n) — A (E@0n)

defined just before Proposition 11.6 with j = 2 and n = Hom/(&, ). This is the C*-bilinear
map

A A€ x A (Hom(€,€)) — AT(E® Hom(,€)).

We also have the evaluation map,

ev: A€ @ Hom(£,§)) =2 A(B) @cwp) I'(£) ®coe(s) Homes ) (L'(€), T(E))
— A (B) ®ceop) [(€) = A(€),

given by
eviw®s®h) =w® h(s),

with w € A/(B), s e T'(§) and h € Homeeo(p)(I'(£),T'(§)). Let
A ANE) x A (Hom(€,8)) — AT(€)
be the composition
A(E) x A (Hom(€,8)) = AP (E @ Hom(€,€)) = A™F2().
More explicitly, the above map is given (on generators) by
(w®@s)NH=wAH(s),
where w € A(B), s € T(¢) and H € Homee() (I(€), A%(€)) = A*(Hom(&, €)).
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Proposition 11.11. For any vector bundle, &, and any connection, V, on & the composition
d¥ odV: AE) — A2(€) mapst tot ARY, for any t € A(E).

Proof. Any t € A'(€) is some linear combination of elements w ® s € A'(B) @ce(p) ['(€) and
by Proposition 11.6, we have

dodV(w®s) = d¥(dw®s+ (—1)wAVs)
= ddw® s+ (=1)""dw A Vs + (=1)'dw A Vs + (=1)(=1)wAd¥ o Vs
= wAdYoVs
= (W®s)ARY,

as claimed. n

Proposition 11.11 shows that d¥ odY = 0 iff RY = dY o V = 0, that is, iff the connection
V is flat. Thus, the sequence

0— A% L AN 5 () — - — A D A () —

is a cochain complex iff V is flat.

Again, everything we did in this section applies to complex vector bundles.

11.3 Parallel Transport

The notion of connection yields the notion of parallel transport in a vector bundle. First,
we need to define the covariant derivative of a section along a curve.

Definition 11.3. Let £ = (E, 7, B, V) be a vector bundle and let v: [a,b] — B be a smooth
curve in B. A smooth section along the curve «y is a smooth map, X : [a,b] — E, such that
m(X(t)) = v(t), for all t € [a,b]. When & = T'B, the tangent bundle of the manifold, B, we
use the terminology smooth vector field along .

Recall that the curve v: [a,b] — B is smooth iff ~ is the restriction to [a, b] of a smooth
curve on some open interval containing [a, b].

Proposition 11.12. Let £ be a vector bundle, V be a connection on & and ~v: [a,b] — B be
a smooth curve in B. There is a R-linear map, D/dt, defined on the vector space of smooth
sections, X, along v, which satisfies the following conditions:

(1) For any smooth function, f: [a,b] — R,

D(fX) df DX
a a "t
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(2) If X is induced by a global section, s € I'(§), that is, if X(to) = s(y(to)) for all
to € [a,b], then
DX
W@O) = (Vr(to) $)to)-

Proof. Since 7([a,b]) is compact, it can be covered by a finite number of open subsets, U,,
such that (U,, ¢a) is a local trivialization. Thus, we may assume that v: [a,b] — U for some
local trivialization, (U, ¢). As ¢ ov: [a,b] — R", we can write

por(t) = (u(t), ... un(t)),

where each u; = pr; o p oy is smooth. Now (see Definition 3.17), for every g € C*(B), as

o \ g - dt \ ox; Wo)g ’

to =1
since by definition of /(ty),

= Ylgor™ o (pom)

to
d
to

Vl(to) = d7t0 <%

(see the end of Section 3.2), we have

" du; 0
/ 1
v (to) = ( > :

=1

) (9) = %(907)

If (s1,...,8,) is a frame over U, we can write
X(t) = ZXi(t>5i(7(t))a
i=1

for some smooth functions, X;. Then, conditions (1) and (2) imply that

X -3 (B 600+ 500500

dt

and since

there exist some smooth functions, Ffj, so that

Var(si(10) = 30 T o (55(10) = 30 T Thser(0).

i=1 ik
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It follows that

%—Z(dx" DG ) (G

Conversely, the above expression defines a linear operator, D/dt, and it is easy to check that
it satisfies (1) and (2). O

The operator, D/dt is often called covariant derivative along v and it is also denoted by
V() or simply V..

Definition 11.4. Let £ be a vector bundle and let V be a connection on £. For every curve,
v: [a,b] — B, in B, a section, X, along ~ is parallel (along ) iff

DX_O
dt

If M was embedded in R? (for some d), then to say that X is parallel along v would
mean that the directional derivative, (D, X)(7(t)), is normal to T M.

The following proposition can be shown using the existence and uniqueness of solutions
of ODE’s (in our case, linear ODE’s) and its proof is omitted:

Proposition 11.13. Let & be a vector bundle and let V be a connection on &. For every C*
curve, v: [a,b] — B, in B, for every t € [a,b] and every v € w1 (y(t)), there is a unique
parallel section, X, along v such that X(t) =

For the proof of Proposition 11.13 it is sufficient to consider the portions of the curve
v contained in some local trivialization. In such a trivialization, (U, ¢), as in the proof of
Proposition 11.12, using a local frame, (s1,...,s,), over U, we have

% —Z (ka +prj ‘Z; j) s(1(1),

with u; = pr; o p o . Consequently, X is parallel along our portion of v iff the system of
linear ODE’s in the unknowns, Xy,

ka K dul
ZFU dt k=1,...,n,

is satisfied.

Remark: Proposition 11.13 can be extended to piecewise C! curves.
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Definition 11.5. Let £ be a vector bundle and let V be a connection on £. For every curve,
v: la,b] — B, in B, for every t € [a,b], the parallel transport from ~v(a) to ~(t) along v is
the linear map from the fibre, 77!(v(a)), to the fibre, 7=!(vy(¢)), which associates to any
v € 7 !(y(a)) the vector X,(t) € 71 (y(t)), where X, is the unique parallel section along
with X, (a) = v.

The following proposition is an immediate consequence of properties of linear ODE’s:

Proposition 11.14. Let £ = (E,m, B, V) be a vector bundle and let V be a connection on
&. For every C' curve, v: [a,b] — B, in B, the parallel transport along 7y defines for every
t € [a,b] a linear isomorphism, Py: 71 (y(a)) = 71 (y(t)), between the fibres 7~ *(v(a)) and

T (v(1)).

In particular, if v is a closed curve, that is, if v(a) = v(b) = p, we obtain a linear
isomorphism, P, of the fibre E, = 7 !(p), called the holonomy of v. The holonomy group
of V based at p, denoted Hol,(V), is the subgroup of GL(V,R) given by

Hol,(V) = {P, € GL(V,R) | vis a closed curve based at p}.

If B is connected, then Hol,(V) depends on the basepoint p € B up to conjugation and so
Hol,(V) and Hol,(V) are isomorphic for all p,¢ € B. In this case, it makes sense to talk
about the holonomy group of V. If £ = T'B, the tangent bundle of a manifold, B, by abuse
of language, we call Hol,(V) the holonomy group of B.

11.4 Connections Compatible with a Metric;
Levi-Civita Connections

If a vector bundle (or a Riemannian manifold), £, has a metric, then it is natural to define
when a connection, V, on £ is compatible with the metric. So, assume the vector bundle, &,
has a metric, (—, —). We can use this metric to define pairings

ALE) x A(&) — AN(B) and  A”(€) x A'(§) — AY(B)
as follows: Set (on generators)
(W® $1,59) = (51, w @ S9) = w(sy, S2),

for all w € AY(B), s1,80 € T'(£) and where (s, s5) is the function in C°°(B) given by
b (s1(b), s2(b)), for all b € B. More generally, we define a pairing
A'(E) x A(§) — A™(B),
by
<W & 1,1 & 82> = <817 82>W A 7,
for all w € AY(B),n € A’(B), s1, s9 € T'().
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Definition 11.6. Given any metric, (—, —), on a vector bundle, &, a connection, V, on ¢ is
compatible with the metric, for short, a metric connection iff

d(s1,82) = (Vs1,89) + <81,V82>7

for all sq, 50 € I'(€).

In terms of version-two of a connection, Vx is a metric connection iff
X ((s1,52)) = (Vxs1,52) + (51, Vxsa),

for every vector field, X € X(B).

Definition 11.6 remains unchanged if £ is a complex vector bundle. The condition of
compatibility with a metric is nicely expressed in a local trivialization. Indeed, let (U, )
be a local trivialization of the vector bundle, £ (of rank n). Then, using the Gram-Schmidt
procedure, we obtain an orthonormal frame, (si,...,s,), over U.

Proposition 11.15. Using the above notations, if w = (w;;) is the connection matriz of V
w.r.t. (S1,...,8n), then w is skew-symmetric.

Proof. Since
Vei = Z wl-j X Sj
j=1

and since (s;,s;) = 0;; (as (s1,...,S,) is orthonormal), we have d(s;,s;) = 0 on U. Conse-
quently
0 = d(Si, Sj>
= <VSZ‘, Sj> + <Si7 VSj)

= (Z wik ® s, ;) + (si, Zwﬂ ® 1)
k=1 I=1

n n
= E Wik (Sk 85) + E wji(8i, 51)
k=1 =1
= Wij + Wji,
as claimed. n

In Proposition 11.15, if £ is a complex vector bundle, then w is skew-Hermitian. This
means that

_T:

w —Ww,

where @ is the conjugate matrix of w, that is, (w);; = wy;. It is also easy to prove that metric
connections exist.
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Proposition 11.16. Let & be a rank n vector with a metric, (—,—). Then, &, possesses
melric connections.

Proof. We can pick a locally finite cover, (U,)a, of B such that (U,,¢,) is a local triv-
ialization of £. Then, for each (U,,p.), we use the Gram-Schmidt procedure to obtain

an orthonormal frame, (s§,...,s%), over U, and we let V* be the trivial connection on
771(U,). By construction, V is compatible with the metric. We finish the argumemt by
using a partition of unity, leaving the details to the reader. O]

If £ is a complex vector bundle, then we use a Hermitian metric and we call a connec-
tion compatible with this metric a Hermitian connection. In any local trivialization, the
connection matrix, w, is skew-Hermitian. The existence of Hermitian connections is clear.

If V is a metric connection, then the curvature matrices are also skew-symmetric.

Proposition 11.17. Let £ be a rank n vector bundle with a metric, (—, —). In any local
trivialization of €, the curvature matriz, Q@ = (Q;;) is skew-symmetric. If £ is a complex
vector bundle, then Q@ = (§2;;) is skew-Hermitian.

Proof. By the structure equation (Proposition 11.7),
Q=dw—wAw,

that is, ;; = dw;; — Zzzl wir A wgj, so, using the skew symetry of w;; and wedge,

n
jS = dwﬁ— E wjk./\wki

k=1

n
= —dwij— E wkj/\wik

k=1

n
= —dwij + Z Wik A wkj
k=1
= —Q

IRl

as claimed. O

We now restrict our attention to a Riemannian manifold, that is, to the case where our
bundle, &, is the tangent bundle, & = T'M, of some Riemannian manifold, M. We know
from Proposition 11.16 that metric connections on T'M exist. However, there are many
metric connections on 7'M and none of them seems more relevant than the others. If M is
a Riemannian manifold, the metric, (—, —), on M is often denoted g. In this case, for every
chart, (U, p), we let g;; € C*°(M) be the function defined by

9:5(p) = <(8(?ci)p’ (a%]))p
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(Note the unfortunate clash of notation with the transitions functions!)

The notations g = Zij gijdx; ® dx; or simply g = Zij gijdx;dx; are often used to denote
the metric in local coordinates. We observed immediately after stating Proposition 11.5 that
the covariant differential, Vg, of the Riemannian metric, g, on M is given by

Vx(g)(Y,Z) =d(g(Y, Z))(X) — g(VxY,Z) — g(Y,Vx Z),

for all XY, Z € X(M). Therefore, a connection, V, on a Riemannian manifold, (M, g), is
compatible with the metric iff

Vg =0.

It is remarkable that if we require a certain kind of symmetry on a metric connection,
then it is uniquely determined. Such a connection is known as the Levi-Civita connection.
The Levi-Civita connection can be characterized in several equivalent ways, a rather simple
way involving the notion of torsion of a connection.

Recall that one way to introduce the curvature is to view it as the “error term”
R(X,Y)=VxVy - VyVx — Vixy]
Another natural error term is the torsion, T(X,Y’), of the connection, V, given by
T(X,)Y)=VxY —-VyX — [X,Y],

which measures the failure of the connection to behave like the Lie bracket.

Another way to characterize the Levi-Civita connection uses the cotangent bundle, 7M.
It turns out that a connection, V, on a vector bundle (metric or not), £, naturally induces
a connection, V*, on the dual bundle, £*. Now, if V is a connection on T'M, then V* is is a
connection on 7*M, namely, a linear map, V*: T(T*M) — A' (M) ®ceo(p) I'(T*M), that is

Vi ANM) = AYM) @coopy AH(M) 2 TD(T*M @ T*M),
since T(T*M) = AY(M). If we compose this map with A, we get the map
AN(M) 5 AN (M) @cme(py AN (M) 5 A2 (M),
Then, miracle, a metric connection is the Levi-Civita connection iff
d=ANoV",

where d: AY(M) — A%*(M) is exterior differentiation. There is also a nice local expression
of the above equation.

First, we consider the definition involving the torsion.
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Proposition 11.18. (Lewvi-Civita, Version 1) Let M be any Riemannian manifold. There
1S a unique, metric, torsion-free connection, V, on M, that is, a connection satisfying the
conditions

XY, 2)) = (VxY,Z)+ (Y,VxZ)
VxY —VyX = [X,Y],

for all vector fields, X, Y, Z € X(M). This connection is called the Levi-Civita connection
(or canonical connection) on M. Furthermore, this connection is determined by the
Koszul formula

2VxY,Z) = X((Y.2))+Y((X,2)) - Z((X,Y))
- <Y7 [Xa Z]> - <X7 D/a Z]> - <Z7 [Yv X]>
Proof. First, we prove uniqueness. Since our metric is a non-degenerate bilinear form, it

suffices to prove the Koszul formula. As our connection is compatible with the metric, we
have

X((Y,2)) = (VxY,Z)+(Y,Vx2Z)
Y((X,2)) = (VyX,Z)+(X,VyZ)
—Z((X,Y)) = —(VzX,Y)—(X,VzY)

and by adding up the above equations, we get
X((V.2) + Y (X, 2)) = Z(X,Y)) = (¥,VxZ —V,X)
+ (X, VyZ —=VzY)
+{(Z,VxY +VyX).

Then, using the fact that the torsion is zero, we get

X(<Y7 Z>) +Y(<X7 Z>) - Z(<X’Y>> = <Y7 [Xa Z]) + <X7 [K Z]>
+{(Z,[Y, X]) +2(Z,VxY)

which yields the Koszul formula.

Next, we prove existence. We begin by checking that the right-hand side of the Koszul
formula is C*°(M)-linear in Z, for X and Y fixed. But then, the linear map Z — (VxY, Z)
induces a one-form and VY is the vector field corresponding to it via the non-degenerate
pairing. It remains to check that V satisfies the properties of a connection, which it a bit
tedious (for example, see Kuhnel [92], Chapter 5, Section D). O]

Remark: In a chart, (U, p), if we set

0
Okgij = a_xk<gij)
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then it can be shown that the Christoffel symbols are given by
Pl w
L% = B ZQ (9igj + 0j9u — Dr9i5),
=1

where (¢g*) is the inverse of the matrix (gp).

Let us now consider the second approach to torsion-freeness. For this, we have to explain
how a connection, V, on a vector bundle, { = (E, 7, B, V'), induces a connection, V*, on the
dual bundle, £*. First, there is an evaluation map I'(¢ ® £*) — T'(e!) or equivalently,

(=, =) I'(§) ®coe(m) Homee () (L'(§), CF(B)) — C(B),
given by
(s1,83) = s5(s1), s1€(§), 53 € Homcoo(B)(F(S), C>(B))

and thus a map

AH(E © ) = AH(B) ®cm(m) T(€ @ €7) 257 AH(B) @0 () C%(B) = AX(B).
Using this map we obtain a pairing
(= —): A @A (E) 5 AT (ERE) — AN (B),
given by

(W@ s1,n®83) = (WAN) @ (s1,85),

where w € A'(B), n € A/(B), s1 € I'(€), s3 € ['(§*). Tt is easy to check that this pairing is
non-degenerate. Then, given a connection, V, on a rank n vector bundle, £, we define V*
on & by

d(s1,s3) = (V(s1),53) + (51, V*(s3)),
where s; € I'(§) and s € I'(£*). Because the pairing (—, —) is non-degenerate, V* is well-
defined and it is immediately that it is a connection on £*. Let us see how it is expressed

locally. If (U, ¢) is a local trivialization and (si, ..., s,) is the frame over U associated with
(U, ), then let (04, ...,0,) be the dual frame (called a coframe). We have

<Sj70i> :9i($j) :51']" 1 SZ,] S?’L
Recall that .
Vsj =Y wik @ s
k=1

and write

V=) w ® Ok
k=1
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Applying d to the equation (s;,6;) = J;; and using the equation defining V*, we get
0 = d<Sj, 01>
V(Sj), 92> + (Sj, V*(@,))

(
= (ij‘k@Skuei)"i_(Sj’Zw:l@el)
— Zw]k Sk, 0 +Zw Sj,el

k=1

3

Therefore, if we write w* = (w};), we have

wr=—w'.
If V is a metric connection, then w is skew-symmetric, that is, w' = —w. In this case,
* T _
w'=—-w' =w.
If £ is a complex vector bundle, then there is a problem because if (sq,...,s,) is a frame

over U, then the 6;(b)’s defined by

(i(b), 0;(0)) = 0

are not linear, but instead conjugate-linear. (Recall that a linear form, 6, is conjugate linear
(or semi-linear) iff O(A\u) = N\0(u), for all A € C.) Instead of &*, we need to consider the
bundle E* which is the bundle whose fibre over b € B consist of all conjugate-linear forms
over (D). In this case, the evaluation pairing, (s, 9> is conjugate-linear in s and we find
that w* = —w ', where w* is the connection matrix of 5 over U. If £ is a Hermltlan bundle, as
w is skew- Hermltlan, we find that w* = w, which makes sense since £ and f are canonically
isomorphic. However, this does not give any information on &*. For this, we consider the
conjugate bundle, €. This is the bundle obtained from & by redefining the vector space
structure on each fibre, 771(b), b € B, so that

(z +iy)v = (z — iy)v,

for every v € 771(b). If w is the connection matrix of £ over U, then @ is the connection
matrix of & over U. If ¢ has a Hermitian metric, it is easy to prove that £* and ¢ are
canonically isomorphic (see Proposition 11.32). In fact, the Hermitian product, (—, —),
establishes a pairing between & and £* and, basically as above, we can show that if @ is the
connection matrix of £ over U, then w* = —w' is the the connection matrix of £* over U.
As w is skew-Hermitian, w* = @.

Going back to a connection, V, on a manifold, M, the connection, V*, is a linear map,

Ve ANM) — AN (M) @ AN(M) = (X(M))* @csan (X(M))* = (X(M) @ce ) X(M))*.
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Let us figure out what A o V* is using the above interpretation. By the definition of V*,
Vo(X,Y) = X(6(Y)) - 0(VxY),
for every one-form, 6 € A'(M) and all vector fields, X,Y € X(M). Applying A, we get
VX, Y)=Vy(Y,X) = X)) —0(VxY)-Y(0(X)) +0(VyX)
= XOY))-Y(O(X)) —0(VxY —VyX).
However, recall that
do(X,Y) = X(0(Y)) = Y(6(X)) — 0([X, Y]),
so we get
(Ao VIO)X,Y) = V(X Y) = Vy(Y, X)

dI(X,Y) — 0(VxY — Vy X — [X,Y])
= dO(X,Y)—0(T(X,Y)).

It follows that for every 8 € A'(M), we have (Ao V*)0 = df iff (T (X,Y)) = 0 for all
X,Y € X(M), that is if T(X,Y) =0, for all X,Y € X(M). We record this as

Proposition 11.19. Let & be a manifold with connection V. Then, ¥V is torsion-free (i.e.,
T(X,)Y)=VxY —-VyX —[X,Y]=0, for all X,Y € X(M)) iff

NoV* =d,

where d: AY(M) — A?(M) is exterior differentiation.

Proposition 11.19 together with Proposition 11.18 yield a second version of the Levi-
Civita Theorem:

Proposition 11.20. (Levi-Civita, Version 2) Let M be any Riemannian manifold. There
1S5 a unique, metric connection, V, on M, such that

NoV* =d,

where d: AY(M) — A*(M) is exterior differentiation. This connection is equal to the Levi-
Civita connection in Proposition 11.18.

Remark: If V is the Levi-Civita connection of some Riemannian manifold, M, for every
chart, (U, ), we have w* = w, where w is the connection matrix of V over U and w* is the
connection matrix of the dual connection V*. This implies that the Christoffel symbols of
V and V* over U are identical. Furthermore, V* is a linear map

VA M) — T(T*M @ T*M).
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Thus, locally in a chart, (U, ¢), if (as usual) we let z; = pr; o ¢, then we can write

ij

V*(dry) =Y Thdr; ® du;.
ij

Now, if we want A o V* = d, we must have AV*(dzy) = ddxy = 0, that is

k _ mk

gio
for all ¢, 7. Therefore, torsion-freeness can indeed be viewed as a symmetry condition on the
Christoffel symbols of the connection V.

Our third version is a local version due to Elie Cartan. Recall that locally in a chart,
(U, ), the connection, V*, is given by the matrix, w*, such that w* = —w' where w is the
connection matrix of TM over U. That is, we have

V0, = i —wj; ® 0,

J=1

for some one-forms, w;; € A'(M). Then,
/\OV*HZ = —Z(Jin /\9J
j=1
so the requirement that d = A o V* is expressed locally by

d@z = — Zwﬂ A 9]'.
j=1

In addition, since our connection is metric, w is skew-symmetric and so, w* = w. Then, it is
not too surprising that the following proposition holds:

Proposition 11.21. Let M be a Riemannian manifold with metric, (—,—). For every
chart, (U, @), if ($1,...,Sn) is the frame over U associated with (U, ) and (0y,...,0,) is the
corresponding coframe (dual frame), then there is a unique matriz, w = (w;;), of one-forms,
wi; € AY(M), so that the following conditions hold:

(1) wji = —wij.

(i1) db; = Zwij N8, or, in matriz form, df = w N 6.

J=1

Proof. There is a direct proof using a combinatorial trick, for instance, see Morita [115],
Chapter 5, Proposition 5.32 or Milnor and Stasheff [111], Appendix C, Lemma 8. On the
other hand, if we view w = (w;;) as a connection matrix, then we observed that (i) asserts that
the connection is metric and (ii) that it is torsion-free. We conclude by applying Proposition
11.20. [
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As an example, consider an orientable (compact) surface, M, with a Riemannian metric.
Pick any chart, (U, ¢), and choose an orthonormal coframe of one-forms, (61, 6s), such that
Vol = 0; A Oy on U. Then, we have

dgl = a191/\92
d(92 = a291/\92

for some functions, a1, as, and we let

W19 = a191 + CLQQQ.

0 W12 Ql o 0 (l101 + a292 91 . d91
—wi2 0 0,)  \—(a16y + a26>) 0 0y)  \dbs
which shows that
ok 0 W12
w=w"= w0

corresponds to the Levi-Civita connection on M. Let ) = dw — w A w, we see that

o 0 dwlg
Q= (-dwlg 0 ) '
As M is oriented and as M has a metric, the transition functions are in SO(2). We easily
check that

cost sint 0 dwi cost —sint) 0 dwia
—sint cost) \ —dwia 0O sint cost /] \—dwis 0 /)’
which shows that €2 is a global two-form called the Gauss-Bonnet 2-form of M. Then, there
is a function, k, the Gaussian curvature of M such that

Clearly,

dwis = —kVol,

where Vol is the oriented volume form on M. The Gauss-Bonnet Theorem for orientable
surfaces asserts that

/ dwyy = 2mx (M),
M

where x (M) is the Fuler characteristic of M.

Remark: The Levi-Civita connection induced by a Riemannian metric, g, can also be de-
fined in terms of the Lie derivative of the metric, g. This is the approach followed in Petersen
[122] (Chapter 2). If 0y is the one-form given by

eX = iX.Q?
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that is, (ixg)(Y) = ¢(X,Y) for all X|Y € X(M) and if Lyg is the Lie derivative of the
symmetric (0,2) tensor, g, defined so that

(Lxg)(Y,Z2) = X(9(Y, 2)) — 9g(LxY, Z) — g(Y, Lx Z)

(see Proposition 8.18), then, it is proved in Petersen [122] (Chapter 2, Theorem 1) that the
Levi-Civita connection is defined implicitly by the formula

29(VxY,Z) = (Lyg)(X, Z) + (dby)(X, Z).

We conclude this section with various useful facts about torsion-free or metric connec-
tions. First, there is a nice characterization for the Levi-Civita connection induced by a
Riemannian manifold over a submanifold. The proof of the next proposition is left as an
exercise.

Proposition 11.22. Let M be any Riemannian manifold and let N be any submanifold of
M equipped with the induced metric. If VM and VY are the Levi-Civita connections on M
and N, respectively, induced by the metric on M, then for any two vector fields, X and Y
in X(M) with X(p),Y (p) € T,N, for allp € N, we have

VXY = (VAV)l,
where (VMY)l(p) is the orthogonal projection of VY (p) onto T,N, for every p € N.

In particular, if 7 is a curve on a surface, M C R3, then a vector field, X (¢), along 7 is
parallel iff X'(¢) is normal to the tangent plane, T M.

For any manifold, M, and any connection, V, on M, if V is torsion-free, then the Lie
derivative of any (p,0)-tensor can be expressed in terms of V (see Proposition 8.18).

Proposition 11.23. For every (0, q)-tensor, S € T'(M, (T*M)®?), we have
q
(LxS) (X1, X,) = X[S(X1,..., X))+ Y S(Xy,... . VxXi,..., X,),
i=1

for all Xy,..., X, X € X(M).

Proposition 11.23 is proved in Gallot, Hullin and Lafontaine [61] (Chapter 2, Proposition
2.61). Using Proposition 8.13 it is also possible to give a formula for dw(Xy ..., X}) in terms
of the V,, where w is any k-form, namely

k
Z<—1)1VXZW(X1, RN ,Xifl, Xo, Xi+17 e ;Xk)-

1=0

QL
£
=
£

I
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Again, the above formula in proved in Gallot, Hullin and Lafontaine [61] (Chapter 2, Propo-
sition 2.61).

If V is a metric connection, then we can say more about the parallel transport along a
curve. Recall from Section 11.3, Definition 11.4, that a vector field, X, along a curve, ~, is

parallel iff

DX_O
e

The following proposition will be needed:

Proposition 11.24. Given any Riemannian manifold, M, and any metric connection, V,
on M, for every curve, v: [a,b] — M, on M, if X andY are two vector fields along v, then

% (X(1),Y (1)) = <%,Y> + <X, %> |

Proof. (After John Milnor.) Using Proposition 11.13, we can pick some parallel vector fields,
Z1, ..., 2y, along 7, such that Zi(a), ..., Z,(a) form an orthogonal frame. Then, as in the
proof of Proposition 11.12, in any chart, (U, ¢), the vector fields X and Y along the portion
of v in U can be expressed as

" )
X = ZX 8% Y:;Y;(t)a—xi,

and

Y0 =% (55),,,

with u; = priopo~. Let X and Y be two parallel vector fields along . As the vector fields,

82 , can be extended over the whole space, M, as V is a metric connection and as X and Y

are parallel along v, we get
d(X, YD) =/ [(X.V)] = (V, X.Y) + (X, V,,¥) =0.
So, ()N(, §7> is constant along the portion of v in U. But then, ()N(, EN/> is constant along ~.

Applying this to the Z;(t), we see that Z;(t),...,Z,(t) is an orthogonal frame, for every
t € [a,b]. Then, we can write

X:szzm Y:Zijj,
i=1 j=1

where x;(t) and y;(t) are smooth real-valued functions. It follows that

(XY (1) = >
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and that

at @ ae T a o at a7 g T
Therefore,

DX DY "L [(dx; dy; d

—Y X, — )= — i i— | = —(X(1),Y (1)),

<dt’ >+<’dt> ;(dterx dt) dt<(> ()
as claimed. O

Using Proposition 11.24 we get

Proposition 11.25. Given any Riemannian manifold, M, and any metric connection, V,
on M, for every curve, v: [a,b] = M, on M, if X and Y are two vector fields along ~y that
are parallel, then

<X7Y> =C,

for some constant, C. In particular, || X (t)|| is constant. Furthermore, the linear isomor-
phism, Py: T, — Ty, is an isometry.

Proof. From Proposition 11.24, we have

XY (1) = <%,Y> + <X, %> |

As X and Y are parallel along v, we have DX /dt = 0 and DY/dt = 0, so

which shows that (X (t), Y (¢)) is constant. Therefore, for all v, w € T, if X and Y are the
unique vector fields parallel along ~ such that X (a) = v and Y (a) = w given by Proposition
11.13, we have

which proves that P, is an isometry. O

In particular, Proposition 11.25 shows that the holonomy group, Hol,(V), based at p, is
a subgroup of O(n).
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11.5 Duality between Vector Fields and Differential
Forms and their Covariant Derivatives

If (M, (—,—)) is a Riemannian manifold, then the inner product, (—, —),, on T, M, estab-
lishes a canonical duality between T),M and Ty M, as explained in Section 22.1. Namely, we
have the isomorphism, b: T,M — TyM, defined such that for every u € T,M, the linear
form, u’ € Ty M, is given by

w’(v) = (u,v), veT,M.
The inverse isomorphism, §: T;M — T,M, is defined such that for every w € T;M, the
vector, w', is the unique vector in T,M so that

(W, v), = w(v), veT,M.

The isomorphisms b and f induce isomorphisms between vector fields, X € X(M), and one-
forms, w € AY(M): A vector field, X € X(M), yields the one-form, X* € A'(M), given
by

(X b)p = (Xp)b

and a one-form, w € A (M), yields the vector field, w* € X(M), given by

(wﬁ)p = (Wp)ﬁ7
so that
wp(v) = ((wp)ﬂ,v)p, veT,M,pe M.

In particular, for every smooth function, f € C*°(M), the vector field corresponding to the
one-form, df, is the gradient, grad f, of f. The gradient of f is uniquely determined by the
condition

((grad f)p,v), = dfy(v),  veT,M, pe M.

Recall from Proposition 11.5 that the covariant derivative, V xw, of any one-form,
w € AY(M), is the one-form given by

(Vxw)(Y) = X(w(Y)) —w(VxY).

If V is a metric connection, then the vector field, (Vxw)*, corresponding to V xw is nicely
expressed in terms of w*: Indeed, we have

(wa)ﬁ = VXwﬁ.
The proof goes as follows:
(Vxw)(Y) = X(w ( ) —w(VxY)
(( Y)) = (W, VxY)
Vxwh V) + (W, VxY) — (W, VxY)
waﬁ Y>

I
I><:

{
{
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where we used the fact that the connection is compatible with the metric in the third line
and so,
(VX(AJ)jj = waﬁ,

as claimed.

11.6 Pontrjagin Classes and Chern Classes, a Glimpse

This section can be omitted at first reading. Its purpose is to introduce the reader to Pon-
trjagin Classes and Chern Classes which are fundamental invariants of real (resp. complex)
vector bundles. We focus on motivations and intuitions and omit most proofs but we give
precise pointers to the literature for proofs.

Given a real (resp. complex) rank n vector bundle, £ = (E, 7, B, V'), we know that locally,
& “looks like” a trivial bundle, U x V', for some open subset, U, of the base space, B, but
globally, & can be very twisted and one of the main issues is to understand and quantify “how
twisted” € really is. Now, we know that every vector bundle admit a connection, say V, and
the curvature, RV, of this connection is some measure of the twisting of £&. However, RV
depends on V, so curvature is not intrinsic to £, which is unsatisfactory as we seek invariants
that depend only on &.

Pontrjagin, Stiefel and Chern (starting from the late 1930’s) discovered that invariants
with “good” properties could be defined if we took these invariants to belong to various co-
homology groups associated with B. Such invariants are usually called characteristic classes.
Roughly, there are two main methods for defining characteristic classes, one using topology
and the other, due to Chern and Weil, using differential forms. A masterly exposition of
these methods is given in the classic book by Milnor and Stasheff [111]. Amazingly, the
method of Chern and Weil using differential forms is quite accessible for someone who has
reasonably good knowledge of differential forms and de Rham cohomology as long as one is
willing to gloss over various technical details.

As we said earlier, one of the problems with curvature is that is depends on a connection.
The way to circumvent this difficuty rests on the simple, yet subtle observation that locally,
given any two overlapping local trivializations (U,, ¢4) and (Us, ¢p), the transformation rule
for the curvature matrices €2, and g is

QB = gaBQag;g y

where go5: Uy, NUg — GL(V) is the transition function. The matrices of two-forms, €2, are
local, but the stroke of genius is to glue them together to form a global form using invariant
polynomials.

Indeed, the €2, are n x n matrices so, consider the algebra of polynomials, R[X7, ..., X,.]
(or C[X1,. .., X,2] in the complex case) in n? variables, considered as the entries of an n X n
matrix. It is more convenient to use the set of variables {X;; | 1 <1i,j < n}, and to let X
be the n x n matrix X = (X;;).
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Definition 11.7. A polynomial, P € R[{X;; | 1 <4,j <n}] (or P € C[{X;; | 1 <1,j <n}])
is invariant ift
P(AXA™) = P(X),

for all A € GL(n,R) (resp. A € GL(n,C)). The algebra of invariant polynomials over n X n
matrices is denoted by 1,,.

Examples of invariant polynomials are, the trace, tr(X), and the determinant, det(X),
of the matrix X. We will characterize shortly the algebra I,,.

Now comes the punch line: For any homogeneous invariant polynomial, P € [,,, of degree
k, we can substitute €, for X, that is, substitute w;; for X;;, and evaluate P(€),). This is
because 2 is a matrix of two-forms and the wedge product is commutative for forms of even
degree. Therefore, P(€,) € A%*(U,). But, the formula for a change of trivialization yields

P(Q,) = P(gab’Qagc:ﬁl) = P(Qp),

so the forms P(€,) and P(£23) agree on overlaps and thus, they define a global form denoted
P(RY) € A*(B).

Now, we know how to obtain global 2k-forms, P(RVY) € A?*(B), but they still seem to
depend on the connection and how do they define a cohomology class? Both problems are
settled thanks to the following Theorems:

Theorem 11.26. For every real rank n vector bundle, &, for every connection, V, on &, for
every invariant homogeneous polynomial, P, of degree k, the 2k-form, P(RY) € A?*(B), is
closed. If & is a complex vector bundle, then the 2k-form, P(RY) € A?**(B;C), is closed.

Theorem 11.26 implies that the 2k-form, P(RY) € A?**(B), defines a cohomology class,
[P(RV)] € HE,(B). We will come back to the proof of Theorem 11.26 later.

Theorem 11.27. For every real (resp. complex) rank n vector bundle, for every invariant
homogeneous polynomial, P, of degree k, the cohomology class, [P(RY)] € HZ%(B) (resp.
[P(RY)] € HE,(B;C)) is independent of the choice of the connection V.

The cohomology class, [P(RY)], which does not depend on V is denoted P(£) and is
called the characteristic class of € corresponding to P.

The proof of Theorem 11.27 involves a kind of homotopy argument, see Madsen and
Tornehave [101] (Lemma 18.2), Morita [115] (Proposition 5.28) or see Milnor and Stasheff
[111] (Appendix C).

The upshot is that Theorems 11.26 and 11.27 give us a method for producing invariants
of a vector bundle that somehow reflect how curved (or twisted) the bundle is. However, it
appears that we need to consider infinitely many invariants. Fortunately, we can do better
because the algebra, I,,, of invariant polynomials is finitely generated and in fact, has very
nice sets of generators. For this, we recall the elementary symmetric functions in n variables.
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Given n variables, Aq,..., \,, we can write

n

[Ja+th) =1+ 01t +02t® + - + out”,

=1

where the o; are symmetric, homogeneous polynomials of degree ¢ in Ay,..., A, called ele-
mentary symmetric functions in n variables. For example,

n

0122)\7;, g1 = Z )\7;)\]', O_n:>\1"'/\n-

i=1 1<i<j<n

To be more precise, we write ;(Aq,...,\,) instead of o;.

Given any n x n matrix, X = (X;;), we define 0;(X) by the formula
det(I +tX) =1+ o1 (X)t + oo X))t + - + 0, (X)t".
We claim that
O'Z(X) = Ui()\la c. ,)\n),

where \q, ..., \, are the eigenvalues of X. Indeed, \q, ..., A, are the roots the the polynomial
det(A] — X) =0, and as

n

det(A — X) = [J(A = n) = A" + Zn:(—nigi(xl, AN

=1

by factoring A" and replacing A™! by —A~!, we get
det(I+ (=A™X) =14 (A, A) (=A™,
i=1

which proves our claim.

Observe that
01(X) = tr(X), on(X) = det(X).
Also, 0, (X T) = (X)), since det(I +tX) = det((I +tX)") = det(I +tX"). It is not very

difficult to prove the following theorem:

Theorem 11.28. The algebra, I,,, of invariant polynomials in n?

01(X),...,0n(X), that is

variables is generated by

I, = Rlo1(X),...,00(X)] (resp. I, = Cloy(X),...,0n(X)]).
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For a proof of Theorem 11.28, see Milnor and Stasheff [111] (Appendix C, Lemma 6),
Madsen and Tornehave [101] (Appendix B) or Morita [115] (Theorem 5.26). The proof uses
the fact that for every matrix, X, there is an upper-triangular matrix, 7', and an invertible

matrix, B, so that
X =BTB™.

Then, we can replace B by the matrix diag(e, €%, ..., €")B, where € is very small, and make
the off diagonal entries arbitrarily small. By continuity, it follows that P(X) depends only
on the diagonal entries of BT B~!, that is, on the eigenvalues of X. So, P(X) must be
a symmetric function of these eigenvalues and the classical theory of symmetric functions
completes the proof.

It turns out that there are situations where it is more convenient to use another set of
generators instead of oy, ..., 0,. Define s;(X) by

si(X) = tr(X7).

Of course,
si(X)=A1 4+ A,

where Aq,..., A\, are the eigenvalues of X. Now, the 0;(X) and s;(X) are related to each
other by Newton’s formula, namely:

5i(X) = 01(X)si-1(X) + 02(X)55-2(X) + -+ + (=1) o1 (X)s1(X) + (=1)i0s(X) = 0

with 1 < ¢ < n. A “cute” proof of the Newton formulae is obtained by computing the
derivative of log(h(t)), where

h(t) = H(l +1tN) = 140yt + oot® + - + opt",
=1

see Madsen and Tornehave [101] (Appendix B) or Morita [115] (Exercise 5.7).

Consequently, we can inductively compute s; in terms of oy, ..., 0; and conversely, o; in
terms of sq,...,s;. For example,

ST =01, S9= U% — 209, S3= af — 30109 + 303.
It follows that
I, = R[s1(X), ..., s,(X)] (resp. I, = Clsi1(X),...,s,(X)]).
Using the above, we can give a simple proof of Theorem 11.26, using Theorem 11.28.

Proof. (Proof of Theorem 11.26). Since s1,...,S, generate [,, it is enough to prove that
s;(RY) is closed. We need to prove that ds;(RY) = 0 and for this, it is enough to prove
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it in every local trivialization, (U,,¢,). To simplify notation, we write € for €,. Now,
5;(Q) = tr(QY), so ' '
dsi(2) = dtr(Q") = tr(dQ"),

and we use Bianchi’s identity (Proposition 11.10),
dA=wAQ—QAw.
We have
dV = dOANQTTH QAN+ QFAOAQTF 4 QT A O
(WAQ=QA)ALTTHOAA(WAQ = QAW)AQT?
+o A PA WAL= QAWAQLTFT L A (WAQ - QAwW) AQTF2
+oF QTA (WAL= QAW)
= WAL —QAWAL T HFQAWAL T — QP AWAQT2 4+
QFANOANQTF QM AGAQTFE L QAW A QTR - QR A A QFF2
o PTTAOAL - QAW
= WAQ —Q Aw.
However, the entries in w are one-forms, the entries in ) are two-forms and since

nANG=60An

for all n € A'(B) and all § € A*(B) and tr(XY) = tr(Y X) for all matrices X and Y with
commuting entries, we get

tr(dQ") = tr(w A Q' — Q' Aw) = tr(w A Q) —tr(Q Aw) =0,
as required. N

A more elegant proof (also using Bianchi’s identity) can be found in Milnor and Stasheff
[111] (Appendix C, page 296-298).

For real vector bundles, only invariant polynomials of even degrees matter.

Proposition 11.29. If ¢ is a real vector bundle, then for every homogeneous invariant
polynomial, P, of odd degree, k, we have P(§) =0 € HZ:(B).

Proof. As I, = R[s;(X),...,s,(X)] and s;(X) is homogeneous of degree i, it is enough to
prove Proposition 11.29 for s;(X) with ¢ odd. By Theorem 11.27, we may assume that we
pick a metric connection on &, so that €, is skew-symmetric in every local trivialization.
Then, €2/, is also skew symmetric and

tr(Q,) =0,

since the diagonal entries of a real skew-symmetric matrix are all zero. It follows that
5i(Q) = tr(Q) = 0. O
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Proposition 11.29 implies that for a real vector bundle, £, non-zero characteristic classes
can only live in the cohomology groups HE% (B) of dimension 4k. This property is specific
to real vector bundles and generally fails for complex vector bundles.

Before defining Pontrjagin and Chern classes, we state another important properties of
the homology classes, P(§):

Proposition 11.30. If ¢ = (E,n,B,V) and & = (E',«',B',V) are real (resp. complex)
vector bundles, for every bundle map

for every homogeneous invariant polynomaial, P, of degree k, we have
P(§) = f*(P(£)) € Hpp(B)  (resp.  P(§) = f*(P(£)) € Hpn(B; C)).

In particular, for every smooth map, f: N — B, we have
P(f €)= f*(P(€)) € Hpa(N)  (resp. P(f*¢) = f*(P(€)) € Hpx(N;C)).

The above proposition implies that isomorphic vector bundles have identical characteristic
classes. We finally define Pontrjagin classes and Chern classes.

Definition 11.8. If £ be a real rank n vector bundle, then the k'™ Pontrjagin class of &,
denoted pg(€), where 1 < 2k < n, is the cohomology class

1
_ a%<RV>] e Hik(B),

pe(§) = [W

for any connection, V, on &.

If ¢ be a complex rank n vector bundle, then the k™" Chern class of £, denoted c; (&),
where 1 < k < n, is the cohomology class

(€)= [(‘—1) on(RY)| € HE:(B),

271
for any connection, V, on £. We also set po(§) = 1 and ¢y(§) = 1 in the complex case.
The strange coefficient in pg(§) is present so that our expression matches the topological

definition of Pontrjagin classes. The equally strange coefficient in ¢ (€) is there to insure that
cr(€) actually belongs to the real cohomology group HZ%(B), as stated (from the definition
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we can only claim that ¢, (§) € HZ%(B;C)). This requires a proof which can be found in
Morita [115] (Proposition 5.30) or in Madsen and Tornehave [101] (Chapter 18). One can
use the fact that every complex vector bundle admits a Hermitian connection. Locally, the
curvature matrices are skew-Hermitian and this easily implies that the Chern classes are
real since if  is skew-Hermitian, then €2 is Hermitian. (Actually, the topological version of
Chern classes shows that ¢, (§) € H*(B;Z).)

If £ is a real rank n vector bundle and n is odd, say n = 2m + 1, then the “top”
Pontrjagin class, p,(£), corresponds to ga,(RY), which is not det(RV). However, if n is
even, say n = 2m, then the “top” Pontrjagin class p,,(£) corresponds to det(RY).

It is also useful to introduce the Pontrjagin polynomial, p(€)(t) € Hyr(B)]t], given by

p(&)(t) = {det (1 + % RV)} — 14 pu () + paE) + - + ppa ()15

and the Chern polynomial, c(§)(t) € Hhg(B)[t], given by

c(&)(t) = {det (1 - ZL RV)] =1+ c1(t + ca(E)t* + -+ + (L.

(X

If a vector bundle is trivial, then all its Pontrjagin classes (or Chern classes) are zero for
all £ > 1. If ¢ is the real tangent bundle, ¢ = T'B, of some manifold of dimension n, then
the [ ] Pontrjagin classes of T'B are denoted py(B),...,p »|(B).

For complex vector bundles, the manifold, B, is often the real manifold corresponding
to a complex manifold. If B has complex dimension, n, then B has real dimension 2n.
In this case, the tangent bundle, T'B, is a rank n complex vector bundle over the real
manifold of dimension, 2n, and thus, it has n Chern classes, denoted ¢, (B), ..., c,(B). The
determination of the Pontrjagin classes (or Chern classes) of a manifold is an important
step for the study of the geometric/topological structure of the manifold. For example, it
is possible to compute the Chern classes of complex projective space, CP" (as a complex
manifold).

The Pontrjagin classes of a real vector bundle, &, are related to the Chern classes of its
complexification, {c = € ® et (where €. is the trivial complex line bundle B x C).

Proposition 11.31. For every real rank n vector bundle, £ = (E, 7, B, V), if {c = £ @ €g 18
the complexification of €, then

pe(€) = (—1)*car(éc) € Hpp(B) k> 0.

Basically, the reason why Proposition 11.31 holds is that

g = (V! (%)

We conclude this section by stating a few more properties of Chern classes.
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Proposition 11.32. For every complex rank n vector bundle, &, the following properties
hold:

(1) If € has a Hermitian metric, then we have a canonical isomorphism, £ = €.

(2) The Chern classes of &, € and € satisfy:

(8) For any complex vector bundles, & and 7,

k
ck(§®n) = Z ci(€)ck—i(n)
i=0
or equivalently

(€@ n)(t) = c(§)(t)e(n)(t)

and similarly for Pontrjagin classes when & and n are real vector bundles.

To prove (2) we can use the fact that £ can be given a Hermitian metric. Then, we saw
earlier that if w is the connection matrix of  over U then w = —w' is the connection matrix
of € over U. However, it is clear that o3,(—Q)) = (=1)*0%(9) and so, cx(€) = (—=1)kci(€).

Remark: For a real vector bundle, &, it is easy to see that ({¢)* = (£*)¢, which implies that
ce((€e)*) = cr(ée) (as € = &%) and (2) implies that ¢, ({c) = 0 for k odd. This proves again
that the Pontrjagin classes exit only in dimension 4k.

A complex rank n vector bundle, &, can also be viewed as a rank 2n vector bundle, &g
and we have:

Proposition 11.33. For every rank n complex vector bundle, &, if pr = pp(&r) and ¢ =
cx(§), then we have

Il—=pr+pe+-+()'po=04c1+ca+-+c)(l—c1+ca+-+(=1)"c).

11.7 FEuler Classes and The Generalized Gauss-Bonnet
Theorem

Let £ = (E,m,B,V) be a real vector bundle of rank n = 2m and let V be any metric
connection on £. Then, if £ is orientable (as defined in Section 7.4, see Definition 7.12
and the paragraph following it), it is possible to define a global form, eu(RY) € A?*™(B),
which turns out to be closed. Furthermore, the cohomology class, [eu(RY)] € H3R(B), is
independent of the choice of V. This cohomology class, denoted e(§), is called the Euler
class of £ and has some very interesting properties. For example, p,,(£) = e(£)%.



11.7. EULER CLASSES AND THE GENERALIZED GAUSS-BONNET THEOREM 387

As V is a metric connection, in a trivialization, (U,, ¢, ), the curvature matrix, €, is a
skew symmetric 2m x 2m matrix of 2-forms. Therefore, we can substitute the 2-forms in €2,
for the variables of the Pfaffian of degree m (see Section 22.20) and we obtain the 2m-form,
Pf(Q,) € A*™(B). Now, as £ is orientable, the transition functions take values in SO(2m),
so by Proposition 11.9, since

Qﬁ = gaBQag;g y

we conclude from Proposition 22.38 (ii) that
Pf(Q,) = P{(Qp).
Therefore, the local 2m-forms, Pf(Q,), patch and define a global form, Pf(RY) € A*™(B).
The following propositions can be shown:

Proposition 11.34. For every real, orientable, rank 2m vector bundle, &, for every metric
connection, V, on & the 2m-form, Pf(RY) € A*™(B), is closed.

Proposition 11.35. For every real, orientable, rank 2m wvector bundle, £, the cohomology
class, [Pf(RY)] € HER(B), is independent of the metric connection, ¥V, on €.

Proofs of Propositions 11.34 and 11.35 can be found in Madsen and Tornehave [101]
(Chapter 19) or Milnor and Stasheff [111] (Appendix C) (also see Morita [115], Chapters 5
and 6).

Definition 11.9. Let £ = (E,m, B, V) be any real, orientable, rank 2m vector bundle. For
any metric connection, V, on & the Fuler form associated with V is the closed form

en(RY) = # PE(RY) € A™(B)

and the Fuler class of ¢ is the cohomology class,
e(€) = [eu(RY)] € HYR(B),
which does not depend on V.

@ Some authors, including Madsen and Tornehave [101], have a negative sign in front of
RY in their definition of the Euler form, that is, they define eu(RY) by
1

eu(RY) = @n) Pf(—=RY).

However these authors use a Pfaffian with the opposite sign convention from ours and this
Pfaffian differs from ours by the factor (—1)" (see the warning in Section 22.20). Madsen and
Tornehave [101] seem to have overlooked this point and with their definition of the Pfaffian
(which is the one we have adopted) Proposition 11.37 is incorrect.
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Here is the relationship between the Euler class, e(£), and the top Pontrjagin class, p,,(£):

Proposition 11.36. For every real, orientable, rank 2m vector bundle, & = (E,m, B, V'), we
have

pm(§) = e(§)” € Hpr(B).
Proof. The top Pontrjagin class, p,,(§), is given by

P(€) = {ﬁ det(RVﬂ ,

for any (metric) connection, V and

e(¢) = [eu(RY)]

with )
eu(RY) = —— V.
() = s PIET)

From Proposition 22.38 (i), we have
det(RY) = Pf(RY)?,

which yields the desired result. 0

A rank m complex vector bundle, £ = (E, 7, B,V), can be viewed as a real rank 2m
vector bundle, &g, by viewing V' as a 2m dimensional real vector space. Then, it turns out
that &g is naturally orientable. Here is the reason.

For any basis, (e1,...,e,), of V over C, observe that (e, ieq, ..., €en,i€e,) is a basis of V'
over R (since v = >0 (N +ip)e; = Yooy Nieg + Yoy pite;). But, any m x m invertible
matrix, A, over C becomes a real 2m x 2m invertible matrix, Agr, obtained by replacing the
entry aji + ibj; in A by the real 2 x 2 matrix

(o)
bj Q-

Indeed, if v, = Y 7%, ajre;+ D7 bjkiej, then dvy, = Y770 —bjre;+> 7| ajpie; and when we
express vy, and vy over the basis (e, i€y, ..., ey, i€,), we get a matrix Ag consisting of 2 x 2
blocks as above. Clearly, the map r: A — Ag is a continuous injective homomorphism from
GL(m, C) to GL(2m,R). Now, it is known GL(m, C) is connected, thus Im(r) = r(GL(m, C))
is connected and as det(ls,) = 1, we conclude that all matrices in Im(r) have positive
determinant.! Therefore, the transition functions of &g which take values in Im(r) have
positive determinant and &g is orientable. We can give &g an orientation by fixing some basis
of V over R. Then, we have the following relationship between e(£g) and the top Chern

class, ¢, (€):

1One can also prove directly that every matrix in Im(r) has positive determinant by expressing 7(A) as
a product of simple matrices whose determinants are easily computed.
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Proposition 11.37. For every complex, rank m vector bundle, £ = (E,m, B, V'), we have

cn(€) = e(§) € Hpp(B).

Proof. Pick some metric connection, V. Recall that

en(€) = [(%)m det(RV)} _m [(%)m det(RV)] |

On the other hand,

“(©) = | s PHAD)|.

Here, RY denotes the global 2m-form wich, locally, is equal to Qr, where Q is the m x m
curvature matrix of £ over some trivialization. By Proposition 22.39,

PE(Qg) = i" det(Q),
50 ¢ (&) = e(§), as claimed. O

The Euler class enjoys many other nice properties. For example, if f: & — & is an
orientation preserving bundle map, then

e(f*&) = fr(e(82)),

where f*& is given the orientation induced by &;. Also, the Euler class can be defined by
topological means and it belongs to the integral cohomology group H*™(B;Z).

Although this result lies beyond the scope of these notes we cannot resist stating one of
the most important and most beautiful theorems of differential geometry usually called the
Generalized Gauss-Bonnet Theorem or Gauss-Bonnet-Chern Theorem.

For this, we need the notion of Euler characteristic. Since we haven’t discussed triangu-
lations of manifolds, we will use a defintion in terms of cohomology. Although concise, this
definition is hard to motivate and we appologize for this. Given a smooth n-dimensional
manifold, M, we define its Fuler characteristic, x(M), as

n

X(M) =) (=1) dim(Hpyp).
i=0
The integers, b; = dim(H},y ), are known as the Betti numbers of M. For example, y(S5?) = 2.

It turns out that if M is an odd dimensional manifold, then (M) = 0. This explains
partially why the Euler class is only defined for even dimensional bundles.

The Generalized Gauss-Bonnet Theorem (or Gauss-Bonnet-Chern Theorem) is a gener-
alization of the Gauss-Bonnet Theorem for surfaces. In the general form stated below it was
first proved by Allendoerfer and Weil (1943), and Chern (1944).
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Theorem 11.38. (Generalized Gauss-Bonnet Formula) Let M be an orientable, smooth,
compact manifold of dimension 2m. For every metric connection, V, on TM , (in particular,
the Levi-Civita connection for a Riemannian manifold) we have

/M en(RY) = y(M).

A proof of Theorem 11.38 can be found in Madsen and Tornehave [101] (Chapter 21),
but beware of some sign problems. The proof uses another famous theorem of differential
topology, the Poincaré-Hopf Theorem. A sketch of the proof is also given in Morita [115],
Chapter 5.

Theorem 11.38 is remarkable because it establishes a relationship between the geometry
of the manifold (its curvature) and the topology of the manifold (the number of “holes”),
somehow encoded in its Euler characteristic.

Characteristic classes are a rich and important topic and we’ve only scratched the surface.
We refer the reader to the texts mentioned earlier in this section as well as to Bott and Tu
[19] for comprehensive expositions.



Chapter 12

Geodesics on Riemannian Manifolds

12.1 Geodesics, Local Existence and Uniqueness

If (M, g) is a Riemannian manifold, then the concept of length makes sense for any piecewise
smooth (in fact, C') curve on M. Then, it possible to define the structure of a metric space on
M, where d(p, q) is the greatest lower bound of the length of all curves joining p and ¢q. Curves
on M which locally yield the shortest distance between two points are of great interest. These
curves called geodesics play an important role and the goal of this chapter is to study some of
their properties. Since geodesics are a standard chapter of every differential geometry text,
we will omit most proofs and instead give precise pointers to the literature. Among the many
presentations of this subject, in our opinion, Milnor’s account [107] (Part IT, Section 11) is still
one of the best, certainly by its clarity and elegance. We acknowledge that our presentation
was heavily inspired by this beautiful work. We also relied heavily on Gallot, Hulin and
Lafontaine [61] (Chapter 2), Do Carmo [51], O’'Neill [120], Kuhnel [92] and class notes
by Pierre Pansu (see http://www.math.u-psud.fr/%7Epansu/web_dea/resume_dea_04.html
in http://www.math.u-psud.frpansu/). Another reference that is remarkable by its clarity
and the completeness of its coverage is Postnikov [126].

Given any p € M, for every v € T,M, the (Riemannian) norm of v, denoted |jv]|, is

defined by
[oll =1/ gp(v,v).

The Riemannian inner product, g,(u,v), of two tangent vectors, u,v € T,M, will also be
denoted by (u,v),, or simply (u,v). Recall the following definitions regarding curves:

Definition 12.1. Given any Riemannian manifold, M, a smooth parametric curve (for short,
curve) on M is a map, v: I — M, where [ is some open interval of R. For a closed interval,
[a,b] C R, a map v: [a,b] — M is a smooth curve from p = ~(a) to ¢ = v(b) iff v can be
extended to a smooth curve 7: (a — €,b + €) — M, for some ¢ > 0. Given any two points,
p,q € M, a continuous map, v: [a,b] — M, is a piecewise smooth curve from p to q iff

391
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(1) There is a sequence a =ty < t; < -+ < tp_1 < t;, = b of numbers, t; € R, so that each
map, v; = | [ti, tiy1], called a curve segment is a smooth curve for i = 0,..., k — 1.

(2) y(a) =pand y(b) = q.

The set of all piecewise smooth curves from p to ¢ is denoted by Q(M;p,q) or briefly by
Q(p, q) (or even by Q, when p and ¢ are understood).

The set Q(M; p, q) is an important object sometimes called the path space of M (from p to
q). Unfortunately it is an infinite-dimensional manifold, which makes it hard to investigate
its properties.

Observe that at any junction point, v;_1(t;) = 7i(¢;), there may be a jump in the velocity
vector of 7. We let v'((¢;)4) = ~i(t;) and ~'((¢;)-) = vi_, (t:).

Given any curve, v € Q(M;p, q), the length, L(7y), of 7 is defined by

tit1

Lo =3 [ ela=Y [ Ve

It is easy to see that L(v) is unchanged by a monotone reparametrization (that is, a map
h: [a,b] — [c,d], whose derivative, h’, has a constant sign).

Let us now assume that our Riemannian manifold, (M, g), is equipped with the Levi-
Civita connection and thus, for every curve, v, on M, let % be the associated covariant
derivative along v, also denoted V.,

Definition 12.2. Let (M, g) be a Riemannian manifold. A curve, v: I — M, (where I C R
is any interval) is a geodesic iff 7/(t) is parallel along 7, that is, iff
D~/
dt

=V,7 =0.

If M was embedded in R?, a geodesic would be a curve, 7, such that the acceleration
vector, v = Dd—z, is normal to T’ ) M.

By Proposition 11.25, |7/ (¢)|| = v/g(¥'(t),~'(t)) is constant, say |7/ (t)]| = c. If we define
the arc-length function, s(t), relative to a, where a is any chosen point in I, by

0= [ Vi =l a), il

we conclude that for a geodesic, v(t), the parameter, ¢, is an affine function of the arc-length.
When ¢ = 1, which can be achieved by an affine reparametrization, we say that the geodesic
is normalized.

The geodesics in R™ are the straight lines parametrized by constant velocity. The
geodesics of the 2-sphere are the great circles, parametrized by arc-length. The geodesics
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of the Poincaré half-plane are the lines x = a and the half-circles centered on the z-axis.
The geodesics of an ellipsoid are quite fascinating. They can be completely characterized
and they are parametrized by elliptic functions (see Hilbert and Cohn-Vossen [76], Chapter
4, Section and Berger and Gostiaux [17], Section 10.4.9.5). If M is a submanifold of R",
geodesics are curves whose acceleration vector, 4" = (D~/)/dt is normal to M (that is, for
every p € M, ~" is normal to T,M).

In a local chart, (U, ), since a geodesic is characterized by the fact that its velocity
vector field, 7/(¢), along v is parallel, by Proposition 11.13, it is the solution of the following
system of second-order ODE’s in the unknowns, w:

d?uy, N " du; du;
dt? Yodt dt

ij

=0, k=1,...,n,

with u; = pr;op oy (n = dim(M)).

The standard existence and uniqueness results for ODE’s can be used to prove the fol-
lowing proposition (see O’Neill [120], Chapter 3):

Proposition 12.1. Let (M, g) be a Riemannian manifold. For every point, p € M, and
every tangent vector, v € T,M, there is some interval, (—n,n), and a unique geodesic,

Yo (=n,m) = M,

satisfying the conditions
%(0)=p,  %(0)=v.

The following proposition is used to prove that every geodesic is contained in a unique
maximal geodesic (i.e, with largest possible domain). For a proof, see O’Neill [120], Chapter
3 or Petersen [122] (Chapter 5, Section 2, Lemma 7).

Proposition 12.2. For any two geodesics, v1: [y — M and vo: Iy — M, if v1(a) = y2(a)
and vi(a) = v4(a), for some a € I} N Iy, then v, = vo on I} N 1.

Propositions 12.1 and 12.2 imply that for every p € M and every v € T,M, there is a
unique geodesic, denoted +,, such that v(0) = p, 7/(0) = v, and the domain of ~ is the largest
possible, that is, cannot be extended. We call +y, a mazimal geodesic (with initial conditions

75(0) = p and 7,(0) = v).

Observe that the system of differential equations satisfied by geodesics has the following
homogeneity property: If ¢ — () is a solution of the above system, then for every constant,
¢, the curve t — v(ct) is also a solution of the system. We can use this fact together with
standard existence and uniqueness results for ODE’s to prove the proposition below. For
proofs, see Milnor [107] (Part II, Section 10), or Gallot, Hulin and Lafontaine [61] (Chapter
2).
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Proposition 12.3. Let (M, g) be a Riemannian manifold. For every point, py € M, there
15 an open subset, U C M, with py € U, and some € > 0, so that: For every p € U and every
tangent vector, v € T,M, with ||v]| < €, there is a unique geodesic,

Yo: (=2,2) = M,
satisfying the conditions

%(0)=p,  7,(0)=v.

If v,: (=n,n) — M is a geodesic with initial conditions 7,(0) = p and ~,(0) = v # 0,
for any constant, ¢ # 0, the curve, t — ~,(ct), is a geodesic defined on (—n/c,n/c) (or
(n/c,—n/c) if ¢ < 0) such that 7/(0) = cv. Thus,

7v<6t) = '-ch(t% ct € (_777 77)
This fact will be used in the next section.

Given any function, f € C*°(M), for any p € M and for any u € T,M, the value of
the Hessian, Hess,(f)(u,u), can be computed using geodesics. Indeed, for any geodesic,
v:10,€¢] = M, such that v(0) = p and 7/(0) = u, we have

Hess, (u, u) = 7' (7'(f)) = (Vo) (f) =+ (v'(f))

since V.,y" = 0 because v is a geodesic and

9

t=0

YO0 =) = (7000

)= e

and thus,
d2
Hess, (u,u) = - /((1)

t=0

12.2 The Exponential Map

The idea behind the exponential map is to parametrize a Riemannian manifold, M, locally
near any p € M in terms of a map from the tangent space 7, M to the manifold, this map
being defined in terms of geodesics.

Definition 12.3. Let (M, g) be a Riemannian manifold. For every p € M, let D(p) (or
simply, D) be the open subset of T,M given by

D(p) ={veT,M |~,(1) is defined},

where 7, is the unique maximal geodesic with initial conditions 7,(0) = p and ~,(0) = v.
The exponential map is the map, exp,: D(p) — M, given by

exp,(v) = ().
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It is easy to see that D(p) is star-shaped, which means that if w € D(p), then the line
segment {tw | 0 <t < 1} is contained in D(p). In view of the remark made at the end of
the previous section, the curve

t > exp,(tv), tv € D(p)

is the geodesic, 7, through p such that 4/ (0) = v. Such geodesics are called radial geodesics.
The point, expp(tv), is obtained by running along the geodesic, ~,, an arc length equal to
t[|v]|, starting from p.

In general, D(p) is a proper subset of T,M. For example, if U is a bounded open subset
of R™, since we can identify 7,U with R™ for all p € U, then D(p) C U, for all p € U.

Definition 12.4. A Riemannian manifold, (M, g), is geodesically complete itt D(p) = T,M,
for all p € M, that is, iff the exponential, exp,(v), is defined for all p € M and for all
v e T,M.

Equivalently, (M, g) is geodesically complete iff every geodesic can be extended indefi-
nitely. Geodesically complete manifolds have nice properties, some of which will be investi-
gated later.

Observe that d(exp,,)o = idr, . This is because, for every v € D(p), the map ¢ > exp,(tv)
is the geodesic, 7v,, and

d

SOz = v = (B, (10))eco = dlexp,ofe).

It follows from the inverse function theorem that exp, is a diffeomorphism from some open
ball in T}, M centered at 0 to M. The following slightly stronger proposition can be shown
(Milnor [107], Chapter 10, Lemma 10.3):

Proposition 12.4. Let (M, g) be a Riemannian manifold. For every point, p € M, there is
an open subset, W C M, with p € W and a number ¢ > 0, so that

(1) Any two points q1,qo of W are joined by a unique geodesic of length < €.

(2) This geodesic depends smoothly upon qi and qa, that is, if t — exp,, (tv) is the geodesic
joining q1 and g (0 <t <1), then v € T,;M depends smoothly on (qi,q2).

(3) For every q € W, the map exp, is a diffeomorphism from the open ball, B(0,¢) C T,M,
to its image, U, = exp,(B(0,¢)) € M, with W C U, and U, open.

For any ¢ € M, an open neighborhood of ¢ of the form, U, = exp,(B(0,¢€)), where exp,
is a diffeomorphism from the open ball B(0, €) onto U, is called a normal neighborhood.

Definition 12.5. Let (M, g) be a Riemannian manifold. For every point, p € M, the
injectivity radius of M at p, denoted i(p), is the least upper bound of the numbers, r > 0,
such that exp, is a diffeomorphism on the open ball B(0,r) C T,M. The injectivity radius,
i(M), of M is the greatest lower bound of the numbers, i(p), where p € M.
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For every p € M, we get a chart, (U, ), where U, = exp,(B(0,i(p))) and ¢ = exp™',
called a normal chart. If we pick any orthonormal basis, (ey,...,e,), of T,M, then the z;’s,
with 2; = pr; o exp~! and pr; the projection onto Re;, are called normal coordinates at p
(here, n = dim(M)). These are defined up to an isometry of 7, M. The following proposition
shows that Riemannian metrics do not admit any local invariants of order one. The proof is
left as an exercise.

Proposition 12.5. Let (M,g) be a Riemannian manifold. For every point, p € M, in
normal coordinates at p,

G
g 8171" 827]'

For the next proposition, known as Gauss Lemma, we need to define polar coordinates
on T,M. If n = dim(M), observe that the map, (0,00) x S"~! — T,M — {0}, given by

= 0 and Ffj (p) =0.

p

(r,v) = ro, r>0ves!

is a diffeomorphism, where S™~! is the sphere of radius r = 1 in T,M. Then, the map,
F: (0,i(p)) x S™! = U, — {p}, given by

(r,v) = exp,(rv), 0<r<i(p),ves!
is also a diffeomorphism.

Proposition 12.6. (Gauss Lemma) Let (M, g) be a Riemannian manifold. For every point,
p € M, the images, exp,(S(0,7)), of the spheres, S(0,7) C T,M, centered at 0 by the
exponential map, exp,, are orthogonal to the radial geodesics, 1 +— expp(rv), through p, for
allr < i(p). Furthermore, in polar coordinates, the pull-back metric, exp* g, induced on T,M
1s of the form

exp*y = dr’ + g,

where g, is a metric on the unit sphere, ST, with the property that g,/r? converges to the
standard metric on S™™' (induced by R"™) when r goes to zero (here, n = dim(M)).

Proof sketch. after Milnor, see [107], Chapter II, Section 10. Pick any curve, ¢ — v(t) on
the unit sphere, S"~!. We must show that the corresponding curve on M,

t— expp(rv(t)),
with r fixed, is orthogonal to the radial geodesic,
T expp(rv(t)),
with ¢ fixed, 0 < r < i(p). In terms of the parametrized surface,

f(r;t) = exp,(ro(t)),
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(-
or’ ot/

for all (r,t). However, as we are using the Levi-Civita connection which is compatible with

the metric, we have
of of\ _/Dof of\  /of Do
87" or’ ot or or’ ot or’or ot/

The first expression on the right is zero since the curves

we must prove that

t— f(rt)

are geodesics. For the second expression, we have
of DOofN_ L0 Jof OFN\ _
or’or ot/ 20t \or’ or ’

since 1 = ||v(t)|| = ||0f/0r||. Therefore,
of of
ar’ ot

is independent of r. But, for » = 0, we have

f(0,1) = exp,(0) = p,

hence

Of Jot(0,1) = 0

()
or’ ot/

for all r, ¢, which concludes the proof of the first statement. For the proof of the second
statement, see Pansu’s class notes, Chapter 3, Section 3.5. O

and thus,

Consider any piecewise smooth curve
w: [a,b] = U, — {p}.
We can write each point w(t) uniquely as
w(t) = exp,(r(t)v(t)),
with 0 < r(t) < i(p), v(t) € T,M and ||v(t)| = 1.
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Proposition 12.7. Let (M, g) be a Riemannian manifold. We have

b
/ l @ dt > 1r(b) - r(a)l.

where equality holds only if the function r is monotone and the function v is constant. Thus,
the shortest path joining two concentric spherical shells, exp,(S(0,71)) and exp,(S(0,72)), is
a radial geodesic.

Proof. (After Milnor, see [107], Chapter II, Section 10.) Again, let f(r,t) = exp,(rv(t)), so
that w(t) = f(r(t),t). Then,

dw _Of , af
dt ~ or )+ ot
The proof of the previous proposition showed that the two vectors on the right-hand side
are orthogonal and since ||0f/ 87"” = 1, this gives
o R b R

where equality holds only if 9f/0t = 0; hence only if v/(t) = 0. Thus,

/ ol gt > / ()|t > |r(®) — r(a)]
dt
where equality holds only if r(¢) is monotone and v(t) is constant. O

We now get the following important result from Proposition 12.6 and Proposition 12.7:

Theorem 12.8. Let (M,g) be a Riemannian manifold. Let W and € be as in Proposition
12.4 and let v: [0,1] — M be the geodesic of length < € joining two points qi,qs of W. For
any other piecewise smooth path, w, joining q1 and gz, we have

/0 I (1) dt < / ()] dt

where equality can holds only if the images w([0,1]) and ([0, 1]) coincide. Thus, ~ is the
shortest path from q; to qs.

Proof. (After Milnor, see [107], Chapter II, Section 10.) Consider any piecewise smooth
path, w, from ¢; = v(0) to some point

¢ = exp,, (1v) € Uy,

where 0 < r < € and ||v|| = 1. Then, for any § with 0 < é < r, the path w must contain
a segment joining the spherical shell of radius § to the spherical shell of radius 7, and lying
between these two shells. The length of this segment will be at least » — §; hence if we let §
go to zero, the length of w will be at least r. If w([0,1]) # ([0, 1]), we easily obtain a strict
inequality. O
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Here is an important consequence of Theorem 12.8.

Corollary 12.9. Let (M,g) be a Riemannian manifold. If w: [0,b] — M is any curve
parametrized by arc-length and w has length less than or equal to the length of any other
curve from w(0) to w(b), then w is a geodesic.

Proof. Consider any segment of w lying within an open set, W, as above, and having length
< €. By Theorem 12.8, this segment must be a geodesic. Hence, the entire curve is a
geodesic. O

Definition 12.6. Let (M,g) be a Riemannian manifold. A geodesic, v: [a,b] — M, is
minimal iff its length is less than or equal to the length of any other piecewise smooth curve
joining its endpoints.

Theorem 12.8 asserts that any sufficiently small segment of a geodesic is minimal. On
the other hand, a long geodesic may not be minimal. For example, a great circle arc on the
unit sphere is a geodesic. If such an arc has length greater than 7, then it is not minimal.
Minimal geodesics are generally not unique. For example, any two antipodal points on a
sphere are joined by an infinite number of minimal geodesics.

A broken geodesic is a piecewise smooth curve as in Definition 12.1, where each curve
segment is a geodesic.

Proposition 12.10. A Riemannian manifold, (M, g), is connected iff any two points of M
can be joined by a broken geodesic.

Proof. Assume M is connected, pick any p € M, and let S, C M be the set of all points that
can be connected to p by a broken geodesic. For any ¢ € M, choose a normal neighborhood,
U, of q. If ¢ € S,, then it is clear that U C S,. On the other hand, if ¢ ¢ S, then
U C M —S,. Therefore, S, # ) is open and closed, so S, = M. The converse is obvious. [

In general, if M is connected, then it is not true that any two points are joined by a
geodesic. However, this will be the case if M is geodesically complete, as we will see in the
next section.

Next, we will see that a Riemannian metric induces a distance on the manifold whose
induced topology agrees with the original metric.

12.3 Complete Riemannian Manifolds,
the Hopf-Rinow Theorem and the Cut Locus

Every connected Riemannian manifold, (M, g), is a metric space in a natural way. Fur-
thermore, M is a complete metric space iff M is geodesically complete. In this section, we
explore briefly some properties of complete Riemannian manifolds.
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Proposition 12.11. Let (M, g) be a connected Riemannian manifold. For any two points,
p,q € M, let d(p,q) be the greatest lower bound of the lengths of all piecewise smooth curves
joining p to q. Then, d is a metric on M and the topology of the metric space, (M,d),
coincides with the original topology of M.

A proof of the above proposition can be found in Gallot, Hulin and Lafontaine [61]
(Chapter 2, Proposition 2.91) or O'Neill [120] (Chapter 5, Proposition 18).

The distance, d, is often called the Riemannian distance on M. For any p € M and any
€ > 0, the metric ball of center p and radius € is the subset, B.(p) C M, given by

Be(p) ={q€ M |d(p,q) < e}.

The next proposition follows easily from Proposition 12.4 (Milnor [107], Section 10, Corol-
lary 10.8).

Proposition 12.12. Let (M,g) be a connected Riemannian manifold. For any compact
subset, K C M, there is a number § > 0 so that any two points, p,q € K, with distance
d(p,q) < 0 are joined by a unique geodesic of length less than 6. Furthermore, this geodesic
18 minimal and depends smoothly on its endpoints.

Recall from Definition 12.4 that (M, g) is geodesically complete iff the exponential map,
v > exp,(v), is defined for all p € M and for all v € T,M. We now prove the following
important theorem due to Hopf and Rinow (1931):

Theorem 12.13. (Hopf-Rinow) Let (M, g) be a connected Riemannian manifold. If there is
a point, p € M, such that exp, is defined on the entire tangent space, T,M, then any point,
q € M, can be joined to p by a minimal geodesic. As a consequence, if M is geodesically
complete, then any two points of M can be joined by a minimal geodesic.

Proof. We follow Milnor’s proof in [107], Chapter 10, Theorem 10.9. Pick any two points,
p,q € M and let r = d(p,q). By Proposition 12.4, there is some open subset, W, with
p € W and some ¢ > 0 so that any two points of W are joined by a unique geodesic and
the exponential map is a diffeomorphism between the open ball, B(0,¢), and its image,
Up = exp,(B(0,¢)). For d <¢, let S = exp,(5(0,9)), where S(0,0) is the sphere of radius 4.
Since S C U, is compact, there is some point,

po = exp,(6v), with [|v|| = 1,
on S for which the distance to ¢ is minimized. We will prove that
exp,(rv) = g,

which will imply that the geodesic, «, given by v(t) = exp,(tv) is actually a minimal geodesic
from p to ¢ (with ¢ € [0,7]). Here, we use the fact that the exponential exp, is defined
everywhere on T, M.



12.3. COMPLETE RIEMANNIAN MANIFOLDS, HOPF-RINOW, CUT LOCUS 401

The proof amounts to showing that a point which moves along the geodesic v must get
closer and closer to ¢. In fact, for each t € [§, r|, we prove

d(v(t),q) =1 —t. (%)
We get the proof by setting t = r.

First, we prove (xg). Since every path from p to ¢ must pass through S, by the choice of
Py, We have

r=d(p, q) = min{d(p, s) +d(s,q)} = 6 + d(po, q)-
Therefore, d(po,q) = r — 0 and since py = y(9), this proves (ks).
Define to € [0, 7] by
to = sup{t € [6,r] | d(v(t),q) =7 —t}.
As the set, {t € [0,7] | d(v(t),q) = r — t}, is closed, it contains its upper bound, ty, so the

equation (%) also holds. We claim that if ¢y < r, then we obtain a contradiction.

As we did with p, there is some small " > 0 so that if S = exp, ;) (B(0,d")), then there is
some point, pf, on S’ with minimum distance from ¢ and pj is joined to y(to) by a mimimal
geodesic. We have

r—to = d(y(to),q) = min{d(y(to), s) + d(s,9)} = &' + d(py, 9),

hence
d(ph,q) =7 —to — 0. (1)
We claim that pf, = v(to + ¢').
By the triangle inequality and using (1) (recall that d(p,q) = r), we have

d(p, po) > d(p,q) — d(py,q) = to + 0"

But, a path of length precisely ¢y + ¢’ from p to pj is obtained by following v from p to
7(to), and then following a minimal geodesic from ~(ty) to pj. Since this broken geodesic has
minimal length, by Corollary 12.9, it is a genuine (unbroken) geodesic, and so, it coincides
with 7. But then, as pj = v(to + ¢'), equality () becomes (4,14 ), namely

d(y(to +9),q) =r — (to + '),

contradicting the maximality of t,. Therefore, we must have ty = r and ¢ = exp,(rv), as
desired. O

Remark: Theorem 12.13 is proved is every decent book on Riemannian geometry. Among
those, we mention Gallot, Hulin and Lafontaine [61], Chapter 2, Theorem 2.103 and O’Neill
[120], Chapter 5, Lemma 24.

Theorem 12.13 implies the following result (often known as the Hopf-Rinow Theorem):
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Theorem 12.14. Let (M, g) be a connected, Riemannian manifold. The following state-
ments are equivalent:

(1) The manifold (M, g) is geodesically complete, that is, for every p € M, every geodesic
through p can be extended to a geodesic defined on all of R.

(2) For every point, p € M, the map exp, is defined on the entire tangent space, T, M.
(3) There is a point, p € M, such that exp, is defined on the entire tangent space, T,M.
(4) Any closed and bounded subset of the metric space, (M,d), is compact.

(5) The metric space, (M,d), is complete (that is, every Cauchy sequence converges).

Proofs of Theorem 12.14 can be found in Gallot, Hulin and Lafontaine [61], Chapter 2,
Corollary 2.105 and O’Neill [120], Chapter 5, Theorem 21.

In view of Theorem 12.14, a connected Riemannian manifold, (M, g), is geodesically
complete iff the metric space, (M, d), is complete. We will refer simply to M as a complete
Riemannian manifold (it is understood that M is connected). Also, by (4), every compact,
Riemannian manifold is complete. If we remove any point, p, from a Riemannian manifold,
M, then M — {p} is not complete since every geodesic that formerly went through p yields
a geodesic that can’t be extended.

Assume (M, g) is a complete Riemannian manifold. Given any point, p € M, it is
interesting to consider the subset, U, C T,M, consisting of all v € T,M such that the
geodesic

t > exp,(tv)

is a minimal geodesic up to ¢t = 1+ ¢, for some € > 0. The subset U, is open and star-shaped
and it turns out that exp, is a diffeomorphism from I, onto its image, exp,(U,), in M.
The left-over part, M — exp,(U,) (if nonempty), is actually equal to exp,(dlU,) and it is
an important subset of M called the cut locus of p. The following proposition is needed to
establish properties of the cut locus:

Proposition 12.15. Let (M, g) be a complete Riemannian manifold. For any geodesic,
v:[0,a] = M, from p =~(0) to ¢ = v(a), the following properties hold:

(i) If there is no geodesic shorter than -y between p and q, then v is minimal on [0, al.

(i) If there is another geodesic of the same length as vy between p and q, then v is no longer
minimal on any larger interval, [0, a + €.

(ii) If v is minimal on any interval, I, then 7 is also minimal on any subinterval of 1.

Proof. Part (iii) is an immediate consequence of the triangle inequality. As M is complete,
by the Hopf-Rinow Theorem, there is a minimal geodesic from p to ¢, so v must be minimal
too. This proves part (i). Part (ii) is proved in Gallot, Hulin and Lafontaine [61], Chapter
2, Corollary 2.111. O]
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Again, assume (M, g) is a complete Riemannian manifold and let p € M be any point.
For every v € T,,M, let

I, = {s € RU{oo} | the geodesic t+ exp,(tv) is minimal on [0, s]}.

It is easy to see that [, is a closed interval, so I, = [0, p(v)] (with p(v) possibly infinite). It
can be shown that if w = Av, then p(v) = Ap(w), so we can restrict our attention to unit
vectors, v. It can also be shown that the map, p: S ! — R, is continuous, where S is
the unit sphere of center 0 in 7,M, and that p(v) is bounded below by a strictly positive
number.

Definition 12.7. Let (M, g) be a complete Riemannian manifold and let p € M be any
point. Define U, by

ty={o et o () > I} = 0 € T | p(e) > 1)

and the cut locus of p by
Cut(p) = exp,(0U,) = {exp,(p(v)v) | v € S”_l}.

The set U, is open and star-shaped. The boundary, U, of U, in T,,M is sometimes
called the tangential cut locus of p and is denoted Cut(p).

Remark: The cut locus was first introduced for convex surfaces by Poincaré (1905) under
the name ligne de partage. According to Do Carmo [51] (Chapter 13, Section 2), for Rie-
mannian manifolds, the cut locus was introduced by J.H.C. Whitehead (1935). But it was
Klingenberg (1959) who revived the interest in the cut locus and showed its usefuleness.

Proposition 12.16. Let (M, g) be a complete Riemannian manifold. For any point, p € M,
the sets exp,(U,) and Cut(p) are disjoint and

M = exp,(U,) U Cut(p).

Proof. From the Hopf-Rinow Theorem, for every ¢ € M, there is a minimal geodesic,
t — exp,(vt) such that exp,(v) = ¢. This shows that p(v) > 1, so v € U, and

M = exp,(U,) U Cut(p).

It remains to show that this is a disjoint union. Assume ¢ € exp,(U,) N Cut(p). Since
q € exp,(Uy), there is a geodesic, 7, such that v(0) = p, y(a) = ¢ and 7 is minimal on
[0,a + €], for some € > 0. On the other hand, as g € Cut(p), there is some geodesic, 7, with
¥(0) = p, ¥(b) = ¢, ¥ minimal on [0,b], but ¥ not minimal after b. As v and 7 are both
minimal from p to ¢, they have the same length from p to ¢. But then, as v and 7 are distinct,
by Proposition 12.15 (ii), the geodesic v can’t be minimal after ¢, a contradiction. O]
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Observe that the injectivity radius, ¢(p), of M at p is equal to the distance from p to the
cut locus of p:

i(p) = d(p, Cut(p)) = inf d(p,q).

q€Cut(p)

Consequently, the injectivity radius, i(M), of M is given by

(M) = inf d(p, Cut(p)).

If M is compact, it can be shown that i(M) > 0. It can also be shown using Jacobi fields that
exp, is a diffeomorphism from U, onto its image, expp(up). Thus, expp(up) is diffeomorphic
to an open ball in R™ (where n = dim(M)) and the cut locus is closed. Hence, the manifold,
M, is obtained by gluing together an open n-ball onto the cut locus of a point. In some
sense the topology of M is “contained” in its cut locus.

Given any sphere, S""1, the cut locus of any point, p, is its antipodal point, {—p}.
For more examples, consult Gallot, Hulin and Lafontaine [61] (Chapter 2, Section 2CT7),
Do Carmo [51] (Chapter 13, Section 2) or Berger [16] (Chapter 6). In general, the cut
locus is very hard to compute. In fact, according to Berger [16], even for an ellipsoid, the
determination of the cut locus of an arbitrary point is still a matter of conjecture!

12.4 The Calculus of Variations Applied to Geodesics;
The First Variation Formula

Given a Riemannian manifold, (M, g), the path space, Q(p, ¢), was introduced in Definition
12.1. It is an “infinite dimensional” manifold. By analogy with finite dimensional manifolds,
we define a kind of tangent space to Q(p,q) at a “point” w. In this section, it is convenient
to assume that paths in Q(p, ¢) are parametrized over the interval [0, 1].

Definition 12.8. For every “point”, w € €(p, q), we define the “tangent space”, T, (p, q),
of Q(p,q) at w, to be the space of all piecewise smooth vector fields, W, along w, for which
W(0)=W(1)=0.

Now, if F': Q(p,q) — R is a real-valued function on (p, ¢), it is natural to ask what the
induced “tangent map”,
dr,: T,9Q(p,q) — R,

should mean (here, we are identifying Tp(,)R with R). Observe that (p,q) is not even
a topological space so the answer is far from obvious! In the case where f: M — R is a
function on a manifold, there are various equivalent ways to define df, one of which involves
curves. For every v € T,M, if a: (—e,e) — M is a curve such that a(0) = p and o/(0) = v,
then we know that

d(f(a(t)))

dfp(v) = di

t=0
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We may think of « as a small variation of p. Recall that p is a critical point of f iff df,(v) = 0,
for all v e T,M.

Rather than attempting to define dF,, (which requires some conditions on F'), we will
mimic what we did with functions on manifolds and define what is a critical path of a
function, F': Q(p,q) — R, using the notion of variation. Now, geodesics from p to ¢ are
special paths in Q(p, ¢) and they turn out to be the critical paths of the energy function,

Etw) = [ IO d

where w € Q(p,q), and 0 < a < b < 1.

Definition 12.9. Given any path, w € Q(p, q), a variation of w (keeping endpoints fized) is
a function, a: (—e¢, €) — Q(p, q), for some € > 0, such that

(1) a(0) =w
(2) There is a subdivision, 0 =ty < t; < -+ < tx_y <t =1 of [0,1] so that the map
a: (—e€) x[0,1] = M
defined by a(u,t) = a(u)(t) is smooth on each strip (—¢, €)X [t;, t;41], fori = 0,... k—1.

If U is an open subset of R™ containing the origin and if we replace (—¢, €) by U in the above,
then a: U — (p, q) is called an n-parameter variation of w.

The function « is also called a wariation of w. Since each a(u) belongs to Q(p, ¢), note
that
a(u,0) =p, au,1)=gq, forallué€ (—ee).

The function, &, may be considered as a “smooth path” in Q(p, q), since for every u € (—¢,€),
the map a(u) is a curve in Q(p, q) called a curve in the variation (or longitudinal curve of
the variation). The “velocity vector”, %(0) € T.,p,q), is defined to be the vector field,
W, along w, given by

_da Oa

= 2 0) = S (0,0),

Clearly, W € T,,Q(p, q). In particular, W(0) = W (1) = 0. The vector field, W, is also called

the variation vector field associated with the variation a.

Wi

Besides the curves in the variation, a(u) (with u € (—¢,€)), for every t € [0, 1], we have
a curve, a;: (—e,€) — M, called a transversal curve of the variation, defined by

ay(u) = afu)(t),

and W; is equal to the velocity vector, a;(0), at the point w(t) = a4(0). For e sufficiently
small, the vector field, W, is an infinitesimal model of the variation a.
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We can show that for any W € T,,Q(p, q) there is a variation, a: (—e, €) — Q(p, ¢), which

satisfies the conditions B
da

Sketch of the proof. By the compactness of w([0,1]), it is possible to find a 6 > 0 so that
exp,,(y is defined for all ¢ € [0,1] and all v € T4y M, with [lv|| < J. Then, if

N = max ||W]|,

te(0,1]
for any € such that 0 < e < %, it can be shown that
a(u)(t) = exp, ) (uiy)

works (for details, see Do Carmo [51], Chapter 9, Proposition 2.2). O

As we said earlier, given a function, F': Q(p,q) — R, we do not attempt to define the
differential, dF,,, but instead, the notion of critical path.

Definition 12.10. Given a function, F': Q(p,q) — R, we say that a path, w € Q(p, q), is a
critical path for F iff

dF(a(u))
el S ¥4 =0,
du w0
for every variation, &, of w (which implies that the derivative w is defined for every
u=0

variation, &, of w).

dF(a(u))

du are

For example, if F' takes on its minimum on a path wy and if the derivatives
all defined, then wy is a critical path of F'.

We will apply the above to two functions defined on Q(p, q):

(1) The energy function (also called action integral):

b
Etw) = [ I it

(We write £ = Ej.)
(2) The arc-length function,

b
L) = [ o)) de.



12.4. THE CALCULUS OF VARIATIONS APPLIED TO GEODESICS 407

The quantities E°(w) and L?(w) can be compared as follows: if we apply the Cauchy-

Schwarz's inequality,
(/ bf(t)g(t)dt>2 < ([ row) ([ dom)

with f(t) =1 and g(t) = ||w'(¢)]], we get
(La(w))® < (b—a)Ey,

where equality holds iff g is constant; that is, iff the parameter ¢ is proportional to arc-length.

Now, suppose that there exists a minimal geodesic, ~, from p to ¢g. Then,
E(y) = L(v)* £ L(w)’ < B(w),

where the equality L(v)? = L(w)? holds only if w is also a minimal geodesic, possibly
reparametrized. On the other hand, the equality L(w) = E(w)? can hold only if the param-
eter is proportional to arc-length along w. This proves that E(vy) < E(w) unless w is also a
minimal geodesic. We just proved:

Proposition 12.17. Let (M, g) be a complete Riemannian manifold. For any two points,
p,q € M, if d(p,q) = 6, then the energy function, E: Q(p,q) — R, takes on its minimum,
52, precisely on the set of minimal geodesics from p to q.

Next, we are going to show that the critical paths of the energy function are exactly the
geodesics. For this, we need the first variation formula.

Let a: (—¢,€) = Q(p, q) be a variation of w and let
Oa

Wy = —(0,t
! au( )
be its associated variation vector field. Furthermore, let
dw
‘/t = a = w/(t>,
the velocity vector of w and
Atv = ‘[t+ - ‘/1577

the discontinuity in the velocity vector at ¢, which is nonzero only for ¢t =t¢;, with 0 < ¢; < 1
(see the definition of 7/((¢;)+) and ~/((¢;)—) just after Definition 12.1).

Theorem 12.18. (First Variation Formula) For any path, w € Q(p, q), we have

1 dE(a(u)) B ! D
57 o - 2<M7Atv> /0 Wh%% dt7

where a: (—e,€) — Qp, q) is any variation of w.
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Proof. (After Milnor, see [107], Chapter II, Section 12, Theorem 12.2.) By Proposition 11.24,
we have
0 /oa O« _5 D Ja O«
Ou \ot' ot/ “\ouot’ ot/
~ 1 1
GBE) 0 [ (00 day, (D oo duy,
du du Jo \ Ot Ot o \Ou Ot Ot

Now, because we are using the Levi-Civita connection, which is torsion-free, it is not hard
to prove that

Therefore,

D O« D Oa

ot du  Ou ot

dE(a(u)) :2/1 D da da\
du o \Ot Ou’ Ot

We can choose 0 =ty < t; < -+ < t; = 1 so that « is smooth on each strip (—e¢, €) X [t;_1, ;]
Then, we can “integrate by parts” on [t;_1,t;] as follows: The equation

9 (92 da\ /D Oa Ba\  /Ox D o
ot \ou’ ot/ \ot ou’ Ot ou’ ot ot
implies that

[ (Don day (e 0n e [ (e Do,
o, \Ot Ou’ Ot SN At iy, e, \OuwOt ot )

Adding up these formulae for ¢ = 1,...%k — 1 and using the fact that g—ff =0 for t = 0 and

t=1, we get
1dE(G(u) <= /da  da L /0o D da
3= (GG - [ (G )

=1

SO

Setting u = 0, we obtain the formula

! D
= - < taAtV> - / < ty 5, V;f> dt)
Z A\ g

u=0 i

1 dE(a(u))
2 du

as claimed. O

Intuitively, the first term on the right-hand side shows that varying the path w in the
direction of decreasing “kink” tends to decrease E. The second term shows that varying the

curve in the direction of its acceleration vector, % W'(t), also tends to reduce E.

A geodesic, 7, (parametrized over [0,1]) is smooth on the entire interval [0,1] and its
D

acceleration vector, 3 7'(t), is identically zero along ~. This gives us half of
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Theorem 12.19. Let (M, g) be a Riemanian manifold. For any two points, p,q € M, a
path, w € Q(p,q) (parametrized over [0,1]), is critical for the energy function, E, iff w is a
geodesic.

Proof. From the first variation formula, it is clear that a geodesic is a critical path of F.

Conversely, assume w is a critical path of E. There is a variation, &, of w such that its
associated variation vector field is of the form

W) = f(0) 2 (),

with f(¢) smooth and positive except that it vanishes at the ¢;’s. For this variation, we get
1
D D
=— ) (= w'(t), =~ (t) ) dt.
[ 1o (Ge0.570)

D
%w’(t) =0  on|0,1].

Hence, the restriction of w to each [t;, t;11] is a geodesic.

1 dB((w)
2 du

u=0

This expression is zero iff

It remains to prove that w is smooth on the entire interval [0, 1]. For this, pick a variation
a such that

Then, we have
k

= — Z(AQV, Ath>

u=0 i=1

If the above expression is zero, then A,V =0 fori =1,...,k— 1, which means that w is C!
everywhere on [0, 1]. By the uniqueness theorem for ODE’s; w must be smooth everywhere
on [0, 1], and thus, it is an unbroken geodesic. ]

Remark: If w € Q(p, q) is parametrized by arc-length, it is easy to prove that

dL@G(w)| 1 dE(G(u))

du 2 du

As a consequence, a path, w € Q(p, q) is critical for the arc-length function, L, iff it can be
reparametrized so that it is a geodesic (see Gallot, Hulin and Lafontaine [61], Chapter 3,
Theorem 3.31).

In order to go deeper into the study of geodesics we need Jacobi fields and the “second
variation formula”, both involving a curvature term. Therefore, we now proceed with a more
thorough study of curvature on Riemannian manifolds.
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Chapter 13

Curvature in Riemannian Manifolds

13.1 The Curvature Tensor

If (M, (—,—)) is a Riemannian manifold and V is a connection on M (that is, a connection
on T'M), we saw in Section 11.2 (Proposition 11.8) that the curvature induced by V is given
by

R(X> Y) =VxoVy —-VyoVyx— V[X,Y],

for all X,Y € X(M), with R(X,Y) € TI'(Hom(TM,TM)) = Homee ) (I'(TM),T'(TM)).
Since sections of the tangent bundle are vector fields (I'(T'M) = X(M)), R defines a map

R: X(M) x X(M) x X(M) — X(M),

and, as we observed just after stating Proposition 11.8, R(X,Y")Z is C*°(M)-linear in XY, Z
and skew-symmetric in X and Y. It follows that R defines a (1, 3)-tensor, also denoted R,
with

R,: T,M x T,M x TyM —> T,M.

Experience shows that it is useful to consider the (0, 4)-tensor, also denoted R, given by
Rp(xa Y, =, U)) = <Rp($7 y>za w>P

as well as the expression R(z,y,y,x), which, for an orthonormal pair, of vectors (z,vy), is
known as the sectional curvature, K(z,y).

This last expression brings up a dilemma regarding the choice for the sign of R. With
our present choice, the sectional curvature, K (x,y), is given by K(x,y) = R(x,y,y,x) but
many authors define K as K(x,y) = R(x,y,x,y). Since R(z,y) is skew-symmetric in x,y,
the latter choice corresponds to using —R(z,y) instead of R(x,y), that is, to define R(X,Y)
by

R(X, Y) = V[Xy] +VyoVxy —-VyxoVy.

As pointed out by Milnor [107] (Chapter II, Section 9), the latter choice for the sign of R has
the advantage that, in coordinates, the quantity, (R(0/0xy,0/0x;)0/0x;,0/0xy) coincides

411
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with the classical Ricci notation, R . Gallot, Hulin and Lafontaine [61] (Chapter 3, Section
A.1) give other reasons supporting this choice of sign. Clearly, the choice for the sign of R
is mostly a matter of taste and we apologize to those readers who prefer the first choice but
we will adopt the second choice advocated by Milnor and others. Therefore, we make the
following formal definition:

Definition 13.1. Let (M, (—, —)) be a Riemannian manifold equipped with the Levi-Civita
connection. The curvature tensor is the (1, 3)-tensor, R, defined by

Ry(z,y)2 = Vixy)Z +VyVxZ - VxVyZ,

for every p € M and for any vector fields, X, Y, Z € X(M), such that = = X(p), y = Y(p)
and z = Z(p). The (0,4)-tensor associated with R, also denoted R, is given by

Rp(:L’, Y, 2, w) = <(Rp(x> y)zv w),

forall pe M and all z,y,z,w € T,M.

Locally in a chart, we write

0 0\ 0 <, 0
f (a_xh aTc) Ox; ;Rﬂ“axl
and

o o\ o 0 l
Faij = <R (8_%’ 8_96’) Ox;’ a_xk> N zl:glkth’"

The coefficients, Ré- ni» can be expressed in terms of the Christoffel symbols, Ffj, in terms of a
rather unfriendly formula (see Gallot, Hulin and Lafontaine [61] (Chapter 3, Section 3.A.3)
or O’Neill [120] (Chapter III, Lemma 38). Since we have adopted O’Neill’s conventions for

the order of the subscripts in thi, here is the formula from O’Neill:

Ry =0}, — 0T + > T, I = > T, T

There is another way of defining the curvature tensor which is useful for comparing
second covariant derivatives of one-forms. Recall that for any fixed vector field, Z, the map,
Y — VyZ, is a (1,1) tensor that we will denote V_Z. Thus, using Proposition 11.5, the
covariant derivative VxV_Z of V_Z makes sense and is given by

(Vx(V_2))(Y) = Vx(VyZ) — (Vv,v)Z.
Usually, (Vx(V_Z2))(Y) is denoted by V%, Z and

ViyZ =Vx(VyZ) = Vo’
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is called the second covariant derivative of Z with respect to X and Y. Then, we have

VixZ—ViyZ = Vyv(VxZ) = Vyy,xZ—Vx(VyZ)+ Vy,yZ
xZ)=Vx(VyZ)+Vv,v-vyxZ

v(V
(VXZ) VX(VyZ)—FV[X,y}Z

since VxY — Vy X = [X,Y], as the Levi-Civita connection is torsion-free. Therefore, the
curvature tensor can also be defined by

R(X.Y)Z =V3.xZ - Vi Z.

We already know that the curvature tensor has some symmetry properties, for example,
R(y,z)z = —R(z,y)z but when it is induced by the Levi-Civita connection, it has more
remarkable properties stated in the next proposition.

Proposition 13.1. For a Riemannian manifold, (M, {—,—)), equipped with the Levi-Civita
connection, the curvature tensor satisfies the following properties:

(1) R(z,y)z = —R(y,x)z

(2) (First Bianchi Identity) R(xz,y)z + R(y, z)x + R(z,z)y =0
(3) R(z,y,z,w) = —R(z,y,w, z)

(4) R(z,y,z,w) = R(z,w, z,y).

The proof of Proposition 13.1 uses the fact that R,(z,y)z = R(X,Y)Z, for any vector
fields XY, Z such that + = X(p), y = Y(p) and Z = Z(p). In particular, X,Y, Z can be
chosen so that their pairwise Lie brackets are zero (choose a coordinate system and give
X,Y,Z constant components). Part (1) is already known. Part (2) follows from the fact
that the Levi-Civita connection is torsion-free. Parts (3) and (4) are a little more tricky.
Complete proofs can be found in Milnor [107] (Chapter II, Section 9), O’Neill [120] (Chapter
I1T) and Kuhnel [92] (Chapter 6, Lemma 6.3).

If w e A'(M) is a one-form, then the covariant derivative of w defines a (0, 2)-tensor, T,
given by T(Y, Z) = (Vyw)(Z). Thus, we can define the second covariant derivative, VX yw,
of w as the covariant derivative of T' (see Proposition 11.5), that is,

(VxT)(Y,Z)=X(T(Y,2)) —T(VxY,Z)-T(Y,VxZ),
and so

(Viyw)(2) = X((Vyw)(2)) = (Voyyw)(Z) = (Vyw)(VxZ)
= X((Vyw)(2)) = (Vyw)(VxZ) = (Vyyw)(Z)
(Vx(Vyw))(Z) = (Vyyyw)(2).
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Therefore,
Viyw = Vx(Vyw) — Vy yw,
that is, V% yw is formally the same as V% yZ. Then, it is natural to ask what is

2 2
VX,YW - VY,X(,U.

The answer is given by the following proposition which plays a crucial role in the proof of a
version of Bochner’s formula:

Proposition 13.2. For any vector fields, X,Y,Z € X(M), and any one-form, w € A'(M),
on a Riemannian manifold, M, we have

(Viy = Vix)w)(Z) = w(R(X,Y)Z).
Proof. Recall that we proved in Section 11.5 that
(VXw)ﬁ = Vwﬁ.

We claim that we also have
(V YW)ji = VX YW

This is because

(Viyw) = (Vx(Vyw)) — (Vy,yw)
== VX(Vyw)ﬁ — vay(,uTj
= Vx(VYwﬁ) — vaywﬁ

- VX YUJ
Thus, we deduce that
((Vg(,y - V%X)w)ﬁ = (V§(,Y - V%/,X)Wﬁ = R(Y, X)Wﬁ-
Consequently,

((Vi,y—V%,X)W)(Z) = <((VXY Vf,vX)w)ﬁ,Z>
(Y, X)w*, Z)
(Y, X,w, 2)
(X,Y, Z,u)
= (R(X,Y)Z,w"
= w(R(X,Y)Z),

(R
= R
R

where we used properties (3) and (4) of Proposition 13.1. O
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The next proposition will be needed in the proof of the second variation formula. If
a: U — M is a parametrized surface, where U is some open subset of R?, we say that a
vector field, V' € X(M), is a vector field along o iff V(x,y) € Ty, M, for all (z,y) € U.
For any smooth vector field, V', along «, we also define the covariant derivatives, DV /dz
and DV/0y as follows: For each fixed yg, if we restrict V' to the curve

xr = Of(.fl?, y0)

we obtain a vector field, V), along this curve and we set

DX B DV,
W(%yo)— dr

Then, we let yo vary so that (z,y9) € U and this yields DV/dz. We define DV/0y is a
similar manner, using a fixed x;.

Proposition 13.3. For a Riemannian manifold, (M, {—,—)), equipped with the Levi-Civita
connection, for every parametrized surface, a: R* — M, for every vector field, V € X(M)
along o, we have

D D D D
V-2V =R G_a’ da 174
Jy Ox oz Oy ox’ Oy
Proof. Express both sides in local coordinates in a chart and make use of the identity

VBVBO—VaVaazR(a 8>8 O]

oz; Bz Oxp oz; 0z QX axiya’bj oy,

Remark: Since the Levi-Civita connection is torsion-free, it is easy to check that

D O« D O«

o dy ~ Oy Ox’
We used this identity in the proof of Theorem 12.18.

The curvature tensor is a rather complicated object. Thus, it is quite natural to seek
simpler notions of curvature. The sectional curvature is indeed a simpler object and it turns
out that the curvature tensor can be recovered from it.

13.2 Sectional Curvature

Basically, the sectional curvature is the curvature of two-dimensional sections of our manifold.
Given any two vectors, u,v € T,M, recall by Cauchy-Schwarz that

(u,v), < (U, u)y (v, v)p,
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with equality iff v and v are linearly dependent. Consequently, if v and v are linearly
independent, we have

(u, u)p (v, v)p — (u,v)2 # 0.
In this case, we claim that the ratio
R,(u,v,u,v)

<u7 U>P<U7 U>P - <u7 U>12)

K(u,v) =

is independent of the plane, II, spanned by u and v. If (x,y) is another basis of I, then

r = au-+bv
= cu+dv.

We get
(@, 2)p(y. y)p — (2.9); = (ad — be)*((u, u)y(v, v), — (u,v);)
and similarly,
RP<:U? Y, T, y) = <RP<:U7 y)x7 y)p = (Cld o bC)QRP(ua v, U, U)>
which proves our assertion.

Definition 13.2. Let (M, (—,—)) be any Riemannian manifold equipped with the Levi-

Civita connection. For every p € T,M, for every 2-plane, II C T, M, the sectional curvature,
K(IT), of 1, is given by

i R,(x,y,z,y)
KU) = K@9) = 5 gy — (@ g2

for any basis, (x,y), of IL.

Observe that if (x,y) is an orthonormal basis, then the denominator is equal to 1. The
expression R,(z,y, z,y) is often denoted k,(x,y). Remarkably, x, determines R,. We denote
the function p — k, by x. We state the following proposition without proof:

Proposition 13.4. Let (M,{—,—)) be any Riemannian manifold equipped with the Levi-
Ciwvita connection. The function k determines the curvature tensor, R. Thus, the knowledge
of all the sectional curvatures determines the curvature tensor. Moreover, we have

6(R(I,y)z,w> = Ii(I—i—w?y—i-Z)—Ii(]},y—l—Z)—li(w,y—l—Z)
—kly+w, x4+ 2)+ Ky, v+ 2) + k(w, x + 2)

— Kz +w,y) + w(z,y) + w(w,y)
— k(z +w, 2) + Kz, 2) + K(w, 2)
ply +w, x) — Ky, x) — K(w, z)
Ky +w,z) — k(y, z) — k(w, z).
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For a proof of this formidable equation, see Kuhnel [92] (Chapter 6, Theorem 6.5). A
different proof of the above proposition (without an explicit formula) is also given in O’Neill
[120] (Chapter I1I, Corollary 42).

Let
Ri(z,y)z = (x,2)y — (y, 2).

Observe that
(By(x,y),y) = (z,2)(y,y) — (x,y)%.

As a corollary of Proposition 13.4, we get:

Proposition 13.5. Let (M, (—,—)) be any Riemannian manifold equipped with the Levi-
Civita connection. If the sectional curvature, K(I1) does not depend on the plane, 11, but
only on p € M, in the sense that K is a scalar function, K: M — R, then

R = KRl
Proof. By hypothesis,

(2, y) = K () ({2, 2), (v, y)p — (2. 9)3),

for all x,y. As the right-hand side of the formula in Proposition 13.4 consists of a sum of
terms, we see that the right-hand side is equal to K times a similar sum with s replaced by

(Ri(z,y)x,y) = (,2)(y,y) — (x,y)*,
so it is clear that R = K R;. O

In particular, in dimension n = 2, the assumption of Proposition 13.5 holds and K is the
well-known Gaussian curvature for surfaces.

Definition 13.3. A Riemannian manifold, (M, (—, —)) is said to have constant (resp. neg-
ative, resp. positive) curvature iff its sectional curvature is constant (resp. negative, resp.
positive).

In dimension n > 3, we have the following somewhat surprising theorem due to F. Schur:

Proposition 13.6. (F. Schur, 1886) Let (M, {(—,—)) be a connected Riemannian manifold.
If dim(M) > 3 and if the sectional curvature, K (II), does not depend on the plane, I1 C T, M,
but only on the point, p € M, then K is constant (i.e., does not depend on p).

The proof, which is quite beautiful, can be found in Kuhnel [92] (Chapter 6, Theorem
6.7).



418

CHAPTER 13. CURVATURE IN RIEMANNIAN MANIFOLDS

If we replace the metric, g = (—, —) by the metric g = A(—, —) where A > 0 is a constant,
some simple calculations show that the Christoffel symbols and the Levi-Civita connection
are unchanged, as well as the curvature tensor, but the sectional curvature is changed, with

K =\'K.

As a consequence, if M is a Riemannian manifold of constant curvature, by rescaling the
metric, we may assume that either K = —1, or K = 0, or K = +1. Here are standard
examples of spaces with constant curvature.

(1)

The sphere, S® C R™!, with the metric induced by R, where
S"={(21,...,Tnt1) € R7+1 | :13% + ... +$i+1 = 1}.

The sphere, S™, has constant sectional curvature, K = +1. This can be shown by using
the fact that the stabilizer of the action of SO(n + 1) on S™ is isomorphic to SO(n).
Then, it is easy to see that the action of SO(n) on 7,,S™ is transitive on 2-planes and
from this, it follows that K = 1 (for details, see Gallot, Hulin and Lafontaine [61]
(Chapter 3, Proposition 3.14).

Euclidean space, R"™!, with its natural Euclidean metric. Of course, K = 0.

The hyperbolic space, H (1), from Definition 2.10. Recall that this space is defined in
terms of the Lorentz innner product, (—, —)1, on R"" given by
n+1
(1, @), (Yoo Y1 = —Tag1 + szyz
i=2

By definition, H,;F (1), written simply H", is given by

H"={z = (21,...,0041) € R | (z,2); = -1, 21 > 0}.

Given any points, p = (z1,...,2,41) € H", it is easy to see that the set of tangent
vectors, u € T,H", are given by the equation
<p7 U>1 = 07

that is, T,H" is orthogonal to p with respect to the Lorentz inner-product. Since
p € H", we have (p,p); = —1, that is, u is lightlike, so by Proposition 2.10, all vectors
in T,,H" are spacelike, that is,

(u,u); >0, for alluw € T,H", u # 0.

Therefore, the restriction of (—, —); to H" is positive, definite, which means that it is
a metric on T,H". The space H" equipped with this metric, gy, is called hyperbolic
space and it has constant curvature, K = —1. This can be shown by using the fact that
the stabilizer of the action of SOg(n, 1) on H™ is isomorphic to SO(n) (see Proposition
2.11). Then, it is easy to see that the action of SO(n) on T, H" is transitive on 2-planes
and from this, it follows that K = —1 (for details, see Gallot, Hulin and Lafontaine
[61] (Chapter 3, Proposition 3.14).
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There are other isometric models of H™ that are perhaps intuitively easier to grasp but
for which the metric is more complicated. For example, there is a map, PD: B — H",
where B" = {x € R™ | ||z|| < 1} is the open unit ball in R", given by

1+ HxH2 2x
D(z) = 5 5 |-
(1—\\90!! L — ||z

It is easy to check that (PD(z),PD(x)); = —1 and that PD is bijective and an isometry.
One also checks that the pull-back metric, gpp = PD*gy, on B", is given by

4
(1 —[l=]*)?

gpD = (da? + - - + dx?).

The metric, gpp is called the conformal disc metric and the Riemannian manifold, (B", gpp)
is called the Poincaré disc model or conformal disc model. The metric gpp is proportional
to the Euclidean metric and thus, angles are preserved under the map PD. Another model
is the Poincaré half-plane model, {x € R™ | z; > 0}, with the metric

1
gpH = P(dm%+-~~+dxi).
1

We already encountered this space for n = 2.

The metrics for S™, R and H™ have a nice expression in polar coordinates but we
prefer to discuss the Ricci curvature next.

13.3 Ricci Curvature

The Ricci tensor is another important notion of curvature. It is mathematically simpler than
the sectional curvature (since it is symmetric) but it plays an important role in the theory
of gravitation as it occurs in the Einstein field equations. The Ricci tensor is an example
of contraction, in this case, the trace of a linear map. Recall that if f: £ — FE is a linear
map from a finite-dimensional Euclidean vector space to itself, given any orthonormal basis,

(é1,...,€,), we have
n

tr(f) = Z(f(ei)a €i).

i=1

Definition 13.4. Let (M, (—, —)) be a Riemannian manifold (equipped with the Levi-Civita
connection). The Ricci curvature, Ric, of M is the (0, 2)-tensor defined as follows: For every
pe M, forallx,y e T,M,set Ric,(z,y) to be the trace of the endomorphism, v — R,(x,v)y.
With respect to any orthonormal basis, (eq,...,e,), of T,M, we have

n

Ricp(x, y) = Z(Rp(xv ej)y’ ej>P = Z Rp(xa €Y, 6]')'
j=1

j=1
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The scalar curvature, S, of M, is the trace of the Ricci curvature, that is, for every p € M,
S(p> = Z R<€i7 €5, €, €j> - Z K(eia 6]')7
i#j i#]

where K (e;, e;) denotes the sectional curvature of the plane spanned by e;, e;.

In view of Proposition 13.1 (4), the Ricci curvature is symmetric. The tensor Ric is
a (0,2)-tensor but it can be interpreted as a (1, 1)-tensor as follows: We let Ric;i7£ be the
(1,1)-tensor given by
(Ricfu, v), = Ric(u,v),

for all w,v € T,M. Then, it is easy to see that
S(p) = tr(Ric¥).

This is why we said (by abuse of language) that S is the trace of Ric. Observe that if
(é1,...,e,) is any orthonormal basis of T,,M, as

Ric,(u,v) = Z Ry(u,ej,v,¢€;)
j=1

n

= ZRp(ej,u,ej,v)
j=1
n

= Z<Rp(€jv u)ej7 U)IJ’

i=1
we have

Ricf(u) = Z R,(ej, u)e;.
j=1

Observe that in dimension n = 2, we get S(p) = 2K (p). Therefore, in dimension 2, the
scalar curvature determines the curvature tensor. In dimension n = 3, it turns out that the
Ricci tensor completely determines the curvature tensor, although this is not obvious. We
will come back to this point later.

Since Ric(z,y) is symmetric, Ric(x,z) determines Ric(x,y) completely (Use the polar-
ization identity for a symmetric bilinear form, ¢:

20(z,y) = @z +y) — () = ey).)
Observe that for any orthonormal frame, (ei,...,e,), of T,M, using the definition of the
sectional curvature, K, we have

n

Ric(eq,eq) = Z((R(el, ei)er, ;) = ZK(el, e;).

=1
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Thus, Ric(ey,e1) is the sum of the sectional curvatures of any n — 1 orthogonal planes
orthogonal to e; (a unit vector).

For a Riemannian manifold with constant sectional curvature, we see that
Ric(z,z) = (n — 1)Kg(x, x), S=n(n-1K,
where g = (—, —) is the metric on M. Indeed, if K is constant, then we know that R = KR,
and so,

Ric(z,z) = Kzg(Rl(%@i)%ei)
i=1

=R Z(g(ei, ei)g(x, x) — g(ei, x)?)

= K(ng(z,z)— Zg(ei,l“)Q)

= (n—1)Kg(z,x).

Spaces for which the Ricci tensor is proportional to the metric are called Einstein spaces.

Definition 13.5. A Riemannian manifold, (M, g), is called an Finstein space iff the Ricci
curvature is proportional to the metric, g, that is:

Ric(z,y) = Ag(x,y),

for some function, A\: M — R.

If M is an Einstein space, observe that S = nA.

Remark: For any Riemanian manifold, (M, g), the quantity
S
G = Ric — 59

is called the FEinstein tensor (or FEinstein gravitation tensor for space-times spaces). The

Einstein tensor plays an important role in the theory of general relativity. For more on this
topic, see Kuhnel [92] (Chapters 6 and 8) O’Neill [120] (Chapter 12).

13.4 Isometries and Local Isometries

Recall that a local isometry between two Riemannian manifolds, M and N, is a smooth map,
w: M — N, so that

((dp)p(w), (dipp) (V) o) = (s V),
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for all p € M and all u,v € T,M. An isometry is a local isometry and a diffeomorphism.

By the inverse function theorem, if p: M — N is a local isometry, then for every p € M,
there is some open subset, U C M, with p € U, so that ¢ [ U is an isometry between U and

o).
Also recall that if p: M — N is a diffeomorphism, then for any vector field, X, on M,
the vector field, ¢, X, on N (called the push-forward of X) is given by

(X )gq = dpp1() X (¢~ ( ), for all ¢ € N,

or equivalently, by
(e X)p(p) = dppX (D), for all p € M.

For any smooth function, h: N — R, for any ¢ € N, we have

Xi(h)g = dhy(X.(q))
= dhy(dp,- 1qX(s0 Yq)))
= d(ho @)1 X(¢ ' (q))
= X(hOQD)cp‘ 1(q)>

that is
X*(h)q = X(h © 90)50*1@’

or

X, (h)q,(p) = X(hoyp),.

It is natural to expect that isometries preserve all “natural” Riemannian concepts and
this is indeed the case. We begin with the Levi-Civita connection.

Proposition 13.7. If o: M — N 1is an isomelry, then

0(VxY) =V, x(p.Y), for all XY € X(M),
where VxY is the Levi-Civita connection induced by the metric on M and similarly on N.
Proof. We use the Koszul formula (Proposition 11.18),

2AVxY, Z) = X({Y,2))+Y (X, Z)) - Z((X,Y))
- <Y= [Xv Z]> - <X7 [K Z]> - <27 [YvX]>

We have
(Pe(VXY))p) = dpp(VxY),,

and as @ is an isometry,

(dpp(VxY)y, dppZy > = ((VxY)p, Zp)p,
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so, Koszul yields

200:(VxY), 0uZ)op) = XY, 2)p) + Y (X, 2)p) = Z((X,Y),)
- VX, Z])p = (X, [V, Z])p — (2, [V, X])y-

Next, we need to compute

(Voux (0:Y), 0. Z) o)

When we plug ¢.X, ¢.Y and ¢,Z into the Koszul formula, as ¢ is an isometry, for the
fourth term on the right-hand side, we get

<90*Y7 [SO*Xa ‘P*sto(p) = <d90pr>[d<Ppo7d90pr]>w(P)
= <Y;m[XpaZp]>p

and similarly for the fifth and sixth term on the right-hand side. For the first term on the
right-hand side, we get
(@ X) ({4, @*Z>)w(p) = (e X)((dippYy, d¢pr>)¢(p)
= (@ X)((Yp Zo)o1(0o))e0)
= (@:X)({Y.Z) 097 )piy)
= X({Y,Z)op  oy),
= XY, 2))p

and similarly for the second and third term. Consequently, we get

2Ve.x (Y ), 0uZ)ow) = X(Y,2)p) +Y((X,Z)y) = Z((X,Y)y)
- <Y7 [Xa Z])p - <X’ [Y7 Z])p - <Za [K XDP

By comparing right-hand sides, we get

2(0.(VxY), SO*Z>¢(1)) = 2<V¢*X(90*Y)> 90*Z>s0(p)

for all X,Y,Z, and as ¢ is a diffeomorphism, this implies
@*(VXY> = VW*X(QD*Y),

as claimed. O

As a corollary of Proposition 13.7, the curvature induced by the connection is preserved,
that is
0 R(X,Y)Z = R(p. X, 0.Y )i Z,

as well as the parallel transport, the covariant derivative of a vector field along a curve, the
exponential map, sectional curvature, Ricci curvature and geodesics. Actually, all concepts
that are local in nature are preserved by local diffeomorphisms! So, except for the Levi-
Civita connection and if we consider the Riemann tensor on vectors, all the above concepts
are preserved under local diffeomorphisms. For the record, we state:
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Proposition 13.8. If o: M — N is a local isometry, then the following concepts are pre-
served:

(1) The covariant derivative of vector fields along a curve, vy, that is

DX Dg.X
dorw =g = —gr

for any vector field, X, along v, with (0. X)(t) = dp,w)Y (t), for all t.

(2) Parallel translation along a curve. If P, denotes parallel transport along the curve
and if P,o, denotes parallel transport along the curve ¢ o vy, then

dpy(1) © Py = Ppoy © dipy(0)-

(3) Geodesics. If v is a geodesic in M, then ¢ o~ is a geodesic in N. Thus, if v, is the
unique geodesic with v(0) = p and ~,(0) = v, then

® O Yo = Vdppvs

wherever both sides are defined. Note that the domain of ya,,, may be strictly larger
than the domain of v,. For example, consider the inclusion of an open disc into R2.

(4) Ezponential maps. We have
(p 0 exp, = eXPy(y) 0dpp,
wherever both sides are defined.
(5) Riemannian curvature tensor. We have

depyR(x,y)z = R(dpyx, dpyy)de,z, for all x,y,z € T,M.

(6) Sectional, Ricci and Scalar curvature. We have

K(dppr, depy) = K(x,y)p,

for all linearly independent vectors, x,y € T,M ;

Ric(dp,z, dpyy) = Ric(z, y),

forallz,y € T,M;
SM = SN o Q.

where Syr 18 the scalar curvature on M and Sy is the scalar curvature on N.

A useful property of local diffeomorphisms is stated below. For a proof, see O’Neill [120]
(Chapter 3, Proposition 62):
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Proposition 13.9. Let p,v: M — N be two local isometries. If M is connected and if
©(p) = ¥(p) and dy, = dip, for some p € M, then ¢ = 1.

The idea is to prove that
{p € M |dp, = di,}

is both open and closed and for this, to use the preservation of the exponential under local
diffeomorphisms.

13.5 Riemannian Covering Maps

The notion of covering map discussed in Section 3.9 can be extended to Riemannian mani-
folds.

Definition 13.6. If M and N are two Riemannian manifold, then a map, 7: M — N, is a
Riemannian covering iff the following conditions hold:

(1) The map 7 is a smooth covering map.

(2) The map 7 is a local isometry.

Recall from Section 3.9 that a covering map is a local diffeomorphism. A way to obtain
a metric on a manifold, M, is to pull-back the metric, g, on a manifold, N, along a local
diffeomorphism, ¢: M — N (see Section 7.4). If ¢ is a covering map, then it becomes a
Riemannian covering map.

Proposition 13.10. Let m: M — N be a smooth covering map. For any Riemannian
metric, g, on N, there is a unique metric, m*g, on M, so that 7™ is a Riemannian covering.

Proof. We define the pull-back metric, m*g, on M induced by g as follows: For all p € M,
for all w,v € T,M,

(T°g)p(u, v) = g(dmp(u), dmp(v)).
We need to check that (7*¢g), is an inner product, which is very easy since dm, is a linear
isomorphism. Our map, 7, between the two Riemannian manifolds (M, 7*g) and (N, g)
becomes a local isometry. Now, every metric on M making 7 a local isometry has to satisfy
the equation defining, 7*¢g, so this metric is unique. O]

As a corollary of Proposition 13.10 and Theorem 3.41, every connected Riemmanian
manifold, M, has a simply connected covering map, 7: M — M, where 7 is a Riemannian
covering. Furthermore, if 7: M — N is a Riemannian covering and ¢: P — N is a local
isometry, it is easy to see that its lift, ¢: P — M, is also a local isometry. In particular, the
deck-transformations of a Riemannian covering are isometries.

In general, a local isometry is not a Riemannian covering. However, this is the case when
the source space is complete.
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Proposition 13.11. Let 7: M — N be a local isometry with N connected. If M 1is a
complete manifold, then m is a Riemannian covering map.

Proof. We follow the proof in Sakai [131] (Chapter III, Theorem 5.4). Because 7 is a local
isometry, geodesics in M can be projected onto geodesics in N and geodesics in /N can be
lifted back to M. The proof makes heavy use of these facts.

First, we prove that N is complete. Pick any p € M and let ¢ = 7w(p). For any geodesic,
Yu, of N with initial point, ¢ € N, and initial direction the unit vector, u € T, N, consider
the geodesic, 7,, of M, with initial point p and with u = d7rq_1(v) € T,M. As 7 is a local
isometry, it preserves geodesic, so

Yo =TO A’Y/ua
and since 7, is defined on R because M is complete, so if 7,. As exp, is defined on the whole
of T, N, by Hopf-Rinow, NN is complete.

Next, we prove that « is surjective. As N is complete, for any ¢; € N, there is a minimal
geodesic, v: [0,b] — N, joining ¢ to ¢; and for the geodesic, 7, in M, emanating from p and
with initial direction dm;'(+'(0)), we have 7(7(b)) = ~(b) = qi, establishing surjectivity.

For any ¢ € N, pick r > 0 wih r < i(q), where i(q) denotes the injectivity radius of N at

q and consider the open metric ball, B,(q) = exp,(B(04,7)) (where B(0,, 1) is the open ball
of radius r in T,N). Let

7 (q) = {pitier € M.
We claim that the following properties hold:

(1) Each map, 7 | B,(p;): B.(p;) — B.(q), is a diffeomorphism, in fact, an isometry.
(2) 7 1(Br(q) = Uier Br(pi)-
(3) Br(p:) N B(pj) = 0 whenever i # j.

It follows from (1), (2) and (3) that B,(q) is evenly covered by the family of open sets,
{B,(p;)}icr, so 7 is a covering map.

(1) Since 7 is a local isometry, it maps geodesics emanating from p; to geodesics emanating
from ¢ so the following diagram commutes:

dmp,
B(Opw 1") - B<Oqa T)

expy, L jequ

Br(pz) T BT(Q)

Since exp,, odm,, is a diffeomorphism, 7 [ B, (p;) must be injective and since exp,, is surjective,
sois 7 | B.(p;). Then, 7w | B,.(p;) is a bijection and as 7 is a local diffeomorphism, 7 | B,(p;)
is a diffeomorphism.
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(2) Obviously, U,c; Br(pi;) € #~1(B,(q)), by (1). Conversely, pick p; € 7 (B,(q)). For
q1 = 7(p1), we can write q; = exp, v, for some v € B(0,,7) and the map v(t) = exp,(1 —t)v,
for t € [0, 1], is a geodesic in N joining ¢; to g. Then, we have the geodesic, 7, emanating
from p; with initial direction dr,'(7/(0)) and as w0 §(1) = (1) = ¢, we have 5(1) = p; for
some «. Since v has length less than r, we get p; € B,.(p;).

(3) Suppose p; € B,(p;) N By(p;). We can pick a minimal geodesic, ¥, in B,(p;), (resp
w in B,(p,)) joining p; to p (resp. joining p; to p). Then, the geodesics m 0y and mo w
are geodesics in B,.(q) from ¢ to 7(p1) and their length is less than r. Since r < i(q), these
geodesics are minimal so they must coincide. Therefore, v = w, which implies 7 = j. O

13.6 The Second Variation Formula and the
Index Form

In Section 12.4, we discovered that the geodesics are exactly the critical paths of the energy
functional (Theorem 12.19). For this, we derived the First Variation Formula (Theorem
12.18). Tt is not too surprising that a deeper understanding is achieved by investigating the
second derivative of the energy functional at a critical path (a geodesic). By analogy with
the Hessian of a real-valued function on R", it is possible to define a bilinear functional,

L: T,Qp, q) x T,Qp,q) — R,

when ~ is a critical point of the energy function, E (that is, v is a geodesic). This bilinear
form is usually called the index form. Note that Milnor denotes I, by F,, and refers to it
as the Hessian of E but this is a bit confusing since I, is only defined for critical points,
whereas the Hessian is defined for all points, critical or not.

Now, if f: M — R is a real-valued function on a finite-dimensional manifold, M, and if
p is a critical point of f, which means that df, = 0, it is not hard to prove that there is a
symmetric bilinear map, I: T,M x T,M — R, such that

I(X(p), Y (p)) = Xp(Y [) = Y, (X /),

for all vector fields, X,Y € X(M). Furthermore, I(u,v) can be computed as follows, for any
u,v € T,M: for any smooth map, a: R? = R, such that

Oa oo
a(0,0) = p, 9 (0,0) = u, 8_y (0,0) = v,
we have )
Huwy = U o))
’ Ox0y ©0.0) '

The above suggests that in order to define
L T,Q(p. q) x T,Q(p, q) = R,
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that is, to define I, (Wi, W;), where Wy, W, € T,Q(p,q) are vector fields along ~ (with
W1(0) = W5(0) = 0 and W;(1) = Wy(1) = 0), we consider 2-parameter variations,

a: U x[0,1] - M,

where U is an open subset of R? with (0,0) € U, such that

a(0,0,) = (1), 351 (0,0,1) = Wi (t), g—; (0,0,t) = Wa(t).
Then, we set (B o) )
o a)(uy, uy
LWy, W) = D,y o0) ;
where a € Q(p, q) is the path given by
a(ug,us)(t) = a(ug, ug, t).
For simplicity of notation, the above derivative if often written as 3 (O 0).

To prove that I,(W;, Ws) is actually well-defined, we need the followmg result:

Theorem 13.12. (Second Variation Formula) Let o: U x [0,1] — M be a 2-parameter
variation of a geodesic, v € QU(p, q), with variation vector fields Wy, Wy € T,Q(p, q) given by

Oa Oa

WA(t) = 5 (0.0.0), Walt) = 5 (0,0.1),

Then, we have the formula

dW; ' D*W;
—- Y (wa A - [ (wa P Ry o

(0,0) t

1 (B0 a)(uy,uz)
2 8U18U2

where V() = ~/(t) is the velocity field,

dw,  dw, AWy

is the jump in d?tll at one of its finitely many points of discontinuity in (0,1) and E is the

energy function on Q(p,q).

Proof. (After Milnor, see [107], Chapter II, Section 13, Theorem 13.1.) By the First Variation
Formula (Theorem 12.18), we have

1 0E(a(uy, uz)) Ja . Oa / Ja D Oa
2 Oouy Z uy’ 0t oy 0t ot )™
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Thus, we get

1 0*(Eod)(up,ug) D da , O« da D . O«
3 g = = e M)~ S s )

C[(Rpe Dony, [ D Doy,
0 8u1 aug’ﬁt ot 0 8u2’8u1 ot ot ’

Let us evaluate this expression for (uy, us) = (0,0). Since v = &(0, 0) is an unbroken geodesic,
we have

Oa D Oa

a- " wa Y
so that the first and third term are zero. As

D 0o D O«

duy Ot Ot duy’

Ay

(see the remark just after Proposition 13.3), we can rewrite the second term and we get

1 9*(E o @) (uy, us) B D 1 D D
5 5’U1aUQ (0,0) - Z <W2, Ata W1> - /0 <W2, 8—u1 E V> dt. <*)

7

D
ou1

D

and 7,

In order to interchange the operators
Indeed, by Proposition 13.3, we have

we need to bring in the curvature tensor.

duy ot Ot duy

DDV DDV R(@aaa

Together with the equation

D D O« D O«a D
o T aw ot " otow ol

this yields

D D DWW
o V=" L+ R(V, W) V.

Substituting this last expression in (x), we get the Second Variation Formula. O

Theorem 13.12 shows that the expression

82(E e} 5&) (Ul, UQ)
Ou10us 0.0)

only depends on the variation fields W; and W5 and thus, I, (W, Ws) is actually well-defined.
If no confusion arises, we write I(Wy, Ws) for L,(Wy, Ws).
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Proposition 13.13. Given any geodesic, v € Q(p, q), the map, I: T,Q(p, q)xT,Q(p, q) — R,
defined so that, for all Wi, Wy € T,Q(p, q),

O?(E o @) (uy,us)
8u18u2 ’

(0,0)

I(Wy, Wy) =

only depends on Wy and Wy and is bilinear and symmetric, where ac: U x [0,1] — M is any
2-parameter variation, with

Oa Oa
OZ(O, 07 t) - /y(t)’ 8_U1 (O’ 07 t) = Wl(t)v (‘9_u2 (Oa 07 t) = WQ(t)

Proof. We already observed that the Second Variation Formula implies that (W, W) is
well defined. This formula also shows that [ is bilinear. As
O*(E o @)(uy,uz)  9*(E o @)(uq,us)
Ouq0us N Oug0uy 7

I is symmetric (but this is not obvious from the right-handed side of the Second Variation
Formula). ]

On the diagonal, I(W, W) can be described in terms of a 1-parameter variation of 7. In
fact,
d*E(a)
——(0),
Tz (0)
where @: (—¢,€) = Q(p, ¢) denotes any variation of v with variation vector field, 4 (0) equal
to W. To prove this equation it is only necessary to introduce the 2-parameter variation

I(W,W) =

By, up) = a(ug + ug)

and to observe that B _
a8  da P(EopB) d*(Eoq)

ou;  du’ Oudus  du?

As an application of the above remark we have the following result:

Proposition 13.14. If v € Q(p,q) is a minimal geodesic, then the bilinear index form, I,
is positive semi-definite, which means that I(W, W) >0, for all W € T,Q(p, q).

Proof. The inequality
E(a(u)) = E(y) = E(a(0))
implies that
d*E(Q)
——=(0) >0
=0

which is exactly what needs to be proved. O
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If we define the index of
I:T.Qp,q) x T,Qp,q) > R

as the maximum dimension of a subspace of 7,€(p, ¢) on which I is negative definite, then
Proposition 13.14 says that the index of I is zero (for the minimal geodesic ). It turns out
that the index of I is finite for any geodesic, v (this is a consequence of the Morse Index
Theorem,).

13.7 Jacobi Fields and Conjugate Points

Jacobi fields arise naturally when considering the expression involved under the integral sign
in the Second Variation Formula and also when considering the derivative of the exponential.

If B: Ex E — R is a symmetric bilinear form defined on some vector space, E (possibly
infinite dimentional), recall that the nullspace of B is the subset, null(B), of E given by

null(B) ={u € E | B(u,v) =0, forallve E}.

The 