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Reinforcement learning addresses the question of how an autonomous agent that 
senses and acts in its environment can learn to choose optimal actions to achieve its 
goals. This very generic problem covers tasks such as learning to control a mobile 
robot, learning to optimize operations in factories, and learning to play board games. 
Each time the agent performs an action in its environment, a trainer may provide a 
reward or penalty to indicate the desirability of the resulting state. For example, when 
training an agent to play a game the trainer might provide a positive reward when the 
game is won, negative reward when it is lost, and zero reward in all other states. The 
task of the agent is to learn from this indirect, delayed reward, to choose sequences 
of actions that produce the greatest cumulative reward. This chapter focuses on 
an algorithm called Q learning that can acquire optimal control strategies from 
delayed rewards, even when the agent has no prior knowledge of the effects of 
its actions on the environment. Reinforcement learning algorithms are related to 
dynamic programming algorithms frequently used to solve optimization problems. 

13.1 INTRODUCTION 
Consider building a learning robot. The robot, or agent, has a set of sensors to 
observe the state of its environment, and a set of actions it can perform to alter 
this state. For example, a mobile robot may have sensors such as a camera and 
sonars, and actions such as "move forward" and "turn." Its task is to learn a control 
strategy, or policy, for choosing actions that achieve its goals. For example, the 
robot may have a goal of docking onto its battery charger whenever its battery 
level is low. 



This chapter is concerned with how such agents can learn successful control 
policies by experimenting in their environment. We assume that the goals of the 
agent can be defined by a reward function that assigns a numerical value-an 
immediate payoff-to each distinct action the agent may take from each distinct 
state. For example, the goal of docking to the battery charger can be captured by 
assigning a positive reward (e.g., +loo) to state-action transitions that immediately 
result in a connection to the charger and a reward of zero to every other state-action 
transition. This reward function may be built into the robot, or known only to an 
external teacher who provides the reward value for each action performed by the 
robot. The task of the robot is to perform sequences of actions, observe their conse- 
quences, and learn a control policy. The control policy we desire is one that, from 
any initial state, chooses actions that maximize the reward accumulated over time 
by the agent. This general setting for robot learning is summarized in Figure 13.1. 

As is apparent from Figure 13.1, the problem of learning a control policy to 
maximize cumulative reward is very general and covers many problems beyond 
robot learning tasks. In general the problem is one of learning to control sequential 
processes. This includes, for example, manufacturing optimization problems in 
which a sequence of manufacturing actions must be chosen, and the reward to 
be maximized is the value of the goods produced minus the costs involved. It 
includes sequential scheduling problems such as choosing which taxis to send 
for passengers in a large city, where the reward to be maximized is a function 
of the wait time of the passengers and the total fuel costs of the taxi fleet. In 
general, we are interested in any type of agent that must learn to choose actions 
that alter the state of its environment and where a cumulative reward function 
is used to define the quality of any given action sequence. Within this class of 
problems we will consider specific settings, including settings in which the actions 
have deterministic or nondeterministic outcomes, and settings in which the agent 
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FIGURE 13.1 
An agent interacting with its environment. 
The agent exists in an environment described 
by some set of possible states S.  It can 
perform any of a set of possible actions 
A.  Each time it performs an action a, in 
some state st the agent receives a real-valued 
reward r, that indicates the immediate value 
of this state-action transition. This produces 
a sequence of states si, actions ai, and 
immediate rewards ri as shown in the figure. 
The agent's task is to learn a control policy, 
n : S + A, that maximizes the expected 
sum of these rewards, with future rewards 
discounted exponentially by their delay. 



has or does not have prior knowledge about the effects of its actions on the 
environment. 

Note we have touched on the problem of learning to control sequential 
processes earlier in this book. In Section 11.4 we discussed explanation-based 
learning of rules to control search during problem solving. There the problem is 
for the agent to choose among alternative actions at each step in its search for some 
goal state. The techniques discussed here differ from those of Section 11.4, in that 
here we consider problems where the actions may have nondeterministic outcomes 
and where the learner lacks a domain theory that describes the outcomes of its 
actions. In Chapter 1 we discussed the problem of learning to choose actions while 
playing the game of checkers. There we sketched the design of a learning method 
very similar to those discussed in this chapter. In fact, one highly successful 
application of the reinforcement learning algorithms of this chapter is to a similar 
game-playing problem. Tesauro (1995) describes the TD-GAMMON program, which 
has used reinforcement learning to become a world-class backgammon player. This 
program, after training on 1.5 million self-generated games, is now considered 
nearly equal to the best human players in the world and has played competitively 
against top-ranked players in international backgammon tournaments. 

The problem of learning a control policy to choose actions is similar in some 
respects to the function approximation problems discussed in other chapters. The 
target function to be learned in this case is a control policy, n : S + A, that 
outputs an appropriate action a from the set A,  given the current state s from the 
set S .  However, this reinforcement learning problem differs from other function 
approximation tasks in several important respects. 

0 Delayed reward. The task of the agent is to learn a target function n that 
maps from the current state s to the optimal action a = n(s).  In earlier 
chapters we have always assumed that when learning some target function 
such as n, each training example would be a pair of the form (s ,  n(s) ) .  In 
reinforcement learning, however, training information is not available in this 
form. Instead, the trainer provides only a sequence of immediate reward val- 
ues as the agent executes its sequence of actions. The agent, therefore, faces 
the problem of temporal credit assignment: determining which of the actions 
in its sequence are to be credited with producing the eventual rewards. 

0 Exploration. In reinforcement learning, the agent influences the distribution 
of training examples by the action sequence it chooses. This raises the ques- 
tion of which experimentation strategy produces most effective learning. The 
learner faces a tradeoff in choosing whether to favor exploration of unknown 
states and actions (to gather new information), or exploitation of states and 
actions that it has already learned will yield high reward (to maximize its 
cumulative reward). 

0 Partially observable states. Although it is convenient to assume that the 
agent's sensors can perceive the entire state of the environment at each time 
step, in many practical situations sensors provide only partial information. 
For example, a robot with a forward-pointing camera cannot see what is 



behind it. In such cases, it may be necessary for the agent to consider its 
previous observations together with its current sensor data when choosing 
actions, and the best policy may be one that chooses actions specifically to 
improve the observability of the environment. 
Life-long learning. Unlike isolated function approximation tasks, robot learn- 
ing often requires that the robot learn several related tasks within the same 
environment, using the same sensors. For example, a mobile robot may need 
to learn how to dock on its battery charger, how to navigate through nar- 
row corridors, and how to pick up output from laser printers. This setting 
raises the possibility of using previously obtained experience or knowledge 
to reduce sample complexity when learning new tasks. 

13.2 THE LEARNING TASK 
In this section we formulate the problem of learning sequential control strategies 
more precisely. Note there are many ways to do so. For example, we might assume 
the agent's actions are deterministic or that they are nondeterministic. We might 
assume that the agent can predict the next state that will result from each action, or 
that it cannot. We might assume that the agent is trained by an expert who shows 
it examples of optimal action sequences, or that it must train itself by performing 
actions of its own choice. Here we define one quite general formulation of the 
problem, based on Markov decision processes. This formulation of the problem 
follows the problem illustrated in Figure 13.1. 

In a Markov decision process (MDP) the agent can perceive a set S of distinct 
states of its environment and has a set A of actions that it can perform. At each 
discrete time step t ,  the agent senses the current state st ,  chooses a current action 
a,,  and performs it. The environment responds by giving the agent a reward r, = 
r (s t ,  a,)  and by producing the succeeding state s,+l = 6(s,, a , ) .  Here the functions 
6 and r are part of the environment and are not necessarily known to the agent. 
In an MDP, the functions 6(st,  a,)  and r(s, ,  a , )  depend only on the current state 
and action, and not on earlier states or actions. In this chapter we consider only 
the case in which S and A are finite. In general, 6 and r may be nondeterministic 
functions, but we begin by considering only the deterministic case. 

The task of the agent is to learn a policy, n : S + A, for selecting its next 
action a, based on the current observed state st ;  that is, n(s, )  = a,. How shall we 
specify precisely which policy n we would like the agent to learn? One obvious 
approach is to require the policy that produces the greatest possible cumulative 
reward for the robot over time. To state this requirement more precisely, we define 
the cumulative value Vn(s,)  achieved by following an arbitrary policy n from an 
arbitrary initial state st as follows: 
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where the sequence of rewards rt+i is generated by beginning at state s, and by 
repeatedly using the policy n to select actions as described above (i.e., a, = n(st), 
a,+l = n ( ~ , + ~ ) ,  etc.). Here 0 5 y < 1 is a constant that determines the relative 
value of delayed versus immediate rewards. In particular, rewards received i time 
steps into the future are discounted exponentially by a factor of y '. Note if we set 
y = 0, only the immediate reward is considered. As we set y closer to 1, future 
rewards are given greater emphasis relative to the immediate reward. 

The quantity VX(s) defined by Equation (13.1) is often called the discounted 
cumulative reward achieved by policy n from initial state s. It is reasonable to 
discount future rewards relative to immediate rewards because, in many cases, 
we prefer to obtain the reward sooner rather than later. However, other defini- 
tions of total reward have also been explored. For example, jinite horizon reward, c:=, rt+i, considers the undiscounted sum of rewards over a finite number h of . - 
steps. Another possibility is average reward, limb,, c F = ~  rt+i, which consid- 
ers the average reward per time step over the entire lifetime of the agent. In 
this chapter we restrict ourselves to considering discounted reward as defined 
by Equation (13.1). Mahadevan (1996) provides a discussion of reinforcement 
learning when the criterion to be optimized is average reward. 

We are now in a position to state precisely the agent's learning task. We 
require that the agent learn a policy n that maximizes V"(s) for all states s. 
We will call such a policy an optimal policy and denote it by T*. 

n* r argmax V" (s), (Vs) 
X 

To simplify notation, we will refer to the value function v"*(s) of such an optimal 
policy as V*(s). V*(s) gives the maximum discounted cumulative reward that the 
agent can obtain starting from state s; that is, the discounted cumulative reward 
obtained by following the optimal policy beginning at state s. 

To illustrate these concepts, a simple grid-world environment is depicted 
in the topmost diagram of Figure 13.2. The six grid squares in this diagram 
represent six possible states, or locations, for the agent. Each arrow in the diagram 
represents a possible action the agent can take to move from one state to another. 
The number associated with each arrow represents the immediate reward r(s, a) 
the agent receives if it executes the corresponding state-action transition. Note 
the immediate reward in this particular environment is defined to be zero for 
all state-action transitions except for those leading into the state labeled G. It is 
convenient to think of the state G as the goal state, because the only way the agent 
can receive reward, in this case, is by entering this state. Note in this particular 
environment, the only action available to the agent once it enters the state G is 
to remain in this state. For this reason, we call G an absorbing state. 

Once the states, actions, and immediate rewards are defined, and once we 
choose a value for the discount factor y,  we can determine the optimal policy n *  
and its value function V*(s). In this case, let us choose y = 0.9. The diagram 
at the bottom of the figure shows one optimal policy for this setting (there are 
others as well). Like any policy, this policy specifies exactly one action that the 
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FIGURE 13.2 
A simple deterministic world to illustrate the basic concepts of Q-learning. Each grid square represents 
a distinct state, each arrow a distinct action. The immediate reward function, r (s ,  a) gives reward 100 
for actions entering the goal state G, and zero otherwise. Values of V*(s)  and Q(s,  a)  follow from 
r (s ,  a), and the discount factor y = 0.9. An optimal policy, corresponding to actions with maximal 
Q values, is also shown. 

agent will select in any given state. Not surprisingly, the optimal policy directs 
the agent along the shortest path toward the state G. 

The diagram at the right of Figure 13.2 shows the values of V* for each 
state. For example, consider the bottom right state in this diagram. The value of 
V* for this state is 100 because the optimal policy in this state selects the "move 
up" action that receives immediate reward 100. Thereafter, the agent will remain 
in the absorbing state and receive no further rewards. Similarly, the value of V* 
for the bottom center state is 90. This is because the optimal policy will move 
the agent from this state to the right (generating an immediate reward of zero), 
then upward (generating an immediate reward of 100). Thus, the discounted future 
reward from the bottom center state is 

o + y 1 0 0 + y 2 0 + Y 3 0 + . . . = 9 0  
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Recall that V* is defined to be the sum of discounted future rewards over the 
infinite future. In this particular environment, once the agent reaches the absorbing 
state G its infinite future will consist of remaining in this state and receiving 
rewards of zero. 

13.3 Q LEARNING 
How can an agent learn an optimal policy n* for an arbitrary environment? It is 
difficult to learn the function rt* : S + A directly, because the available training 
data does not provide training examples of the form ( s ,  a) .  Instead, the only 
training information available to the learner is the sequence of immediate rewards 
r(si,  ai)  for i = 0, 1,2, . . . . As we shall see, given this kind of training information 
it is easier to learn a numerical evaluation function defined over states and actions, 
then implement the optimal policy in terms of this evaluation function. 

What evaluation function should the agent attempt to learn? One obvious 
choice is V*. The agent should prefer state sl over state s2 whenever V*(s l )  > 
V*(s2),  because the cumulative future reward will be greater from sl. Of course 
the agent's policy must choose among actions, not among states. However, it can 
use V* in certain settings to choose among actions as well. The optimal action 
in state s  is the action a that maximizes the sum of the immediate reward r(s ,  a )  
plus the value V* of the immediate successor state, discounted by y. 

n*(s )  = argmax[r(s, a) f y V*(G(s, a ) ) ]  
a 

(recall that 6(s, a )  denotes the state resulting from applying action a to state s.) 
Thus, the agent can acquire the optimal policy by learning V* ,  provided it has 
perfect knowledge of the immediate reward function r and the state transition 
function 6. When the agent knows the functions r  and 6 used by the environment 
to respond to its actions, it can then use Equation (13.3) to calculate the optimal 
action for any state s. 

Unfortunately, learning V* is a useful way to learn the optimal policy only 
when the agent has perfect knowledge of 6 and r. This requires that it be able to 
perfectly predict the immediate result (i.e., the immediate reward and immediate 
successor) for every possible state-action transition. This assumption is compara- 
ble to the assumption of a perfect domain theory in explanation-based learning, 
discussed in Chapter 11. In many practical problems, such as robot control, it 
is impossible for the agent or its human programmer to predict in advance the 
exact outcome of applying an arbitrary action to an arbitrary state. Imagine, for 
example, the difficulty in describing 6 for a robot arm shoveling dirt when the 
resulting state includes the positions of the dirt particles. In cases where either 
6 or r  is unknown, learning V* is unfortunately of no use for selecting optimal 
actions because the agent cannot evaluate Equation (13.3). What evaluation func- 
tion should the agent use in this more general setting? The evaluation function Q ,  
defined in the following section, provides one answer. 
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13.3.1 The Q Function 
Let us define the evaluation function Q(s, a )  so that its value is the maximum dis- 
counted cumulative reward that can be achieved starting from state s  and applying 
action a as the first action. In other words, the value of Q is the reward received 
immediately upon executing action a from state s, plus the value (discounted by 
y) of following the optimal policy thereafter. 

Q(s ,  a )  - r(s ,  a )  + Y V*(6(s, a ) )  (1 3.4) 
Note that Q(s, a )  is exactly the quantity that is maximized in Equation (13.3) 
in order to choose the optimal action a in state s. Therefore, we can rewrite 
Equation (13.3) in terms of Q(s, a)  as 

n * ( s )  = argmax Q (s , a )  (13.5) 
a 

Why is this rewrite important? Because it shows that if the agent learns the Q 
function instead of the V* function, it will be able to select optimal actions even 
when it has no knowledge of thefunctions r  and 6 .  As Equation (13.5) makes clear, 
it need only consider each available action a in its current state s  and choose the 
action that maximizes Q(s, a). 

It may at first seem surprising that one can choose globally optimal action 
sequences by reacting repeatedly to the local values of Q for the current state. 
This means the agent can choose the optimal action without ever conducting a 
lookahead search to explicitly consider what state results from the action. Part of 
the beauty of Q learning is that the evaluation function is defined to have precisely 
this property-the value of Q for the current state and action summarizes in a 
single number all the information needed to determine the discounted cumulative 
reward that will be gained in the future if action a is selected in state s. 

To illustrate, Figure 13.2 shows the Q values for every state and action in the 
simple grid world. Notice that the Q value for each state-action transition equals 
the r  value for this transition plus the V* value for the resulting state discounted by 
y. Note also that the optimal policy shown in the figure corresponds to selecting 
actions with maximal Q values. 

13.3.2 An Algorithm for Learning Q 
Learning the Q function corresponds to learning the optimal policy. How can Q 
be learned? 

The key problem is finding a reliable way to estimate training values for 
Q, given only a sequence of immediate rewards r  spread out over time. This can 
be accomplished through iterative approximation. To see how, notice the close 
relationship between Q and V*,  

V*(S )  = max Q(s, a') 
a' 

which allows rewriting Equation (13.4) as 
Q(s, a )  = r(s, a )  + y max Q ( W ,  a ) ,  a') 

a' 
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This recursive definition of Q provides the basis for algorithms that iter- 
atively approximate Q (Watkins 1989). To describe the algorithm, we will use 
the symbol Q to refer to the learner's estimate, or hypothesis, of the actual Q 
function. In this algorithm the learner represents its hypothesis Q by a large table 
with a separate entry for each state-action pair. The table entry for the pair (s, a )  
stores the value for ~ ( s ,  a)-the learner's current hypothesis about the actual 
but unknown value Q(s, a). The table can be initially filled with random values 
(though it is easier to understand the algorithm if one assumes initial values of 
zero). The agent repeatedly observes its current state s, chooses some action a, 
executes this action, then observes the resulting reward r = r(s, a) and the new 
state s' = 6(s, a). It then updates the table entry for ~ ( s ,  a)  following each such 
transition, according to the rule: 

Q(S, a)  t r + y max &(st, a') 
a' 

(13.7) 

Note this training rule uses the agent's current Q values for the new state 
s' to refine its estimate of ~ ( s ,  a) for the previous state s. This training rule 
is motivated by Equation (13.6), although the training rule concerns the agent's 
approximation Q, whereas Equation (13.6) applies to the actual Q function. Note 
although Equation (13.6) describes Q in terms of the functions 6(s, a )  and r(s, a), 
the agent does not need to know these general functions to apply the training 
rule of Equation (13.7). Instead it executes the action in its environment and 
then observes the resulting new state s' and reward r. Thus, it can be viewed as 
sampling these functions at the current values of s and a .  

The above Q learning algorithm for deterministic Markov decision processes 
is described more precisely in Table 13.1. Using this algorithm the agent's estimate 
Q converges in the limit to the actual Q function, provided the system can be 
modeled as a deterministic Markov decision process, the reward function r is 

Q learning algorithm 
For each s ,  a initialize the table entry ~ ( s ,  a) to zero. 
Observe the current state s 
Do forever: 

Select an action a and execute it 
Receive immediate reward r 
Observe the new state s' 
Update the table entry for ~ ( s ,  a) as follows: 

~ ( s , a )  c r  + ymax&(s',af) 
a' 

S  C S '  

TABLE 13.1 
Q learning algorithm, assuming deterministic rewards and actions. The discount factor y may be any 
constant such that 0 5 y < 1. 



bounded, and actions are chosen so that every state-action pair is visited infinitely 
often. 

13.3.3 An Illustrative Example 
To illustrate the operation of the Q learning algorithm, consider a single action 
taken by an agent, and the corresponding refinement to Q shown in Figure 13.3. 
In this example, the agent moves one cell to the right in its grid world and receives 
an immediate reward of zero for this transition. It then applies the training rule 
of Equation (13.7) to refine its estimate Q for the state-action transition it just 
executed. According to the training rule, the new Q estimate for this transition 
is the sum of the received reward (zero) and the highest Q value associated with 
the resulting state (loo), discounted by y (.9). 

Each time the agent moves forward from an old state to a new one, Q 
learning propagates Q estimates backward from the new state to the old. At the 
same time, the immediate reward received by the agent for the transition is used 
to augment these propagated values of Q. 

Consider applying this algorithm to the grid world and reward function 
shown in Figure 13.2, for which the reward is zero everywhere, except when 
entering the goal state. Since this world contains an absorbing goal state, we will 
assume that training consists of a series of episodes. During each episode, the 
agent begins at some randomly chosen state and is allowed to execute actions 
until it reaches the absorbing goal state. When it does, the episode ends and 

Initial state: S] Next state: S2 

FIGURE 13.3 
The update to Q after executing a single  ̂action. The diagram on the left shows the initial state 
s! of the robot (R) and several relevant Q values in its initial hypothesis. For example, the value 
Q(s1, aright) = 72.9, where aright refers to the action that moves R to its right. When the robot 
executes the action aright ,  it receives immediate reward r = 0 and transitions to state s2. It then 
updates its estimate i)(sl, aright) based on its Q estimates for the new state s2. Here y = 0.9. 
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the agent is transported to a new, randomly chosen, initial state for the next 
episode. 

How will the values of Q evolve as the Q learning algorithm is applied in 
this case? With all the Q values initialized to zero, the agent will make no changes 
to any Q table entry until it happens to reach the goal state and receive a nonzero 
reward. This will result in refining the Q value for the single transition leading 
into the goal state. On the next episode, if the agent passes through this state 
adjacent to the goal state, its nonzero Q value will allow refining the value for 
some transition two steps from the goal, and so on. Given a sufficient number of 
training episodes, the information will propagate from the transitions with nonzero 
reward back through the entire state-action space available to the agent, resulting 
eventually in a Q table containing the Q values shown in Figure 13.2. 

In the next section we prove that under certain assumptions the Q learning 
algorithm of Table 13.1 will converge to the correct Q function. First consider 
two general properties of this Q learning algorithm that hold for any deterministic 
MDP in which the rewards are non-negative, assuming we initialize all Q values to 
zero. The first property is that under these conditions the Q values never decrease 
during training. More formally, let Q,(s, a) denote the learned ~ ( s ,  a) value after 
the nth iteration of the training procedure (i.e., after the nth state-action transition 
taken by the agent). Then 

A second general property that holds under these same conditions is that through- 
out the training process every Q value wi:l remain in the interval between zero 
and its true Q value. 

13.3.4 Convergence 
Will the algorithm of Table 13.1 converge toward a Q equal to the true Q function? 
The answer is yes, under certain conditions. First, we must assume the system is 
a deterministic MDP. Second, we must assume the immediate reward values are 
bounded; that is, there exists some positive constant c such that for all states s 
and actions a ,  Ir(s, a)l < c.  Third, we assume the agent selects actions in such 
a fashion that it visits every possible state-action pair infinitely often. By this 
third condition we mean that if action a is a legal action from state s, then over 
time the agent must execute action a from state s repeatedly and with nonzero 
frequency as the length of its action sequence approaches infinity. Note these 
conditions are in some ways quite general and in others fairly restrictive. They 
describe a more general setting than illustrated by the example in the previous 
section, because they allow for environments with arbitrary positive or negative 
rewards, and for environments where any number of state-action transitions may 
produce nonzero rewards. The conditions are also restrictive in that they require 
the agent to visit every distinct state-action transition infinitely often. This is a 
very strong assumption in large (or continuous!) domains. We will discuss stronger 



convergence results later. However, the result described in this section provides 
the basic intuition for understanding why Q learning works. 

The key idea underlying the proof of convergence is that the table entry 
~ ( s ,  a) with the largest error must have its error reduced by a factor of y whenever 
it is updated. The reason is that its new value depends only in part on error-prone 
Q estimates, with the remainder depending on the error-free observed immediate 
reward r. 

Theorem 13.1. Convergence of Q learning for deterministic Markov decision 
processes. Consider a Q learning agent in a deterministic MDP with bounded re- 
wards (Vs, a )  lr(s, a ) [  5 c .  The* Q learning agent uses the training rule of Equa- 
tion (13.7), initializes its table Q(s, a )  to arbitrary finite values, and uses a discount 
factor y such that 0 y < 1. Let Q,(s, a )  denote the agent's hypothesis ~ ( s ,  a )  
following the nth update. If each state-action pair is visited infinitely often, then 
Q,(s, a )  converges to Q(s, a )  as n + oo, for all s ,  a .  

Proof. Since each state-action transition occurs infinitely often, consider consecutive 
intervals during which each state-action transition occurs at least once. The proof 
consists of showing that the maximum error over all entries in the Q table is reduced 
by at least a factor of y during each such interval. Q, is the agent's table of estimated 
Q values after n updates. Let An be the maximum error in Q,; that is 

Below we use s' to denote S(s, a ) .  Now for any table entry ( in@, a )  that is updated 
on iteration n + 1, the magnitude of the error in the revised estimate Q , + ~ ( S ,  a )  is 

IQ,+I(S ,  a )  - Q(s, all = I(r + y max Qn(s', a')) - (r + y m?x Q(d ,  a'))] 
a' a 

= y I m y  Qn(st, a') - m y  Q(s1, a') I 
a a 

5 y max I Qn(s1, a') - ~ ( s ' ,  a') I 
a' 

5 Y my I Q ,  (s", a') - Q W ,  a') I 
s , a  

I Qn+i (s, a)  - Q(s, all 5 Y An 

The third line above follows from the second line because for any two functions fi 
and f2 the following inequality holds 

In going from the third line to the fourth line above, note we introduce a new 
variable s" over which the maximization is performed. This is legitimate because 
the maximum value will be at least as great when we allow this additional variable 
to vary. Note that by introducing this variable we obtain an expression that matches 
the definition of A,. 

Thus, the updated Q , + ~ ( S ,  a )  for any s, a is at most y times the maximum 
error in the Q,, table, A,. The largest error in the initial table, Ao, is bounded because 
values of ~ ~ ( s ,  a )  and Q(s, a )  are bounded for all s ,  a .  Now after the first interval 
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during which each s, a is visited, the largest error in the table will be at most yAo.  
After k such intervals, the error will be at most ykAo. Since each state is visited 
infinitely often, the number of such intervals is infinite, and A, -+ 0 as n + oo. 
This proves the theorem. 0 

13.3.5 Experimentation Strategies 
Notice the algorithm of Table 13.1 does not specify how actions are chosen by the 
agent. One obvious strategy would be for the agent in state s to select the action a 
that maximizes ~ ( s ,  a), thereby exploiting its current approximation Q. However, 
with this strategy the agent runs the risk that it will overcommit to actions that 
are found during early training to have high Q values, while failing to explore 
other actions that have even higher values. In fact, the convergence theorem above 
requires that each state-action transition occur infinitely often. This will clearly 
not occur if the agent always selects actions that maximize its current &(s, a). For 
this reason, it is common in Q learning to use a probabilistic approach to selecting 
actions. Actions with higher Q values are assigned higher probabilities, but every 
action is assigned a nonzero probability. One way to assign such probabilities is 

where P(ai 1s) is the probability of selecting action ai, given that the agent is in 
state s ,  and where k > 0 is a constant that determines how strongly the selection 
favors actions with high Q values. Larger values of k will assign higher proba- 
bilities to actions with above average Q, causing the agent to exploit what it has 
learned and seek actions it believes will maximize its reward. In contrast, small 
values of k will allow higher probabilities for other actions, leading the agent 
to explore actions that do not currently have high Q values. In some cases, k is 
varied with the number of iterations so that the agent favors exploration during 
early stages of learning, then gradually shifts toward a strategy of exploitation. 

13.3.6 Updating Sequence 
One important implication of the above convergence theorem is that Q learning 
need not train on optimal action sequences in order to converge to the optimal 
policy. In fact, it can learn the Q function (and hence the optimal policy) while 
training from actions chosen completely at random at each step, as long as the 
resulting training sequence visits every state-action transition infinitely often. This 
fact suggests changing the sequence of training example transitions in order to 
improve training efficiency without endangering final convergence. To illustrate, 
consider again learning in an MDP with a single absorbing goal state, such as the 
one in Figure 13.1. Assume as before that we train the agent with a sequence of 
episodes. For each episode, the agent is placed in a random initial state and is 
allowed to perform actions and to update its Q table until it reaches the absorbing 
goal state. A new training episode is then begun by removing the agent from the 



goal state and placing it at a new random initial state. As noted earlier, if we 
begin with all Q values initialized to zero, then after the first full episode only 
one entry in the agent's Q table will have been changed: the entry corresponding 
to the final transition into the goal state. Note that if the agent happens to follow 
the same sequence of actions from the same random initial state in its second full 
episode, then a second table entry would be made nonzero, and so on. If we run 
repeated identical episodes in this fashion, the frontier of nonzero Q values will 
creep backward from the goal state at the rate of one new state-action transition 
per episode. Now consider training on these same state-action transitions, but in 
reverse chronological order for each episode. That is, we apply the same update 
rule from Equation (13.7) for each transition considered, but perform these updates 
in reverse order. In this case, after the first full episode the agent will have updated 
its Q estimate for every transition along the path it took to the goal. This training 
process will clearly converge in fewer iterations, although it requires that the agent 
use more memory to store the entire episode before beginning the training for that 
episode. 

A second strategy for improving the rate of convergence is to store past 
state-action transitions, along with the immediate reward that was received, and 
retrain on them periodically. Although at first it might seem a waste of effort to 
retrain on the same transition, recall that the updated ~ ( s ,  a )  value is determined 
by the values ~ ( s ' ,  a )  of the successor state s' = 6(s, a) .  Therefore, if subsequent 
training changes one of the ~ ( s ' ,  a )  values, then retraining on the transition ( s ,  a )  
may result in an altered value for ~ ( s ,  a) .  In general, the degree to which we wish 
to replay old transitions versus obtain new ones from the environment depends 
on the relative costs of these two operations in the specific problem domain. For 
example, in a robot domain with navigation actions that might take several seconds 
to perform, the delay in collecting a new state-action transition from the external 
world might be several orders of magnitude more costly than internally replaying 
a previously observed transition. This difference can be very significant given that 
Q learning can often require thousands of training iterations to converge. 

Note throughout the above discussion we have kept our assumption that the 
agent does not know the state-transition function 6(s,  a )  used by the environment 
to create the successor state s' = S(s, a ) ,  or the function r(s ,  a )  used to generate 
rewards. If it does know these two functions, then many more efficient methods 
are possible. For example, if performing external actions is expensive the agent 
may simply ignore the environment and instead simulate it internally, efficiently 
generating simulated actions and assigning the appropriate simulated rewards. 
Sutton (1991) describes the DYNA architecture that performs a number of simulated 
actions after each step executed in the external world. Moore and Atkeson (1993) 
describe an approach called prioritized sweeping that selects promising states to 
update next, focusing on predecessor states when the current state is found to 
have a large update. Peng and Williams (1994) describe a similar approach. A 
large number of efficient algorithms from the field of dynamic programming can 
be applied when the functions 6 and r are known. Kaelbling et al. (1996) survey 
a number of these. 
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13.4 NONDETERMINISTIC REWARDS AND ACTIONS 
Above we considered Q learning in deterministic environments. Here we consider 
the nondeterministic case, in which the reward function r (s ,  a )  and action transi- 
tion function 6(s, a )  may have probabilistic outcomes. For example, in T e s a u r ~ ' ~  
(1995) backgammon playing program, action outcomes are inherently probabilis- 
tic because each move involves a roll of the dice. Similarly, in robot problems 
with noisy sensors and effectors it is often appropriate to model actions and re- 
wards as nondeterministic. In such cases, the functions 6(s, a )  and r(s ,  a )  can be 
viewed as first producing a probability distribution over outcomes based on s and 
a ,  and then drawing an outcome at random according to this distribution. When 
these probability distributions depend solely on s and a (e.g., they do not depend 
on previous states or actions), then we call the system a nondeterministic Markov 
decision process. 

In this section we extend the Q learning algorithm for the deterministic 
case to handle nondeterministic MDPs. To accomplish this, we retrace the line 
of argument that led to the algorithm for the deterministic case, revising it where 
needed. 

In the nondeterministic case we must first restate the objective of the learner 
to take into account the fact that outcomes of actions are no longer deterministic. 
The obvious generalization is to redefine the value V" of a policy n to be the ex- 
pected value (over these nondeterministic outcomes) of the discounted cumulative 
reward received by applying this policy 

where, as before, the sequence of rewards r,+i is generated by following policy 
n beginning at state s. Note this is a generalization of Equation (13.1), which 
covered the deterministic case. 

As before, we define the optimal policy n* to be the policy n that maxi- 
mizes V"(s)  for all states s. Next we generalize our earlier definition of Q from 
Equation (13.4), again by taking its expected value. 

where P(slls, a )  is the probability that taking action a in state s will produce the 
next state s'. Note we have used P(slls, a )  here to rewrite the expected value of 
V*(6(s,  a ) )  in terms of the probabilities associated with the possible outcomes of 
the probabilistic 6. 

As before we can re-express Q recursively 

Q ( s ,  a )  = E[r(s ,  a ) ]  + y P(sfls,  a )  m y  Q(sl ,  a') (13.9) 
S' 

a 



which is the generalization of the earlier Equation (13.6). To summarize, we have 
simply redefined Q(s, a )  in the nondeterministic case to be the expected value of 
its previously defined quantity for the deterministic case. 

Now that we have generalized the definition of Q to accommodate the non- 
deterministic environment functions r and 6, a new training rule is needed. Our 
earlier training rule derived for the deterministic case (Equation 13.7) fails to con- 
verge in this nondeterministic setting. Consider, for example, a nondeterministic 
reward function r(s,  a )  that produces different rewards each time the transition 
(s ,  a }  is repeated. In this case, the training rule will repeatedly alter the values of 
Q(S,  a) ,  even if we initialize the Q table values to the correct Q function. In brief, 
this training rule does not converge. This difficulty can be overcome by modifying 
the training rule so that it takes a decaying weighted average of the current Q 
value and the revised estimate. Writing Q, to denote the agent's estimate on the 
nth iteration of the algorithm, the following revised training rule is sufficient to 
assure convergence of Q to Q: 

Q ~ ( s ,  a )  -+ (1  - un)Qn-l(s,  a )  + a,[r + y max Q,-~(S',  a')] 
at (13.10) 

where 

a, = 
1 

1 + visits, ( s ,  a )  
where s and a here are the state and action updated during the nth iteration, and 
where visits,(s, a )  is the total number of times this state-action pair has been 
visited up to and including the nth iteration. 

The key idea in this revised rule is that revisions to Q are made more 
gradually than in the deterministic case. Notice if we were to set a, to 1 in 
Equation (13.10) we would have exactly the training rule for the deterministic case. 
With smaller values of a ,  this term is now averaged in with the current ~ ( s ,  a )  to 
produce the new updated value. Notice that the value of a,  in Equation (13.11) 
decreases as n increases, so that updates become smaller as training progresses. 
By reducing a at an appropriate rate during training, we can achieve convergence 
to the correct Q function. The choice of a,  given above is one of many that 
satisfy the conditions for convergence, according to the following theorem due to 
Watkins and Dayan (1992). 

Theorem 13.2. Convergence of Q learning for nondeterministic Markov de- 
cision processes. Consider a Q learning agent i n  a nondeterministic MDP with 
bounded rewards (Vs, a)lr(s, a)l 5 c .  The Q learning agent uses the training rule of 
Equation (13.10), initializes its table ~ ( s ,  a )  to arbitrary finite values, and uses a 
discount factor y such that 0 5 y < 1. Let n(i, s, a )  be the iteration corresponding 
to the ith time that action a is applied to state s. If each state-action pair is visited 
infinitely often, 0 5 a,, < 1, and 

then for all s and a,  &,(s, a )  + Q(s, a )  as n + 00, with probability 1. 



While Q learning and related reinforcement learning algorithms can be 
proven to converge under certain conditions, in practice systems that use Q learn- 
ing often require many thousands of training iterations to converge. For exam- 
ple, Tesauro's TD-GAMMON discussed earlier trained for 1.5 million backgammon 
games, each of which contained tens of state-action transitions. 

13.5 TEMPORAL DIFFERENCE LEARNING 
The Q learning algorithm learns by iteratively reducing the discrepancy between 
Q value estimates for adjacent state:,. In this sense, Q learning is a special case 
of a general class of temporal diflerence algorithms that learn by reducing dis- 
crepancies between estimates made by the agent at different times. Whereas the 
training rule of Equation (13.10) reduces the difference between the estimated Q 
values of a state and its immediate successor, we could just as well design an algo- 
rithm that reduces discrepancies between this state and more distant descendants 
or ancestors. 

To explore this issue further, recall that our Q learning training rule calcu- 
lates a training value for &(st,  a,)  in terms of the values for &(s,+l, at+l)  where 
s,+l is the result of applying action a, to the state st. Let Q(')(s,, a,)  denote the 
training value calculated by this one-step lookahead 

One alternative way to compute a training value for Q(s,, a,)  is to base it on the 
observed rewards for two steps 

2  st, a,) = rt + yr,+l + y max Q ( s ~ + ~ ,  a )  

or, in general, for n steps 

Q ( ~ ) ( s , , ~ , )  = rt + yr,+l + , - .  + y(n-l)rt+n-l + ynmax&(s,+,,a) 

Sutton (1988) introduces a general method for blending these alternative 
training estimates, called TD(h). The idea is to use a constant 0 5 h 5 1 to 
combine the estimates obtained from various lookahead distances in the following 
fashion 

An equivalent recursive definition for Qh is 

Note if we choose h = 0 we have our original training estimate Q('), which 
considers only one-step discrepancies in the Q estimates. As h is increased, the al- 
gorithm places increasing emphasis on discrepancies based on more distant looka- 
heads. At the extreme value A. = 1, only the observed r,+i values are considered, 



with no contribution from the current Q estimate. Note when Q = Q, the training 
values given by Qh will be identical for all values of h such that 0 5 h 5 I .  

The motivation for the TD(h) method is that in some settings training will 
be more efficient if more distant lookaheads are considered. For example, when 
the agent follows an optimal policy for choosing actions, then eh with h = 1 will 
provide a perfect estimate for the true Q value, regardless of any inaccuracies in 
Q. On the other hand, if action sequences are chosen suboptimally, then the r,+i 
observed far into the future can be misleading. 

Peng and Williams (1994) provide a further discussion and experimental 
results showing the superior performance of Q q n  one problem domain. Dayan 
(1992) shows that under certain assumptions a similar TD(h) approach applied 
to learning the V* function converges correctly for any h such that 0 5 A 5 1. 
Tesauro (1995) uses a TD(h) approach in his TD-GAMMON program for playing 
backgammon. 

13.6 GENERALIZING FROM EXAMPLES 
Perhaps the most constraining assumption in our treatment of Q learning up to 
this point is that the target function is represented as an explicit lookup table, 
with a distinct table entry for every distinct input value (i.e., state-action pair). 
Thus, the algorithms we discussed perform a kind of rote learning and make 
no attempt to estimate the Q value for unseen state-action pairs by generalizing 
from those that have been seen. This rote learning assumption is reflected in the 
convergence proof, which proves convergence only if every possible state-action 
pair is visited (infinitely often!). This is clearly an unrealistic assumption in large 
or infinite spaces, or when the cost of executing actions is high. As a result, 
more practical systems often combine function approximation methods discussed 
in other chapters with the Q learning training rules described here. 

It is easy to incorporate function approximation algorithms such as BACK- 
PROPAGATION into the Q learning algorithm, by substituting a neural network for 
the lookup table and using each ~ ( s ,  a) update as a training example. For example, 
we could encode the state s and action a as network inputs and train the network 
to output the target values of Q given by the training rules of Equations (13.7) 
and (13.10). An alternative that has sometimes been found to be more successful 
in practice is to train a separate network for each action, using the state as input 
and Q as output. Another common alternative -is to train one network with the 
state as input, but with one Q output for each action. Recall that in Chapter 1, we 
discussed approximating an evaluation function over checkerboard states using a 
linear function and the LMS algorithm. 

In practice, a number of successful reinforcement learning systems have been 
developed by incorporating such function approximation algorithms in place of the 
lookup table. Tesauro's successful TD-GAMMON program for playing backgammon 
used a neural network and the BACKPROPAGATION algorithm together with a TD(A) 
training rule. Zhang and Dietterich (1996) use a similar combination of BACKPROP- 
AGATION and TD(h) for job-shop scheduling tasks. Crites and Barto (1996) describe 



a neural network reinforcement learning approach for an elevator scheduling task. 
Thrun (1996) reports a neural network based approach to Q learning to learn basic 
control procedures for a mobile robot with sonar and camera sensors. Mahadevan 
and Connell (1991) describe a Q learning approach based on clustering states, 
applied to a simple mobile robot control problem. 

Despite the success of these systems, for other tasks reinforcement learning 
fails to converge once a generalizing function approximator is introduced. Ex- 
amples of such problematic tasks are given by Boyan and Moore (1995), Baird 
(1995), and Gordon (1995). Note the convergence theorems discussed earlier in 
this chapter apply only when Q is represented by an explicit table. To see the 
difficulty, consider using a neural network rather than an explicit table to repre- 
sent Q. Note if the learner updates the network to better fit the training Q value 
for a particular transition (si, ai), the altered network weights may also change 
the Q estimates for arbitrary other transitions. Because these weight changes may 
increase the error in Q estimates for these other transitions, the argument prov- 
ing the original theorem no longer holds. Theoretical analyses of reinforcement 
learning with generalizing function approximators are given by Gordon (1995) 
and Tsitsiklis (1994). Baird (1995) proposes gradient-based methods that circum- 
vent this difficulty by directly minimizing the sum of squared discrepancies in 
estimates between adjacent states (also called Bellman residual errors). 

13.7 RELATIONSHIP TO DYNAMIC PROGRAMMING 
Reinforcement learning methods such as Q learning are closely related to a long 
line of research on dynamic programming approaches to solving Markov decision 
processes. This earlier work has typically assumed that the agent possesses perfect 
knowledge of the functions S(s, a) and r(s, a) that define the agent's environment. 
Therefore, it has primarily addressed the question of how to compute the optimal 
policy using the least computational effort, assuming the environment could be 
perfectly simulated and no direct interaction was required. The novel aspect of 
Q learning is that it assumes the agent does not have knowledge of S(s, a) and 
r(s, a), and that instead of moving about in an internal mental model of the state 
space, it must move about the real world and observe the consequences. In this 
latter case our primary concern is usually the number of real-world actions that the 
agent must perform to converge to an acceptable policy, rather than the number of 
computational cycles it must expend. The reason is that in many practical domains 
such as manufacturing problems, the costs in time and in dollars of performing 
actions in the external world dominate the computational costs. Systems that learn 
by moving about the real environment and observing the results are typically called 
online systems, whereas those that learn solely by simulating actions within an 
internal model are called ofline systems. 

The close correspondence between these earlier approaches and the rein- 
forcement learning problems discussed here is apparent by considering Bellman's 
equation, which forms the foundation for many dynamic programming approaches 



to solving MDPs. Bellman's equation is 

Note the very close relationship between Bellman's equation and our earlier def- 
inition of an optimal policy in Equation (13.2). Bellman (1957) showed that the 
optimal policy n* satisfies the above equation and that any policy n satisfying 
this equation is an optimal policy. Early work on dynamic programming includes 
the Bellman-Ford shortest path algorithm (Bellman 1958; Ford and Fulkerson 
1962), which learns paths through a graph by repeatedly updating the estimated 
distance to the goal for each graph node, based on the distances for its neigh- 
bors. In this algorithm the assumption that graph edges and the goal node are 
known is equivalent to our assumption that 6(s,  a )  and r ( s ,  a )  are known. Barto 
et al. (1995) discuss the close relationship between reinforcement learning and 
dynamic programming. 

13.8 SUMMARY AND FURTHER READING 
The key points discussed in this chapter include: 

0 Reinforcement learning addresses the problem of learning control strategies 
for autonomous agents. It assumes that training information is available in 
the form of a real-valued reward signal given for each state-action transition. 
The goal of the agent is to learn an action policy that maximizes the total 
reward it will receive from any starting state. 

0 The reinforcement learning algorithms addressed in this chapter fit a problem 
setting known as a Markov decision process. In Markov decision processes, 
the outcome of applying any action to any state depends only on this ac- 
tion and state (and not on preceding actions:or states). Markov decision 
processes cover a wide range of problems including many robot control, 
factory automation, and scheduling problems. 

0 Q learning is one form of reinforcement learning in which the agent learns 
an evaluation function over states and actions. In particular, the evaluation 
function Q(s ,  a) is defined as the maximum expected, discounted, cumulative 
reward the agent can achieve by applying action a  to state s. The Q learning 
algorithm has the advantage that it can-be employed even when the learner 
has no prior knowledge of how its actions affect its environment. 

0 Q learning can be proven to converge to the correct Q function under cer- 
tain assumptions, when the learner's hypothesis ~ ( s ,  a )  is represented by a 
lookup table with a distinct entry for each ( s ,  a )  pair. It can be shown to 
converge in both deterministic and nondeterministic MDPs. In practice, Q 
learning can require many thousands of training iterations to converge in 
even modest-sized problems. 

0 Q learning is a member of a more general class of algorithms, called tem- 
poral difference algorithms. In general, temporal difference algorithms learn 
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by iteratively reducing the discrepancies between the estimates produced by 
the agent at different times. 

Reinforcement learning is closely related to dynamic programming ap- 
proaches to Markov decision processes. The key difference is that histori- 
cally these dynamic programming approaches have assumed that the agent 
possesses knowledge of the state transition function 6(s, a)  and reward func- 
tion r (s , a). In contrast, reinforcement learning algorithms such as Q learning 
typically assume the learner lacks such knowledge. 

The common theme that underlies much of the work on reinforcement learn- 
ing is to iteratively reduce the discrepancy between evaluations of successive 
states. Some of the earliest work on such methods is due to Samuel (1959). His 
checkers learning program attempted to learn an evaluation function for checkers 
by using evaluations of later states to generate training values for earlier states. 
Around the same time, the Bellman-Ford, single-destination, shortest-path algo- 
rithm was developed (Bellman 1958; Ford and Fulkerson 1962), which propagated 
distance-to-goal values from nodes to their neighbors. Research on optimal control 
led to the solution of Markov decision processes using similar methods (Bellman 
1961; Blackwell 1965). Holland's (1986) bucket brigade method for learning clas- 
sifier systems used a similar method for propagating credit in the face of delayed 
rewards. Barto et al. (1983) discussed an approach to temporal credit assignment 
that led to Sutton's paper (1988) defining the TD(k) method and proving its con- 
vergence for k = 0. Dayan (1992) extended this result to arbitrary values of k. 
Watkins (1989) introduced Q learning to acquire optimal policies when the re- 
ward and action transition functions are unknown. Convergence proofs are known 
for several variations on these methods. In addition to the convergence proofs 
presented in this chapter see, for example, (Baird 1995; Bertsekas 1987; Tsitsiklis 
1994, Singh and Sutton 1996). 

Reinforcement learning remains an active research area. McCallum (1995) 
and Littman (1996), for example, discuss the extension of reinforcement learning 
to settings with hidden state variables that violate the Markov assumption. Much 
current research seeks to scale up these methods to larger, more practical prob- 
lems. For example, Maclin and Shavlik (1996) describe an approach in which a 
reinforcement learning agent can accept imperfect advice from a trainer, based on 
an extension to the KBANN algorithm (Chapter 12). Lin (1992) examines the role 
of teaching by providing suggested action sequences. Methods for scaling Up by 
employing a hierarchy of actions are suggested by Singh (1993) and Lin (1993). 
Dietterich and Flann (1995) explore the integration of explanation-based methods 
with reinforcement learning, and Mitchell and Thrun (1993) describe the appli- 
cation of the EBNN algorithm (Chapter 12) to Q learning. Ring (1994) explores 
continual learning by the agent over multiple tasks. 

Recent surveys of reinforcement learning are given by Kaelbling et al. 
(1996); Barto (1992); Barto et al. (1995); Dean et al. (1993). 


