Consider Q-learning of the following classical maze (15 points)

	Α	В	С	D
1	*			
2				
3				¥

The object is to get from the asterix to the heart. States are maze positions (e.g., [1,A]). Actions are Down (v), Up (^), Right (>) and Left (<). Assume you start with the Q values listed in the table below.

	1,A	2,A	3,A	1,B	2,B	3,B	1,C	2, C	3, C	1,D	2,D	3,D
V	.2	.2	0	0	0	0	.1	0	0	.1	.1	0
^	0	0	0	0	.1	.1	0	0	0	0	0	0
>	0	0	.2	.1	.2	.2	.1	.2	0	0	0	0
<	0	0	0	0	0	0	0	0	0	0	0	0

Transition probabilities are deterministic and based solely on the maze. Reward is 0 in all states but moving to [3,D] gets you a reward of 1. Assume $\gamma = 0.9$

Using Q-learning and the policy indicated by the above table, move the asterix through **ten** time steps. Assume that each episode starts at 1,A. Please provide the following information in your answer booklets. If a chosen move is random, indicate with an "*"

Step	Action taken	s'(subsequent state)	Q(s,a) to update and value
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			