Consider Q-learning of the following classical maze (15 points)

The object is to get from the asterix to the heart. States are maze positions (e.g., [1,A]). Actions are Down (v), Up (^), Right (>) and Left (<). Assume you start with the Q values listed in the table below.

	$\mathbf{1 , A}$	$\mathbf{2 , A}$	$\mathbf{3 , A}$	$\mathbf{1 , B}$	$\mathbf{2 , B}$	$\mathbf{3 , B}$	$\mathbf{1 , C}$	$\mathbf{2 , C}$	$\mathbf{3 , C}$	$\mathbf{1 , D}$	$\mathbf{2 , D}$	3,D
\mathbf{V}	.2	.2	0	0	0	0	.1	0	0	.1	.1	0
\wedge	0	0	0	0	.1	.1	0	0	0	0	0	0
$>$	0	0	.2	.1	.2	.2	.1	.2	0	0	0	0
$<$	0	0	0	0	0	0	0	0	0	0	0	0

Transition probabilities are deterministic and based solely on the maze. Reward is 0 in all states but moving to $[3, \mathrm{D}]$ gets you a reward of 1 . Assume $\gamma=0.9$

Using Q-learning and the policy indicated by the above table, move the asterix through ten time steps. Assume that each episode starts at 1,A. Please provide the following information in your answer booklets. If a chosen move is random, indicate with an "*"

Step	Action taken	$s^{\prime}($ subsequent state)	$Q(s, a)$ to update and value
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			

