Lucas Sinclair, PhD student	Auto-generated report	EBC	
Limnology departement	July 31, 2014	$\overline{\langle }$	
Uppsala University	Page 1 of 9	EVELUTIONS BIOLOGISES CENTRUN	UPPSALA UNIVERSITET

1 CLUSTER "ICE"

Cluster "ice"

General Information

This is the cluster named "ice". It contains 40 samples. It corresponds to project code 'ice' ('ice')

Samples

There are in 40 samples in this cluster. Some summary information about them is given in table 1.

	Name	Reference	Description	Reads lost	Reads left
1	rl1am	run10_sample26	rl1am	37.1%	76'512
2	rl2bm	run10_sample27	rl2bm	35.9%	208'026
3	rl3bm	run10_sample28	rl3bm	37.8%	84'579
4	rl4am	run10_sample29	rl4am	36.2%	123'193
5	rl5bm	run10_sample30	rl5bm	36.9%	104'310
6	rl6bm	run10_sample31	rl6bm	38.1%	39'131
7	rl7bm	run10_sample32	m rl7bm	37.3%	91'538
8	rl8bm	run10_sample33	rl8bm	37.6%	83'617
9	bt1am	run10_sample34	bt1am	36.1%	51'981
10	bt2am	run10_sample35	bt2am	35.0%	109'315
11	bt3bm	run10_sample36	bt3bm	35.9%	42'208
12	bt4am	run10_sample37	bt4am	36.1%	76'388
13	bt5am	run10_sample38	bt5am	36.7%	56'547
14	bt6am	run10_sample39	bt6am	35.4%	146'343
15	bt7bm	run10_sample40	bt7bm	38.0%	99'286
16	bt8am	run10_sample41	bt8am	37.5%	102'750
17	lb1bm	run10_sample42	lb1bm	35.7%	103'479
18	lb2am	run10_sample43	lb2am	36.7%	84'447
19	lb3am	run10_sample44	lb3am	35.9%	67'306
20	lb4am	run10_sample45	lb4am	36.4%	107'528
21	lb5am	run10_sample46	lb5am	37.3%	72'728
22	lb6am	run10_sample47	lb6am	35.8%	128'558
23	lb7am	run10_sample48	lb7am	36.3%	122'848
24	lb8am	run10_sample49	lb8am	36.5%	95'158
25	kt1bm	run10_sample50	kt1bm	37.2%	113'531
26	kt2bm	run10_sample51	kt2bm	35.7%	139'802
27	kt3am	run10_sample52	kt3am	38.2%	106'221
28	kt4am	run10_sample53	kt4am	36.1%	106'803

Lucas Sinclair, PhD student	Auto-generated report	EBC	
Limnology departement	July 31, 2014	$\overline{\langle }$	
Uppsala University	Page 2 of 9	EVELUTIONS HIGLOSISET	UPPSALA INIVERSITET

1.3 Processing

1 CLUSTER "ICE"

	Name	Reference	Description	Reads lost	Reads left
29	kt5bm	run10_sample54	kt5bm	37.1%	83'445
30	kt6bm	run10_sample55	kt6bm	39.2%	123'679
31	kt7bm	run10_sample56	kt7bm	38.1%	89'106
32	kt8bm	run10_sample57	kt8bm	38.1%	80'007
33	gs1am	run10_sample58	gs1am	37.5%	104'883
34	sb1bm	run10_sample59	sb1bm	36.0%	168'364
35	sb2am	run10_sample60	sb2am	36.5%	168'297
36	sb3bm	run10_sample61	sb3bm	36.9%	139'961
37	sb4bm	run10_sample62	sb4bm	37.8%	101'383
38	sb5am	run10_sample63	sb5am	36.2%	114'212
39	sb6am	run10_sample64	sb6am	38.6%	141'092
40	sb7am	run10_sample65	sb7am	36.9%	131'382

 Table 1. Summary information for all samples.

Processing

This report (and all the analysis) was generated using the ILLUMITAG project at:

http://github.com/limno/illumitag

Version 1.0.0 of the pipeline was used. The exact git hash of the latest commit was:

```
e902cd63af4b634a255bb90c228c54ace07017d6
```

also refereed to by its tag ${\tt submission2-40-ge902cd6-dirty}.$ This document was generated at 2014–07–31 20:50:02 CEST+0200.

A brief overview of what happens to the data can be viewed online here:

https://github.com/limno/illumitag/blob/master/documentation/pipeline_outline.pdf?raw=true

The results and all the files generated for this cluster can be found on UPPMAX at:

/home/lucass/ILLUMITAG/views/projects/ice/cluster/

Input data

Summing the reads from all the samples, we have 4'189'944 sequences to work on. Sequence quality information is disregarded from this point on. Before starting the analysis we can look at the length distribution pattern that these reads form in figure 1.

Lucas Sinclair, PhD student	Auto-generated report	EBC	
Limnology departement	July 31, 2014	$\overline{\mathbf{x}}$	
Uppsala University	Page 3 of 9	EVALUTIONS HIGLOGISSE CENTRUM	UPPSALA UNIVERSITET

1.5 Clustering

1 CLUSTER "ICE"

Figure 1. Distribution of sequence lengths at input

Clustering

Two sequences that diverge by no more than a few nucleotides are probably not produced by ecological diversity. They are most likely produced by errors along the laboratory method. So we put them together in one unit, called an OTU. On the other hand, a sequence that does not have any such similar-looking brothers is most likely the product of a recombination (chimera) and is discarded. This process is done using the UPARSE denovo picking method (v7.0.1090_i86linux32). The publication is available at:

```
http://www.nature.com/doifinder/10.1038/nmeth.2604
```

The similarity threshold chosen is 3.0%. Exactly 9'653 OTUs are produced.

Classification

Relying on databases of ribosomal genes such as Silva, we can classify each OTU and give it an approximative affiliation. This provides a taxonomic name to each OTU. This is done using the LCAClassifier method (version 2.0 (March 2014)).. The publication is available at:

http://dx.plos.org/10.1371/journal.pone.0049334

Out of our 9'653 OTUs, exactly 9'497 of them are assigned to a position somewhere in the tree of life (not necessary on a tip though).

At this point we are going to remove some OTUs. All those pertaining to any of the following phyla are discarded: Plastid, Mitochondrion, Thaumarchaeota, Crenarchaeota and Euryarchaeota. This leaves us with 9'144 'good' OTUs. As OTUs contain a varying number of sequences in them, we can plot this distribution in figure 2.

Lucas Sinclair, PhD student	Auto-generated report	EBC	
Limnology departement	July 31, 2014	$\overline{\mathbf{x}}$	
Uppsala University	Page 4 of 9	EVALUTIONS HIGLOGISSE CENTRUM	UPPSALA UNIVERSITET

1.7 OTU table

1 CLUSTER "ICE"

Figure 2. Distribution of OTU sizes

OTU table

Now we check which sample each sequence of each OTU was coming from and make a count table with OTUs as rows (9'144) and samples as columns (40). Each cell tells us how many sequences are pertaining to this OTU from this sample. This table is too big to be viewed directly here. However we can plot some of its properties to better understand how sparse it is as seen in figures 3, 4 and 5:

Lucas Sinclair, PhD student	Auto-generated report	EBC	
Limnology departement	July 31, 2014	$\overline{\mathbf{x}}$	
Uppsala University	Page 5 of 9	EVELUTIONS BIOLOSISST CENTRUM	UPPSALA UNIVERSITET

1.7 OTU table

1 CLUSTER "ICE"

Figure 3. Distribution of OTU presence per OTU

Figure 4. Distribution of OTU presence per sample

Lucas Sinclair, PhD student	Auto-generated report	EBC	
Limnology departement	July 31, 2014	$\overline{\mathbf{x}}$	
Uppsala University	Page 6 of 9	EVELUTIONS BIOLOSISST CENTRUM	UPPSALA UNIVERSITET

1.8 Taxa table

1 CLUSTER "ICE"

Figure 5. Cumulative number of reads by OTU presence

Taxa table

If we modify the rows of our table to become taxonomic names instead of OTUs, some rows will have the same affiliations and will be merged together by summation. This produces the taxa table which has 40 samples and 819 named taxa. It's important to consider the difference between an OTU table and a taxa table.

Composition

At this point, one of the most obvious graphs to produce is a bar-chart detailing the composition in terms of taxonomy of every one of our samples. To keep things simple we will only consider the 'phyla' taxonomic level and only sometimes dividing phyla into their composing classes if they are very large (going deeper while still including everything would yield an unreadable graph). This can be seen in figure 6.

Lucas Sinclair, PhD student	Auto-generated report	EBC	
Limnology departement	July 31, 2014	$\overline{\mathbf{X}}$	
Uppsala University	Page 7 of 9		UPPSALA UNIVERSITET

1.10 Comparison

1 CLUSTER "ICE"

Figure 6. Species relative abundances per sample on the phyla and class levels

Comparison

We now would like to start comparing samples amongst each other to determine which ones are similar or if any clear groups can be observed. A first means of doing that is by using the information in the OTU table and a distance metric such as the "Horn 1966" one to place them on an ordination plot. This can be seen in figure 7.

Lucas Sinclair, PhD student	Auto-generated report	EBC	
Limnology departement	July 31, 2014	$\overline{\mathbf{X}}$	
Uppsala University	Page 8 of 9	EVELUTIONS BIOLOGISET CENTRUM	UPPSALA UNIVERSITET

1.10 Comparison

1 CLUSTER "ICE"

Figure 7. NMDS using the OTU table for 40 samples

These kind of graphs have a random component to them and can be easily influenced by one or two differently looking samples. If one uses the taxa table instead, already one gets a different result as seen in figure 8.

Lucas Sinclair, PhD student	Auto-generated report	EBC	
Limnology departement	July 31, 2014	$\overline{\mathbf{x}}$	
Uppsala University	Page 9 of 9	EVELUTIONS NICLOSISET CENTRON	UPPSALA UNIVERSITET

1.11 Distances

1 CLUSTER "ICE"

Figure 8. NMDS using the taxa table for 40 samples

One can also make NMDS plots with more complicated distance measures such as phylogenetic ones. More about that later.

Distances

To compute beta diversity, other distance measures are possible of course. Bray-curtis and Jaccard distance matrices are available. We can also explore phylogenetic distance measures such as the UniFrac one. This is also implemented and a UniFrac distance matrix can easily be computed. One can also build a hierarchical clustering of the samples from it (not included).

Environmental tags

Relying on the same kind of databases and their meta-data, we can try to infer a typical environmental tag to each sequence. This, in turn, enables us to assign a linear combination of environmental tags to each sample and to the cluster as a whole. This method is also implemented in the pipeline (results on demand):

http://environments.hcmr.gr/seqenv.html