
B2 - Introduction to Web
Development

B-WEB-200

EpyTodo
Build an API to create a TODO App.

2

EpyTodo
language: Node.js

• The totality of your source files, except all useless files (binary, temp files, obj
files,...), must be included in your delivery.

• All the bonus files (including a potential specific Makefile) should be in a directory
named bonus.

The project idea is to build a Todo List. Thanks to it, you’ll be able to handle all the tasks you need to do
easily! We will mainly focus on the “backend” side of the project, but feel free to show us what you can by
building a “frontend” to your project as a bonus.
Within this project, you’ll have to develop:

1. your MySQL database.
2. A web server using Node.js

The bootstrap will help you a lot!

MYSQL DATABASE

Into your database, you’ll have to manage various users and their respective tasks (todos).

Pay attention to the instructions below

Create a file named epytodo.sql.
You have to write into it your whole database scheme. You can also use external tools to build your Database
and export it as a .sql file later.
The database’s name must be epytodo.
It must contain 2 tables:

1. user
2. todo

1

Here are the description of the fields each table must contain:

1. user table

• id (mandatory, not null, auto-increments)
• email (mandatory, not null, unique)
• password (mandatory not null)
• name (mandatory not null)
• firstname (mandatory not null)
• created_at (set to the current datetime by default)

2. todo table

• id (mandatory not null, auto-increments)
• title (mandatory not null)
• description (mandatory not null)
• created_at (set to the current datetime by default)
• due_time (mandatory, not null, datetime)
• status (not started by default / todo / in progress / done)
• user_id (mandatory, unsigned, reference to the id of the user that get assigned to the task)

Think about the last one: why do you need this?
Maybe it has to do with relationships, foreign keys. . .

Choose the type of each field carefully, depending on what it’s going to be used for.

Once your scheme is created, import your file into your MySQL server.

∇ Terminal - + x
∼/B-WEB-200> cat epytodo.sql | mysql -u root -p

Your SQL file has to be placed in the root folder when turned in.
Do not insert any records into this file.

2

WEB SERVER
Unlike other programming languages, Node and express let you build things your own way, meaning that
you can do the same thing in tons of different ways. This also means that your file structure can get quite
messy, so try to keep your code and your architecture as clean as possible if you don’t want to get lost.
Here’s how your repository’s structure should look like:
|-- .env
|-- package .json
`-- src

|-- config
| `-- db.js
|-- index.js
|-- middleware
| |-- auth.js
| `-- notFound .js
`-- routes

|-- auth
| `-- auth.js
|-- todos
| |-- todos.js
| `-- todos.query.js
`-- user

|-- user.js
`-- user.query.js

More explanations about what each folder/file is for :

• src: your main folder.
• package.json: your app package file
• config: contains the files that deal with the connection to the database.
• index.js: The main file, the one that starts everything (it calls and runs the app).
• middleware: contains all the middlewares created
• routes: contains all the subfolders that contain the routes needed for the project.

The .env file must contain all the configuration variables that will be necessary for the Project.

You should have a node_modules folder at the root of your project. If you look closely, it
is not listed on the tree above, that’s because we DO NOT PUSH this folder. Check out
gitignore

Here are the required ones :

• MYSQL_DATABASE
• MYSQL_HOST
• MYSQL_USER
• MYSQL_ROOT_PASSWORD
• SECRET //used for the JSON Web Token (JWT).

3

https://git-scm.com/docs/gitignore

API
It’s not the most fun part, but take some time to read about API.
Here, we’re using a REST API to create our CRUD system.
All data will transit into JSON format.

During your research, you will face a lot of packages and entities that will help you build your app. Some
of them are good and some are evil. For this project, you will only be authorized to use the packages listed
below. Every other package will be forbidden or needs to be authorized by the pedagogical team.

• Express
• mysql2
• dotenv
• jsonwebtoken
• bcryptjs
• body-parser This one is optional, find out why.

ROUTES
Here is a listing of all the routes we expect for this project.
route method protected description

/register POST no register a new user
/login POST no connect a user
/user GET yes view all user information
/user/todos GET yes view all user tasks
/users/:id or :email GET yes view user information
/users/:id PUT yes update user information
/users/:id DELETE yes delete user
/todos GET yes view all the todos
/todos/:id GET yes view the todo
/todos POST yes create a todo
/todos/:id PUT yes update a todo
/todos/:id DELETE yes delete a todo
In this project, we expect you to protect your route and only make them accessible to logged-in users. to
do so, the protected routes should receive a valid JWT (JSON Web Token) in the header.

JWT and jsonwebtoken.

4

https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Representational_state_transfer
https://expressjs.com/
https://www.npmjs.com/package/mysql2
https://www.npmjs.com/package/dotenv
https://www.npmjs.com/package/jsonwebtoken
https://www.npmjs.com/package/bcryptjs
https://www.npmjs.com/package/body-parser
https://jwt.io/introduction
https://www.npmjs.com/package/jsonwebtoken

DEFINITIONS OF FORMAT
Every route can have multiple methods, parameters or responses.
Everything you need will be explained in this documentation

DEFAULTS

By default, each error will be treated as follows.
If there are more details, that will be explained in the related part.
For occurring common errors we suggest you build a custom error handler middleware and simply send the
error instead of dealing with it in every route.

1. If the user is not logged in :

∇ Terminal - + x

{
"msg ": "No token , authorization denied "

}

1. If the user sends an invalid Token :

∇ Terminal - + x

{
"msg ": "Token is not valid"

}

2. If the task or user does not exist :

∇ Terminal - + x

{
"msg ": "Not found"

}

3. If user give bad parameters :

∇ Terminal - + x

{
"msg ": "Bad parameter "

}

5

4. If there’s another error :

∇ Terminal - + x

{
"msg ": " Internal server error"

}

6

REGISTER

POST /register
Request body:
∇ Terminal - + x

{
"email ": "value",
"name ": "value",
" firstname ": "value",
" password ": "value"

}

Response:
∇ Terminal - + x

{
"token ": Token of the newly registered user

}

Response, if the account already exists:
∇ Terminal - + x

{
"msg ": " Account already exists "

}

The password should not be stored as plain text! You have to hash it before inserting it
into your database. Check the packages listed above.

7

POST /login
Request body:
∇ Terminal - + x

{
"email" : " _username ",
" password " : " _password "

}

Response body:
∇ Terminal - + x

{
"token ": Token of the newly logged in user

}

Response body, if the credentials are incorrect:
∇ Terminal - + x

{
"msg ": " Invalid Credentials "

}

USERS

GET /user
Response body:
∇ Terminal - + x

{
"id" : "1" ,
"email" : " email@test .eu",
" password " : " hashed passord ",
" created_at " : "2021 -03 -03 19:24:00" ,
" firstname " : "test",
"name" : "test"

}

8

GET /user/todos
Response body:
∇ Terminal - + x

[
{

"id" : "1",
"title" : "title",
" description " : "desc",
" created_at " : "2021 -03 -03 19:24:00" ,
" due_time " : "2021 -03 -04 19:24:00" ,
" user_id " : "3",
" status " : "done"

},
{

"id" : "2",
"title" : "title",
" description " : "desc",
" created_at " : "2021 -03 -05 19:24:00" ,
" due_time " : "2021 -03 -06 19:24:00" ,
" user_id " : "3",
" status " : "in progress "

}
]

GET /users/:id AND /users/:email
Response body:
∇ Terminal - + x

{
"id" : "1" ,
"email" : " email@test .eu",
" password " : " hashed passord ",
" created_at " : "2021 -03 -03 19:24:00" ,
" firstname " : "test",
"name" : "test"

}

PUT /users/:id
Request body:
∇ Terminal - + x

{
"email" : " updated_email@test .eu",
" password " : " updated_passord ",
" firstname " : " updated_test ",
"name" : " updated_test "

}

9

Response body:
∇ Terminal - + x

{
"id" : "1" ,
"email" : " updatedemail@test .eu",
" password " : " hashed passord ",
" created_at " : "2021 -03 -03 19:24:00" ,
" firstname " : "test",
"name" : "test"

}

DELETE /users/:id
Response body:
∇ Terminal - + x

{
"msg" : " Successfully deleted record number : ${id}"

}

TODOS

GET /todos
Response body:
∇ Terminal - + x

[
{

"id" : "1",
"title" : "title",
" description " : "desc",
" created_at " : "2021 -03 -03 19:24:00" ,
" due_time " : "2021 -03 -04 19:24:00" ,
" user_id " : "1",
" status " : "done"

},
{

"id" : "2",
"title" : "title",
" description " : "desc",
" created_at " : "2021 -03 -05 19:24:00" ,
" due_time " : "2021 -03 -06 19:24:00" ,
" user_id " : "2",
" status " : "in progress "

}
]

10

GET /todos/:id
Response body:
∇ Terminal - + x

{
"id" : "2" ,
"title" : "title",
" description " : "desc",
" created_at " : "2021 -03 -05 19:24:00" ,
" due_time " : "2021 -03 -06 19:24:00" ,
" user_id " : "3",
" status " : "in progress "

}

POST /TODOS
Request body:
∇ Terminal - + x

{
"title" : "title",
" description " : "desc",
" due_time " : "2021 -03 -06 19:24:00" ,
" user_id " : "3",
" status " : "todo"

}

Response body: the created todo (just like the GET todo route).

PUT /todos/:id
Request and response body:
∇ Terminal - + x

{
"title" : " Updated title",
" description " : " Updated desc",
" due_time " : "2021 -03 -07 19:24:00" ,
" user_id " : "1",
" status " : "in progress "

}

11

DELETE /todos/:id
∇ Terminal - + x

{
"msg" : " Successfully deleted record number : ${id}"

}

Each response must use an appropriate HTTP status.

12

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

	EpyTodo
	EpyTodo
	MySQL database

	Web server
	API
	Routes
	Definitions of format
	Defaults
	Register
	POST /register
	POST /login

	users
	GET /user
	GET /user/todos
	GET /users/:id and /users/:email
	PUT /users/:id
	DELETE /users/:id

	todos
	GET /todos
	GET /todos/:id
	POST /todos
	PUT /todos/:id
	DELETE /todos/:id

