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Abstract
Access to electronic health record (EHR) data has motivated computational advances in medical research.
However, various concerns, particularly over privacy, can limit access to and collaborative use of EHR data.
Sharing synthetic EHR data could mitigate risk.

In this paper, we propose a new approach, medical Generative Adversarial Network (medGAN), to generate
realistic synthetic patient records. Based on input real patient records, medGAN can generate high-dimensional
discrete variables (e.g., binary and count features) via a combination of an autoencoder and generative adver-
sarial networks. We also propose minibatch averaging to efficiently avoid mode collapse, and increase the
learning efficiency with batch normalization and shortcut connections. To demonstrate feasibility, we showed
that medGAN generates synthetic patient records that achieve comparable performance to real data on many
experiments including distribution statistics, predictive modeling tasks and a medical expert review. We also
empirically observe a limited privacy risk in both identity and attribute disclosure using medGAN.

1. Introduction
The adoption of electronic health records (EHR) by healthcare organizations (HCOs), along with the large
quantity and quality of data now generated, has led to an explosion in computational health. However, the
wide adoption of EHR systems does not automatically lead to easy access to EHR data for researchers. One
reasons behind limited access stems from the fact that EHR data are composed of personal identifiers, which
in combination with potentially sensitive medical information, induces privacy concerns. As a result, access
to such data for secondary purposes (e.g., research) is regulated, as well as controlled by the HCOs groups
that are at risk if data are misused or breached. The review process by legal departments and institutional
review boards can take months, with no guarantee of access (Hodge Jr et al., 1999). This process limits timely
opportunities to use data and may slow advances in biomedical knowledge and patient care (Gostin et al.,
2009).

HCOs often aim to mitigate privacy risks through the practice of de-identification (for Civil Rights, 2013),
typically through the perturbation of potentially identifiable attributes (e.g., dates of birth) via generalization,
suppression or randomization. (El Emam et al., 2015) However, this approach is not impregnable to attacks,
such as linkage via residual information to re-identify the individuals to whom the data corresponds (El Emam
et al., 2011b). An alternative approach to de-identification is to generate synthetic data (McLachlan et al.,
2016; Buczak et al., 2010; Lombardo and Moniz, 2008). However, realizing this goal in practice has been
challenging because the resulting synthetic data are often not sufficiently realistic for machine learning tasks.
Since many machine learning models for EHR data use aggregated discrete features derived from longitudinal
EHRs, we concentrate our effort on generating such aggregated data in this study. Although it is ultimately
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desirable to generate longitudinal event sequences, in this work we focus on generating high-dimensional
discrete variables, which is an important and challenging problem on its own.

Generative adversarial networks (GANs) have recently been shown achieve impressive performance in
generating high-quality synthetic images (Goodfellow et al., 2014; Radford et al., 2015; Goodfellow, 2016).
To understand how, it should first be recognized that a GAN consists of two components: a generator that
attempts to generate realistic, but fake, data and a discriminator that aims to distinguish between the generated
fake data and the real data. By playing an adversarial game against each other, the generator can learn
the distribution of the real samples - provided that both the generator and the discriminator are sufficiently
expressive. Empirically, a GAN outperforms other popular generative models such as variational autoencoders
(VAE) (Kingma and Welling, 2013) and PixelRNN/PixelCNN (van den Oord et al., 2016b,a) on the quality of
data (i.e., fake compared to real), in this case images, and on processing speed (Goodfellow, 2016). However,
GANs have not been used for learning the distribution of discrete variables.

To address this limitation, we introduce medGAN, a neural network model that generates high-dimensional,
multi-label discrete variables that represent the events in EHRs (e.g., diagnosis of a certain disease or treatment
of a certain medication). Using EHR source data, medGAN is designed to learn the distribution of discrete
features, such as diagnosis or medication codes via a combination of an autoencoder and the adversarial
framework. In this setting, the autoencoder assists the original GAN to learn the distribution of multi-label
discrete variables. The specific contributions of this work are as follows:
• We define an efficient algorithm to generate high-dimensional multi-label discrete samples by combining

an autoencoder with GAN, which we call medGAN. This algorithm is notable in that it handles both
binary and count variables.

• We propose a simple, yet effective, method called minibatch averaging to cope with the situation where
GAN overfits to a few training samples (i.e., mode collapse), which outperforms previous methods such
as minibatch discrimination.

• We demonstrate a close-to-real data performance of medGAN using real EHR datasets on a set of diverse
tasks, which include reporting distribution statistics, classification performance and medical expert
review.

• We empirically show that medGAN leads to acceptable privacy risks in both presence disclosure (i.e.,
discovery that a patient’s record contributed to the GAN) and attribute disclosure (i.e., discovery of a
patient’s sensitive medical data).

2. Related work
In this section, we begin with a discussion of existing methods for generating synthetic EHR data. This is
followed by a review recent advances in generative adversarial networks (GANs). Finally, we summarize
specific investigations into generating discrete variables using GANs.
Synthetic Data Generation for Health Data: De-identification of EHR data is currently the most generally
accepted technical method for protecting patient privacy when sharing EHR data for research in practice
(Johnson et al., 2016). However, de-identification does not guarantee that a system is devoid of risk. In certain
circumstances, re-identification of patients can be accomplished through residual distinguishable patterns in
various features (e.g., demographics (Sweeney, 1997; El Emam et al., 2011a), diagnoses (Loukides et al.,
2010), lab tests (Atreya et al., 2013), visits across healthcare providers (Malin and Sweeney, 2004), and
genomic variants (Erlich and Narayanan, 2014)) To mitigate re-identification vulnerabilities, researchers in the
statistical disclosure control community have investigated how to generate synthetic datasets. Yet, historically,
these approaches have been limited to summary statistics for only several variables at a time (e.g., (Dreschsler,
2011; Reiter, 2002). For instance McLachlan et al.(2016) used clinical practice guidelines and health incidence
statistics with a state transition machine to generate synthetic patient datasets.

There is some, but limited, work on synthetic data generation in the healthcare domain and, the majority
that has, tend to be disease specific. For example, Buczak et al. (2010) generated EHRs to explore questions
related to the outbreak of specific illnesses, where care patterns in the source EHRs were applied to generate
synthetic datasets. Many of these methods often rely heavily upon domain-specific knowledge along with
actual data to generate synthetic EHRs (Lombardo and Moniz, 2008). More recently, and most related to our
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work, a privacy-preserving patient data generator was proposed based on a perturbed Gibbs sampler (Park
et al., 2013). Still, this approach can only handle binary variables and its utility was assessed with only a small,
low-dimensional dataset. By contrast, our proposed medGAN directly captures general EHR data without
focusing on a specific disease, which makes it suitable for a greater diversity of applications.
GAN and its Applications: Attempts to advance GANs (Goodfellow et al., 2014) include, but are not limited
to, using convolutional neural networks to improve image processing capacity (Radford et al., 2015), extending
GAN to a conditional architecture for higher quality image generation (Mirza and Osindero, 2014; Denton
et al., 2015; Odena et al., 2016), and text-to-image generation (Reed et al., 2016). We, in particular, pay
attention to the recent studies that attempted to handle discrete variables using GANs.

One way to generate discrete variables with GAN is to invoke reinforcement learning. SeqGAN (Yu
et al., 2016) trains GAN with REINFORCE (Williams, 1992) and Monte-Carlo search to generate word
sequences. Although REINFORCE enables an unbiased estimation of the gradients of the model via sampling,
the estimates come with a high variance. Moreover, SeqGAN focuses on sampling one word (i.e. one-hot) at
each timestep, whereas our goal is to generate multi-label binary/count variables. Alternatively, one could use
specialized distributions, such as the Gumbel-softmax (Jang et al., 2016; Kusner and Hernández-Lobato, 2016),
a concrete distribution (Maddison et al., 2016) or a soft-argmax function (Zhang et al., 2016) to approximate
the gradient of the model from discrete samples. However, since these approaches focus on the softmax
distribution, they cannot be directly invoked for multi-label discrete variables, especially in the count variable
case. Yet another way to handle discrete variables is to generate distributed representations, then decode them
into discrete outputs. For example, Glover (2016) generated document embeddings with a GAN, but did not
attempt to simulate actual documents.

To handle high-dimensional multi-label discrete variables, medGAN generates the distributed representa-
tions of patient records with a GAN. It then decodes them to simulated patient records with an autoencoder.

3. Method
This section begins with a formalization of the structure of EHR data and the corresponding mathematical
notation we adopt in this work, This is followed by a detailed description of the medGAN algorithm.

3.1 Description of EHR Data and Notations
We assume there are |C| discrete variables (e.g., diagnosis, medication or procedure codes) in the EHR data that
can be expressed as a fixed-size vector x ∈ Z|C|+ , where the value of the ith dimension indicates the number of
occurrences (i.e., counts) of the i-th variable in the patient record. In addition to the count variables, a visit
can also be represented as a binary vector x ∈ {0, 1}|C|, where the ith dimension indicates the absence or
occurrence of the ith variable in the patient record. It should be noted that we can also represent demographic
information, such as age and gender, as count and binary variables, respectively.

Learning the distribution of count variables is generally more difficult than learning the distribution of
binary variables. This is because the model needs to learn more than simple co-occurrence relations between
the various dimensions. Moreover, in EHR data, certain clinical concepts tend to occur much more frequently
(e.g., essential hypertension) than others. This is problematic because it can skew a distribution around
different dimensions.

3.2 Preliminary: Generative Adversarial Network
In a GAN, the generator G(z; θg) accepts a random prior z ∈ Rr and generates synthetic samples G(z) ∈ Rd,
while the discriminator D(x; θd) determines whether a given sample is real or fake. The optimal discriminator
D∗ would perfectly distinguish real samples from fake samples. The optimal generator G∗ would generate
fake samples that are indistinguishable from the real samples so that D is forced to make random guesses.
Formally, D and G play the following minimax game with the value function V (G,D):

min
G

max
D

V (G,D) = Ex∼pdata [logD(x)]

+ Ez∼pz [log(1−D(G(z)))]
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Figure 1: Architecture of medGAN: The dis-
crete x comes from the source EHR data,
z is the random prior for the generator G;
G is a feedforward network with shortcut
connections (right-hand side figure); An au-
toencoder (i.e, the encoder Enc and decoder
Dec) is learned from x; The same decoder
Dec is used after the generator G to con-
struct the discrete output. The discriminator
D tries to differentiate real input x and dis-
crete synthetic output Dec(G(z)).

z
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Dec(G(z))
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where pdata is the distribution of the real samples and pz is the distribution of the random prior, for which
N (0, 1) is generally used. Both G and D iterate in optimizing the respective parameters θg and θd as follows,

θd ← θd + α∇θd
1

m

m∑
i=1

logD(xi) + log(1−D(G(zi)))

θg ← θg − α∇θg
1

m

m∑
i=1

log(1−D(G(zi)))

where m is the size of the minibatch and α the step size. In practice, however, G can be trained to maximize
log(D(G(z)) instead of minimizing log(1−D(G(z)) to provide stronger gradients in the early stage of the
training (Goodfellow et al., 2014) as follows,

θg ← θg + α∇θg
1

m

m∑
i=1

logD(G(zi)) (1)

Henceforth, we use Eq.(1) as it showed significantly more stable performance in our investigation. We also
assume throughout the paper that both D and G are implemented with feedforward neural networks.

3.3 medGAN
Since the generator G is trained by the error signal from the discriminator D via backpropagation, the original
GAN can only learn to approximate discrete patient records x ∈ Z|C|+ with continuous values. We alleviate
this limitation by leveraging the autoencoder. Autoencoders are trained to project given samples to a lower
dimensional space, then project them back to the original space. Such a mechanism leads the autoencoder
to learn salient features of the samples and has been successfully used in certain applications, such as image
processing (Goodfellow et al., 2016; Vincent et al., 2008).

In this work, We apply the autoencoder to learn the salient features of discrete variables that can be applied
to decode the continuous output of G. This allows the gradient flow from D to the decoder Dec to enable
the end-to-end fine-tuning. As depicted by Figure 1, an autoencoder consists of an encoder Enc(x; θenc)

that compresses the input x ∈ Z|C|+ to Enc(x) ∈ Rh, and a decoder Dec(Enc(x); θdec) that decompresses
Enc(x) to Dec(Enc(x)) as the reconstruction of the original input x. The objective of the autoencoder is to
minimize the reconstruction error:

1

m

m∑
i=0

||xi − x′i||22 (2)

1

m

m∑
i=0

xi logx′i + (1− xi) log(1− x′i) (3)

where x′i = Dec(Enc(xi))

where m is the size of the mini-batch. We use the mean squared loss (Eq.(2)) for count variables and cross
entropy loss (Eq.(3)) for binary variables. For count variables, we use rectified linear units (ReLU) as the
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activation function in both Enc and Dec. For binary variables, we use tanh activation for Enc and the sigmoid
activation for Dec.1

With the pre-trained autoencoder, we can allow GAN to generate distributed representation of patient
records (i.e., the output of the encoder Enc), rather than generating patient records directly. Then the pre-
trained decoder Dec can pick up the right signals from G(z) to convert it to the patient record Dec(G(z)).
The discriminator D is trained to determine whether the given input is a synthetic sample Dec(G(z)) or a real
sample x. The architecture of the proposed model medGAN is depicted in Figure 1. medGAN is trained in a
similar fashion as the original GAN as follows,

θd ← θd + α∇θd
1

m

m∑
i=1

logD(xi) + log(1−D(xzi))

θg,dec ← θg,dec + α∇θg,dec
1

m

m∑
i=1

logD(xzi)

where xzi = Dec(G(zi))

It should be note that we can round the values of Dec(G(z)) to their nearest integers to ensure that the
discriminator D is trained on discrete values instead of continuous values. We experimented both with
and without rounding and empirically found that training D in the latter scenario led to better predictive
performance in section 4.2. Therefore, we assume, for the remainder of this paper, that D is trained without
explicit rounding.

We fine-tune the pre-trained parameters of the decoder θdec while optimizing for G. Therefore, the
generator G can be viewed as a neural network with an extra hidden layer pre-trained to map continuous
samples to discrete samples. We used ReLU for all of G’s activation functions, except for the output layer,
where we used the tanh function2. For D, we used ReLU for all activation functions except for the output
layer, where we used the sigmoid function for binary classification.

3.4 Minibatch Averaging
Since the objective of the generator G is to produce samples that can fool the discriminator D, G could learn
to map different random priors z to the same synthetic output, rather than producing diverse synthetic outputs.
This problem is denoted as mode collapse, which arises most likely due to the GAN’s optimization strategy
often solving the max-min problem instead of the min-max problem (Goodfellow, 2016). Some methods
have been proposed to cope with mode collapse (e.g., minibatch discrimination and unrolled GANs), but they
require ad hoc fine-tuning of the hyperparameters and scalability is often neglected (Salimans et al., 2016;
Metz et al., 2016).

By contrast, medGAN offers a simple and efficient method to cope with mode collapse when generating
discrete outputs. Our method, minibatch averaging, is motivated by the philosophy behind minibatch
discrimination. It allows the discriminator D to view the minibatch of real samples x1,x2, . . . and the
minibatch of the fake samples G(z1), G(z2), . . ., respectively, while classifying a real sample and a fake
sample. Given a sample to discriminate, minibatch discrimination calculates the distance between the given
sample and every sample in the minibatch in the latent space. Minibatch averaging, by contrast, provides the
average of the minibatch samples to D, modifying the objective as follows:

θd ← θd + α∇θd
1

m

m∑
i=1

logD(xi, x̄) + log(1−D(xzi , x̄z))

θg,dec ← θg,dec + α∇θg,dec
1

m

m∑
i=1

logD(xzi , x̄z)

where x̄ =
1

m

m∑
i=1

xi, xzi = Dec(G(zi)), x̄z =
1

m

m∑
i=1

xzi

where m denotes the size of the minibatch. Specifically, the average of the minibatch is concatenated on the
sample and provided to the discriminator D.

1. We considered a denoising autoencoder (dAE) (Vincent et al., 2008) as well, but there was no discernible improvement in performance.
2. We also applied tanh activation for the encoder Enc for consistency.
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Binary variables: When processing binary variables x ∈ {0, 1}|C|, the average of minibatch samples x̄
and x̄z are equivalent to the maximum likelihood estimate of the Bernoulli success probability p̂k of each
dimension k. This information makes it easier for D to ascertain whether a given sample is real or fake, if p̂k’s
of fake samples are considerably different from those of real samples. This is especially likely when mode
collapse occurs because the p̂k’s for most dimensions of the fake samples become dichotomized (either 0 or 1),
whereas the p̂k’s of real samples generally take on a value between 0 and 1. Therefore, if G wants to fool D, it
will have to generate more diverse examples within the minibatch Dec(G(z1, z2, . . .)).
Count variables: Count variables are a more accurate description of clinical events. They can indicate the
number of times a certain diagnosis was made or a certain medication was prescribed over multiple hospital
visits. For count variables x ∈ Z|C|+ , the average of minibatch samples x̄ and x̄z can be viewed as the estimate
of the binomial distribution mean np̂k of each dimension k, where n is the number of hospital visits. Hence
minibatch averaging for the count variables also provides helpful statistics to the discriminator D, guiding the
generator G to generate more diverse and realistic samples. As our experiments show, minibatch averaging
works surprisingly well and does not require additional parameters like minibatch discrimination. As a
consequence, it has minimal impact to the training time. It is further worth mentioning that, for both binary
and count variables, a minibatch that is larger than usual is recommended to properly capture the statistics of
the real data. We use 1,000 records for a minibatch in this investigation.

3.5 Enhanced Generator Training
Similar to image processing GANs, we observed that balancing the power of D and G in the multi-label
discrete variable setting was quite challenging (Goodfellow, 2016). Empirically, we observed that training
medGAN with minibatch averaging demonstrated D consistently overpowering G after several iterations.
While G still managed to learn under such situation, the performance seemed suboptimal, and updating θg
and θdec more often than θd in each iteration only degraded performance. Considering the importance of an
optimal D (Goodfellow, 2016), we chose not to limit the discriminative power of D, but rather improve the
learning efficiency of G by applying batch normalization (Ioffe and Szegedy, 2015) and shortcut connection
(He et al., 2016). G’s kth layer is now formulated as follows:

xk = ReLU(BNk(Wkxk−1)) + xk−1

where ReLU is the rectified linear unit, BNk is the batch normalization at the k-th layer, Wk is the weight
matrix of the k-th layer, and xk−1 is the input from the previous layer. The right-hand side of Figure 1
depicts the first two layers of G. Note that we do not incorporate the bias variable into each layer because
batch normalization negates the necessity of the bias term. Additionally, batch normalization and shortcut
connections could be applied to the discriminator D, but the experiments showed that D was consistently
overpowering G without such techniques, and we empirically found that a simple feedforward network was
sufficient for D. We describe the overall optimization algorithm in the Appendix A.

3.6 Privacy Consideration
When EHRs are de-identfied via methods such generalization or randomization, there often remains a 1-to-1
mapping to the underlying records from where they were derived. However, in our case, the mapping between
the generated data from medGAN and the training data of specific patients is not explicit. Intuitively, this
seems to imply that the privacy of the patients can be better preserved with medGAN; however, it also begs the
question of how to evaluate the privacy in the system. We perform a formal assessment of medGAN’s privacy
risks based on two definitions of privacy.
Presence disclosure occurs when an attacker can determine that medGAN was trained with a dataset including
the record from patient x. (Nergiz and Clifton, 2010) Presence disclosure for medGAN happens when a
powerful attacker, one who already possesses the complete records of a set of patients P , can determine
whether anyone from P are in the training set by observing the generated patient records. More recently, for
machine learned models, this has been referred to as an membership inference attack (Shokri et al., 2017).
the knowledge gained by the attacker may be limited, if the dataset is well balanced in its clinical concepts.
Attribute disclosure occurs when attackers can derive additional attributes such as diagnoses and medications
about patient x based on a subset of attributes they already know about x. (Matwin et al., 2015) We believe
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Table 1: Basic statistics of datasets A, B and C

Dataset (A) Sutter PAMF (B) MIMIC-III (C) Sutter Heart Failure

# of patients 258,559 46,520 30,738
# of unique codes 615 1071 569
Avg. # of codes per patient 38.37 11.27 53.02
Max # of codes for a patient 198 90 871
Min # of codes for a patient 1 1 2

that attribute disclosure for medGAN could be a more prominent issue because the attacker only needs to know
a subset of attributes of a patient. Moreover, the goal of the attacker is to gain knowledge of the unknown
attributes by observing similar patients generated by medGAN.

Considering the difficulty of deriving analytic proof of privacy for GANs and simulated data, we report
the empirical analysis of both risks to understand the extent to which privacy can be achieved, as commonly
practiced in the statistical disclosure control community. (Domingo-Ferrer and Torra, 2003)

4. Experiments
We evaluated medGAN with three distinct EHR datasets. First, we describe the datasets and baseline models.
Next, we report the quantitative evaluation results using both binary and count variables. We then perform a
qualitative analysis through medical expert review. Finally, we address the privacy aspect of medGAN. The
source code of medGAN is publicly available at https://github.com/mp2893/medgan.

4.1 Experimental Setup
Source data: The datasets in this study were from A) Sutter Palo Alto Medical Foundation (PAMF), which
consists of 10-years of longitudinal medical records of 258K patients, B) the MIMIC-III dataset (Johnson
et al., 2016; Goldberger et al., 2000), which is a publicly available dataset consisting of the medical records of
46K intensive care unit (ICU) patients over 11 years old and C) a heart failure study dataset from Sutter, which
consists of 18-months observation period of 30K patients. From dataset A and C, we extracted diagnoses,
medications and procedure codes, which were then respectively grouped by Clinical Classifications Software
(CCS) for ICD-93, Generic Product Identifier Drug Group4 and for CPT5. From dataset B, we extracted ICD9
codes only and grouped them by generalizing up to their first 3 digits. Finally, we aggregate a patient’s
longitudinal record into a single fixed-size vector x ∈ Z|C|+ , where |C| equals 615, 1071 and 569 for dataset A,
B and C respectively. Note that datasets A and B are binarized for experiments regarding binary variables
while dataset C is used for experiments regarding count variables. A summary of the datasets are in Table 1.
Models for comparison: To assess the effectiveness of our methods, we tested multiple versions of medGAN:
• GAN: We use the same architecture as medGAN with the standard training strategy, but do not pre-train

the autoencoder.
• GANP : We pre-train the autoencoder (in addition to the GAN).
• GANPD: We pre-train the autoencoder and use minibatch discrimination (Salimans et al., 2016).
• GANPA: We pre-train the autoencoder and use minibatch averaging.
• medGAN: We pre-train the autoencoder and use minibatch averaging. We also use batch normalization

and a shortcut connection for the generator G.
We also compare the performance of medGAN with several popular generative methods as below.
• Random Noise (RN): Given a real patient record x, we invert the binary value of each code (i.e.,

dimension) with probability 0.1. This is not strictly a generative method, but rather it is a simple
implementation of a privacy protection method based on randomization.

• Independent Sampling (IS): For the binary variable case, we calculate the Bernoulli success probability
of each code in the real dataset, based on which we sample binary values to generate the synthetic
dataset. For the count variable case, we use the kernel density estimator (KDE) for each code then
sample from that distribution.

3. https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
4. http://www.wolterskluwercdi.com/drug-data/medi-span-electronic-drug-file/
5. https://www.hcup-us.ahrq.gov/toolssoftware/ccs svcsproc/ ccssvcproc.jsp
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GAN GANP GANPD GANPA medGAN

(a) Dimension-wise probability performance of various versions of medGAN.

RN IS DBN VAE medGAN

(b) Dimension-wise probability performance of baseline models and medGAN.

Figure 2: Scatterplots of dimension-wise probability results. Each dot represents one of 615 codes. The x-axis
represents the Bernoulli success probability for the real dataset A, and y-axis the probability for the synthetic
counterpart generated by each model. The diagonal line indicates the ideal performance where the real and
synthetic data show identical quality.

• Stacked RBM (DBM): We train a stacked Restricted Boltzmann Machines (Hinton and Salakhutdinov,
2006), then, using Gibbs sampling, we can generate synthetic binary samples. There are studies that
extend RBMs beyond binary variables (Hinton and Salakhutdinov, 2009; Gehler et al., 2006; Tran et al.,
2011). In this work, however, as our goal is to study medGAN’s performance in various aspects, we use
the original RBM only.

• Variational Autoencoder (VAE): We train a variational autoencoder (Kingma and Welling, 2013)
where the encoder and the decoder are constructed with feed-forward neural networks.

Implementation details: We implemented medGAN with TensorFlow 0.12 (Team, 2015). For training models,
we used Adam (Kingma and Ba, 2014) with the learning rate set to 0.001, and a mini-batch of 1,000 patients
on a machine equipped with Intel Xeon E5-2630, 256GB RAM, four Nvidia Pascal Titan X’s and CUDA 8.0.
The hyperparameter details are provided in Appendix B.

4.2 Quantitative Evaluation for Binary Variables
We evaluate the model performance for binary variables in this section, and provide the evaluation results of
count variables in Appendix D. For all evaluations, we divide the dataset into a training set R ∈ {0, 1}N×|C|
and a test set T ∈ {0, 1}n×|C| by 4:1 ratio. We use R to train the models, then generate synthetic samples
S ∈ {0, 1}N×|C| that are assessed in various tasks. For medGAN and VAE, we round the values of the
generated dataset to the nearest integer values.

• Dimension-wise probability: This is a basic sanity check to confirm the model has learned each
dimension’s distribution correctly. We use the training set R to train the models, then generate the same
number of synthetic samples S. Using R and S, we compare the Bernoulli success probability pk of each
dimension k.

• Dimension-wise prediction: This task indirectly measures how well the model captures the inter-
dimensional relationships of the real samples. After training the models with R to generate S, we choose
one dimension k to be the label yRk

∈ {0, 1}N and ySk
∈ {0, 1}N . The remaining R\k ∈ {0, 1}N×|C|−1

and S\k ∈ {0, 1}N×|C|−1 are used as features to train two logistic regression classifiers LRRk
and LRSk

to
predict yRk

and ySk
, respectively. Then, we use the model LRRk

and LRSk
to predict label yTk

∈ {0, 1}n
of the test set T . We can assume that the closer the performance of LRSk

to that of LRRk
, the better

the quality of the synthetic dataset S. We use F1-score to measure the prediction performance, with the
threshold set to 0.5.

To mitigate the repetition of results, we present our evaluation of dataset A in this section and direct the reader
to Appendix C for the results from dataset B.
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GAN GANP GANPD GANPA medGAN

(a) Dimension-wise prediction performance of various versions of medGAN.

RN IS DBN VAE medGAN

(b) Dimension-wise prediction performance of baseline models and medGAN.

Figure 3: Scatterplots of dimension-wise prediction results. Each dot represents one of 615 codes. The x-axis
represents the F1-score of the logistic regression classifier trained on the real dataset A. The y-axis represents
the F1-score of the classifier trained on the synthetic counterpart generated by each model. The diagonal line
indicates the ideal performance where the real and synthetic data show identical quality.

4.2.1 DIMENSIONS-WISE PROBABILITY

There are several notable findings that are worth highlighting. The dimension-wise probability performance
increased as we used more advanced versions of medGAN, where the full medGAN shows the best performance
as depicted by figure 2a. Note that minibatch averaging significantly increases the performance. Since
minibatch averaging provides Bernoulli success probability information of real data to the model during
training, it is natural that the generator learns to output synthetic data that follow a similar distribution.
Minibatch discrimination does not seem to improve the results. This is most likely due to the discrete nature
of the datasets. Improving the learning efficiency of the generator G with batch normalization and shortcut
connection clearly helped improve the results.

Figure 2b compares the dimension-wise probability performance of baseline models with medGAN.
Independent sampling (IS) naturally shows great performance as expected. DBM, given its stochastic binary
nature, shows comparable performance as medGAN. VAE, although slightly inferior to DBM and medGAN,
seems to capture the dimension-wise distribution relatively well, showing specific weakness at processing
codes with low probability. Overall, we can see that medGAN clearly captures the independent distribution of
each code.
4.2.2 DIMENSIONS-WISE PREDICTION
Figure 3a shows the dimension-wise prediction performance of various versions of medGAN. The full medGAN
again shows the best performance as it did in the dimension-wise probability task. Although the advanced
versions of medGAN do not seem to dramatically increase the performance as they did for the previous task,
this is due to the complex nature of inter-dimensional relationship compared to the independent dimension-wise
probability. Figure 3b shows the dimension-wise prediction performance of baseline models compared to
medGAN. As expected, IS is incapable of capturing the inter-dimensional relationship, given its naive sampling
method. VAE shows similar behavior as it did in the previous task, showing weakness at predicting codes with
low occurrence probability. Again, DBM shows comparable, if not slightly better performance to medGAN,
which seems to come from its binary nature.

4.3 Qualitative Evaluation for Count Variables
We conducted a qualitative evaluation of medGAN with the help from a medical doctor. A discussion with the
doctor taught us that count data are easier to assess its realistic-ness than binary data. Therefore we use dataset
C to train medGAN and generate synthetic count samples. In this experiment, we randomly pick 50 records
from real data and 50 records from synthetic data, randomly shuffle the order, present them to a medical
doctor (specialized in internal medicine) who is asked to score how realistic each record is using scale 1 to 10
(10 being most realistic). Here the human doctor is served as the role of discriminator to provide the quality
assessment of the synthetic data generated by medGAN.
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The results of this assessment is shown in Figure 4. The findings suggest
that medGAN’s synthetic data are generally indistinguishable to a human doctor
except for several outliers. In those cases, the fake records identified by the doctor
either lacked appropriate medication codes, or had both male-related codes (e.g.
prostate cancer) and female-related codes (e.g. menopausal disorders) in the
same record. The former issue also existed in some of the real records due to
missing data, but the latter issue demonstrates a current limitation in medGAN
which could potentially be alleviated by domain specific heuristics. In addition
to medGAN’s impressive performance in statistical aspects, this medical review
lends credibility to the qualitative aspect of medGAN.

4.4 Privacy Risk Evaluation
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Figure 5: a,b: Sensitivity and precision when varying the number of known attributes. The total number
of attributes (i.e. codes) of dataset B is 1,071. c,d: Sensitivity and precision when varying the size of the
synthetic dataset. The maximum size of the synthetic dataset S ∈ {0, 1}N×|C| is matched to the size of the
training set R ∈ {0, 1}N×|C|.

We evaluate both presence and attribute disclosure using dataset B with binary variables. Due to the space
constraint, we present the results of the attribute disclosure in the main paper and leave out the results of
presence disclosure in Appendix F.
Experiment setup: We randomly sample 1% of the training set R as the compromised records, which is
approximately 370 records. For each record r, we randomly choose s attributes as those which are known to
the attacker. Next, the attacker performs k-nearest neighbor classifications to estimate the values of unknown
attributes based on the synthetic records. More specifically, based on the known attributes, k-nearest neighbors
in the synthetic dataset S are retrieved for each compromised record. Then, |C| − s unknown attributes are
estimated based on the majority vote of the k nearest neighbors. Finally, for each unknown attribute, we
calculate classification metrics in the form of precision and sensitivity. We repeat this process for all records of
the 1% samples and obtain the mean precision and mean sensitivity. We vary the number of known attributes s
and the number of neighbors k to study the attribute disclosure risk of medGAN. Note that the s attributes are
randomly sampled across patients, so the attacker may know different s attributes for different patients.
Impact of attacker’s knowledge: Figures 5a and 5b depict the sensitivity (i.e., recall) and the precision of
the attribute disclosure test when varying the number of attributes known to the attacker. In this case, x%
sensitivity means the attacker, using the known attributes of the compromised record and the synthetic data, can
correctly estimate x% of the positive unknown attributes (i.e., attribute values are 1). Likewise, x% precision
means the positive unknown attributes estimated by the attacker are on average x% accurate. Both figures
show that an attacker who knows approximately 1% of the target patient’s attributes (8 to 16 attributes) will
estimate the target’s unknown attributes with less than 10% sensitivity and 20% precision.
Impact of synthetic data size: Next, we fixed the number of known attributes to 16 and varied the number
of records in the synthetic dataset S. Figures 5c and 5d show that the size of the synthetic dataset has little
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influence on the effectiveness of the attack. In general, 1 nearest neighbor seems to be the most effective attack,
although the sensitivity is still below 25% at best.

Overall, our privacy experiments indicate that medGAN does not simply remember the training samples
and reproduce them. Rather, medGAN generates diverse synthetic samples that reveal little information to
potential attackers unless they already possess significant amount of knowledge about the target patient.

5. Conclusion
In this work, we proposed medGAN, which uses generative adversarial framework to learn the distribution
of real-world multi-label discrete electronic health records (EHR). Through rigorous evaluation using real
datasets, medGAN showed impressive results for both binary variables and count variables. Considering
the difficult accessibility of EHRs, we expect medGAN to make a contribution for healthcare research. We
also provided empirical evaluation of privacy, which demonstrates very limited risks of medGAN in attribute
disclosure. For future directions, we plan to explore the sequential version of medGAN, and also try to include
other modalities such as lab measures, patient demographics, and free-text medical notes.
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Algorithm 1 medGAN Optimization

θd, θg, θenc, θdec ← Initialize with random values.
repeat // Pre-train the autoencoder

Randomly sample x1,x2, . . . ,xm from X
Update θenc, θdec by minimizing Eq.(2) (or Eq.(3))

until convergence or fixed iterations
repeat

for k steps do // Update the discriminator.
Randomly sample z1, z2, . . . , zm from pz
Randomly sample x1,x2, . . . ,xm from X
xzi
← Dec(G(zi))

x̄z ← 1
m

∑m
i=1 xzi

x̄← 1
m

∑m
i=1 xi

Ascend θd by the gradient:
∇θd

1
m

∑m
i=1 logD(xi, x̄) + log(1−D(xzi , x̄z))

end for
// Update the generator and the decoder.
Randomly sample z1, z2, . . . , zm from pz
xzi ← Dec(G(zi))
x̄z ← 1

m

∑m
i=1 xzi

Ascend θg, θdec by the gradient:
∇θg,dec

1
m

∑m
i=1 logD(xzi , x̄z)

until convergence or fixed iterations

Appendices
Appendix A. medGAN training algorithm
Algorithm 1 describes the overall optimization process of medGAN. Note that θd is updated k times per
iteration, while θg and θdec are updated once per iteration to ensure optimality of D. However, typically, a
larger k has not shown a clear improvement (Goodfellow, 2016). And we set k = 2 in our experiments.

Appendix B. Hyperparameter details
We describe the architecture and the hyper-parameter values used for each model. We tested all models by
varying the number of hidden layers (while matching the number of parameters used for generating synthetic
data), the size of the minibatch, the learning rate, the number of training epochs, and we report the best
performing configuration for each model.

• medGAN: Both the encoder Enc and the decoder Dec are single layer feedforward networks, where
the original input x is compressed to a 128 dimensional vector. The generator G is implemented as a
feedforward network with two hidden layers, each having 128 dimensions. For the batch normalization in
the generator G, we use both the scale parameter γ and the shift parameter β, and set the moving average
decay to 0.99. The discriminator D is also a feedforward network with two hidden layers where the first
layer has 256 dimensions and the second layer has 128 dimensions. medGAN is trained for 1,000 epochs
with the minibatch of 1,000 records.

• DBM: In order to match the number of parameters used for data generation in medGAN (G + Dec), we
used four layers of Restricted Boltzmann Machines where the first layer is the input layer. All hidden
layers used 128 dimensions. We performed layer-wise greedy persistent contrastive divergence (20-step
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Gibbs sampling) to train DBM. We used 0.01 for learning rate and 100 samples per minibatch. All layers
were separately trained for 100 epochs. Synthetic samples were generated by performing Gibbs sampling
at the two two layers then propagating the values down to the input layer. We ran Gibbs sampling for 1000
iterations per sample. Using three stacks showed small performance degradation.

• VAE: In order to match the number of parameters used for data generation in medGAN (G +Dec), both the
encoder and the decoder were implemented with feedforward networks, each having 3 hidden layers. The
encoder accepts the input x and compresses it to a 128 dimensional vector and the decoder reconstructs it
to the original dimension space. VAE was trained with Adam for 1,000 iterations with the minibatch of
1,000 records. Using two hidden layers for the encoder and the decoder showed similar performance.

Appendix C. Quantitative evaluation results for binary dataset B

medGANGAN GANP GANPD GANPA

(a) Dimension-wise probability performance of various versions of medGAN.

RN IS DBN VAE medGAN

(b) Dimension-wise probability performance of baseline models and medGAN.

Figure 6: Scatterplots of dimension-wise probability results. Each dot represents one of 1,071 codes. The
x-axis represents the Bernoulli success probability for the real dataset B, and y-axis the probability for the
synthetic counterpart generated by each model. The diagonal line indicates the ideal performance where the
real and synthetic data show identical quality.

medGANGAN GANP GANPD GANPA

(a) Dimension-wise prediction performance of various versions of medGAN.

RN IS DBN VAE medGAN

(b) Dimension-wise prediction performance of baseline models and medGAN.

Figure 7: Scatterplots of dimension-wise prediction results. Each dot represents one of 1,071 codes. The
x-axis represents the F1-score of the logistic regression classifier trained on the real dataset B. The y-axis
represents the F1-score of the classifier trained on the synthetic counterpart generated by each model. The
diagonal line indicates the ideal performance where the real and synthetic data show identical quality.
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C.1 Dimension-wise probability

Figure 6a shows the consistent superiority of the full version of medGAN compared other versions. The
effect of minibatch averaging is even more dramatic for dataset B. Figure 6b shows that VAE has some
difficulty capturing the dimension-wise distribution of dataset B. Again, DBM shows comparable performance
to medGAN, slightly outperforming medGAN for low-probability codes, but slightly underperforming for
high-probability codes. Overall, dimension-wise probability performance is somewhat weaker for dataset B
than for dataset A, most likely due to smaller data volume and sparser code distribution.

C.2 Dimension-wise prediction

Figure 7a shows the dimension-wise predictive performance for different versions of medGAN where the full
version outperforms others. Figure 7b shows similar pattern as Figure 3b. Independent sampling completely
fails to make any meaningful prediction. VAE demonstrates weakness at predicting low-probability codes.
DBM seems to slightly outperform medGAN, especially for highly predictable codes. Again, due to the nature
of the dataset, all models show weaker predictive performance for dataset B than they did for dataset A.

Appendix D. Quantitative results for count variables

In order to evaluate for count variables, we use dataset C, consisting of 30,738 patients whose records were
taken for exactly 18 months. The same subset was used to perform qualitative evaluation in section 4.3. The
details of constructing dataset C for heart failure studies are described in Appendix E. Note that each patient’s
number of hospital visits within the 18 months period can vary, which is a perfect test case for count variables.
Again, we aggregate the dataset into a fixed-size vector and divide it into the training set R ∈ ZN×|C|

+ and the
test set T ∈ Zn×|C|

+ in 4:1 ratio. Since we have confirmed the superior performance of full medGAN compared
to other versions of GANs in binary variables evaluation, we focus on the comparison with baseline models
in this section. Note that, to generate count variables, we replaced all activation functions in both VAE and
medGAN (except the discriminator’s output) to ReLU. We also use kernel density estimator with Gaussian
kernel (bandwidth=0.75) to perform the independent sampling (IS) baseline. We no longer test random noise
(RN) method in this section as it is difficult to determine how much noise should be injected to count variables
to keep them sufficiently realistic but different enough from the training set.

For count variables, we conduct similar quantitative evaluations as binary variables with slight mod-
ifications. We first calculate dimension-wise average count instead of dimension-wise probability. For
dimension-wise prediction, we use the binary labels yRk

∈ {0, 1}N and ySk
∈ {0, 1}N as before, but we train

the logistic regression classifier with count samples R\k ∈ ZN×|C|−1
+ and S\k ∈ ZN×|C|−1

+ . The classifiers
use count features as oppose to binary features while the evaluation metric is still F1-score.

D.0.1 DIMENSIONS-WISE AVERAGE COUNT
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Figure 8: Histogram of counts of five most frequent codes from dataset C. The top row was plotted using the
training dataset, the bottom row using medGAN’s synthetic dataset.

Figure 9 shows the performance of baseline models and medGAN. The discontinuous behavior of VAE is
due to its extremely low-variance synthetic samples. We found that, on average, VAE’s synthetic samples had
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IS-KDE VAE medGAN

Figure 9: Scatterplot of dimension-wise average count of the training dataset (x-axis) versus the synthetic
counterpart (y-axis).

IS-KDE VAE medGAN

Figure 10: Scatterplot of dimension-wise prediction F1-score of logistic regression trained on the training
dataset (x-axis) versus the classifier trained on the synthetic counterpart (y-axis).

nine orders of magnitude smaller standard deviation than medGAN’s synthetic samples. medGAN, on the other
hand, shows good performance with just a simple substitution of the activation functions.

Figure 8 shows the count histograms of five most frequent codes from the count dataset, where the top
row was plotted with the training dataset and the bottom row with medGAN’s synthetic dataset. We can see
that medGAN’s synthetic counterpart has very similar distribution as the real data. This tells us that medGAN
is not just trying to match the average count of codes (i.e. binomial distribution mean), but learns the actual
distribution of the data.

D.0.2 DIMENSIONS-WISE PREDICTION

Figure 10 shows the performance of baseline models and medGAN. We can clearly see that medGAN shows
superior performance. The experiments on count variables is especially interesting, as medGAN seems to make
a smooth transition from binary variables to count variables, with just a replacement of the activation function.
We also speculate that the medGAN’s dimension-wise prediction performance will increase with more training
data, as the count dataset used in this section consists of only 30,738 samples.

Appendix E. Dataset construction for heart failure studies

Case patients were 40 to 85 years of age at the time of HF diagnosis. HF diagnosis (HFDx) is defined as: 1)
Qualifying ICD-9 codes for HF appeared in the encounter records or medication orders. Qualifying ICD-9
codes are displayed in Table 2. 2) a minimum of three clinical encounters with qualifying ICD-9 codes had to
occur within 12 months of each other, where the date of diagnosis was assigned to the earliest of the three
dates. If the time span between the first and second appearances of the HF diagnostic code was greater than 12
months, the date of the second encounter was used as the first qualifying encounter. The date at which HF
diagnosis was given to the case is denoted as HFDx. Up to ten eligible controls (in terms of sex, age, location)
were selected for each case, yielding an overall ratio of 9 controls per case. Each control was also assigned
an index date, which is the HFDx of the matched case. Controls are selected such that they did not meet the
operational criteria for HF diagnosis prior to the HFDx plus 182 days of their corresponding case. Control
subjects were required to have their first office encounter within one year of the matching HF case patients
first office visit, and have at least one office encounter 30 days before or any time after the cases HF diagnosis
date to ensure similar duration of observations among cases and controls.

Appendix F. Presence disclosure

We performed a series of experiments to assess the extent to which medGAN leaks the presence of a patient.
To do so, we randomly sample r patient records from each of the training set R ∈ {0, 1}N×|C| and the test set
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Table 2: Qualifying ICD-9 codes for heart failure
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T ∈ {0, 1}n×|C|. We assume the attacker has complete knowledge on those 2r records. Then for each record,
we calculate its hamming distance to each sample from the synthetic dataset S ∈ {0, 1}N×|C|. If there is at
least one synthetic sample within a certain distance, we treat that as its claimed match. Now, since we sample
from both R and T , the match could be a true positive (i.e., attacker correctly claims their targeted record is
in the GAN training set), false positive (i.e., attacker incorrectly claims their targeted record is in the GAN
training set), true negative (i.e., attacker correctly claims their targeted record is not in the GAN training set),
or false negative (i.e., attacker incorrectly claims their targeted record is not in the GAN training set).

We varied the number of patients r and the hamming distance threshold and calculated the sensitivity and
precision.

(a) (b)

(c)
(d)

5k 10k 15k 20k 25k 30k 35k

Number	of	synthetic	patients Number	of	synthetic	patients
5k 10k 15k 20k 25k 30k 35k

Number	of	patients	known	to	attacker Number	of	patients	known	to	attacker

Number	of	synthetic	patients Number	of	synthetic	patients

2k 4k 6k 8k 10k 2k 4k 6k 8k 10k

Figure 11: a,b: Sensitivity and precision while varying the number of patients known to the attacker. c,d:
Sensitivity and precision while varying the number of synthetic patients.

Impact of attacker’s knowledge: Figures 11a and 11b depict the sensitivity (i.e. recall) and the precision of
the presence disclosure test when varying the number of real patient the attacker knows. In this setting, x%
sensitivity means the attacker has successfully discovered that x% of the records that he/she already knows
were used to train medGAN. Similarly, x% precision means, when an attacker claims that a certain number of
patients were used for training medGAN, only x% of them were actually used. Figure 11a shows that with low
threshold of hamming distance (e.g. hamming distance of 0) attacker can only discover 10% percent of the
known patients to attacker were used to train medGAN. Figure 11b shows that, the precision is mostly 50%
except when the number of known patients are small. This indicates that the attacker’s knowledge is basically
useless for presence disclosure attack unless the attacker is focusing on a small number of patients (less than a
hundred), in which case the precision is approximately 80%.

We conducted an additional experiment to evaluate the impact of the size of the synthetic data on presence
disclosure risk. In this experiment, we fix the number of known real patients to 100 and varied the number of
records in the synthetic dataset S. Figures 11c and 11d show that the size of the generated synthetic dataset
has almost no impact on presence disclosure.
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