Skip to content
Deep generative modeling for single-cell transcriptomics
Python Makefile
Branch: master
Clone or download
romain-lopez Merge pull request #573 from YosefLab/correlation_matrix
Correlation matrix posterior function
Latest commit 4a5eef1 Feb 11, 2020
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
docs change docs Oct 17, 2019
scvi
tests
.editorconfig added skeleton code Mar 29, 2018
.gitattributes Create .gitattributes Dec 30, 2019
.gitignore Linearly decoded VAE (#274) May 2, 2019
.pre-commit-config.yaml STYLE: Apply black formatting (#428) Jul 19, 2019
.travis.yml
AUTHORS.rst
CONTRIBUTING.rst update install instructions in contributing Dec 27, 2019
HISTORY.rst
LICENSE added skeleton code Mar 29, 2018
MANIFEST.in remove references to a script that no longer exists Jul 25, 2019
Makefile remove references to a script that no longer exists Jul 25, 2019
README.rst Merge branch 'master' into ldvae_updates Dec 30, 2019
codecov.yml
conftest.py STYLE: Apply black formatting (#428) Jul 19, 2019
readthedocs.yml change docs Oct 17, 2019
setup.cfg go to scVI version 0.5.0 Oct 17, 2019
setup.py Merge pull request #551 from YosefLab/seurat_v3_vst Jan 10, 2020
tox.ini fix requirements and increase compatibility with sklearn (#492) Oct 16, 2019

README.rst

scVI

PyPI bioconda Documentation Status Build Status Coverage Code Style Downloads

Single-cell Variational Inference

Quick Start

  1. Install Python 3.7. We typically use the Miniconda Python distribution and Linux.
  1. Install PyTorch. If you have an Nvidia GPU, be sure to install a version of PyTorch that supports it -- scVI runs much faster with a discrete GPU.
  1. Install scVI in one of the following ways:

    1. Through conda conda install scvi -c bioconda -c conda-forge
    2. Through pip pip install scvi
    3. Through pip with packages to run notebooks pip install scvi[notebooks]
    4. Nightly version - clone this repo and run pip install .
    5. For development - clone this repo and run pip install -e .[test,notebooks]
  2. If you wish to use multiple GPUs for hyperparameter tuning, install MongoDb.

  1. Follow along with our Jupyter notebooks to quickly get familiar with scVI!
    1. Getting started:
    2. Analyzing several datasets:
    3. Advanced topics:

References

Romain Lopez, Jeffrey Regier, Michael Cole, Michael I. Jordan, Nir Yosef. "Deep generative modeling for single-cell transcriptomics." Nature Methods, 2018. [pdf]

Chenling Xu∗, Romain Lopez∗, Edouard Mehlman∗, Jeffrey Regier, Michael I. Jordan, Nir Yosef. "Harmonization and Annotation of Single-cell Transcriptomics data with Deep Generative Models." Submitted, 2019. [pdf]

Romain Lopez∗, Achille Nazaret∗, Maxime Langevin*, Jules Samaran*, Jeffrey Regier*, Michael I. Jordan, Nir Yosef. "A joint model of unpaired data from scRNA-seq and spatial transcriptomics for imputing missing gene expression measurements." ICML Workshop on Computational Biology, 2019. [pdf]

Adam Gayoso, Romain Lopez, Zoë Steier, Jeffrey Regier, Aaron Streets, Nir Yosef. "A joint model of RNA expression and surface protein abundance in single cells." Machine Learning in Computational Biology (MLCB), 2019. [pdf]

Oscar Clivio, Romain Lopez, Jeffrey Regier, Adam Gayoso, Michael I. Jordan, Nir Yosef. "Detecting zero-inflated genes in single-cell transcriptomics data." Machine Learning in Computational Biology (MLCB), 2019. [pdf]

Pierre Boyeau, Romain Lopez, Jeffrey Regier, Adam Gayoso, Michael I. Jordan, Nir Yosef. "Deep generative models for detecting differential expression in single cells." Machine Learning in Computational Biology (MLCB), 2019. [pdf]

Valentine Svensson, Lior Pachter. "Interpretable factor models of single-cell RNA-seq via variational autoencoders." bioRxiv, 2019. [pdf]

You can’t perform that action at this time.