

SPRING SEMESTER - YEAR 2019/2020

AIN SHAMS UNIVERSITY
FACULTY OF ENGINEERING
Computer and Systems Engineering
International Credit Hours Engineering Programs (i.CHEP)

Research Project Report

Design, Implementation and Test of
a Networks-on-Chip (NoC) Router using VHDL

Course Code

CSE215

Course Name

Electronic Design Automation

 Semester
 Spring 2020

Date of Submission
3/6/2020

Student ID Grade (PASS/FAIL)

1 17P5026

2 17P6069

3 17P8182

4 17P3061

5 17P8042

In case of group research; list all students IDs.
DO NOT WRITE STUDENTS NAMES

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

2 | P a g e

“I certify that this report is my own work, based on my personal study and/or
research and that I have acknowledged all material and sources used in its
preparation, whether they are books, articles, reports, lecture notes, and any
other kind of document, electronic or personal communication. I also certify that
this report has not been previously been submitted for assessment for another
course. I certify that I have not copied in part or whole or otherwise plagiarized
the work of other students and / or persons.”

STUDENTS MUST SIGN THIS PAGE. ELECTRONIC SIGNATURE IS ACCEPTED.

Student ID Student Signature

1 17P5026 Ahmed Khaled Aly

2 17P6069 Andrew Yasser Shaker

3 17P8182 George Emad Younan

4 17P3061 Karim Mikhael Farid

5 17P8042 Youssef Emad

In case of group research; list all students IDs.
DO NOT WRITE STUDENTS NAMES

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

3 | P a g e

Table of Contents:

N Section Covered ILOs

1 Introduction c2

2 Design Flow a1, a3, a6, a7

3 Literature Review a1, a6, a7, b4, c2, d1, d2

4 Design Implementation a1, a2, a4, b3, c1

5 Schedular Design and FSM

Implementation

a2, a4, a5, b1, b2, b3

6 Test and Simulation Results a1, a4, b3, b4

7 Conclusion a5, b1, c1

8 Task Distribution List

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

4 | P a g e

1.0 Introduction:

This project is aimed to design and implement a tested simple router using a

synthesizable VHDL code. routers are used in computer networks applications, by

forwarding data in packets format across a network toward the desired destinations

using a process called “routing” that use headers and forwarding tables to guarantee

the best path for the packets to be forwarded according to design requirements.

The paradigm of Network on chip provides an integrated solution for achieving shorter

delays in communication and efficient interconnection between process elements, but

have limited silicon area, this makes it sort of a difficult task to design NoC-based

systems.

The categorization of NOC Routers is done based on two different characteristics: The

location of queues and buffers within the router, and the switch fabric type. There are

four main types of routers:

1. Input-queue routers

2. Output-queue routers

3. Shared-queue routers

4. Input/output-queue routers

The position of queues inside the routers is crucial; as it directly affects the delay of the

router, quality of service, and packet loss.

The router has 4 main building blocks: the input buffer – the switch fabric – the output

queue – the output buffer. The data packets are stored at the input buffer once it arrives

asynchronously with packet ready signal indicator (PR).

Then controller reads the packet header and configures the SF to direct the packet to

the suitable queue (output buffer), which is a bunch of FIFOs buffers synchronized with

both clock edges. The controller does the routing tables and timing synchronization. the

output buffer delivers the packet from the FIFOs to output ports depending on target

destination availability using a round robin scheduler algorithm.

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

5 | P a g e

This RR algorithm serves the waiting queues one after the other in a fixed order at the

output, using a signal called receive ready which indicates the availability of the target

destination. Packets are sent to the next hop with Packet Sent (PS) signal for

synchronization purposes. The packet is an eight bits data represented in the form of:

first three bits represents the destination address; the following four bits has the sent

data and the most significant bit is for parity check for errors.

This project consists of several modules that combine to make the router: 8 bits register

– 8 bit Demux – Block Ram – a Gray counter – Gray to binary converter – FIFO module

– FIFO controller – Round Robin Schedular – A Module to combine these modules. The

Gray code is used here to facilitate error detection.

During this project, It was assumed that:

• A round robin schedular was used

• The packet input is already in the desired format

• Write ready turns to 0 after clock cycle

• In the packet header, 2 bits only are use as there are 4 output buffers only

The project was done on Xilinx ISE CAD tool starting from the design specification and

was coded in VHDL language and passed through behavioral simulation then synthesis

process then the post synthesis simulation down to placing and routing and time

analysis simulation to generate the bit file.

Fig#1.2: Format of a packet

Fig#1.1: Block diagram for an output-queue router

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

6 | P a g e

2.0 Design Flow:

There are two types of technology when we think

about chip design and production: FPGA &

AISEC.

The AISEC: Application specific integrated circuit

technology, which mostly being used in critical

systems where security is crucial, is an expensive

technology. However, it can be used where mass

producing chips is requested.

The FPGA: field programmable chips that has

logic blocks, I/O bloc, memory elements and high

resources unlike CPLDs that have lower resources.

FPGA can be reprogrammed to provide different functionalities as requested. It also can

be easily tested. It can’t be used in mass productions.

There are 4 main phases in the FPGA design flow: Design – simulation – synthesis,

analysis and verification – layout, manufacturing preparation.

Design:

The design flow is started with the design (high-level design) phase that use

specification sheet to define: the input ports size, datatypes, restrictions on waveforms

entering the input, required clock frequency, time constraints in general that defines the

relations of these signals with each other , the output required size and data types and

synchronization with clock details; the block functionality of the project in between which

helps the designer to detect a design approach to help executing the required function.

These languages (VHDL or Verilog) are used to isolate the designers from the details of

the hardware implementation compared to other techniques. Some designs can be

described using system level languages to describe the transactions that happens in

hardware.

Fig#2.1: Architecture of FPGA

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

7 | P a g e

Some designs can be described by its schematic connections between components

using schematic entry or table entry to give much more visibility into the hardware. IP

integrators can be used to connect components in design to construct the system,

making it easier to modify components, it is considered as semi-automated design as

the IPs are already designed and is just integrated.

Behavioral Simulation:

After the high-level design, comes the behavioral simulation (RTL Simulation) to check if

the design meets the exploitations from the functional view (check for the functionality of

the design). If it passes then we take the design to synthesis, which finds out equivalent

hardware gates or components that represent the hardware description written in the

code.

Synthesis :

the synthesis Process takes inputs the VHDL or Verilog code and outputs a netlist that

defines every basic component (gates, flip flops, etc…) chosen from desired

technology and connections. This can be made using VHDL or Verilog or spice, or

many options and there are many different tools for synthesis are based on the chosen

technology, and the area of silicon is detected to know if it can fit in wafer or FPGA

according to target implementation, it also gives timing, and power consumption

analysis.

Verification techniques:

One of the verification techniques is gate comparison is comparing the output of the

synthesis tools against the RTL gates. This helps proving that there is no change

happened when synthesis happened. This is made before fabrication.

Other verification techniques are code coverage analysis, assertion analysis, functional

coverage analysis, constraints random simulations. Those help to prove that testcases

asserted in simulation covered all parts in the code and all the implementations or gates

that are produced in synthesis, also makes sure that there is no part in the code is not

relevant to the design as a security factor and quality assurance.

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

8 | P a g e

Post synthesis simulation:

After synthesis the target technology is detected and the timing information of this

technology is added e.g. setup time, hold time, and propagation delay of combinational

logic. Post synthesis simulation is done to know if the design meets requirements after

those parameters are added or not. Then equivalent gate count of design is precisely

detected. This is used to compare implementation of different technologies.

Layout phases:

After this comes placement and routing (physical synthesis) to

put the components in their physical places in chip and the files

(GPS for ASIC or bit stream for FPGA. After placement and

routing a third simulation (Static Timing Analysis) is done

considering additional factor of placement and routing on chip,

as the transition of data within the micrometer of chip (signal

path) can cause certain delays that may affect the critical path

in circuit. So, simulation of signals is done three times in total.

A bitstream file containing the programming information of

FPGA is generated. Then Bit code is placed on the FPGA

when I connect the cable to the computer. Then comes

planning of Flip flop and the auto flow of the placement and

route.

Additional procedures that can be done:

Another model is the emulation which is making one of the

components in design as logic analyzer (internal logic analyzer) that its pins are

connected to test points internally in chip. and the output is serial to serial port to be

read on software tool. This allows us to enter in depth and point some parameters that

can’t be inspected easily. this happens at runtime, sampling and waveforms occur at

simulator to check for the signals.

Fig#2.2: FPGA Design flow phases

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

9 | P a g e

Thermal simulations for chips while working by color coding the amount of dissipated

power can be detected along with the hotspot in the chip.it is very important to balance

that dissipation (heat sinks or fans needed).

Points or tracks in chip which has high clock frequency may have different fabrication

techniques to prevent interference by shielding or changing the layout to meet design

specs using transmission line models to model those tracks. This helps seeing the

effect on near tracks. BIT file is generated to be used to configure the target FPGA

device using a cable.

CAD tools like the Xilinx ISE help to go develop designs through various

design flow phases:

.

The tool allows renaming files and choosing the input and output ports (names & types)

and choosing the type of files from various types like: VHDL or Verilog module,

Testbench module, User constraint files or even embedded processors. In addition to

many facilities like syntax checking in addition to all three types of simulations.

Fig#2.3: Creating new project on ISE Fig#2.4: determining family from Spartan, Vertex, Kintex & Artix

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

10 | P a g e

Simulations with Xilinx ISE:

behavioral Simulation or RTL Simulation is performed before synthesis process to

check for the functionality of the design. It can be performed on VHDL or Verilog codes.

In this process, signals and variables are observed, procedures and functions are

traced carefully. It is a quick simulation that allows t to change the code. This happens if

the design does not perform the required functionality. As this happens before the

process of synthesis, timing and resource usage properties are not known.

Post synthesis Simulation is the second step that

gives information about the logic operation of the

circuit. to know if the design meets requirements

after the target technology is detected and the

timing information of this technology is added after the translate process. If the

functionality is not as expected, then the designer has to modify the code and follow the

design flow steps again.

Static Timing Analysis, which is the third step can be done after MAP or Place and

route processes. After mapping process, a timing report lists delays of signal paths

taken from the design logic. Post Place and Route timing report shows information

about timing delays to provide a useful summary of timing of the design.

Fig#2.5: Creating new file and choosing type Fig#2.6: Creating new file and choosing type

Fig#2.7: Post-synthesis simulation on ISE tools

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

11 | P a g e

The ISE Xilinx tools allow us to define constraints. This is assigning

the ports in the design to the physical elements (ex. pins, switches,

buttons) of the device & specifying time requirements of the design

and the info is stored in UCF file (user constraints file).

Fig#2.10: example of behavioral simulation results on ISE

R

Fig#2.12: UCF file in ISE tool

Fig#2.9: Behavioral simulation on ISE tools Fig#2.8: syntax Check process on RR module by ISE tools

Fig#2.11: RTL schematic of Round Robin on ISE

R

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

12 | P a g e

The process of Synthesis Implementation is done on three steps on the ISE:

1. Translate: The input constraints and netlists are added together in a logic design file

2. Map: to fit the defined logic, which is Combinational Logic Blocks (CLB), Input Output

Blocks (IOB). It generates a file which physically represents the design mapped to the

components of FPGA.

3. Place and Route: places the sub blocks from the map process into logic blocks

according to the constraints and connects the logic blocks.

Fig#2.13: Implementation steps of Round Robin module on ISE tool

Fig#2.15: saving bit file of 8-bits
 register module on ISE tool

Fig#2.14: of 8-bits

 register module on ISE tool

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

13 | P a g e

3.0 Literature Review:

We will sort the References including papers and books that contains useful data

about “NOC Routers implementation” in chronological order:

1- L. Benini and G. D. Micheli, “Networks on chips: A new SoC paradigm,” IEEE

Computer Magazine, vol. 35, no. 1, pp. 70–78, Jan. 2002.

In this article the problems of SOC (System-on-chip) is discussed, and the article

introduces the NOC (Networks-on-chip) as a borrowed concept from the network

engineers to get over the problems of the SOC.

2- LogicCore. (2004, Nov. 11,) Xilinx Technical Document, Asynchronous FIFO v6.1.

Product Specification DS232

In this article, an Asynchronous FIFO is implemented and illustrated, diagrams and

tables are also implemented.

3- Haytham El Miligi, “Networks-on-Chips: Modeling, Analysis, and Design

Methodologies,” Victoria, B.C., Canada: 2011

4- Minakshi M. Wanjari, Pankaj Agrawal, R. V. Kshirsagar “Design of NoC Router

Architecture using VHDL,” India: International Journal of Computer Applications

(0975 – 8887) Volume 115 – No. 4, April 2015.

In this paper, NoC router architecture is presented, which has low latency and

requires less area. Also, a design is implemented in VHDL and simulated.

5- Benini and G. D. Micheli returned again in 2017 with a new article: “Networks on

Chips: 15 Years Later” to discuss their article from 2002 (mentioned above), and

how virtually all large-scale chips are now designed with this paradigm (NOC).

4.0 Design Implementation:

The Register Module:

This module has 4 inputs, and one output, the input datat_in is entered in the registered

and outputted if and only if Clock_En = 1 AND Reset = 0. (and its outputted when the

clock edge is positive).If the reset clock edge is 1 the output is set to zeros. And if the

Clock_En is zero the current output value remains as it is.

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

14 | P a g e

The register module was implemented by using a simple If condition, if the reset is equal

to 1 then the data_out is zeros, else if the clock is on the rising edge and the clock enable

is equal to 1 then the data is outputted (data_out = data_in)

The 8-bit DeMux:

A vector of 8 bits is inputted in the demux and outputted if the En = 1, but if the En is 0

the port keeps its value. But its outputted to the port depending on the selector of the

demux. There are 4 output ports and therefore the selector is 2 bits. (00 for the 1st output,

01 for the 2nd..etc). The demux is implemented using an if condition and a switch case, if

the enable is 1 then we navigate to the switch case, when the selection is 00 the first data

is selected, when the selection is 01 the 2nd is selected..etc. the sensitivity list of the

process is the enable, the data in and the selection.

Block Ram:

This module receives data (a vector of 7 bits) and it has another 3 parameters for read

and 3 for write. So the first parameter is the enable, where if its equal to 1 its going to

allow reading/writing. Then the address port (read/write) can be set to whatever value

desired to be read from or written to. The reason why the address port is 3 bits is because

there are 8 slots in the ram. And 3 bits can express 8 values.

So whenever the clock of read/write hits 1, and the read/write enabled, the read/write

happens to the address selected from the 8 addresses. The code of the block ram was

implemented using 2 processes, their sensitivity list is the CLKS (A,B). If the clk’s

triggered, then we check if the Write/read is enabled, then by a simple switch cases, we

select which slot of the ram to read or write according to the pointer value.

Gray Counter:

This module is a simple counter. It increments on the rising edge of a clock whenever the

Enable signal is set to 1. The reset sets it to 0. And it also counts in a gray code manner:

000, 001,011,010,110,111,101,100. The counter is implemented by using a process of a

sensitivity list clock and reset, if the reset is equal to 1 then the output is restarted, else if

both the clock is triggered and the enable is equal to 1, a switch case is executed, where

for each case, the output is that case + 1, so if its 000 the output is 001..etc.

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

15 | P a g e

Gray Converter:

This module converts the output of the counter to binary, because the ram, FIFO controller

works in binary and not gray. It simply changes the truth table

000, 001,011,010,110,111,101,100 To 000,001,010,011,100,101,110,111. The gray

converter was implemented through a very simple mapping 3 line code, the most

significant bit on the output is equal to the most significant bit of the input, the 2nd most

significant bit on the output Is equal to the most significant bit in the input XORed with the

2nd most significant bit on the input. And the last bit on the output is the 3 bits of the input

XORed together.

FIFO Controller:

This module contains 2 previous components discussed, converter and counter.

Whenever the reset signal is 1 the module restarts, meaning write and read valids are

equal to 0, pointers are zeroed, empty is set to 1 and full is set to 0.

Only when the read/write clock is 1, the module is capable to perform read/write

operations. So the module receives read/write requests. And it can’t perform reading if

the FIFO is empty, simultaneously it cannot write to a full FIFO. And this is what sets the

read / write valid signals. The code implementation here was done by creating 2

components (instantiations) of a counter, and 2 components of a converter, one for the

read and one for the write, each with their counters connected to the gray to binary

converter, and then connected to the pointers, the main process of the fifo controller has

the signals: read request, write request and reset in the sensitivity list. There are 2 if

conditions. The first one is written for the write request and the 2nd is for the read request,

so concerning the first one, if the reset is equal 1 then full is 0 and empty is 1, else if the

request is 1 then we check if the read pointer is equal to the write pointer + 1 (which

means that the FIFO is full). So the request is neglected and the valid is set to 0, and full

is set to 1 else the valid is set to 1. Concerning the 2nd, if the reset is equal to 1 then full

is 0 and empty to 1, else if the request is 1 then we check if the 2 pointers are equal, and

if they are then the FIFO is empty and there is nothing to read from it. And the read valid

is set to 0/ empty set to 1 in that case, else the read valid is set to 1.

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

16 | P a g e

FIFO:

This module contains the FIFO Controller and the Ram. The datain is written into the

FIFO (of course following the restrictions based on the FIFO controller) and gets read

using the dataout signal (also accordingly with the FIFO controller). The rclk and wclk are

mapped with the rdclk and wrclk of the FIFO controller, respectively. And the rreq wreq

signals are mapped with the r_req and w_req signals, respectively. Read/write pointers

of the fifo controller are connected to the ram’s read/write addresses (through the

converter and the counter).

As for the implementation of this module, it didn’t contain any logic. It was just mapping

the 2 components FIFO controller and Ram. So basically we create 2 components. We

map all of the FIFO’s signals to the controller except the data_in, which gets mapped to

the ram. The read and write pointers also gets into the ram from the fifo, and the write

valid read valid which are outputted from the fifo controller gets into the ram as the

enables. The clocks get into the ram as well. And the ram’s main output is the data_out

which is mapped to the FIFO’s main output.

Round Robin Schedular:

This module is a round robin schedular that takes 4 inputs. Each rising edge of the clock

the output differs from the 4 FIFOs. Meaning at the first clock cycle the output is taken

from d_in(1), and at the second clock cycle the output is d_in(2). The schedular was

implemented by using a two process moore implementation. One for checking the clock

, and one for updating the next state and checks for the current state.

Router:

The router contains 4 registers, 4 demuxes, 4 round robin schedular and 16 FIFOs.

The data gets into the registers, in the form of a packet, the register is just a buffer.

So if the register receives clock en, it outputs the data, if it gets a reset, it zeroes the data.

The demux receives a selection line (which is discussed earlier) from the first 2 bits in the

data, which is going to select the where is the destination of the output. Every demux has

4 FIFOs connected. A FIFO for each output. The data is transferred from the demux to

the FIFO. The Rclock (R-request) is designed so that every clock cycle a type of FIFO

works, There are 4 types of FIFOs, for every port there is a type FIFOs 1,2,3,4 connected

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

17 | P a g e

to output ports 1,2,3,4. For example, every clock cycle a FIFO with no. 11,21,31,41 works,

(with one at the end), because they are connected to different round robins. Round robin

takes the data from 4 FIFOs, and the data is outputted through one output.

The implementation was by creating 4 components of registers, 4 components of demux,

4 components of Round Robins, and 16 Components of FIFOs, then they were mapped

as shown in the figure.

The router module’s logic has 4 processes:

In the first process, the sensitivity list is the selection variables of all the demuxes, so that

the demux can choose which FIFO the packet should go to. The second process is

responsible for syncing the demuxes, by using the wclock as a sensitivity signal. So

whenever its on its rising edge, the write request happens throughout the FIFOs, only

when 3 things happens, the write signal is 1, the reset is not 0, and the enable is available.

The third process checks for the readclock, and reset, if the reset is 1 the state is the

same, if the clock is triggered, the state is transitioned. The fourth process is responsible

for the read syncing (round robin). Its implemented by switch case, where the variable is

the current state, so at a given state, the current state increments to the next state, and

the read sync is updated.

Fig#4.1: created block Diagram of FIFO

module

Fig#4.2: created block Diagram of router

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

18 | P a g e

5.0 Schedular Design and FSM Implementation:

Scheduler Design:

The scheduler is implemented using Moore

way, as the output is generated depending on

the current state only unlike Mealy which

needs the current state and the input value. In

the scheduler, the output is equal to the right

din (input) according to the state the FSM is in

right now. The scheduler is shown in the figure.

Different Implementation Styles:

Finite state machines can be implemented in VHDL by

doing certain 4 tasks which are:

1) Asynchronous Reset (RS), 2) Update current state (CS),

 3) Determine next state (NS), 4) Generate output (OP).

These tasks can be implemented in three different styles which are:

• One process: All 4 tasks are made in one process which has sensitivity list of

(clock, reset, current state, inputs) for Mealy or (clock, reset, current state) for

Moore. This style is not preferred as it is less readable from the others, but it is

easier to debug.

• Two processes: The tasks are divided on two processes. The first do the RS and

CS while the other do NS and OP. The sensitivity list of P1 is (clock, reset) while

P2 is (current state, inputs) in a Mealy or Moore FSM.

• Three processes: P1 do RS and CS, P2 do NS and P3 do OP. Sensitivity list of

P1 and P2 is the same for Mealy or Moore which is (clock, reset) for P1 and

(current state, inputs) for P2 while P3 is (current state) for Moore and (current state,

inputs) for Mealy.

 Synthesis analysis:

The scheduler code is synthesized into:

Fig#5.1: Schedular FSM

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

19 | P a g e

1) Flip flop: As in the updating current state process there is an if condition that checks

the rising edge of the clock and the sensitivity list is on the clock, so a flipflop is

infered.

2) Two multiplexers: As there is a switch case on the present state which make two

things, which are determine next state and generate the output. Therefore, they

are two MUXs that have current state as selectors.

The flip flop gets the next state as input and with the rising edge of clock it produces

the current state which acts as a selector for the 2 MUXs, so that the first one

produces the selected next state that goes into the flip flop while the second MUX

produces the

right output

from the

selected

input.

Timing Analysis:

TC ≥ tpcq + tpd + tsetup

The clock time should be bigger than or

equal to the propagation delay of the

combinational circuit plus the clock to

output propagation delay plus the setup

time of the flip flop.

In the scheduler the critical pass is the

one between the flip flop and next state MUX.

Therefore, the minimum cock cycle can be is tpcq of flip flop + tpd of the MUX + tsetup of flip

flop.

While thold of flip-flop must be less than or equal tcd of the MUX plus tccq of flip flop. Lastly,

slack = Tc − tsetup − tpcq + tpd.

Fig#5.2: Schedular Schematic

Fig#5.3: Schedular’s critical path

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

20 | P a g e

Timing Report

NOTE: THESE TIMING NUMBERS ARE ONLY A SYNTHESIS
ESTIMATE.

 FOR ACCURATE TIMING INFORMATION PLEASE REFER
TO THE TRACE REPORT

 GENERATED AFTER PLACE-and-ROUTE.

Clock Information:

-----------------------------------+------------------------+-------+

Clock Signal | Clock buffer(FF name) | Load |

-----------------------------------+------------------------+-------+

clk | BUFGP | 2 |

-----------------------------------+------------------------+-------+

Asynchronous Control Signals Information:

--

No asynchronous control signals found in this design

Timing Summary:

Speed Grade: -3

 Minimum period: 2.190ns (Maximum Frequency:
456.663MHz)

 Minimum input arrival time before clock: No path found

 Maximum output required time after clock: 5.021ns

 Maximum combinational path delay: 5.402ns

Timing Details:

All values displayed in nanoseconds (ns)

==

Timing constraint: Default period analysis for Clock 'clk'

 Clock period: 2.190ns (frequency: 456.663MHz)

 Total number of paths / destination ports: 3 / 2

Delay: 2.190ns (Levels of Logic = 1)

 Source: current_state_FSM_FFd2 (FF)

 Destination: current_state_FSM_FFd2 (FF)

 Source Clock: clk rising

Destination Clock: clk rising

 Data Path: current_state_FSM_FFd2 to
current_state_FSM_FFd2

 Gate Net

 Cell:in->out fanout Delay Delay Logical Name (Net
Name)

 -- ------------

 FD:C->Q 10 0.447 0.856
current_state_FSM_FFd2 (current_state_FSM_FFd2)

 INV:I->O 1 0.206 0.579 current_state_FSM_FFd2-
In1_INV_0 (current_state_FSM_FFd2-In)

 FD:D 0.102 current_state_FSM_FFd2

 --

 Total 2.190ns (0.755ns logic, 1.435ns route)

 (34.5% logic, 65.5% route)

==

Timing constraint: Default OFFSET OUT AFTER for Clock 'clk'

 Total number of paths / destination ports: 16 / 8

Offset: 5.021ns (Levels of Logic = 2)

 Source: current_state_FSM_FFd2 (FF)

 Destination: dout<7> (PAD)

 Source Clock: clk rising

 Data Path: current_state_FSM_FFd2 to dout<7>

 Gate Net

 Cell:in->out fanout Delay Delay Logical Name (Net
Name)

 -- ------------

 FD:C->Q 10 0.447 1.221
current_state_FSM_FFd2 (current_state_FSM_FFd2)

 LUT6:I0->O 1 0.203 0.579 Mmux_dout11
(dout_0_OBUF)

 OBUF:I->O 2.571 dout_0_OBUF (dout<0>)

 --

 Total 5.021ns (3.221ns logic, 1.800ns route)

 (64.2% logic, 35.8% route)

==

Timing constraint: Default path analysis

 Total number of paths / destination ports: 32 / 8

Delay: 5.402ns (Levels of Logic = 3)

 Source: din2<7> (PAD)

 Destination: dout<7> (PAD)

 Data Path: din2<7> to dout<7>

 Gate Net

 Cell:in->out fanout Delay Delay Logical Name (Net
Name)

 -- ------------

 IBUF:I->O 1 1.222 0.827 din2_7_IBUF
(din2_7_IBUF)

 LUT6:I2->O 1 0.203 0.579 Mmux_dout81
(dout_7_OBUF)

 OBUF:I->O 2.571 dout_7_OBUF (dout<7>)

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

21 | P a g e

 --

 Total 5.402ns (3.996ns logic, 1.406ns route)

 (74.0% logic, 26.0% route)

==

Cross Clock Domains Report:

Clock to Setup on destination clock clk

---------------+---------+---------+---------+---------+

 | Src:Rise| Src:Fall| Src:Rise| Src:Fall|

Source Clock |Dest:Rise|Dest:Rise|Dest:Fall|Dest:Fall|

---------------+---------+---------+---------+---------+

clk | 2.190| | | |

---------------+---------+---------+---------+---------+

==

Total REAL time to Xst completion: 15.00 secs

Total CPU time to Xst completion: 14.98 secs

-->

Total memory usage is 4492644 kilobytes

Number of errors : 0 (0 filtered)

Number of warnings : 0 (0 filtered)

Number of infos : 0 (0 filtered

6.0 Test and Simulation results:

Tested
feature

Inputs Outputs Delay

Data
1

Data
2

Data
3

Data
4

wr
1

wr
2

wr
3

w
r4

Dataout1 Dataout2 Dataout3 Dataout4

Output
buffer4

(Testcase
1)

1000
0111

1000
1011

1001
0011

1010
0011

1 1 1 1 10000111

40 ns 10001011

 10010011

 10100011

Output
buffer3

(Testcase
1)

1000
0110

1000
0110

1000
0110

1000
0110

1 1 1 1 10000110

40 ns 10000110

 10000110

 10000110

Output
buffer2

(Testcase
3)

1000
0101

1000
0101

1000
0101

1000
0101

1 1 1 1 10000101

40 ns 10000101

 10000101

 10000101

Output
buffer1

(Testcase
4)

1000
0100

1000
0100

1000
0100

1000
0100

1 1 1 1 10000100

40 ns 10000100

 10000100

 10000100

We used the exhaustive testing strategy. May be the exhaustive is not the best answer

at all time, but in our case, we used it because by the 16 case we tested we have tested

every input and output, so it is a not a waste of time, and 16 case is not that large number

Fig#6.1: Test Plan

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

22 | P a g e

of test cases relatively. At the end we have only increased the test case code by 3 lines

for each case. so overall, we increased it by 12 lines of codes only.

7.0 Conclusion:

In conclusion, mapping the signals in router module was a challenge. The

implementation was done by instancing of four register and demuxes and 16 FiFOs and

4 RR schedulers. The best implementation style for the FSM schedular is a two process

Moore. Because the output doesn’t depend on anything except on the current state.

Also, two process because choosing 1 wouldn’t offer as much organization as a one

process style. Concerning the timing results: The time report: Minimum period: 2.190ns

(Maximum Frequency: 456.663 MHz). For future work. We may consider working with

other FSM styles. We may use mealy as its generally faster. (Although more is more

stable and safer). An exhaustive test strategy was used.

8. Task Distribution List:

Student ID Tasks

1 17P5026
the project workload is

distributed equally among all
team members

2 17P6069

3 17P8182

4 17P3061

5 17P8042

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

23 | P a g e

Appendix A – <<VHDL Model Source Code>>

8-bit register:

library IEEE;
USE IEEE.STD_Logic_1164.all;

ENTITY IB_E is
Port (Data_in: in std_logic_vector(7 downto 0);
 Clock_En: in std_logic;
 Clock: in std_logic;
 Reset: in std_logic;
 Data_out: out std_logic_Vector (7 downto 0)
);
END IB_E;

Architecture IB_A of IB_E is begin
PROCESS (Clock, Reset)
begin

if Reset = '1' then
 Data_out <= "00000000";

elsif rising_edge(Clock) and Clock_En = '1' then
Data_out <= Data_in;

 else
 null;
end if;
end PROCESS ;
end IB_A;

Demux:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

ENTITY demux_e IS
 PORT(d_in: IN std_logic_vector (7 downto 0); -- input data vector
 sel: IN std_logic_vector (1 downto 0); -- 2 selesction bits
 en: IN std_logic; -- enable flag
 -- output data vectors
 d_out1: OUT std_logic_vector (7 downto 0);
 d_out2: OUT std_logic_vector (7 downto 0);
 d_out3: OUT std_logic_vector (7 downto 0);
 d_out4: OUT std_logic_vector (7 downto 0));
END ENTITY demux_e;

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

24 | P a g e

ARCHITECTURE demux_a of demux_e is
BEGIN
 P1:PROCESS(en,d_in,sel) IS BEGIN -- sensitivity list contains all inputs
 if en = '1' THEN
 case sel is -- all cases of selection bits are dealt with
 when "00" => d_out1 <= d_in;
 when "01" => d_out2 <= d_in;
 when "10" => d_out3 <= d_in;
 when others => d_out4 <= d_in;
 end case;
 end if;
 END PROCESS P1;
END ARCHITECTURE demux_a;

Block Ram:

Library IEEE;
use IEEE.STD_LOGIC_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity BlockRam_E is
 Port (d_in: IN STD_LOGIC_VECTOR (7 downto 0);
 ADDRA: IN STD_LOGIC_VECTOR (2 downto 0);
 ADDRB: IN STD_LOGIC_VECTOR (2 downto 0);
 WEA, REA, CLKA, CLKB: IN STD_LOGIC;
 d_out: OUT STD_LOGIC_VECTOR (7 downto 0)
);
 END entity BlockRam_E;

 Architecture block_ram_A of BlockRam_E is
 Signal Reg0: STD_LOGIC_VECTOR (7 downto 0);
 Signal Reg1: STD_LOGIC_VECTOR (7 downto 0);
 Signal Reg2: STD_LOGIC_VECTOR (7 downto 0);
 Signal Reg3: STD_LOGIC_VECTOR (7 downto 0);
 Signal Reg4: STD_LOGIC_VECTOR (7 downto 0);
 Signal Reg5: STD_LOGIC_VECTOR (7 downto 0);
 Signal Reg6: STD_LOGIC_VECTOR (7 downto 0);
 Signal Reg7: STD_LOGIC_VECTOR (7 downto 0);
 -- creating 8 registers

 Begin
 write: Process(CLKA) IS BEGIN-- responsible for write
 IF rising_edge (CLKA) THEN -- check that clock A is rising
 IF WEA = '1' THEN -- check that write is enabled
 case ADDRA is
 when "000" =>
 Reg0 <= d_in;
 when "001" =>
 Reg1 <= d_in;
 when "010" =>

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

25 | P a g e

 Reg2 <= d_in;
 when "011" =>
 Reg3 <= d_in;
 when "100" =>
 Reg4 <= d_in;
 when "101" =>
 Reg5 <= d_in;
 when "110" =>
 Reg6 <= d_in;
 when others =>
 Reg7 <= d_in;
 end case;
 end if;
 end if;
 END Process write;

 read: Process (CLKB) IS BEGIN -- responsible for read
 IF rising_edge(CLKB) THEN -- check that clock A is rising
 IF REA = '1' THEN -- check that read is enabled
 case ADDRB is
 when "000" =>
 d_out <= Reg0;
 when "001" =>
 d_out <= Reg1;
 when "010" =>
 d_out <= Reg2;
 when "011" =>
 d_out <= Reg3;
 when "100" =>
 d_out <= Reg4;
 when "101" =>
 d_out <= Reg5;
 when "110" =>
 d_out <= Reg6;
 when others =>
 d_out <= Reg7;
 end case;
 end if;
 end if;
 END Process read;
 END block_ram_A;

Gray counter:

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY gray_counter IS
 PORT(En,clock,Reset : IN std_logic;
 Count_out: OUT std_logic_vector (2 downto 0));
END ENTITY gray_counter;

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

26 | P a g e

ARCHITECTURE behav OF gray_counter IS

 signal s_out :std_logic_vector (2 downto 0):="000";
 BEGIN
 Count_out <= s_out;
 cs: PROCESS (clock, Reset) is begin

 IF Reset = '1' THEN
 s_out <= "000";
 ELSIF (rising_edge(clock)and En = '1') THEN

 case s_out is
 when "000" => s_out <= "001";
 when "001" => s_out <= "011";
 when "011" => s_out <= "010";
 when "010" => s_out <= "110";
 when "110" => s_out <= "111";
 when "111" => s_out <= "101";
 when "101" => s_out <= "100";
 when "100" => s_out <= "000";
 when others => s_out <= "000";
 end case;

 END IF;

 END PROCESS cs;
END ARCHITECTURE behav;

Gray to binary converter:

-- Code for Gray to binary converter
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity gray_to_binary is
Port (gray_in : in STD_LOGIC_VECTOR (2 downto 0); -- Gray code input
 bin_out : out STD_LOGIC_VECTOR (2 downto 0)); -- Binary code output
end gray_to_binary;

architecture Behavioral of gray_to_binary is begin

bin_out(2)<= gray_in(2); -- most significant bit remains the same
bin_out(1)<= gray_in(2) xor gray_in(1); -- b(i) = b(i+1) xor g(i)
bin_out(0)<= gray_in(2) xor gray_in(1) xor gray_in(0); -- repeat until least significant bit

end Behavioral;

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

27 | P a g e

Fifo controller:

 LIBRARY IEEE;
USE IEEE.Std_logic_1164.ALL;
USE ieee.numeric_std.ALL;

ENTITY FIFO_C IS
 PORT (
 reset : IN STD_LOGIC;
 rdclk : IN STD_LOGIC;
 wrclk : IN STD_LOGIC;
 r_req : IN STD_LOGIC;
 w_req : IN STD_LOGIC;
 write_valid : OUT STD_LOGIC;
 read_valid : OUT STD_LOGIC;
 wr_ptr : OUT STD_LOGIC_VECTOR (2 DOWNTO 0);
 rd_ptr : OUT STD_LOGIC_VECTOR (2 DOWNTO 0);
 empty : OUT STD_LOGIC;
 full : OUT STD_LOGIC);
END FIFO_C;

Architecture FIFO_C_ARC OF FIFO_C IS

 COMPONENT gray_to_binary
 PORT (gray_in : in STD_LOGIC_VECTOR (2 downto 0); -- Gray code input
 bin_out : out STD_LOGIC_VECTOR (2 downto 0)); -- Binary code output
 END COMPONENT;

 COMPONENT gray_counter
 PORT(En,clock,Reset : IN std_logic;
 Count_out: OUT std_logic_vector (2 downto 0));
 END COMPONENT;

 signal R_valid : STD_LOGIC;
 signal W_valid : STD_LOGIC;
 signal R_PTR: STD_LOGIC_VECTOR (2 DOWNTO 0);
 signal W_PTR : STD_LOGIC_VECTOR (2 DOWNTO 0);
 signal gray_in_write : STD_LOGIC_VECTOR (2 DOWNTO 0);
 signal gray_in_read : STD_LOGIC_VECTOR (2 DOWNTO 0);

 BEGIN
 -- gray counter
 gc_read : gray_counter PORT MAP(R_valid,rdclk,reset,gray_in_read);
 gc_write : gray_counter PORT MAP(W_valid,wrclk,reset,gray_in_write);
 -- gray to binary convertor
 gtb_read : gray_to_binary PORT MAP(gray_in_read,R_PTR);
 gtb_write : gray_to_binary PORT MAP(gray_in_write,W_PTR);
 -- connections
 wr_ptr <= W_PTR ;
 rd_ptr <= R_PTR ;
 write_valid <= W_valid;

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

28 | P a g e

 read_valid <= R_valid;
 main : process(r_req,w_req,reset) IS
 begin
 IF(reset = '1') THEN
 full <= '0';
 empty <= '1';
 ELSIF(w_req = '1') THEN
 IF((std_logic_vector(unsigned(W_PTR) + 1) = R_PTR) or (W_PTR = "111" and R_PTR="000")) THEN--
cheacking if the memory is full
 full <= '1';
 empty <= '0';
 W_valid <='0';
 ELSE
 full <= '0';
 empty <= '0';
 W_valid <='1';
 END IF;
 ELSIF(r_req = '1')THEN
 IF(R_PTR = W_PTR)THEN-- checking if the memory is empty
 empty <= '1';
 full <= '0' ;
 R_valid <='0';
 Else
 full <= '0';
 empty <= '0';
 R_valid <='1';
 END IF;
 ELSE
 W_valid <='0';
 R_valid <='0';
 END IF;
 END PROCESS main;
END ARCHITECTURE FIFO_C_ARC;

FiFO:

LIBRARY IEEE;
USE IEEE.Std_logic_1164.ALL;
USE ieee.numeric_std.ALL;
ENTITY FIFO_E IS
 PORT (
 reset : IN STD_LOGIC;
 rclk : IN STD_LOGIC;
 wclk : IN STD_LOGIC;
 rreq : IN STD_LOGIC;
 wreq : IN STD_LOGIC;
 datain : IN STD_LOGIC_VECTOR (7 downto 0);
 dataout : OUT STD_LOGIC_VECTOR (7 downto 0);
 empty : OUT STD_LOGIC;
 full : OUT STD_LOGIC);
END FIFO_E;

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

29 | P a g e

Architecture FIFO_A OF FIFO_E IS
 COMPONENT FIFO_C IS
 PORT (
 reset : IN STD_LOGIC;
 rdclk : IN STD_LOGIC;
 wrclk : IN STD_LOGIC;
 r_req : IN STD_LOGIC;
 w_req : IN STD_LOGIC;
 write_valid : OUT STD_LOGIC;
 read_valid : OUT STD_LOGIC;
 wr_ptr : OUT STD_LOGIC_VECTOR (2 DOWNTO 0);
 rd_ptr : OUT STD_LOGIC_VECTOR (2 DOWNTO 0);
 empty : OUT STD_LOGIC;
 full : OUT STD_LOGIC);
 END COMPONENT FIFO_C;
 COMPONENT BlockRam_E is
 Port (d_in: IN STD_LOGIC_VECTOR (7 downto 0);
 ADDRA: IN STD_LOGIC_VECTOR (2 downto 0);
 ADDRB: IN STD_LOGIC_VECTOR (2 downto 0);
 WEA, REA, CLKA, CLKB: IN STD_LOGIC;
 d_out: OUT STD_LOGIC_VECTOR (7 downto 0)
);
 END COMPONENT BlockRam_E;
 -- SIGNALS SIGNAL
 SIGNAL s_reset : STD_LOGIC;
 SIGNAL s_rclk : STD_LOGIC;
 SIGNAL s_wclk : STD_LOGIC;
 SIGNAL s_rreq : STD_LOGIC;
 SIGNAL s_wreq : STD_LOGIC;
 SIGNAL s_datain : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_dataout : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_empty : STD_LOGIC;
 SIGNAL s_full : STD_LOGIC;
 SIGNAL s_write_valid : STD_LOGIC;
 SIGNAL s_read_valid: STD_LOGIC;
 SIGNAL s_wr_ptr : STD_LOGIC_VECTOR (2 DOWNTO 0);
 SIGNAL s_rd_ptr: STD_LOGIC_VECTOR (2 DOWNTO 0);
 BEGIN
 -- connections
 --inputs
 s_reset <= reset;
 s_rclk <= rclk;
 s_wclk <= wclk;
 s_rreq <= rreq;
 s_wreq <= wreq;
 s_datain <= datain;
 --outputs
 dataout <= s_dataout;
 empty <= s_empty;
 full <= s_full;

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

30 | P a g e

 fifocont: FIFO_C PORT MAP(s_reset, s_rclk, s_wclk, s_rreq, s_wreq,s_write_valid,
 s_read_valid, s_wr_ptr, s_rd_ptr, s_empty, s_full);

 memoryram: BlockRam_E PORT MAP(s_datain, s_wr_ptr, s_rd_ptr, s_write_valid, s_read_valid, s_wclk, s_rclk,
s_dataout);
END ARCHITECTURE FIFO_A;

Round Robin:

Library IEEE;
use IEEE.STD_LOGIC_1164.all;
ENTITY RoundRobin_E is
 Port (clk: IN STD_LOGIC;
 din1: in STD_LOGIC_VECTOR (7 downto 0);
 din2: in STD_LOGIC_VECTOR (7 downto 0);
 din3: in STD_LOGIC_VECTOR (7 downto 0);
 din4: in STD_LOGIC_VECTOR (7 downto 0);
 dout: out STD_LOGIC_VECTOR (7 downto 0)
);
End entity RoundRobin_E;
Architecture RoundRobin_A of RoundRobin_E IS
 TYPE state_type IS (state_1, state_2, state_3, state_4);
 SIGNAL current_state: state_type;
 SIGNAL next_state: state_type;
Begin
 checkclock: Process(clk)
 Begin
 IF rising_edge(clk) THEN
 current_state <= next_state;
END IF;
END Process checkclock;
updating_the_next_state: Process (current_state, din1, din2, din3, din4)
Begin
case current_state is
when state_1 =>
 next_state <= state_2;
 dout <= din1;
when state_2 =>
 next_state <= state_3;
 dout <= din2;
when state_3 =>
 next_state <= state_4;
 dout <= din3;
when others =>
 next_state <= state_1;
 dout <= din4;
 END case;
 END Process updating_the_next_state;
END RoundRobin_A;

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

31 | P a g e

Router:

LIBRARY IEEE;
USE IEEE.Std_logic_1164.ALL;
USE ieee.numeric_std.ALL;
ENTITY Router_E IS
 PORT (
 rst : IN STD_LOGIC;
 rclock : IN STD_LOGIC;
 wclock : IN STD_LOGIC;
 datai1 : IN STD_LOGIC_VECTOR (7 downto 0);
 wr1 : IN STD_LOGIC;
 datai2 : IN STD_LOGIC_VECTOR (7 downto 0);
 wr2 : IN STD_LOGIC;
 datai3 : IN STD_LOGIC_VECTOR (7 downto 0);
 wr3 : IN STD_LOGIC;
 datai4 : IN STD_LOGIC_VECTOR (7 downto 0);
 wr4 : IN STD_LOGIC;
 datao1 : OUT STD_LOGIC_VECTOR (7 downto 0);
 datao2 : OUT STD_LOGIC_VECTOR (7 downto 0);
 datao3 : OUT STD_LOGIC_VECTOR (7 downto 0);
 datao4 : OUT STD_LOGIC_VECTOR (7 downto 0));
END Router_E;
Architecture Router_A OF Router_E IS
 COMPONENT FIFO_E IS
 PORT (
 reset : IN STD_LOGIC;
 rclk : IN STD_LOGIC;
 wclk : IN STD_LOGIC;
 rreq : IN STD_LOGIC;
 wreq : IN STD_LOGIC;
 datain : IN STD_LOGIC_VECTOR (7 downto 0);
 dataout : OUT STD_LOGIC_VECTOR (7 downto 0);
 empty : OUT STD_LOGIC;
 full : OUT STD_LOGIC);
 END COMPONENT FIFO_E;
 COMPONENT RoundRobin_E is
 Port (clk: IN STD_LOGIC;
 din1: in STD_LOGIC_VECTOR (7 downto 0);
 din2: in STD_LOGIC_VECTOR (7 downto 0);
 din3: in STD_LOGIC_VECTOR (7 downto 0);
 din4: in STD_LOGIC_VECTOR (7 downto 0);
 dout: out STD_LOGIC_VECTOR (7 downto 0)
);
End COMPONENT RoundRobin_E;
COMPONENT demux_e IS
 PORT(d_in: IN std_logic_vector (7 downto 0); -- input data vector
 sel: IN std_logic_vector (1 downto 0); -- 2 selesction bits
 en: IN std_logic; -- enable flag
 -- output data vectors
 d_out1: OUT std_logic_vector (7 downto 0);

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

32 | P a g e

 d_out2: OUT std_logic_vector (7 downto 0);
 d_out3: OUT std_logic_vector (7 downto 0);
 d_out4: OUT std_logic_vector (7 downto 0));
END COMPONENT demux_e;
COMPONENT IB_E is
Port (Data_in: in std_logic_vector(7 downto 0);
 Clock_En: in std_logic;
 Clock: in std_logic;
 Reset: in std_logic;
 Data_out: out std_logic_Vector (7 downto 0)
);
END COMPONENT IB_E;
 SIGNAL s_rst : STD_LOGIC;
 SIGNAL s_rclock : STD_LOGIC;
 SIGNAL s_wclock : STD_LOGIC;
 SIGNAL s_datai1 : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_wr1 : STD_LOGIC;
 SIGNAL s_datai2 : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_wr2 : STD_LOGIC;
 SIGNAL s_datai3 : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_wr3 : STD_LOGIC;
 SIGNAL s_datai4 : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_wr4 : STD_LOGIC;
 SIGNAL s_datao1 : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_datao2 : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_datao3 : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_datao4 : STD_LOGIC_VECTOR (7 downto 0);
 ---------/FIFO EMPTY&FULL/---------
 SIGNAL s_FIFO11_empty : STD_LOGIC;
 SIGNAL s_FIFO11_full : STD_LOGIC;
 SIGNAL s_FIFO12_empty : STD_LOGIC;
 SIGNAL s_FIFO12_full : STD_LOGIC;
 SIGNAL s_FIFO13_empty : STD_LOGIC;
 SIGNAL s_FIFO13_full : STD_LOGIC;
 SIGNAL s_FIFO14_empty : STD_LOGIC;
 SIGNAL s_FIFO14_full : STD_LOGIC;

 SIGNAL s_FIFO21_empty : STD_LOGIC;
 SIGNAL s_FIFO21_full : STD_LOGIC;
 SIGNAL s_FIFO22_empty : STD_LOGIC;
 SIGNAL s_FIFO22_full : STD_LOGIC;
 SIGNAL s_FIFO23_empty : STD_LOGIC;
 SIGNAL s_FIFO23_full : STD_LOGIC;
 SIGNAL s_FIFO24_empty : STD_LOGIC;
 SIGNAL s_FIFO24_full : STD_LOGIC;

 SIGNAL s_FIFO31_empty : STD_LOGIC;
 SIGNAL s_FIFO31_full : STD_LOGIC;
 SIGNAL s_FIFO32_empty : STD_LOGIC;
 SIGNAL s_FIFO32_full : STD_LOGIC;
 SIGNAL s_FIFO33_empty : STD_LOGIC;

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

33 | P a g e

 SIGNAL s_FIFO33_full : STD_LOGIC;
 SIGNAL s_FIFO34_empty : STD_LOGIC;
 SIGNAL s_FIFO34_full : STD_LOGIC;

 SIGNAL s_FIFO41_empty : STD_LOGIC;
 SIGNAL s_FIFO41_full : STD_LOGIC;
 SIGNAL s_FIFO42_empty : STD_LOGIC;
 SIGNAL s_FIFO42_full : STD_LOGIC;
 SIGNAL s_FIFO43_empty : STD_LOGIC;
 SIGNAL s_FIFO43_full : STD_LOGIC;
 SIGNAL s_FIFO44_empty : STD_LOGIC;
 SIGNAL s_FIFO44_full : STD_LOGIC;
 ----------/FIFO request signals/-----------
 SIGNAL s_FIFO11_read_request : STD_LOGIC;
 SIGNAL s_FIFO11_write_request : STD_LOGIC;
 SIGNAL s_FIFO12_read_request : STD_LOGIC;
 SIGNAL s_FIFO12_write_request : STD_LOGIC;
 SIGNAL s_FIFO13_read_request : STD_LOGIC;
 SIGNAL s_FIFO13_write_request : STD_LOGIC;
 SIGNAL s_FIFO14_read_request : STD_LOGIC;
 SIGNAL s_FIFO14_write_request : STD_LOGIC;

 SIGNAL s_FIFO21_read_request : STD_LOGIC;
 SIGNAL s_FIFO21_write_request : STD_LOGIC;
 SIGNAL s_FIFO22_read_request : STD_LOGIC;
 SIGNAL s_FIFO22_write_request : STD_LOGIC;
 SIGNAL s_FIFO23_read_request : STD_LOGIC;
 SIGNAL s_FIFO23_write_request : STD_LOGIC;
 SIGNAL s_FIFO24_read_request : STD_LOGIC;
 SIGNAL s_FIFO24_write_request : STD_LOGIC;

 SIGNAL s_FIFO31_read_request : STD_LOGIC;
 SIGNAL s_FIFO31_write_request : STD_LOGIC;
 SIGNAL s_FIFO32_read_request : STD_LOGIC;
 SIGNAL s_FIFO32_write_request : STD_LOGIC;
 SIGNAL s_FIFO33_read_request : STD_LOGIC;
 SIGNAL s_FIFO33_write_request : STD_LOGIC;
 SIGNAL s_FIFO34_read_request : STD_LOGIC;
 SIGNAL s_FIFO34_write_request : STD_LOGIC;

 SIGNAL s_FIFO41_read_request : STD_LOGIC;
 SIGNAL s_FIFO41_write_request : STD_LOGIC;
 SIGNAL s_FIFO42_read_request : STD_LOGIC;
 SIGNAL s_FIFO42_write_request : STD_LOGIC;
 SIGNAL s_FIFO43_read_request : STD_LOGIC;
 SIGNAL s_FIFO43_write_request : STD_LOGIC;
 SIGNAL s_FIFO44_read_request : STD_LOGIC;
 SIGNAL s_FIFO44_write_request : STD_LOGIC;
 ----------------/syncronize signals/-----------------
 TYPE state_type IS (state_1, state_2, state_3, state_4);
 SIGNAL s_current_state: state_type;

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

34 | P a g e

 SIGNAL s_next_state: state_type;
 SIGNAL s_current_read_sync : STD_LOGIC_VECTOR (3 downto 0);
 --------------------/IB Outputs/---------------------
 SIGNAL s_reg1_datao : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_reg2_datao : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_reg3_datao : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_reg4_datao : STD_LOGIC_VECTOR (7 downto 0);
 --------------------/DeMux ENABLE/---------------------
 SIGNAL s_demux1_en : STD_LOGIC;
 SIGNAL s_demux2_en : STD_LOGIC;
 SIGNAL s_demux3_en : STD_LOGIC;
 SIGNAL s_demux4_en : STD_LOGIC;
 --------------------/DeMux Inputs/---------------------
 SIGNAL s_demux1_datai : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_demux2_datai : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_demux3_datai : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_demux4_datai : STD_LOGIC_VECTOR (7 downto 0);
 --------------------/DeMux_1 Outputs/---------------------
 SIGNAL s_demux1_datao1 : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_demux1_datao2 : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_demux1_datao3 : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_demux1_datao4 : STD_LOGIC_VECTOR (7 downto 0);
 --------------------/DeMux_2 Outputs/---------------------
 SIGNAL s_demux2_datao1 : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_demux2_datao2 : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_demux2_datao3 : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_demux2_datao4 : STD_LOGIC_VECTOR (7 downto 0);
 --------------------/DeMux_3 Outputs/---------------------
 SIGNAL s_demux3_datao1 : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_demux3_datao2 : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_demux3_datao3 : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_demux3_datao4 : STD_LOGIC_VECTOR (7 downto 0);
 --------------------/DeMux_1 Outputs/---------------------
 SIGNAL s_demux4_datao1 : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_demux4_datao2 : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_demux4_datao3 : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_demux4_datao4 : STD_LOGIC_VECTOR (7 downto 0);
 --------------------/FIFO outputs/-----------------------
 SIGNAL s_FIFO11_datao : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_FIFO12_datao : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_FIFO13_datao : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_FIFO14_datao : STD_LOGIC_VECTOR (7 downto 0);
 --
 SIGNAL s_FIFO21_datao : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_FIFO22_datao : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_FIFO23_datao : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_FIFO24_datao : STD_LOGIC_VECTOR (7 downto 0);
 --
 SIGNAL s_FIFO31_datao : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_FIFO32_datao : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_FIFO33_datao : STD_LOGIC_VECTOR (7 downto 0);

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

35 | P a g e

 SIGNAL s_FIFO34_datao : STD_LOGIC_VECTOR (7 downto 0);
 --
 SIGNAL s_FIFO41_datao : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_FIFO42_datao : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_FIFO43_datao : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_FIFO44_datao : STD_LOGIC_VECTOR (7 downto 0);
 ----------------/DeMux selection lines/-----------------
 SIGNAL s_demux1_sel : STD_LOGIC_VECTOR (1 downto 0);
 SIGNAL s_demux2_sel : STD_LOGIC_VECTOR (1 downto 0);
 SIGNAL s_demux3_sel : STD_LOGIC_VECTOR (1 downto 0);
 SIGNAL s_demux4_sel : STD_LOGIC_VECTOR (1 downto 0);
 ----------------------/scheduler output signals/-----------------------
 SIGNAL s_scheduler1_datao : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_scheduler2_datao : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_scheduler3_datao : STD_LOGIC_VECTOR (7 downto 0);
 SIGNAL s_scheduler4_datao : STD_LOGIC_VECTOR (7 downto 0);
 --------------------/FIFO write selctor/---------------------
 SIGNAL s_FIFO1_en : STD_LOGIC_VECTOR (3 downto 0);
 SIGNAL s_FIFO2_en : STD_LOGIC_VECTOR (3 downto 0);
 SIGNAL s_FIFO3_en : STD_LOGIC_VECTOR (3 downto 0);
 SIGNAL s_FIFO4_en : STD_LOGIC_VECTOR (3 downto 0);

BEGIN
 ------------/connections/--------------
 s_rst <= rst;
 s_rclock <= rclock;
 s_wclock <= wclock;

 s_datai1 <= datai1 ;
 s_datai2 <= datai2 ;
 s_datai3 <= datai3 ;
 s_datai4 <= datai4 ;

 datao1 <= s_datao1;
 datao2 <= s_datao2;
 datao3 <= s_datao3;
 datao4 <= s_datao4;

 s_wr1 <= wr1;
 s_wr2 <= wr2;
 s_wr3 <= wr3;
 s_wr4 <= wr4;
 --
 s_demux1_datai <= s_reg1_datao;
 s_demux2_datai <= s_reg2_datao;
 s_demux3_datai <= s_reg3_datao;
 s_demux4_datai <= s_reg4_datao;
 --
 s_demux1_en <= (s_wr1 and s_wclock);
 s_demux2_en <= (s_wr2 and s_wclock);
 s_demux3_en <= (s_wr3 and s_wclock);

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

36 | P a g e

 s_demux4_en <= (s_wr4 and s_wclock);
 --
 s_datao1 <= s_scheduler1_datao;
 s_datao2 <= s_scheduler2_datao;
 s_datao3 <= s_scheduler3_datao;
 s_datao4 <= s_scheduler4_datao;
 --
 s_FIFO11_read_request <= (s_current_read_sync(0) and (not s_FIFO11_empty));
 s_FIFO21_read_request <= (s_current_read_sync(0) and (not s_FIFO21_empty));
 s_FIFO31_read_request <= (s_current_read_sync(0) and (not s_FIFO31_empty));
 s_FIFO41_read_request <= (s_current_read_sync(0) and (not s_FIFO41_empty));
 --
 s_FIFO12_read_request <= (s_current_read_sync(1) and (not s_FIFO12_empty));
 s_FIFO22_read_request <= (s_current_read_sync(1) and (not s_FIFO22_empty));
 s_FIFO32_read_request <= (s_current_read_sync(1) and (not s_FIFO32_empty));
 s_FIFO42_read_request <= (s_current_read_sync(1) and (not s_FIFO42_empty));
 --
 s_FIFO13_read_request <= (s_current_read_sync(2) and (not s_FIFO13_empty));
 s_FIFO23_read_request <= (s_current_read_sync(2) and (not s_FIFO23_empty));
 s_FIFO33_read_request <= (s_current_read_sync(2) and (not s_FIFO33_empty));
 s_FIFO43_read_request <= (s_current_read_sync(2) and (not s_FIFO43_empty));
 --
 s_FIFO14_read_request <= (s_current_read_sync(3) and (not s_FIFO14_empty));
 s_FIFO24_read_request <= (s_current_read_sync(3) and (not s_FIFO24_empty));
 s_FIFO34_read_request <= (s_current_read_sync(3) and (not s_FIFO34_empty));
 s_FIFO44_read_request <= (s_current_read_sync(3) and (not s_FIFO44_empty));
 --
 --/DeMux selection lines Connections/--
 s_demux1_sel(0) <= s_datai1(0);
 s_demux1_sel(1) <= s_datai1(1);
 --
 s_demux2_sel(0) <= s_datai2(0);
 s_demux2_sel(1) <= s_datai2(1);
 --
 s_demux3_sel(0) <= s_datai3(0);
 s_demux3_sel(1) <= s_datai3(1);
 --
 s_demux4_sel(0) <= s_datai4(0);
 s_demux4_sel(1) <= s_datai4(1);
 -------------------------/Input Buffers/--------------------------
 IB_1 : IB_E PORT MAP(s_datai1,s_wr1,s_wclock,s_rst,s_reg1_datao);
 IB_2 : IB_E PORT MAP(s_datai2,s_wr2,s_wclock,s_rst,s_reg2_datao);
 IB_3 : IB_E PORT MAP(s_datai3,s_wr3,s_wclock,s_rst,s_reg3_datao);
 IB_4 : IB_E PORT MAP(s_datai4,s_wr4,s_wclock,s_rst,s_reg4_datao);
 --/Demux/--
 DeMux_1 : demux_e PORT
MAP(s_demux1_datai,s_demux1_sel,s_demux1_en,s_demux1_datao1,s_demux1_datao2,s_demux1_datao3,s_de
mux1_datao4);
 DeMux_2 : demux_e PORT
MAP(s_demux2_datai,s_demux2_sel,s_demux2_en,s_demux2_datao1,s_demux2_datao2,s_demux2_datao3,s_de
mux2_datao4);

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

37 | P a g e

 DeMux_3 : demux_e PORT
MAP(s_demux3_datai,s_demux3_sel,s_demux3_en,s_demux3_datao1,s_demux3_datao2,s_demux3_datao3,s_de
mux3_datao4);
 DeMux_4 : demux_e PORT
MAP(s_demux4_datai,s_demux4_sel,s_demux4_en,s_demux4_datao1,s_demux4_datao2,s_demux4_datao3,s_de
mux4_datao4);

 FIFO_11 : FIFO_E PORT
MAP(s_rst,s_rclock,s_wclock,s_FIFO11_read_request,s_FIFO11_write_request,s_demux1_datao1,s_FIFO11_datao,
s_FIFO11_empty,s_FIFO11_full);
 FIFO_12 : FIFO_E PORT
MAP(s_rst,s_rclock,s_wclock,s_FIFO12_read_request,s_FIFO12_write_request,s_demux2_datao1,s_FIFO12_datao,
s_FIFO12_empty,s_FIFO12_full);
 FIFO_13 : FIFO_E PORT
MAP(s_rst,s_rclock,s_wclock,s_FIFO13_read_request,s_FIFO13_write_request,s_demux3_datao1,s_FIFO13_datao,
s_FIFO13_empty,s_FIFO13_full);
 FIFO_14 : FIFO_E PORT
MAP(s_rst,s_rclock,s_wclock,s_FIFO14_read_request,s_FIFO14_write_request,s_demux4_datao1,s_FIFO14_datao,
s_FIFO14_empty,s_FIFO14_full);
 --
 FIFO_21 : FIFO_E PORT
MAP(s_rst,s_rclock,s_wclock,s_FIFO21_read_request,s_FIFO21_write_request,s_demux1_datao2,s_FIFO21_datao,
s_FIFO21_empty,s_FIFO21_full);
 FIFO_22 : FIFO_E PORT
MAP(s_rst,s_rclock,s_wclock,s_FIFO22_read_request,s_FIFO22_write_request,s_demux2_datao2,s_FIFO22_datao,
s_FIFO22_empty,s_FIFO22_full);
 FIFO_23 : FIFO_E PORT
MAP(s_rst,s_rclock,s_wclock,s_FIFO23_read_request,s_FIFO23_write_request,s_demux3_datao2,s_FIFO23_datao,
s_FIFO23_empty,s_FIFO23_full);
 FIFO_24 : FIFO_E PORT
MAP(s_rst,s_rclock,s_wclock,s_FIFO24_read_request,s_FIFO24_write_request,s_demux4_datao2,s_FIFO24_datao,
s_FIFO24_empty,s_FIFO24_full);

 FIFO_31 : FIFO_E PORT
MAP(s_rst,s_rclock,s_wclock,s_FIFO31_read_request,s_FIFO31_write_request,s_demux1_datao3,s_FIFO31_datao,
s_FIFO31_empty,s_FIFO31_full);
 FIFO_32 : FIFO_E PORT
MAP(s_rst,s_rclock,s_wclock,s_FIFO32_read_request,s_FIFO32_write_request,s_demux2_datao3,s_FIFO32_datao,
s_FIFO32_empty,s_FIFO32_full);
 FIFO_33 : FIFO_E PORT
MAP(s_rst,s_rclock,s_wclock,s_FIFO33_read_request,s_FIFO33_write_request,s_demux3_datao3,s_FIFO33_datao,
s_FIFO33_empty,s_FIFO33_full);
 FIFO_34 : FIFO_E PORT
MAP(s_rst,s_rclock,s_wclock,s_FIFO34_read_request,s_FIFO34_write_request,s_demux4_datao3,s_FIFO34_datao,
s_FIFO34_empty,s_FIFO34_full);

 FIFO_41 : FIFO_E PORT
MAP(s_rst,s_rclock,s_wclock,s_FIFO41_read_request,s_FIFO41_write_request,s_demux1_datao4,s_FIFO41_datao,
s_FIFO41_empty,s_FIFO41_full);

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

38 | P a g e

 FIFO_42 : FIFO_E PORT
MAP(s_rst,s_rclock,s_wclock,s_FIFO42_read_request,s_FIFO42_write_request,s_demux2_datao4,s_FIFO42_datao,
s_FIFO42_empty,s_FIFO42_full);
 FIFO_43 : FIFO_E PORT
MAP(s_rst,s_rclock,s_wclock,s_FIFO43_read_request,s_FIFO43_write_request,s_demux3_datao4,s_FIFO43_datao,
s_FIFO43_empty,s_FIFO43_full);
 FIFO_44 : FIFO_E PORT
MAP(s_rst,s_rclock,s_wclock,s_FIFO44_read_request,s_FIFO44_write_request,s_demux4_datao4,s_FIFO44_datao,
s_FIFO44_empty,s_FIFO44_full);
 --/scheduler/---
 scheduler_1 : RoundRobin_E PORT
MAP(s_rclock,s_FIFO11_datao,s_FIFO12_datao,s_FIFO13_datao,s_FIFO14_datao,s_scheduler1_datao);
 scheduler_2 : RoundRobin_E PORT
MAP(s_rclock,s_FIFO21_datao,s_FIFO22_datao,s_FIFO23_datao,s_FIFO24_datao,s_scheduler2_datao);
 scheduler_3 : RoundRobin_E PORT
MAP(s_rclock,s_FIFO31_datao,s_FIFO32_datao,s_FIFO33_datao,s_FIFO34_datao,s_scheduler3_datao);
 scheduler_4 : RoundRobin_E PORT
MAP(s_rclock,s_FIFO41_datao,s_FIFO42_datao,s_FIFO43_datao,s_FIFO44_datao,s_scheduler4_datao);
 ---/sync read request/--
 FIFO_SEL : PROCESS(s_demux1_sel,s_demux2_sel,s_demux3_sel,s_demux4_sel)
 BEGIN
 case s_demux1_sel is
 when "00" => s_FIFO1_en <= "0001";
 when "01" => s_FIFO1_en <= "0010";
 when "10" => s_FIFO1_en <= "0100";
 when "11" => s_FIFO1_en <= "1000";
 when others => s_FIFO1_en <= "0000";
 end case;
 case s_demux2_sel is
 when "00" => s_FIFO2_en <= "0001";
 when "01" => s_FIFO2_en <= "0010";
 when "10" => s_FIFO2_en <= "0100";
 when "11" => s_FIFO2_en <= "1000";
 when others => s_FIFO2_en <= "0000";
 end case;
 case s_demux3_sel is
 when "00" => s_FIFO3_en <= "0001";
 when "01" => s_FIFO3_en <= "0010";
 when "10" => s_FIFO3_en <= "0100";
 when "11" => s_FIFO3_en <= "1000";
 when others => s_FIFO3_en <= "0000";
 end case;
 case s_demux4_sel is
 when "00" => s_FIFO4_en <= "0001";
 when "01" => s_FIFO4_en <= "0010";
 when "10" => s_FIFO4_en <= "0100";
 when "11" => s_FIFO4_en <= "1000";
 when others => s_FIFO4_en <= "0000";
 end case;
 END PROCESS FIFO_SEL;
 write_sync_demux1 : PROCESS(s_wclock)

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

39 | P a g e

 Begin
 if rising_edge(s_wclock) THEN
 s_FIFO11_write_request <= (s_wr1 and (not s_FIFO11_full) and (not s_rst) and s_FIFO1_en(0));
 s_FIFO21_write_request <= (s_wr1 and (not s_FIFO21_full) and (not s_rst) and s_FIFO1_en(1));
 s_FIFO31_write_request <= (s_wr1 and (not s_FIFO31_full) and (not s_rst) and s_FIFO1_en(2));
 s_FIFO41_write_request <= (s_wr1 and (not s_FIFO41_full) and (not s_rst) and s_FIFO1_en(3));
 --
 s_FIFO12_write_request <= (s_wr2 and (not s_FIFO12_full) and (not s_rst) and s_FIFO2_en(0));
 s_FIFO22_write_request <= (s_wr2 and (not s_FIFO22_full) and (not s_rst) and s_FIFO2_en(1));
 s_FIFO32_write_request <= (s_wr2 and (not s_FIFO32_full) and (not s_rst) and s_FIFO2_en(2));
 s_FIFO42_write_request <= (s_wr2 and (not s_FIFO42_full) and (not s_rst) and s_FIFO2_en(3));
 --
 s_FIFO13_write_request <= (s_wr3 and (not s_FIFO13_full) and (not s_rst) and s_FIFO3_en(0));
 s_FIFO23_write_request <= (s_wr3 and (not s_FIFO23_full) and (not s_rst) and s_FIFO3_en(1));
 s_FIFO33_write_request <= (s_wr3 and (not s_FIFO33_full) and (not s_rst) and s_FIFO3_en(2));
 s_FIFO43_write_request <= (s_wr3 and (not s_FIFO43_full) and (not s_rst) and s_FIFO3_en(3));
 --
 s_FIFO14_write_request <= (s_wr4 and (not s_FIFO14_full) and (not s_rst) and s_FIFO4_en(0));
 s_FIFO24_write_request <= (s_wr4 and (not s_FIFO24_full) and (not s_rst) and s_FIFO4_en(1));
 s_FIFO34_write_request <= (s_wr4 and (not s_FIFO34_full) and (not s_rst) and s_FIFO4_en(2));
 s_FIFO44_write_request <= (s_wr4 and (not s_FIFO44_full) and (not s_rst) and s_FIFO4_en(3));
 END if;
 END PROCESS write_sync_demux1;

 checkclock: Process(s_rclock,s_rst)
 Begin
 IF s_rst = '1' THEN
 s_current_state <= state_1 ;
 ELSIF rising_edge(s_rclock) THEN
 s_current_state <= s_next_state;
 END IF;
 END Process checkclock;
 read_sync: Process (s_current_state,s_current_read_sync)
 Begin
 case s_current_state is
 when state_1 =>
 s_next_state <= state_2;
 s_current_read_sync <= "0001";
 when state_2 =>
 s_next_state <= state_3;
 s_current_read_sync <= "0010";
 when state_3 =>
 s_next_state <= state_4;
 s_current_read_sync <= "0100";
 when others =>
 s_next_state <= state_1;
 s_current_read_sync <= "1000";
 END case;
 END Process read_sync;

END ARCHITECTURE Router_A;

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

40 | P a g e

Appendix B – <<VHDL Test Bench Source Code>>

LIBRARY IEEE;

USE IEEE.Std_logic_1164.ALL;

USE ieee.numeric_std.ALL;

ENTITY Router_T_E IS

END Router_T_E;

Architecture Router_T_A OF Router_T_E IS

 COMPONENT Router_E IS

 PORT (

 rst : IN STD_LOGIC;

 rclock : IN STD_LOGIC;

 wclock : IN STD_LOGIC;

 datai1 : IN STD_LOGIC_VECTOR (7 downto 0);

 wr1 : IN STD_LOGIC;

 datai2 : IN STD_LOGIC_VECTOR (7 downto 0);

 wr2 : IN STD_LOGIC;

 datai3 : IN STD_LOGIC_VECTOR (7 downto 0);

 wr3 : IN STD_LOGIC;

 datai4 : IN STD_LOGIC_VECTOR (7 downto 0);

 wr4 : IN STD_LOGIC;

 datao1 : OUT STD_LOGIC_VECTOR (7 downto 0);

 datao2 : OUT STD_LOGIC_VECTOR (7 downto 0);

 datao3 : OUT STD_LOGIC_VECTOR (7 downto 0);

 datao4 : OUT STD_LOGIC_VECTOR (7 downto 0));

 END COMPONENT Router_E;

 SIGNAL s_rst : STD_LOGIC;

 SIGNAL s_rclock : STD_LOGIC;

 SIGNAL s_wclock : STD_LOGIC;

 SIGNAL s_datai1 : STD_LOGIC_VECTOR (7 downto 0);

 SIGNAL s_wr1 : STD_LOGIC;

 SIGNAL s_datai2 : STD_LOGIC_VECTOR (7 downto 0);

 SIGNAL s_wr2 : STD_LOGIC;

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

41 | P a g e

 SIGNAL s_datai3 : STD_LOGIC_VECTOR (7 downto 0);

 SIGNAL s_wr3 : STD_LOGIC;

 SIGNAL s_datai4 : STD_LOGIC_VECTOR (7 downto 0);

 SIGNAL s_wr4 : STD_LOGIC;

 SIGNAL s_datao1 : STD_LOGIC_VECTOR (7 downto 0);

 SIGNAL s_datao2 : STD_LOGIC_VECTOR (7 downto 0);

 SIGNAL s_datao3 : STD_LOGIC_VECTOR (7 downto 0);

 SIGNAL s_datao4 : STD_LOGIC_VECTOR (7 downto 0);

 BEGIN

 ROUTER : Router_E PORT

MAP(s_rst,s_rclock,s_wclock,s_datai1,s_wr1,s_datai2,s_wr2,s_datai3,s_wr3,s_datai4,s_wr4,s_datao1,s_datao2,s_

datao3,s_datao4);

 read_clock: PROCESS IS

 BEGIN

 s_rclock <= '0' , '1' AFTER 5 ns;

 WAIT FOR 10 ns;

 END PROCESS read_clock;

 write_clock: PROCESS IS

 BEGIN

 s_wclock <= '0' , '1' AFTER 5 ns;

 WAIT FOR 10 ns;

 END PROCESS write_clock;

 --test case 1 : reset && input data from all input buffers to output buffer 4

 p1: process is begin

 s_rst <= '1';

 WAIT FOR 5 ns;

 s_rst <= '0';

 s_datai1 <= "10000111"; --FIFO41

 s_datai2 <= "10001011"; --FIFO42

 s_datai3 <= "10010011"; --FIFO43

 s_datai4 <= "10100011"; --FIFO44

 s_wr1 <= '1';

 s_wr2 <= '1';

 s_wr3 <= '1';

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

42 | P a g e

 s_wr4 <= '1';

 WAIT FOR 20 ns;

 s_wr1 <= '0';

 s_wr2 <= '0';

 s_wr3 <= '0';

 s_wr4 <= '0';

 wait FOR 20 ns;

 -- test case 2: input data from all input buffers to output buffer 3

 s_datai1 <= "10000110"; --FIFO31

 s_datai2 <= "10001010"; --FIFO32

 s_datai3 <= "10010010"; --FIFO33

 s_datai4 <= "10100010"; --FIFO34

 s_wr1 <= '1';

 s_wr2 <= '1';

 s_wr3 <= '1';

 s_wr4 <= '1';

 WAIT FOR 20 ns;

 assert s_datao4 <= "10100011" -- value in datai4

 report "Test case 1 error"

 severity warning;

 s_wr1 <= '0';

 s_wr2 <= '0';

 s_wr3 <= '0';

 s_wr4 <= '0';

 wait FOR 20 ns;

 -- test case 3: input data from all input buffers to output buffer 2

 s_datai1 <= "10000101"; --FIFO21

 s_datai2 <= "10001001"; --FIFO22

 s_datai3 <= "10010001"; --FIFO23

 s_datai4 <= "10100001"; --FIFO24

 s_wr1 <= '1';

 s_wr2 <= '1';

 s_wr3 <= '1';

 s_wr4 <= '1';

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

43 | P a g e

 WAIT FOR 20 ns;

 assert s_datao3 <= "10100010" -- value in datai4

 report "Test case 2 error"

 severity warning;

 s_wr1 <= '0';

 s_wr2 <= '0';

 s_wr3 <= '0';

 s_wr4 <= '0';

 wait FOR 20 ns;

 -- test case 4: input data from all input buffers to output buffer 1

 s_datai1 <= "10000100"; --FIFO11

 s_datai2 <= "10001000"; --FIFO12

 s_datai3 <= "10010000"; --FIFO13

 s_datai4 <= "10100000"; --FIFO14

 s_wr1 <= '1';

 s_wr2 <= '1';

 s_wr3 <= '1';

 s_wr4 <= '1';

 WAIT FOR 20 ns;

 assert s_datao2 <= "10100001" -- value in datails

 report "Test case 3 error"

 severity warning;

 s_wr1 <= '0';

 s_wr2 <= '0';

 s_wr3 <= '0';

 s_wr4 <= '0';

 wait For 40 ns;

 assert s_datao1 <= "10100000" -- value in datai4

 report "Test case 4 error"

 severity warning;

 wait FOR 40 ns;

 END PROCESS p1 ;

END Architecture Router_T_A;

AIN SHAMS UNIVERSITY

I-Credit Hours Engineering Programs (i.CHEP)

44 | P a g e

Appendix C – <<Simulation Waveform Output>>

Results of testcase 1 and 2:

Results of testcase 3 and 4:

