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Abstract

Topological phases are novel quantum states of matter whose properties are closely
related to the topology of the band structure. The topology of the band structure is
robust to experimental noise, which makes these states useful for practical applications.
Recently, numerical methods for identifying topological phases have been developed and
implemented in the software package Z2Pack [1]. These methods rely on tracking the
sum of Wannier charge centers of hybrid Wannier functions. In this work, we extend this
numerical technique to symmetry-protected topological invariants. An implementation of
this technique is provided in Z2Pack and tested for the Haldane model.
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1 Introduction
Phases of matter and transitions between them are described by order parameters. In Lan-
dau’s theory of phases, an order parameter is a quantity which is zero for the unordered phase
and non-zero for the ordered phase [2]. As an example, consider a magnet: The magnetization
is an order parameter, because it is zero for the unordered system with randomly oriented
spins and non-zero for the ordered system with aligned spins. A local order parameter is one
that can be defined for every point x in the material by considering only a small region around
x. In the example of the magnet, the magnetization M(x) at a point x can be determined by
averaging the atomic magnetizations in a small region of space around x.

More recently, phases of matter have been found that cannot be described by a local order
parameter [3]. That means that a phase transition between such a so-called topological phase
and another phase cannot be described by considering only a small portion of the material:
To define an order parameter for such a transition, the entirety of the material needs to be
taken into account.

The use of non-local parameters to define distinct classes of phases is reminiscent of topology
in mathematics. Topology studies classes of objects that can be deformed into each other
smoothly, i.e. without tearing or gluing. One intuitive “order parameter” used in topology is
the number of holes in a closed surface, called its genus. When a surface is smoothly deformed,
this number does not change [4]. Therefore, the genus is called a topological invariant. This is
an evidently non-local property: It is impossible to find the number of holes by just knowing
a small part of a surface.

The non-local order parameters characterizing topological phases are called topological in-
variants, too. These are invariant under smooth, symmetry-respecting deformations of the
physical system. This will be discussed in more detail in section 2.1. Topological phases can
exhibit a number of unique experimentally observable properties. These include conducting
edge states (a conducting state on the edge of an insulating material), the integer quantum
Hall effect (a quantization of the Hall conductivity that depends only on natural constants),
the fractional quantum Hall effect (a similar quantization of the Hall conductance based on
quasi-particles with fractionalized elementary charge) and many more [3].

Recently, computational methods for identifying such topological phases based on tracking so-
called Wannier charge centers have emerged (see section 2.3) [5]. These were further developed
and implemented in the software package Z2Pack [1]. Specifically, Z2Pack provides an easy-
to-use library for calculating two important topological invariants, the Chern number and
the Z2 invariant. Automatic convergence monitoring allows for high-throughput applications,
such as the screening of materials databases for topologically interesting materials.

The topological classification of materials can be enriched by considering additional symme-
tries of a system. This allows for the splitting of the total Chern number into n individual
Chern numbers, where n is the number of symmetry eigenspaces [6]. In this semester thesis,
we develop numerical methods for identifying individual Chern numbers from so-called overlap
matrices. These methods are integrated into Z2Pack and tested for the Haldane model.

This text is organized as follows: Section 2 presents an overview of the method used in Z2Pack
to calculate topological invariants and introduces the idea of individual Chern numbers in
more detail. In section 3, the necessary theory for calculating individual Chern numbers from
overlap matrices is developed. Section 4 focuses on details of the implementation in Z2Pack
and provides a guide for using the feature. In addition, a modified version of the Haldane
model is presented as an example.
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2 Background
In this section, we present some of the theory of topological invariants and their numerical
calculation. We focus only on gapped Hamiltonians, i.e. Hamiltonians of systems whose band
structure has an energy gap and the occupied states completely fill the band below the gap.
It is possible to extend the theory to metals by restricting the calculations to a surface or line
in the Brillouin zone (see ref. [1] for details).

2.1 Topological invariants
Topological invariants for physical systems are defined analogously to those in topology.
Therefore, we need a physical analogue for the surfaces and smooth deformations used in
topology.

The analogue of a surface in topology is the band structure of the material in physics. The
analogue of a smooth deformation is an adiabatic change of the Hamiltonian that does not
involve a direct gap closure, i.e. the valence and conduction band must not touch at any point
in reciprocal space. An adiabatic change to the Hamiltonian can be thought of as a change that
depends continuously on some parameters. This means the adiabatic change can, in principle,
be performed infinitely slowly by varying its parameters infinitely slowly. In that case, it can
be proven that the groundstate of the system follows the change of the Hamiltonian in the
sense that the systems always stays in the groundstate of every intermediate Hamiltonian in
the transition from initial to final Hamiltonian. This is called the adiabatic theorem [7, 8].

Therefore, we make the following definition: Two materials belong to the same topological
class if and only if their Hamiltonians can be adiabatically transformed into each other without
a direct gap closure and while respecting the symmetries of the system. Operationally, this
means the following: One is given two systems with two gapped Hamiltonians H0 and H1. If
one manages to find a continuous function H(λ) such that (i) H(0) = H0 and H(1) = H1 and
(ii) for all λ ∈ [0, 1], H(λ) is a Hamiltonian whose band structure does not have a direct gap
closure, then the two Hamiltonians are in the same topological class. It important to point
out that the existence of one such function H(λ) suffices, i.e. not every adiabatic change
connecting the two Hamiltonians must fulfill the gap-closure condition.

Topological invariants are quantities that can be calculated from the quantum-mechanical
state of a system and that are constant within a topological class. They can therefore be
thought of as an indexing system for topological classes: Any topological class is defined by
the values the topological invariants take on it. This means that knowing of more topological
invariants allows for a more fine-grained classification of topological classes. This is what
motivates the decomposition of the Chern number C into individual Chern numbers Ci that
was mentioned in section 1. Considering only the total Chern number, we might miss the
division of, for example, the topological class with C = 0 into two different topological classes
C1 = 0, C2 = 0 (topologically trivial) and C1 = −1, C2 = 1 (topologically interesting).

One immediate consequence of our definition of topological invariants is the existence of
conducting edge states: If two materials with Hamiltonians H1 and H2 share a surface, the
Hamiltonian must adiabatically change from H1 to H2 across the surface. If the materials
belong to different topological classes, this means that there must be a direct gap closure,
which implies electrical conduction.

2.2 Wannier functions
Typically, Bloch states, i.e. eigenstates of the Hamiltonian, are used as a basis set of the
entire Hilbert space of states. The occupied states form a subspace of this Hilbert space.
In the simple case of a gapped insulator, the occupied states are all states whose energy
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eigenvalues lie below a fixed energy EF , called the Fermi energy. We label the Bloch states by
|ψnk〉. By Bloch’s theorem, the wavefunctions ψnk(r) = 〈r|ψnk〉 are modulated plane waves.
In particular, they are very delocalized. We seek to construct states with more localized
wavefunctions.

The most localized function possible is a δ-function. Formally, the δ-function can be written
as an integral over equally weighted plane waves: δ(x) = 1

2π
∫
eikxdk. It is therefore reasonable

to assume that integrating over all possible Bloch wavefunctions belonging to the same band
n will also yield a localized wavefunction in the neighborhood of 0:

wn(r) := V

(2π)3

∫
BZ
dk ψnk(r) .

The integral runs over the first Brillouin zone, because this is the set of all possible k for the
Bloch states. V is the volume of the real space primitive unit cell. The factor in front of the
integral is needed for normalization. It can be proven that wn(r) is indeed localized around
0 [9].

To find similar functions around other lattice points R, we can simply translate wn(r) by
R. Writing ψnk = unk(r)eikr with a lattice periodic function unk(r) = unk(r + R), we can
express the translated version of wn as

wn(r −R) = V

(2π)3

∫
BZ
dk ψnk(r −R)

= V

(2π)3

∫
BZ
dk ψnk(r)e−ikR .

This transformation is an inverse Fourier transform in k. The resulting states are called
Wannier states:

|Rn〉 = V

(2π)3

∫
BZ
dk |ψnk〉 e−ikR . (2.1)

These form a basis of the Hilbert space.

Notice that |Rn〉 as defined here is a superposition of Bloch states in the n-th band, i.e. no
mixing of bands occurs. If nF is the index of the (completely filled) valence band, then the
Wannier states {|Rn〉 | n ≤ nF ,R lattice vector} form a basis of the subspace of occupied
states.

The construction of Wannier states is not unique, because the Bloch states can be multiplied
by an arbitrary, k-dependent phase eiφ(k). This is often called gauge freedom. A priori, there
is no preferred choice of phase. One numerically convenient criterion for choosing a phase is to
require that the Wannier states have minimal spread in position, i.e. that they are maximally
localized around the lattice point R [10]. The Wannier functions one obtains with this choice
of gauge (phase) are called maximally localized Wannier function (MLWFs). In the maximal
localization procedure, Bloch states of different bands within the occupied subspace can be
mixed, but no mixing occurs between the occupied and unoccupied bands. As a result, the
MLWFs still form a basis of the occupied states. For a more detailed introduction, see ref.
[11].

We can also apply the inverse Fourier transform not along all axes in reciprocal space, but
just along the kx-axis:

|Rx, ky, kz;n〉 = V

(2π)3

∫
BZ
dkx |ψnk〉 e−ikxRx . (2.2)

If we apply the maximal localization criterion along this axis, we will end up with so-called
maximally localized hybrid Wannier functions (MLHWFs).
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2.3 Wannier charge centers
For every energy band n, the Wannier charge center (WCC) of that band is defined as the
position expectation value of the Wannier function around 0:

xn = 〈0, n| r̂ |0, n〉 .

For the following, WCCs of hybrid Wannier functions will be more useful:

xn(ky, kz) = 〈0, ky, kz;n| r̂x |0, ky, kz;n〉 .

Like the Wannier functions, the WCCs are gauge-dependent. However, the physically relevant
quantity we will be interested in is the sum of all WCCs across the occupied bands P =∑
n≤nF xn, and this sum turns out to be gauge-invariant. It has a physical interpretation

relating to the polarization of a dielectric [12].

2.4 Berry’s phase for Bloch functions
For the numerical calculation of WCCs, it is useful to write them in terms of the so-called
Berry’s phase [13]. Here, we give a short introduction to Berry’s phase and its generalization
to Bloch functions.

Consider a system with a Hamiltonian that can adiabatically change with some parameter λ.
We periodically vary λ with time, λ(t+ T ) = λ(t), and perform this change slowly enough so
that the system always stays in the same energy eigenstate |n(λ)〉 (by the adiabatic theorem).
From basic quantum mechanics, we know that the state will pick up a phase factor

γE,n(t) =
∫ t

0

−En(λ(t′))
~

dt′ .

In addition, the state can also pick up a geometrical phase factor, i.e. one which depends
on the geometry of the parameter space in which λ is varied. This phase is called Berry’s
phase γB,n(t). Therefore, the time-evolution of |n(λ = 0)〉 with an adiabatically changing
Hamiltonian is

|ψ(t)〉 = exp(iγE,n(t))︸ ︷︷ ︸
Phase from time

evolution operator

exp(iγB,n(t))︸ ︷︷ ︸
Berry’s phase

|n(λ(t)〉︸ ︷︷ ︸
Adiabatically changed
energy eigenstate of
Hamiltonian H(λ(t))

.

Inserting this ansatz into the time-dependent Schrödinger equation H(λ(t)) |ψ(t)〉 = i~ |ψ(t)〉,
one finds

d

dt
γB(λ(t)) = i 〈n(λ(t))| ∂λ |n(λ(t))〉 d

dt
λ(t) .

Integrating this expression over time and changing the integration variable to λ yields

γB,n(C) =
∫
C
i 〈n(λ)| ∂λ |n(λ)〉 dλ , (2.3)

where C is the curve along which λ changes in parameter space. Significantly, Berry’s phase
can be non-zero even if C is a closed loop, i.e. the initial and final Hamiltonian are the same.
In that case, γB(C) depends only on the geometry of the loop in parameter space. For this
reason, Berry’s phase is often called a geometric phase.

For crystalline solids, the Bloch functions depend smoothly on k for k inside the first Brillouin
zone. This allows us to define Berry’s phase, with k playing the role of the parameter λ [14]:

γB,n(C) =
∫
C
i 〈unk| ∂k |unk〉 dk , (2.4)
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with ∂k = (∂kx , ∂ky , ∂kz) and C a curve inside the Brillouin zone. For this definition, an
adiabatically changing Hamiltonian H(λ(t)) is no longer necessary, because Bloch’s theorem
provides a smoothly varying parameter k for the energy eigenstates of a constant Hamiltonian
H.

2.5 Wannier charge centers from Berry’s phase and overlap matrices
Our goal in this section is to find an expression for the Wannier charge centers in terms of
Berry’s phase. For simplicity of notation, we restrict ourselves to a 1-dimensional crystal with
lattice constant a and a single band. As a first step, we write the Bloch function ψn,k(x) in
terms of the Wannier functions wn,ma by applying a Fourier transform to (2.1), dropping the
index n for readability:

ψk(x) = 1√
N

∑
m

eikmawma(x) .

The integral is replaced by a sum because the real space lattice vectors are discrete. N is the
number of unit cells in the crystal. The factor 1/

√
N is needed for normalization.

Using ψk(x) = uk(x)eikx:

uk(x) = 1√
N

∑
m

eik(ma−x)wma(x) . (2.5)

We can insert this expression into (2.4) with C being the line across the entire 1-dimensional
Brillouin zone:

γB =
∫ π/a

−π/a
dk i 〈unk| ∂k |uk〉

=
∑
l,m

1
N

∫ π/a

−π/a
dk i

∫
R
dx w∗la(x) i(ma− x)wma(x)

= 2π
a

1
N

∑
m

∫
R
dx w∗0(x−ma) (x−ma)w0(x−ma)

= 2π
a

∫
R
dx w∗0(x) x w0(x)

= 2π
a
x ,

where we made use of the orthogonality of Wannier functions and their translation property
in the third equality.

To numerically calculate Berry’s phase, we need to discretize the integral and derivative to
values ki with step size ∆k:

γB = i
∑
i

∆k 〈uki |
uki+1 − uki

∆k 〉

= i
∑
i

〈uki |uki+1〉 − 1 . (2.6)

The state |uk〉 is rotated in Hilbert space as k changes. For sufficiently small discretization,
the overlap 〈uki |uki+1〉 gives the angle by which the state is rotated in the step i→ i+1. Thus,
we may write 〈uki |uki+1〉 = eiφi , where φi is a small angle. Taylor-expanding the exponential
to first order in φi and inserting the expansion into (2.6) gives

γB = −
∑
i

φi .
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We see that Berry’s phase is just the total angle by which the state was rotated in Hilbert
space. We can rewrite this as a product of overlaps:

γB = − arg
(∏

i

〈uki |uki+1〉
)
. (2.7)

We have therefore found an expression for the WCCs x = a
2πγB in terms of the overlaps of

adjacent Bloch functions.

The generalization of this method for multi-band systems uses unitary rotation matrices
instead of angles and overlap matrices instead of single overlaps to describe the rotation of all
the states |unk〉 as k changes. The overlap matrix of two adjacent k-points in a system with
n0 filled bands is defined as

M
ki→ki+1
lm = 〈ulki |umki+1〉 , l,m ∈ {1, . . . , n0} .

Multiplying the overlap matrices together yields the so-called Wilson loop:

W =
∏
i

Mki→ki+1 .

The eigenvalues λn of the Wilson loop are closely related to the WCCs:

xn = − a

2π arg λn . (2.8)

Notice the similarity of this expression with (2.7): The role of individual overlaps is taken by
the overlap matrices and to extract rotation angles from the Wilson loop, we need to find its
eigenvalues. We do not prove (2.8) here. A more detailed exposition can be found in refs.
[1, 15].

2.6 Chern number from Wannier charge centers
The reason we are interested in Wannier charge centers is that they are closely related to two
important topological invariants, the Chern number and the Z2-invariant. In this section, we
describe the scheme used by Z2Pack to calculate these topological invariants [1]. We consider a
two-dimensional crystal with lattice constant a = 1 for simplicity. For other lattice constants,
normalization factors are needed.

The Brillouin zone of such a system is a square with side-length 2π, with sides parallel to kx
and ky, respectively. We discretize the ky axis, so the Brillouin zone may be thought of as a
number of lines in the kx- direction placed next to each other. Each of these lines can now be
treated as a 1-dimensional system as in section 2.5. In particular, we can calculate the Wilson
loop along each of the lines and obtain the Wannier charge centers by finding the eigenvalues.
The sum of the charge centers is called the polarization P = ∑

xn.

The calculation of the polarization can be repeated for all other lines, each parameterized by
a fixed ky. Therefore, the polarizations for all of the lines define a function P (ky).

The Chern number is then given by

C = P (ky = 2π)− P (ky = 0) . (2.9)

This number corresponds to the Chern number known from topology in mathematics. The
proof of this formula makes use of Berry’s phase and can be found in ref. [16, section 4.3].

The techniques presented so far allow us to numerically calculate the Chern number of any
Hamiltonian in 2 dimensions and are implemented in Z2Pack [1].

This method is generalized for three dimensional systems by choosing a plane in the Brillouin
zone. This plane can be treated in the same way as the 2-dimensional Brillouin zone of a
2-dimensional system. In Z2Pack, this plane is provided as an input by the user.
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2.7 Topological invariants in symmetry eigenspaces

We now consider a Hamiltonian H with an additional unitary symmetry S, i.e. S†S = 1 and
[H,S] = 0. The symmetry splits the Hilbert space into a sum of symmetry eigenspaces

H =
⊕
λ

Eigλ(S) ,

each of which is an invariant subspace of the Hamiltonian. (This follows from commutation:
v ∈ Eigλ(S) ⇒ SHv = HSv = λHv ⇒ Hv ∈ Eigλ(S).) We can therefore restrict the
Hamiltonian to any of the symmetry eigenspaces:

Hλ := H
∣∣
Eigλ(S) .

Each of the Hλ can be treated just like any other Hamiltonian and we can define and calculate
its topological invariants just like before. For this to be of any use, the individual topological
invariants must still be invariant under adiabatic transformations that do not cause a direct
gap closure. This is indeed the case as long as the adiabatic transformation respects the
symmetry, i.e. for all intermediate Hamiltonians H(τ) in the transformation, [H(τ), S] = 0.

To prove this, assume the existence of some adiabatic transformation H(τ) without a direct
gap closure and [H(τ), S] = 0 ∀τ that changes the individual topological invariant on Eigλ(S).
That implies a direct gap closure of the energy bands of Hλ, i.e. two states |αλ(τ)〉 , |βλ(τ)〉 ∈
Eigλ(S) ⊂ H with the same energy eigenvalue for some τ ′. Because Eigλ(S) is invariant under
H(τ ′), acting with the complete Hamiltonian H(τ ′) on |αλ(τ ′)〉 , |βλ(τ ′)〉 gives the same result
as acting with Hλ(τ ′) on |αλ(τ ′)〉 , |βλ(τ ′)〉. Therefore, H must also have a direct gap closure,
which contradicts the assumption.

Phases with non-zero individual Chern numbers are only topologically non-trivial as long as
the symmetry is respected. This is why they are called symmetry-protected topological phases
[1].

If such a splitting is done for the Chern number, it can be proven [1, appendix E] that the
total Chern number is the sum of the individual ones:

C =
∑
λ

Cλ . (2.10)

2.7.1 Z2-Invariant

The Z2-invariant can be understood in the context of individual Chern numbers for time-
reversal symmetry.

For a Hamiltonian H that is invariant under (anti-unitary) time-reversal Θ, i.e. [H,Θ] = 0,
spin-1/2 particles like electrons particles form so-called Kramer pairs. A Kramer pair is a pair
of states that are mapped to each other under time-reversal, and because spin-1/2 particles
are not invariant under time reversal, the two states forming a Kramer pair are distinct [17].
The Hilbert space can be split into two subspaces such that every Kramer pair is made up of
one state in each subspace. This splitting is not unique because the assignment of the first
state of every Kramer pair to a subspace is arbitrary. Let one such splitting be H = H1⊕H2.

Th Chern number is odd under time-reversal, because time-reversal changes the direction of
the ky-axis while leaving the polarization invariant. The reversal of the ky-direction causes
the Chern number to pick up a minus sign. Therefore, a time-reversal invariant system must
have Chern number 0. Because the total Chern number is given by the sum of the individual
ones, the two individual Chern numbers C1, C2 must be equal in magnitude and opposite in
sign.
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The individual Chern numbers C1, C2 in the Hilbert subspaces H1,H2 can be non-zero and
their difference C1 − C2 must be an even number. When the Hamiltonian is adiabatically
changed while preserving time-reversal invariance or the assignment of states in a Kramer
pair to H1 and H2 is reversed, it can be shown that the individual Chern numbers can only
change by an even number [18]. Therefore, the difference C1−C2 can only change by multiples
of 4, so the parity of (C1−C2)/2 is preserved. This defines the Z2-invariant for time-reversal
symmetric systems:

Z2 = C1 − C2
2 mod 2 .

In practice, one does not need to calculate the individual Chern numbers. Instead, the Z2-
invariant can be calculated from the number of crossings of the polarization with an arbitrary
line from ky = 0 to ky = π/ay, where ay is the lattice constant in the y-direction. Refs. [5, 1]
provide more detail on this.

3 Projection of overlap matrices
As outlined in section 2, the calculation of WCCs is based on overlap matrices. To find the
Chern number in a symmetry eigenspace as described in section 2.7, we need to find a way to
project those overlap matrices onto the symmetry eigenspace. In this section, we solve this
problem in full generality for two arbitrary Hamiltonians, each with a symmetry. The only
constraint on the symmetries is that they need to have the same spectrum.

First, we establish the notation and formulate the problem using this notation in section
3.1. Then, we solve the projection problem for systems with explicit Hamiltonians (section
3.2) and for the output of first principles calculations (section 3.3). Theorems 3.1 and 3.2
summarize the main results. Finally, in section 3.4 the methods for projecting overlap matrices
are applied to the Wilson loop used for calculating WCCs.

3.1 Notation

Consider two Hamiltonians H̃1, H̃2 and two unitary symmetries S̃1, S̃2 operating on an n-
dimensional Hilbert space H̃, s.t. [H̃ i, S̃i] = 0. Furthermore, we assume both symmetries
to have the same eigenvalues with the same degeneracies. Because the H̃ i are hermitian,
they have a complete set of orthonormal eigenstates, denoted {ũij}, where i ∈ {1, 2} and
j ∈ {1, . . . , n}. Of these n eigenstates, only the first l are occupied, meaning that only the
first l eigenstates have eigenvalues smaller than some constant EF . These span the Hilbert
spaces of occupied states Hi with the basis {uij}.

The occupied space Hi is invariant under the action of S̃i, since for any ui ∈ Hi : H̃ iS̃iui =
S̃iH̃ iui = λS̃iui, where the eigenvalue λ is smaller than Ef . Thus, Sui ∈ Hi. The restrictions
of H̃ i and S̃i to the space of occupied states are denoted by H i and Si.

In summary, all objects concerning the whole Hilbert space (dimension n) are written with a
tilde. All objects concerning the subspace of occupied states (dimension l) are written without
a tilde.

Our goal is to find the overlap matrixMλ of the occupied eigenstates projected onto a selected
symmetry eigenspace with eigenvalue λ. To do so, we choose bases {ξij}1≤j≤m of Hi∩Eigλ(Si)
for each Hamiltonian, where we assume dimH1 ∩ Eigλ(S1) = dimH2 ∩ Eigλ(S2) =: m. We
do this for some fixed λ, so we can omit the index λ for the ξij .
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Given these bases, Mλ is given by

Mλ =

 〈ξ
1
1 |ξ2

1〉 · · · 〈ξ1
1 |ξ2

m〉
...

...
〈ξ1
m|ξ2

1〉 · · · 〈ξ1
m|ξ2

m〉

 . (3.1)

Therefore, the problem reduces to finding the bases {ξij} given the available information in
each case.

3.2 Systems with an explicit Hamiltonian
For systems with a known hamiltionian, we can calculate the eigenbasis {uij} of the occupied
subspace explicitely. The symmetry matrix S̃i is given in the standard basis of H̃. Notice
that we do not have access to the restricted symmetry matrix Si in this case.

For a fixed i and symmetry eigenvalue λ (both of which we suppress for readibility), let
U ∈ Cn×l be the column matrix of {uj} and Ṽ ∈ Cn×m the column matrix of the orthonormal
basis of Eigλ(S̃), where m = dim(Eigλ(S̃)).

The projection of uj onto Eigλ(S̃) is given by

Pλ(uj) = V V †uj .

In general, the projected eigenvectors are linearly dependent, as dim(H∩Eigλ(S̃)) ≤ dim(H).
If we select a linearly independent subset, we can use these as the basis {ξj}.

Numerically, the most efficient method for this is to LU-decompose the matrix Pλ(U), defined
as the column matrix of Pλ(uj), and only keep the upper triangular matrix. We denote this
operation by LU .

Therefore, we can write
X = LU(V V †U) != UA ,

whereX is the column matrix of {ξj} and A = (Akj) are the coefficients of the linear expansion
of the basis vectors of H ∩ Eigλ(S̃) in the original occupied eigenbasis {uj}. We have found
an expression for the coefficients Akj in terms of quantities we know:

A = U † LU(V V †U) . (3.2)

Reintroducing the superscripts to distinguish between the Hamiltonians and plugging this
result into equation (3.1) yields the desired expression for Mλ:

Mλ
ij = 〈ξ1

i |ξ2
j 〉

=
∑
p,q

A1∗
piA

2
qj 〈u1

p|u2
q〉

=
∑
p,q

A1∗
piA

2
qjMpq .

Theorem 3.1 Let Ai = U i
† LU(V V †U i), where V is the column matrix of an orthonormal

basis of Eigλ(S̃) and U i is the column matrix of an orthormal basis of the occupied subspace
Hi. Then, the projected overlap matrix Mλ is given by

Mλ = A1†MA2 . (3.3)
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3.3 First-principles systems
For first-principles systems, the symmetries are represented in the occupied eigenbasis {uij}
of the respective Hamiltonian:

Di =

〈u
i
1|Si|ui1〉 · · · 〈ui1|Si|uil〉

...
...

〈uil|Si|ui1〉 · · · 〈uil|Si|uil〉

 . (3.4)

We want to find an expression for ξij only in terms of the unprojected overlap matrix (Mij) =
(〈u1

i |u2
j 〉) and the symmetry matrices D1 and D2. In this case, we will additionally require

that the bases {ξij} are orthonormal for both i.

We express ξj as a linear combination of the occupied eigenbasis {uk} (the superscript indi-
cating which Hamiltonian we are dealing with is suppressed for readibility):

ξj =
∑
k

Akjuk .

Such an expansion always exists because ξj ∈ Eigλ(S) ∩ H and {uk} forms a basis of H. We
find

λδij = 〈ξi|S|ξj〉 (3.5)
=
∑
p,q

A∗piAqj 〈up|S|uq〉

=
∑
p,q

A∗piAqjDpq .

Written as a matrix equation with A = (Aij):

A†DA = diag(λ, ..., λ) . (3.6)

Any A that satifsies (3.6) will produce ξi that satisfy (3.5). In particular, if we choose A to
be the column matrix of an orthonormal eigenbasis of Eigλ(D), (3.6) is satisfied. Using the
same calculation as in section 3.2, we find:

Theorem 3.2 Let Ai be the column matrix of an orthonormal eigenbasis of Eigλ(Di). The
projected overlap matrix Mλ is given by

Mλ = A1†MA2 . (3.7)

3.4 Projection of the Wilson loop
So far, we have considered the general case of two independent Hamiltonians. To formulate
the projection formula for the Wilson loop, we return to a k-dependent Hamiltonian H(ki),
where the ki form a line in reciprocal space. Let Aki be the matrix A as defined in theorems
3.1 or 3.3 belonging to the Hamiltonian H(ki). Then, the Wilson loop along the ki can be
projected onto Eigλ(S) as follows:

W λ =
∏
i

Aki
†
Mki→ki+1Aki+1 . (3.8)

4 Implementation and usage
In this section we give a short overview of the format in which the symmetry data is given,
explain how the projection of overlap matrices presented in the previous section is implemented
in Z2Pack and give a guide to using this feature. Finally, a modified Haldane model is
presented as an example.
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4.1 Format of symmetry data
As shown in section 3, different representations of a symmetry are needed depending on
whether the eigenstates of the Hamiltonian or just its overlap matrices are known.

For systems with an explicit Hamiltonian, the symmetry is given by the user as a matrix.
This matrix is the representation matrix of the symmetry map in the basis of the Hilbert
space that is also used for the Hamiltonian matrix.

For first-principles systems calculated using the QuantumEspresso package [19, 20], the sym-
metry matrix is given in the basis of the occupied states of the Hilbert space. The calculation
of the symmetry matrix in this basis is presented in ref. [21]. Specifically, eq. (17) of ref.
[21] defines the matrix d̃mn as the representation matrix of the symmetry in the basis of
the occupied Kohn-Sham orbitals. The code pw2wannier90.f90 from the QuantumEspresso
package calculates these matrices and writes them in a file seedname.dmn, where seedname
is a user-provided variable. The specification of the .dmn-format can be found in [22, section
5.4]. Z2Pack reads the seedname.dmn file, selects the symmetries that leave every point on
the specified surface invariant and writes these symmetries to a seedname.sym file to be used
by pw2wannier90.f90. The specification of the .sym format is given in [22, section 5.6.2].

4.2 Implementation in Z2Pack
The existing architecture of Z2Pack divides the calculation of topological invariants into three
distinct steps [1]:

First, a System object is created. This object contains all the relevant information about the
system at hand: For systems with an explicit Hamiltonian, the Hamiltonian itself specifies
a System. For first-principles systems, the input files and parameters needed for the first-
principles calculation constitute the System. In both cases, a number of optional parameters
can be passed to the system if desired.

Next, a surface run is performed. This means that for a user-specified surface in the Brillouin
zone, a set of lines is created and the overlap matrices for points along those lines are calculated
as described in section 2.6. In Z2Pack, each of the lines is represented as an OverlapLineData
object. All of the OverlapLineData objects are bundled into a SurfaceData object. Perform-
ing a surface run returns a SurfaceResult object, which contains the SurfaceData object as
well as convergence information.

Finally, the Chern number and Z2-invariant of the surface can be calculated. This is done by
passing a SurfaceResult object to the z2pack.invariant.chern or z2pack.invariant.z2
functions. The calculation of WCCs does not happen until an invariant is calculated.

The guiding principle in implementing the calculation of symmetry-restricted topological in-
variants was to maintain full backwards-compatibility and to require minimal changes to
existing calculations when updating them to include symmetries.

The symmetry of the system is stored in the System object as an explicit symmetry matrix in
the case of systems with an explicit Hamiltonian or as a path to the seedname.dmn file in the
case of Quantum Espresso calculations. During the surface run, symmetry matrices are saved
for each k-point of a line in the OverlapLineData object. The surface run with symmetries
returns a SurfaceResult object that can be used in exactly the same way as the result of a
run without symmetries.

To make use of the symmetries stored in the OverlapLineData objects, the surface result
is projected onto a symmetry eigenspace. Specifically, a new SurfaceData object is created
with the same set of lines as the original one, but with all overlap matrices projected onto
a symmetry eigenspace as described in section 3. The projected surface does not store the
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symmetries or convergence information of the original surface to conserve memory.

The projection of a surface does not modify the original surface, but instead creates a new
one. Therefore, all convergence and symmetry information can still be accessed through the
original SurfaceResult object. The projected surface can be used like any other surface to
calculate topological invariants.

4.3 Usage

4.3.1 Systems with an explicit Hamiltonian

For systems with explicit Hamiltonians, the symmetry must be specified as a matrix in the
same basis as the Hamiltonian, that is the symmetry matrix S must be a matrix that commutes
with the Hamiltonian matrix H(k) for every k. The symmetry matrix is passed to the system
via the symm keyword argument.

The surface run needs to be performed with use_symm = true. We will call the return value
of this command surface_result in the following. To project the surface result, the command
surface_result.symm_project(symmetry_eigenvalue) is used, where symmetry_eigenvalue
is the eigenvalue of the symmetry eigenspace onto which the surface is projected. The pro-
jected surface result can be used like any other surface result, except that it does not contain
convergence information.

4.3.2 First-principles systems

The implementation in Z2Pack works for first-principles systems calculated using QuantumE-
spresso [19, 20]. Currently, only systems without spin-orbit coupling and without non-colinear
magnetism can be used. This is due to a limitation in pw2wannier90.f90, a part of the Quan-
tum Espresso package, that restricts the calculation of the d̃mn-matrices to these cases.

To use symmetry projection for first-principles systems, the following input parameters need
to be set in the input files of the first-principles calculation:

• In seedname.scf.in (input for self-consistent calculation): noncolin = .false. and
lspinorb = .false.

• In seedname.nscf.in (input for non-self-consistent calculation): noncolin = .false.
and lspinorb = .false.

• In seedname.pw2wan.in (input for pw2wannier90.f90): read_sym = .true. and
write_dmn = .true.

• In seedname.win (input for Wannier90): The projections used by Wannier90 need to be
manually given so that the space spanned by the projection orbitals is invariant under
the particular symmetry under consideration. For example, for a symmetry that swaps
the x- and y-components and leaves the z-component invariant, the orbitals s, px, py
work for this purpose, but the orbitals s, px, pz do not, because px is mapped to py
outside the subspace. If an unsuitable set of orbitals is chosen, the d̃mn matrices will
not be unitary and Z2Pack will raise an error.

The first two settings are required due to the limitation in QuantumEspresso mentioned above
and may not be needed in the future when QuantumEspresso is updated accordingly. The
third setting is needed so pw2wannier90.f90 only uses the local symmetries of the surface
and outputs the d̃mn matrix used for projection onto a symmetry eigenspace.

Before the surface run is executed, the necessary symmetry input file for a specific surface
needs to be generated. For QuantumEspresso, the function gen_qe_symm_files is provided
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to do generate the .sym file used by pw2wannier90.f90. For other first-principles codes, a
different function written by the user can be used. The .sym file needs to be included in the
list of input files when the System is created in Z2Pack.

The surface run needs to be performed with the keyword argument use_symm = true. Be-
cause the first principles calculation will in general identify multiple symmetries, it is nec-
essary to specify which symmetry should be used for projection. The index of the differ-
ent symmetries is the same as in the .sym input file for QuantumEspresso. To project
the surface result, the command surface_result.symm_project(symmetry_eigenvalue,
isym=symmetry_index) is used, where symmetry_index is the index of the desired symmetry.

4.4 Example: Haldane model
The Haldane model [23] is a simple model of the quantum Hall effect without an external mag-
netic field to create Landau levels. This is achieved by considering a 2-dimensional honeycomb
lattice with two sublattices so that nearest neighbors always belong to different sublattices.
Introducing second-neighbor interactions, i.e. interactions between nearest neighbors in a
sublattice, can break time-reversal invariance. This gives rise to quantum Hall behavior.

The Hamiltonian of the Haldane model can be represented in the basis {(ψA(k), ψB(k)},
where ψi(k) is the Bloch function with wave vector k on sublattice i:

H(k, φ) = 2t2 cos(φ)cB(k)1+ t1cA(k)σ1 + t1sA(k)σ2 + (M − 2t2 sin(φ)sB(k))σ3 , (4.1)

where ci(k), si(k) are functions whose exact form is irrelevant for our purpose, ti, M are
parameters of the model and σi are the Pauli matrices. The Chern number of the Haldane
model is odd in φ: The Chern number of H(k, sφ) is −s for s ∈ {+1,−1}.

We can form a block-diagonal Hamiltonian of multiple Haldane Hamiltonians

Hn(k, φ) =

H(k,±φ) 0
. . .

0 H(k,±φ)


︸ ︷︷ ︸

n 2× 2 blocks

,

where the sign of φ can be chosen independently in each block. This Hamiltonian has the
following symmetry:

S =

1 · 12 0
. . .

0 n · 12

 .

S is indeed a symmetry because each block of H commutes with the corresponding diagonal
block of S. The spectrum of S is σS = {1, . . . , n}.

We can calculate the i-th individual Chern number of Hn by projecting the Hamiltonian onto
Eigi(S) for i ∈ {1, . . . , n}. From the addition property of individual Chern numbers as in
equation (2.10), we know that the Chern number of Hn is given by Cn = n− − n+, where n±
are the number of blocks with ±φ.

We now present the code that performs these calculations with Z2Pack. First, we create
functions to generate the block-diagonal Haldane Hamiltonian and its symmetry:

import scipy.linalg as la
import numpy as np
def Hamilton(k, m, t1, t2, phi, signs):

return la.block_diag(*[Hamilton_Haldane(k, m, t1, t2, s * phi) for s in signs])
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Total
Hamiltonian

Projection on
Eig1(S)

Projection on
Eig2(S)

Projection on
Eig3(S)

Sign of φ + - -
Chern number 1 -1 1 1

Table 1: Chern numbers of total and projected Hamiltonians of block-diagonal Haldane model.
As expected from theory, the Chern number on each projected Hamiltonian depends on the
sign of φ. The total Chern number is given by the sum of the individual Chern numbers.

def symmetry(n):
return la.block_diag(*[np.diag([i, i]) for i in range(1, n + 1)])

Hamilton_Haldane is a function that returns the standard 2× 2 Haldane Hamiltonian.

Next, we need to create a System object with this Hamiltonian and symmetry and perform a
surface run with this system and the use_symm keyword argument set to true. Here, we use
a Hamiltonian with three blocks, the first one with +φ and the other two with −φ:

m, t1, t2, phi = 0.5, 1., 1. / 3., 0.5 * np.pi # set parameters for Hamiltonian
signs = [1, -1, -1] # signs for phi
n = len(signs)
system = z2pack.hm.System(lambda k: Hamilton(k, m, t1, t2, phi, signs), symm=symmetry(n))

result = z2pack.surface.run(
system=system,
surface=lambda s, t: [t, s, 0.],
use_symm=True

)

Finally, we can project the surface onto the different eigenspaces of the symmetry, remember-
ing that the symmetry eigenvalues are σS = {1, . . . , n}. For each projected surface, the Chern
number can be calculated:

projected_results = [result.symm_project(i) for i in range(1, n + 1)]
total_chern = z2pack.invariant.chern(result)
individual_chern = [z2pack.invariant.chern(r) for r in projected_results]

The results are as we expected and can be found in Table 1 and Figure 4.1.

5 Conclusion and outlook
We have introduced a numerical technique for projecting overlap matrices of a Hamiltonian
onto symmetry eigenspaces. This method can be used in conjunction with the tracking of
Wannier charge centers to calculate symmetry-protected topological invariants, such as indi-
vidual Chern numbers. This method has been implemented as an extension of the software
package Z2Pack [1]. We have demonstrated this technique for a modified version of the
Haldane model. In addition, the calculation of individual Chern numbers of first-principles
systems calculated using the QuantumEspresso package [19, 20] is possible, but limited to
systems without spin-orbit coupling or non-colinear magnetism.

The implementation can be easily extended to work with the output of other first-principles
codes and will prove more useful once QuantumEspresso implements the calculation of sym-
metry matrices for systems with non-colinear magnetism and spin-orbit coupling.
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Figure 4.1: Wannier charge centers of block-diagonal Haldane model. The WCCs of the
unprojected Hamiltonian are a superposition of the individual WCCs. This is due to the
block-diagonal nature of the Hamiltonian in this example. In general, the WCCs of the
unprojected system may be divided up in non-trivial ways.
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