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Abstract: It is crucial for a mobile robot to have a geometric and semantic un-
derstanding of its environment to be able to effectively manipulate and navigate
it. Additionally, this information must be inferred in real time if the robot is ex-
ploring a not-before-seen environment. Inspired by traditional machine-learning
methods, state-of-the-art approaches achieve this by semantically segmenting 2D
images captured by a robot and incrementally fusing this information into a 3D
dense map of its environment. In contrast to such methods, we propose an algo-
rithm that incrementally constructs a 3D dense map and semantically segments
the dense map directly. The advantage of our approach is that our classifier can
leverage accumulated information of a scene captured in a dense map to make its
predictions. We demonstrate the effectiveness of our proposed methods on two
benchmark data-sets.
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1 Introduction

In most autonomous robot tasks, the goal is to either navigate through an environment or to interact
with it. In many cases the environment is unknown (or only partially known), and for this reason it is
crucial for an autonomous robot to gain a geometric and semantic understanding of its surroundings.
Moreover, if the goal is to do this online, then the robot must be able to update its understanding of
the environment incrementally, as it gathers more information.

Inspired by traditional semantic image segmentation tasks, current approaches – referred to as view-
based approaches – make segmentation predictions based on 2D snapshots of the environment and
incrementally fuse the predicted labels into a dense map [1, 2]. At each increment, the classifier
utilizes only the information from current snapshots of a scene to make its predictions. A disadvan-
tage of such approaches, is that segmentation-relevant information contained in previous snapshots
are unused. Rather than semantically segmenting 2D snapshots, in our approach, we attempt to
overcome this limitation by inferring the labels of a 3D dense map directly, which is constructed
incrementally from a series of captured depth images. The dense map contains accumulated infor-
mation of the scene which is leveraged by our classifier.

Recent work [3] has shown that given a voxel map, 3D Convolutional Neural Networks (CNNs) can
be used to semantically segment the scene directly with high accuracies. Furthermore, Landgraf
et al. [4] compared view-based and map-based semantic segmentation approaches. They demon-
strated that map-based approaches outperform view-based approaches both in the presence of and
in the absence of noise. As an attempt to improve the performance of incremental semantic seg-
mentation of a 3D scene, we propose a map-based algorithm that takes geometric information from
an incrementally constructed map and infers its semantic labels directly. We believe that our frame-
work is better suited for incremental semantic segmentation because the classifier is capable of
leveraging not only 3D features, but also accumulated information stored in the map. Moreover,
while view-based methods must semantically segment each individual 2D snapshot to leverage its
segmentation-relevant information, in our method, semantic segmentation steps can be arbitrarily
skipped and while still leveraging the relevant information from each snapshot in future steps. Due
to the flexibility of the update scheme, we believe that our approach is better suited for real world
applications where computational power is limited.
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The algorithm leverages a novel framework that appropriately fuses depth maps of a scene into a 3D
map represented by voxel groups [5]. At each increment, updated voxel groups are used as inputs to
a NN framework inspired by previous works in 3D semantic segmentation [3]. The network outputs
the inputted groups with predicted semantic labels, and our framework adds these labeled groups
directly back into the global voxel map.

2 Related Works

In general, approaches for semantic segmentation of 3D scenes have been divided into two broad
groups: view-based (Sec. 2.1) and map-based semantic segmentation (Sec. 2.2).

To apply 3D scene semantic segmentation approaches in real-time applications, it is a necessary
condition for semantic segmentation to be performed incrementally. Recently, there has been a
lot of research about map-based semantic segmentation, however, most state-of-the-art incremental
semantic segmentation frameworks still leverage view-based approaches.

2.1 View-based semantic segmentation

In view-based semantic segmentation of 3D scenes, labels from inputted view-wise data are esti-
mated and then fused into the scene model. These scene models are constructed from a series of
depth maps and generally represented using voxel grids. Hermans et al. [6] created a framework
where, given RGB-D snapshots of a scene, a scene map is incrementally constructed, 2D RGB im-
ages are semantically segmented using randomized decision forests and then the inferred labels are
fused into the map using Bayesian updates. Inspired by modern semantic segmentation approaches
in the field of machine learning [7], later work has shown that the semantic segmentation perfor-
mance of such approaches can be improved using CNN frameworks without being at the expensive
of worsening computational time [8]. In addition to semantically segmenting RGB images, Grinvald
et al. [1] developed a framework where corresponding depth images were semantically segmented in
an unsupervised manner, by decomposing them into a set of segments following a geometry-based
approach. The segmentation of the RGB image is then used to infer class information for the cor-
responding depth segments. Another contribution to view-based semantic segmentation of scenes,
presented by Narita et al. [2], is a final stage of map regularization. The researchers demonstrated
that map regularization can be performed online using a fully-connected Conditional Random Field
model, which further improves segmentation accuracy.

Instead of modelling an entire scene, a different body of work uses view-based semantic segmenta-
tion to identify, model and track objects in a scene [9, 10]. Given RGB-D data, in this approaches,
maps are constructed containing only objects of interests. The objects are tracked and their semantic
segmentation and their construct models are incrementally refined.

2.2 Map-based semantic segmentation

Similarly to the view-based approach (Sec. 2.1) scenes models are constructed from a series of depth
maps. The key difference between the two approaches is that in map-based semantic segmentation
of 3D scenes, the classifier uses the constructed model as an input, and infers its labels directly.
In general, modern approaches use 3D CNNs in the architecture of the classifier leverage the 3D
information from the constructed map. In recent works, however, researchers developed classifiers
which leverage not only the 3D information from the map, but also view-wise data from individual
snapshots [3, 11, 12]. In contrast to previous approaches, [12] which leveraged only single RGB
snapshots in addition to the 3D model, Dai and Nießner [11] proposed a framework, which leverages
RGB images from multiple views. The 2D features were extracted using 2D CNNs, were projected
onto the 3D voxel grid and were passed through the 3D CNN framework. In flexible map-based
semantic segmentation frameworks, the classifier should be able to infer the labels of scenes with
different sizes. In many approaches [4], a sliding window procedure is implemented to semantically
segment different parts of the map individually. I critique of such methods is that the local 3D
information during a classification step is limited by the size of the window. To handle this limitation,
Dai et al. [13] proposed a NN framework in which the 3D CNN filter kernels are invariant to the
overall scene size and can be deployed on arbitrarily large scenes, where the entire scenes are passed
as inputs.
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In a different corpus of work, researchers have developed map-based frameworks which not only
semantically segment, but also complete the reconstructed scenes (semantic scene completion)
[3, 14, 15, 16]. Here, scene completion refers to the completion of 3D shapes by updating the
set occupied voxels in inputted voxel grids. Song et al. [14] demonstrated that simultaneously per-
forming semantic scene completion and segmentation outperforms methods addressing each task in
isolation. Inspired by their approach, Li et al. [3] developed a framework that leverages a single
depth images to perform semantic scene completion, outperforming previous works on benchmark
datasets. In their proposed framework, 2D information form depth images were leveraged in ad-
dition to the constructed 3D map, and a loss function was proposed and used for training which
penalized the predictions on individual voxels not purely based on the correctness of the predic-
tions, but also based on the geometric neighborhood of those voxels. More specifically, incorrect
predictions on voxels on object surfaces were penalized less than thos on object edges.

Unlike in view-based methods, in map-based approaches there still exists a research gap in that to
the best of our knowledge, the only incremental map-based semantic segmentation framework that
exists is one developed by Wu et al. [16]. A concurrent work in which the framework leverages
only voxel occupancy and large voxel blocks (64x64x64) as inputs, containing a vast amount of
volumetric information in each block. However, previous work [17] has shown that using TSDFs
has many benefits over using only occupancy, and we believe that relying on large blocks limits the
applicability in frameworks where computational power is limited.

2.3 Compareing view-based and map-based semantic segmentation

In a work by Landgraf et al. [4], the researchers quantitatively compared the two approaches based
on their performance on the same experimental framework. The two approaches are compared based
on their semantic segmentation of several hundred synthetic scenes containing various scattered
objects with perfect ground truth labelling.

To evaluate the effectiveness of the approaches, the semantic scene segmentation obtained by each
approach is compared against the scene’s ground truth using mean Intersection over Union (IoU)
over all classes. The researchers concluded that in the absence of noisy data, the map-based approach
achieved a higher IoU score on average. It was found, however, that the view-based method is more
robust in the presence of pose noise, but despite this, it was found that overall the map-based method
performs better in the presence of noise. This is because the accuracy of the view-based method
strongly degraded in the presence of depth noise, while the map-based method was more robust.

These findings suggest that the map-based approach would lead to higher accuracies in an incre-
mental semantic segmentation application. Moreover, the researchers highlighted that in their appli-
cation, the map-based method is more efficient. This is because the semantic segmentation does not
need to be applied individually for each captured image.

3 Methods

We propose a framework which incrementally constructs and semantically segments a 3D scene
online. Our framework leverages a framework, Voxblox [5], which incrementally builds voxelized
Truncated Signed Distance Fields (TSDFs)1, from inputted point clouds. From the constructed
map, at each incremental step, individual voxel blocks are extracted and used as an inputs to our
NN framework, which then infer the the semantic labels of each voxel in each block. To achieve
this, raw camera data is pre-processed to be applicable in the Voxblox framework, and the TSDF
data generated by the Voxblox framework is then further processed to be applicable as an input
to our NN framework. Our NN framework is set-up and trained in a manner in which it can be
generalized to be effective when applied to not-before-seen scenes 3.2. Once the NN framework is
trained, it can be applied in an incremental update scheme 3.3, to perform incremental map-based
semantic segmentation of 3D scenes. The details of each of these parts are presented in the following
subsections.

1TSDFs are 3D voxel arrays containing distance information to the nearest surface.
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Figure 1: Update of Global Voxel Map. A: Global voxel map containing voxel blocks with inferred
semantic information at time t. B: Global voxel map at following increment with newly observed voxel blocks
highlighted. C: Same global voxel map as in B, except here, voxel blocks are highlighted differently. High-
lighted in blue are voxel blocks that have been updated since previous inrement. Highlighted in green are voxel
blocks that have been added since previous increment.

3.1 Data Pre-processing

The Voxblox framework, at each incremental stage, takes pointclouds as inputs with correspond-
ing camera poses in the form of quaternions. Given the camera focal length, depth images are
transformed into 3D pointclouds. Ground truth semantic labels are assigned to each point into cor-
responding pointclouds.

Given camera pose information at each view, the Voxblox framework then incrementally integrates
the pointclouds from individual views into a global voxel map. At each increment, voxel blocks
are either added to the global voxel map, or already existing voxel blocks in the global voxel map
are updated (see Fig. 1). Each voxel block corresponds to a designated volume in the robot’s
environment. See Fig. 1 for information about in what manner the global voxel map is updated.

After the global voxel map is updated, data from individual voxel bocks can be extracted in the form
of 3D arrays. Each voxel contains signed distance information, weight information and colour in-
formation. Voxels more than the truncation distance away from observed surfaces have zero weight
distance and colour. Inside of the truncation distance, the signed distances correspond to the dis-
tance to the closest surface. Moreover, inside the truncation distance, the weights of the voxels are
non-negative and we used the red colour information of the voxels to store the ground truth label
information2. We classify voxels as occupied, if they have non-zero weights, and the magnitude of
their distance value is smaller than the width voxel size (we refer to voxel size as the width of one
of the sides of the cuboidal voxels). We do this because if a voxel is less than the voxel size away
from the closest surface, then the voxel must contain surface information.

For training, voxel data is generated a priori – for training the NN framework we are only interested
in voxel data and are not interested in depth/pointcloud data. In contrast to this, when the framework
is applied in practice, data from updated voxel blocks (or from voxel blocks that had been added to
the map) is extracted from the current state of the global volume map at each incremental stage. This
data can be used as an input to the classifier without further processing.

3.2 Classifier

3.2.1 Neural Network Architecture

Inspired by Li et al. [3] our classifier is a 3D CNN framework which takes voxel blocks from an
incrementally constructed map as input, and outputs class label probabilities of each inputted voxel
(see Fig. 3 A). The NN framework consists of three parts: a voxel stream, a multi-level feature
aggregation model and a reconstruction part. In the voxel stream, TSDF values of voxels are passed

2Note that as we do not use RGB information, the red colour channel is empty and can be used to store the
ground truth information.
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Figure 2: Neural Network Architecture. The network takes TSDF voxels as input. The inputs are
first passed through a 3D CNN module consisting of a 3D convolutional layer, dilated residual blocks and
a 3D pooling layer. The extracted features are then passed through a feature aggregation module, in which
the features are passed through a series of 3D dilated residual blocks. The outputs of these blocks are then
concatenated and passed through a series of 3D convolutional layers. The network outputs semantic label
probabilities for each block.

Figure 3: Inferring labels of voxel blocks. A: Voxel blocks without color information are passed through
the NN framework. The network outputs the identical voxel block, except with voxel-wise semantic labels. B.i:
Global volume map containing unlabeled voxel blocks during first increment before semantic segmentation.
B.ii: Global volume map containing unlabeled voxel blocks during first increment before semantic segmenta-
tion. C.i: Updated voxel blocks at given increment remove previously inferred labels at corresponding block.
C.ii: Semantic labels of updated blocks are newly inferred.

through a 3D CNN module3. The 3D CNN modules consist of 3D convolutional layers, 3D pooling
layers and dilated residual blocks, with bottleneck versions used to increase the capacity of the
network and to reduce the number of parameters. In the multi-level feature aggregation model, the
3D features are passed through a series of 3D dilated residual blocks to increase the receptive field.
The outputs of each residual block are then concatenated. Finally, the outputs of the multi-level
feature aggregation model are passed through three standard 3D convectional layers, generating the
previously mentioned outputs. For more information about the NN architecture, see Fig. 2.

3.2.2 Training of the Neural Network

Validation-score tracking

During training, we tracked the accuracy of our classifier on a validation set, distinct from the dataset
we used for training. To achieve this, the following method was used: the dataset is split into a

3TSDF values are often flipped in order to have strong gradients on surfaces, providing more meaningful
signals for networks to learn better geometric features. In future works we plan to experiment with using flipped
TSDF values as inputs.
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Figure 4: Voxel block occupancy. A: Voxel block extracted from global voxel map. Red cubes represent
occupied voxels and transparent cubes represent unoccupied voxels. B: Voxel block outputted by classifier.
Blue cubes represent unoccupied voxels with inferred labels and red cubes represent occupied voxels with
inferred labels. The loss function is only takes predictions on red cubes as an input.

training set and a validation set. The split is performed proportional to the number of scnenes and
not proportional to the number of voxel blocks, such that voxel blocks of a given trajectory are either
all part of the training set or are all part of the validation set. The split is done such that voxel blocks
from approximately 80% of all trajectories are assigned to the training set and all other voxel blocks
were assigned to the validation set.

Validation accuracy is tracked by calculating the accuracy after each training epoch. If, after a
certain epoch e, the validation accuracy does not increase beyond the validation accuracy at epoch e
for a given number of epochs, then we perform early stopping [18] to avoid overfitting to the training
data.

3.3 Incremental Update Scheme

Using a trained network (trained according to the framework presented in section 3.2.2), the in-
cremental map-based semantic segmentation framework can be applied. The incremental update
scheme for incrementally constructing a semantically labelled voxel map consists of four steps at
each increment (where ”at each increment” means that a depth image of a scene is captured): (i)
projecting a depth image into a 3D pointcloud, (ii) integrating the resulting pointcloud into the
global voxel map, (iii) passing all updated voxel blocks through the NN framework, and finally,
(iv) updating the global voxel map using the inferred semantic labels.

In stage (i), depth images are projected into 3D pointclouds given camera focal length. As described
in section 3.1, in stage (ii), pointclouds are integrated into the global voxel map given corresponding
camera pose. It must be noted that the global voxel map at increment t-1, which is being updated
in the current increment t, contains not only geometric information, but also the predicted semantic
labels at increment t-1. The voxblox framework overwrites previous colour information, so semantic
labels from increment t-1 are removed and semantic labels inferred at increment t are only added to
the map in stage (iv) (see Figs. 3 B and C).

In stage (iii) the data from updated voxel blocks are extracted, and the corresponding TSDF distance
values are passed through the trained NN framework, outputting class probabilities of each class
used for training. In stage (iv), the class with maximum probability is assigned to each voxel.
Disregarding previously inferred labels of the treated voxel blocks, the predicted labels of each
block are then simply added back into the global voxel map (see Fig. 3 C). Here, the assumption is
made that since the latest voxel blocks are constructed from the most accumulated information, the
corresponding geometric representation of the scene is the most accurate, thus the newest predicted
labels are the most optimal.4
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(a) Mean IoU changing with with
number of depth images

(b) Mean F1 score changing with
with number of depth images

(c) Mean IoU changing with
number of depth images

(d) Mean IoU changing with dis-
tance from center of block

(e) Mean F1 score changing with
distance from center of block

(f) Mean accuracy changing with
distance from center of block

Figure 5

4 Execution of Experiments and Results

4.1 Experimental Setup

For training depth maps, were taken from scenes of the SceneNet dataset [19]. The SceneNet dataset
consists of ground truth RGB-D snapshots from photo-realistic rendered indoor scene trajectories.
The data-set contains 15’000 scenes with 300 distinct snapshots per scene. On top of the RGB-D
data, the data-set also includes semantic ground truth information from 13 classes, and camera pose
information for each individual snapshot. For training, we used all depth images from 3’500 scenes.

The camera poses for each view are presented as camera position and the position to which the
camera is pointing. This information was transformed into homogeneous transformation matrices
in the world view. In our framework, each homogeneous transformation is converted to the desired
quaternion format using an inbuilt Voxblox function.

During the processing of the training data (Sec. 3.1), we set each voxel block to contain 16x16x16
voxels. We set the voxel size and the truncation size of the process to 8cm and 16cm respectively.

4.2 Synthetic Scenes

For testing our network on the synthetic scenes of the SceneNet dataset, we used a test set containing
1000 scenes distinct from those of the training set.

4.2.1 Global segmentation scores

Our most optimal NN achieved a mean IoU score of 0.462 and an F1 score of 0.693. Furthermore,
we provide plots displaying how the scores change with the number of depth images integrated into
the map (Figs. 5a, 5b and 5c). In addition to mean IoU and F1 scores, we provide also the diagram
for the accuracy.

4.2.2 Local segmentation analysis

In this subsection we present our results for our analysis on how the prediction scores change de-
pending on how far voxels are from the center of the voxel blocks. In Figs. 5d, 5e and 5f, a voxel

4In future works, we plan to experiment with Bayesian and heuristic label fusion as alternatives.
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Figure 6: A.i: Synthetic scene with predicted labels. A.ii: Synthetic scene with predicted ground truth labels.
B.i: Real scene with predicted labels. B.ii: Synthetic scene with ground truth labels

has zero distance of it is one of the center 4 voxels of the voxel block. The distance increases with
each layer around these center blocks. The plots are presented for the mean IoU and F1 score, and
for the accuracy.

4.2.3 Qualitative results

We show an example of the semantic segmentation on a synthetic scene in Fig. 6. Furthermore, we
compare it to the ground truth values.

4.3 Real-world Scenes

For testing our framework on real world data, we used scenes from the ScanNet dataset [20]. Pro-
cessing this data is equivalent to how we processed the synthetic data, highlighted in Section 3.1,
except the pointcloud projection needed to be performed differently (for details see the cited paper).

4.3.1 Qualitative results

We show an example of the semantic segmentation on a real world scene in Fig. 6. We compare it
also to the our best approximation of ground truth values. There was an imperfect overlap between
the real world dataset labels and the labels which we trained our network on. Assumptions about
individual classes had to be made.

4.4 Process time analysis

To study the time it takes for the process to run, we ran tests on a laptop with an Intel® Core™
i7-8565U processor, and a cpu with 16GB memory. We used no GPU. On average a process step
took a on average 4.2s per increment, whil, without semantic segmentation (only the construction of
the map), the process took on average 0.4s per increment.

5 Conclusion

In this work, we propose a framework which incrementally constructs a 3D map using captured
depth images of a scene and semantically segments it directly at each increment. In contrast to
previous incremental semantic segmentation approaches which are view-based, the main benefit
of our map-based method is that the classifier is capable of leveraging accumulated information
stored in the incrementally constructed dense map. Moreover, in contrast to view-based methods, to
minimize process time, semantic segmentation can be performed periodically – instead of at each
increment – while leveraging the same amount of accumulated information.

Our framework achieved promising IoU and F1 scores. The main modifications to the framework we
would like to investigate in future works consist of the incorporation of RGB information for clas-
sification, updating the amount of geometric information inputted into the classifier when inferring
the labels of a given voxel block, and finally, we would like to update the loss function. RGB images
can be fused into the dense map analogously to the depth images, and can be leveraged equivalently
to the depth values passed through the network. Experimental results (Sec. 4.2.2) suggest that the
lack neighboring information near the boundaries of voxel blocks lead to lower segmentation accu-
racies. To combat this, we plan to not only pass the voxel blocks which are being segmented though
the classifier through the network, but also information from neighboring blocks. The NN would
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need to be updated accordingly. In the work by Li et al. [3], a loss function was proposed which
is weighted based on local geometry. The researchers found that this loss function lead to higher
accuracies when testing on benchmark datasets. Applying this loss function for our training scheme
is also planned.
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