
MEAM 520 - Cynthia Sung Suveer Garg, Vera Lee, Zador Pataki, Ayaaz Versi

Final Project Report Section 001

Due: 14 December, 2020

This report can be shared with the MEAM 520 Fall 2020 class.

1 Methods

1.1 Controller

1.1.1 Controller Overview

To control the robot for the duration of a competition round we decoupled the problem into three sub tasks,

each of which are called in a main controller file. The goal of the first sub-task is to determine which

block should be picked next. Using methods outlined in Subsections 1.2.1 and 1.3.1, we calculate the

ideal dynamic and ideal static block that should be picked next. If there is an ideal dynamic block to be

picked, then the robot will go for the dynamic block; otherwise, it will go for the ideal static block. The

second sub-task involves approaching and gripping the block to be picked, with the methods outlined in

Subsections 1.3.2-1.3.3 for the dynamic blocks and Subsections 1.2.2-1.2.3 for the static blocks. In the final

sub-task, if the robot successfully picked up a block, the robot is commanded to the goal platform and the

block is stacked according to the method in Subsection 1.4. These sub-tasks are repeated until there are no

more blocks that can be feasibly picked.

1.1.2 Moving Between Configurations and Handling Errors

To move between various configurations, we tune the manner in which the robot is commanded to move

on a case-by-case basis. In cases where the robot can move quickly and collisions are not a concern, we

call the function lynx.command() to directly update the setpoint of the PID controller for each joint,

using an appropriate sleep timer. These cases include moving to the dynamic, static and goal platforms,

when there are no obstacles in the way, and moving during the gripping and extraction of the blocks on

the dynamic platform; when handling dynamic blocks, it is crucial that the approach of the robot is fast

(see Section 1.3.2). In cases where we are worried about collisions, we use a function which interpolates

between current state and goal state and commands the robot to move along all waypoints with appropriate

sleep timers. By setting a larger number of waypoints, the robot moves slower and more accurately. These

cases include grabbing the static blocks, where we are worried about knocking them off the static platform,

and the stacking of all blocks, where we aim to avoid knocking over the stack.



We encoded a safety mechanism in the controller to rapidly correct our robot in cases when it fails to pick up

blocks. In the controller, each function for each sub-task is called independently, and returns a boolean based

on whether or not the corresponding task was completed successfully. In the cases where the boolean returns

false, the robot restarts the process starting from the decision of which block to pick. This is especially useful

when a dynamic block moves out of our robot’s reach or is removed by the other team. In such cases, the

algorithm immediately reevaluates which block is most optimal to pick up.

1.2 Static Blocks

1.2.1 Deciding Which Static Block to Pick

First, the algorithm isolates all remaining cubes on the static platforms based on their [x,y,z] coordinates and

transforms their poses into the robot frame by multiplying by the following homogeneous transformation

matrices depending on the robot color:

Trobot, blue
0 =


−1 0 0 200

0 −1 0 200

0 0 1 0

0 0 0 1

 or Trobot, red
0 =


1 0 0 200

0 1 0 200

0 0 1 0

0 0 0 1

 .

We identified the ideal picking condition for each block to be one where the end-effector picks up the block

from the top - in this picking condition, the actuation of joint 5 of the robot allows the gripper to match the

orientation of the block exactly. For each of the static blocks remaining on the static platforms, we calculate

the homogeneous transformation matrix from the end-effector frame to the robot’s base frame where the end-

effector would be positioned directly above the cube in consideration, with the gripper orientation matching

the cube orientation exactly. This was done by setting the z-axis of the end-effector to be in the -z direction

of the robot frame, and setting the y-axis to be equal to one of the axes of the block. The x-axis of the

end-effector is then defined as the cross product of the latter two axes. The end-effector position is set to be

equal to the [x,y,z] position of the block, and the z position is increased by 40 mm to be above the block.

Since the orientation of the x and y axes of the end-effector as described above is not necessarily feasible,

we use inverse kinematics and check each consecutive 90 degree rotation about joint 5 for feasibility in

configuration.

The decision for which static block to pick first is dependent on the orientation of the +z-axis of the cube

and the current stack height on the goal platform. If there are no blocks on the static platform, the ideal

block to pick is one where its +z-axis (white face) is aligned with the +z direction in the robot frame, as the

robot can stack the block vertically, with its end-effector z-axis pointing downwards. However, if there is

at least one block in the goal platform stack, this orientation for stacking becomes infeasible, and the next

ideal block to be picked is one where the +z axis of the block (the block’s white face) can be oriented in the

Suveer Garg, Vera Lee, Zador Pataki, Ayaaz Versi 2 MEAM 520 Final Project Report



same direction as the +y axis of the gripper. This allows the robot to later stack the block with the white

side facing up, as outlined in Section 1.4. If no remaining static blocks meet this requirement, then the next

most ideal block to be picked is one where the +z axis of the block faces the -y axis of the gripper. Although

we would not be able to obtain the side bonus from this gripping position, it still ensures that the robot is

safely able to stack the block; since the x-axis of the end-effector corresponds to the location of the gripper

fingers, it is ideal to have the +z-axis of the block in the same direction as the y-axis of the end-effector so

as to avoid the gripper fingers from knocking over the stacked blocks during stacking.

If the [x,y] coordinate of the block is outside the reachable workspace of the robot’s wrist, then we are unable

to pick up the block from the top, and our robot will pick it up from the side according to Section 1.2.3.

However, we found this condition to be rare in most random block placements, so we did not optimize the

function to grip blocks from the side; our robot will only pick these blocks up if no other reachable blocks

remain on the platforms.

1.2.2 Approaching and Gripping Static Blocks from the Top

As outlined in Section 1.2.1, to pick a static block the robot will first move to a configuration that places

the end-effector 40 mm above the block with the x and y axes matching the orientation of the block. Once

the robot reaches this configuration, we lower the gripper down to the block using methods outlined in

Section 1.1.2, then set joint 6 to -5 mm, which we experimentally found to be ideal for consistently gripping

the block without dropping it. The robot then returns to its initial position 40 mm above the static platform,

and we call lynx.get_object_state() to check that the static cube was successfully picked up based on its

z-position coordinate. If the static block was successfully picked, then it is stacked according to methods

outlined in Section 1.4.

1.2.3 Approaching and Gripping Static Blocks from the Side

Our algorithm first checks all the blocks that cannot be gripped from the top to determine if any of the blocks

have their +z-axis aligned with the +z-direction in the world frame - this is the ideal block to pick, since

it would allow the robot to stack the block with the white side facing up. Otherwise, it loops through the

[x,y,z] position of each block and identifies the closest block in distance from the base of the robot as the

block to pick next. We define the normalized vector from the base of the robot to the center of the block as

the appropriate direction for the z-axis of the end-effector, set the y-axis of the end-effector facing the +z-

direction in the world frame, and calculate the x-axis as the cross product of the two axes. Inverse kinematics

for the resulting homogeneous transformation matrix is used to calculate the desired configuration for the

robot.

Suveer Garg, Vera Lee, Zador Pataki, Ayaaz Versi 3 MEAM 520 Final Project Report



1.3 Dynamic Blocks

1.3.1 Deciding Which Dynamic Block to Pick

The dynamic blocks periodically enter and exit domains in which the end-effector can reach the blocks

with a feasible orientation. To tackle this problem, we first had to decide the optimal block orientation for

picking, as depending on the orientation, the feasible picking domains were limited differently. As time is a

crucial factor, we decided to pick all blocks from the top with the z-axis of the end-effector pointing down.

Compared to picking up blocks from the side, our method allows for greater freedom in orientation and does

not require much waiting time for blocks to enter feasible domains.

While we experimented with several different methods for choosing the ideal dynamic block (Section 3),

our ultimate strategy was to split the dynamic table into ranked domains based on feasibility of picking, and

make decisions based on where each block is on the table.

We defined three domains on the dynamic platform: D1, D2 and D3 s.t.:

D1 � D2 � DS � D3,

where DS is the domain on the static table. In this case, if block b1 ∈ D1 and b2 ∈ D2 the robot would

choose b1 as the ideal dynamic block. The final decision criterion is that if the ideal block is in Di with

i ∈ {1, 2, 3}, then pick the block in Di closest to the center of the dynamic table.

Figure 1: Decision domains for picking dynamic blocks

We defined that domains as follows:

D1 : DD ∧ (θ ∈ [θlb1, θub1] ∨ r ∈ [0, rmax]) ,

D2 : DD ∧ θ ∈ [θlb2, θub1],

Suveer Garg, Vera Lee, Zador Pataki, Ayaaz Versi 4 MEAM 520 Final Project Report



and

D3 : DD\{D1, D2},

where DD is the domain of the entire dynamic table, θ is the angle of the center of the block relative to the

world frame, θlb and θub define the upper and lower angle bounds for each domain, and r is the distance

of the cube from the center of the dynamic table. These domains are also presented in Figure 1.The set of

parameters {θlb1, θub1, θlb2, rmax} were optimally tuned through experimentation in Gazebo.

1.3.2 Approaching the Dynamic Blocks

Once the decision strategy (Subsection 1.3.1) was selected, the next task of the robot is to approach the

block from any arbitrary starting position in a manner from which the block can be accurately gripped.

We observed through testing that if we try to approach a block from a starting configuration that is too

low, the robot arm will often collide with blocks in its path fashion. To avoid this issue, each time the

decision algorithm decides on picking a specific dynamic block, we force it to go to the configuration

q = [1, 0, 0, 0, 0, 15], which puts the end-effector right above the dynamic table.

Next, we repeatedly check if the selected cube has a pose which allows the end-effector to point down-

wards with the gripper axes aligned with the block orientation. If the cube is in such a pose, then the robot

approaches it through two way-points: first, the robot is placed directly above the block with its grippers

matching the orientation of the block. This forces the end-effector to reach the correct pose before coming

into contact with the block. Once the L2-norm of the difference between the current and desired configura-

tion is small, the robot moves to the next waypoint, where the gripper drops down towards the block.

The greatest challenge comes from the fact that the waypoints mentioned above are continuously changing

over time, since the blocks on the dynamic table are moving. We accounted for this by continuously applying

the inverse kinematics function to see if the robot can reach any position that allows the robot to pick up the

block. If the robot cannot reach any of the desired poses to pick up a block, the algorithm exits the dynamic

block picking condition.

When applying the previously defined strategy, we noticed that the robot lagged behind the block and (with

the exception of the dynamic block positioned near the center of the table) was never able to reach the

final desired poses. We theorized that this is a result of the lag from constant calculation of the inverse

kinematics of the desired pose throughout the approach process. To address this issue, instead of targeting

the desired gripping pose at the current state of the dynamic blocks, we targeted the pose of the end-effector

corresponding to the pose that the block will be in in a specific amount of time. We introduced a turntable

hyperparameter tfuture which specifies this time. As a function of this time we predict the desired pose of

Suveer Garg, Vera Lee, Zador Pataki, Ayaaz Versi 5 MEAM 520 Final Project Report



the end-effector of the robot as follows:

Tfuture =

[
Rfuture pfuture

0 1

]
,

where

Rfuture =


cos(∆θ) − sin(∆θ) 0

sin(∆θ) cos(∆θ) 0

0 0 1

 · Rcurrent and pfuture =


xfuture

yfuture

zcurrent

 .

Here, ωz is the angular velocity of the block, ∆θ = ωz · tfuture, xfuture = r cos(θcurrent + ∆θ) and yfuture =

r sin(θcurrent + ∆θ). θcurrent and r describe the polar coordinates of the center of the block relative to the

world frame, and the current values are values extracted from Tcurrent, the current pose of the block.

1.3.3 Gripping the Dynamic Blocks

Once the end-effector of the robot is in position for gripping (Subsection 1.3.2), the robot must grip the

dynamic block and quickly move away from the dynamic table to avoid collision with the table, other

blocks, and the opponent robot. To grip the block, we set the final joint to a value of -5. We then command

the robot to raise the end-effector vertically by 30 mm to quickly exit the dynamic table location. We then

check if gripping was successful by checking whether or not the targeted block has reached a certain height

above the table. If successful, the robot moves to stack the block (Subsection 1.4), otherwise the robot

re-calculates the next block to pick (Subsection 1.1.2).

1.4 Stacking

Our strategy for stacking was to place the block as close to the center of the goal platform as possible and

to create only a single stack. The first step for stacking is isolating all blocks that are already on the goal

platform using their [x, y, z] coordinates and calculating the height of the stack as the z-position of the

highest block + 10 mm. If there are no blocks on the goal platform, then the center of the stack is defined

as the center of the goal platform. Otherwise, the center of the stack is defined as the center of the block

at the bottom of the stack. The primary orientation for stacking is one where the y-axis of the end-effector

points in the positive z-direction in the robot frame and the z-axis of the end-effector is pointing towards

the center of the stack. The orientation of the x-axis is then calculated as the cross product between these

two axes. With this end-effector orientation, we first command the gripper to be located 5 mm above the

stack, then descend to 0.5 mm above the stack using methods outlined in Section 1.1.2 before opening the

grippers. The robot then safely exits the stack area by subtracting 0.4 radians from the joint 2 state without

changing any other joint, ensuring that the robot does not knock over the stack during movement.

Suveer Garg, Vera Lee, Zador Pataki, Ayaaz Versi 6 MEAM 520 Final Project Report



Test Time (s) Score Stack Height Stat. Blocks Dynam. Blocks Failed Picks

1 28.33± 2.35 19± 4.32 73.33± 9.42 3.67± 0.47 N/A 0.33± 0.47

2 37.67± 2.05 82± 13.49 93.33± 9.42 N/A 4.67± 0.47 0.66± 0.47

3 80± 7.11 144.33± 6.66 166.67± 11.55 3.33± 0.58 5.00± 0.00 1.00± 1.00

4 60± 0 61± 21.52 106.67± 41.63 3.00± 1.73 3.33± 0.58 0.67± 0.58

Table 1: Summary of average simulation time to complete task, total score, stack height, number of static

blocks on goal platform, number of dynamic blocks on goal platform, and number of unsuccessful picks

(where the gripper attempts and fails to pick a block) over 3 trials for each test condition, with block ran-

domization between each trial. Test 1 evaluates our robot when only allowed to interact with static blocks,

Test 2 evaluates our robot when only allowed to interact with dynamic blocks, Test 3 evaluates our robot

without a time constraint or opponent, and Test 4 evaluates our robot in a 60-second timed scenario with an

opponent robot.

2 Evaluation

2.1 Test 1: Picking and Stacking Static Blocks

We tested our robot without the 60s time constraint and forced the decision function to pick static blocks

only. In each of the 3 trials, the robot was able to consistently pick up most of the blocks in less than 30

seconds. The only condition in which picking up all static blocks is not guaranteed is when a block lies

outside the reachable workspace of the wrist, where our robot would need to pick it up from the side. In

those conditions, the robot may push the block off of the static platform while approaching from the side.

These conditions are also the sources of unsuccessful static block picks. The side bonus is largely dependent

on the block randomization, since the robot does not intentionally rearrange any of the blocks.

2.2 Test 2: Picking and Stacking Dynamic Blocks

We tested our robot without the 60s time constraint and forced the decision function to pick dynamic blocks

only. In almost all trials, the robot was able to pick and stack all 5 dynamic blocks in less than 40 seconds;

in one of the trials, the gripper picked up a dynamic block on the diagonal, resulting in insufficient contact

between the gripper fingers and the block, and the block was dropped before reaching the goal platform.

Again, the side bonus is largely dependent on the block randomization.

2.3 Test 3: Untimed Trials without Opponent

We tested our robot without the 60s time constraint and evaluated our robot’s performance. In all three

trials, the robot picked up and stacked all 5 dynamic blocks and at least 3 static blocks. The inability to

pick up all 4 static blocks again stemmed from conditions where a static block’s position is out of the robot

Suveer Garg, Vera Lee, Zador Pataki, Ayaaz Versi 7 MEAM 520 Final Project Report



wrist’s reachable workspace. The stacking function worked well - in all trials, the robot successfully stacked

all blocks it picked up without knocking over the stack. However, the time it took for the robot to stack

all reachable blocks was an average of 80s, and thus it is infeasible for the robot to pick and score all 9

reachable blocks within the 60 second timed window.

2.4 Test 4: Timed Trials with Opponent (Competition Results)

During the competition, we played timed matches against opponents in three separate trials, and bested our

opponents score-wise in each trial. Even when opponents tried the dynamic block sweeping strategy, our

robot’s carefully tuned parameters allowed our robot to be quicker in picking dynamic blocks, which proved

to be key in ensuring our team’s victory during competition; in each trial, our robot was able to consistently

pick up at least 3 dynamic blocks. One key difference between this evaluation and the others is the presence

of the opponent robot - on several occasions, our robot grippers collided with our opponents’, which caused

several seconds of confusion in our controller function before our robot was able to continue picking blocks.

Interactions with the opponent robot also caused picking dynamic blocks to be less consistent, resulting in

imperfect stacking. In one such case, where our robot was able to pick all 9 reachable blocks, the imperfect

stacking caused the 9-block stack to topple, resulting in a lower score for that trial.

3 Analysis

Overall our controller is quite versatile, aided greatly by its quickness in moving between picking and

stacking configurations. The main controller decision function worked very well, ensuring that the robot

picked up feasible dynamic blocks quickly but switched to static blocks when more efficient. In competition

and during our untimed trials (Table 1), this allowed our robot to pick up most of the available blocks and

place them on the goal platform. The error-handling in the controller to check for successes at each sub-task

allowed for the robot to move efficiently as well, ensuring that no time is wasted if an intermediate sub-task

was not completed. Consistency and precision in stacking was key for our robot’s success in competition

- this allowed our robot generally to stack all picked blocks in a single stack on the goal platform, which

increased our scores dramatically. We built a solid controller that we are very proud of. Identified limitations

in our controller and future work to address these limitations are described below, and alternate strategies

we considered but did not implement are described in the Appendix.

3.1 Limitations and Future Work

3.1.1 Imperfect Stacking Position

Our stacking method was deterministic and not dynamic, so small imperfections in each block’s position on

the stack propagate upwards on the next block. Any imperfection in gripping location would cause slight

Suveer Garg, Vera Lee, Zador Pataki, Ayaaz Versi 8 MEAM 520 Final Project Report



errors in the stack since the stacking method assumes the block is fully within the gripper. This is especially

problematic because our controller aims to place all picked blocks in one stack, and thus imperfect stacks

lead to greater risks of toppling the stack. In future iterations, we would instead use a dynamic stack center

based on the center of the highest block to avoid cascades in imperfection that may result in the stack tipping

and a major loss in points.

In the future we would also like to work on an algorithm to determine when to start a second stack. We

would base this on the mean and standard deviation of the center of the current stack, where when the

standard deviation of the centers of each cube in the stack is greater than some parameter, a second stack is

created. We would also want to experiment with different re-stacking techniques; this would involve picking

the dynamic blocks and placing them at an intermediate position, before re-stacking them.

3.1.2 Orientation of Stacked Blocks

One major limitation of our current controller is the lack of control in orienting all blocks with the white

side facing up for the side bonus. Our side bonuses were largely dependent on the randomization of blocks,

where we would obtain the side bonus if the static blocks were oriented such that the gripper could pick

them up with the end-effector’s +y-axis facing the white side of the block.

In the future, we could add additional functionality to our controller emulating Team 8 to ensure we get the

orientation bonus on each block. This team used the wrist and static platform and a number of 90 degree

rotations of the blocks to re-orient the block with the white side up before placing the block on the stack. We

would also need to increase the speed of our controller, likely through using the lynx.command() function, to

allow ample time for picking, re-orienting, and stacking within the 60s time constraint. To ensure we secure

as many dynamic blocks as possible, we would likely first pick all dynamic blocks before re-orienting all

blocks. This would also give us the opportunity to place the static blocks on the goal platform first, after

orienting them, and then placing the dynamic blocks on top, so we can get the height multiplier on the more

valuable dynamic blocks, thereby increasing the impact of the height of our stack on our score.

3.1.3 Imperfect Dynamic Block Picking

Our method for picking dynamic blocks relies on predicting the future position and orientation of the block

based on its angular velocity. The method relies on a time parameter which is used to derive the future

position and orientation of the moving block. While we tuned this parameter experimentally to achieve the

best performance, the arm does not pick blocks perfectly due to slightly incorrect predictions of orientation

or poor grasping. This may lead to further downstream issues in stacking imperfectly picked blocks.

In future iterations, we would like to develop a method to predict the time parameter, based on the code

run-time time of the latest block state call; we would develop a method to predict the position of the block at

Suveer Garg, Vera Lee, Zador Pataki, Ayaaz Versi 9 MEAM 520 Final Project Report



the current time step based on its velocity and position at a previous time step and the time elapsed between

these time steps.

3.1.4 Unreachable Static Blocks

Our method for picking static blocks that are outside of the feasible picking domain of the robot wrist is

sub-optimal and often fails due to the need to pick these blocks from the side. We observed during testing

that when the robot aims to pick up such blocks from the side, it approaches the block from the top, causing

scooping motions rather than gripping motions, which often pushes the block off the static platform. In the

future, we could develop an algorithm that defines several waypoints for the robot to move through before

gripping the block to ensure it approaches from the side first. The first waypoint would likely align the z

position of the gripper with the center of the block, and the second waypoint would then be to move towards

the center of the block from this low position. By moving slowly between these two waypoint, we would

ensure that the robot approaches the block from a feasibly low position and does not knock the block off the

static platform.

3.1.5 Collision with Opponent Robots

During the competition, we observed that colliding with the opponent robot leads to a few seconds of lag

with the internal controller of the robot. For example, after colliding with the opponent during Round

Robin competitions, our robot performed maneuvers that were not programmed in our controller, going

to seemingly random configurations for several seconds before returning to picking and stacking blocks.

In the development of our controller we did not consider collision with the opponent robot at all - given

that the only overlap between the two robots’ reachable workspaces is within a small domain near the

dynamic platform, we attempted to avoid collisions by entering and exiting the dynamic platform domain

quickly. However, our performance during competitions indicated to us that further collision detection may

be beneficial to ensure consistent and efficient performance of the robot. In the future, we would develop

a strategy that would allow our robot to actively and dynamically avoid the other robot, perhaps by using

potential field planning to plan around the opponent robot.

4 Appendix: Alternative Methods for Dynamic Decision Strategies

Predicting time intervals in which gripping blocks are feasible

In developing our dynamic block decision strategy, we considered using prediction of two time values: the

time that a given block will spend in a feasible picking domain and the time it takes for a block to enter the

feasible picking domain. We had multiple approaches for predicting the times for each block and defining

feasible picking domains.

Suveer Garg, Vera Lee, Zador Pataki, Ayaaz Versi 10 MEAM 520 Final Project Report



In the first approach, for each block we interpolated waypoints representing the block’s pose around a

revolution on the dynamic platform. For each of these waypoints, we used inverse kinematics to determine

if the pose is feasible. Once each waypoint for each block is labeled, we could deduce the feasible picking

domains of each block through the patterns of the way-points labelled feasible and infeasible. This method

is very computationally expensive, as it requires re-calculating feasibility domains for each block at each

decision stage.

In the second and third approaches, we wanted to limit the computational requirements. Instead of defining

the feasibility domains for individual blocks, we defined global feasibility domains as function of θ and r.

We calculated the upper limit of the domain in which the end-effector of the robot could reach a cube with

its axis aligned with the negative z axis. Naturally, the lower limit of the domain is that of the table and so

we defined the feasible picking domain as follows:

FD :
√

x2 + y2 < 100∧
√
(x− 200)2 + (y− 200)2 + z2

block < 331.25,

where the former inequality defines the bound set by the dimensions of the table and the latter inequality

defines the limits set by the dexterity of the robot, and zblock is the height of the top of the blocks on the

dynamic platform with respect to the base frame. Note that the bound of the latter inequality was calculated

as follows: L2 · sin(1.4) + L3 = 331.25, where L2 and L3 are the applicable link lengths and 1.4 is the

upper joint limit of θ2.

The biggest issue with how FD is defined is that while the former inequality can easily be defined in our

desired parametric form (
√

x2 + y2 = r), the latter inequality cannot be. Our first approach to tackle this

hurdle was to approximate the lower limit of the of the inequality using an equation of the following form:

r(θ) = a + bθ + cθ2 + dθ3,

where the coefficients were left to be defined. The approach we was to simply apply a gradient descent

algorithm to minimize the following loss function:

L =

(√
(r(θ) · cos(θ)− 200)2 + (r(θ) · sin(θ)− 200)2 + z2

block − 331.25
)2

across a range of points. We defined these through interpolating between the upper and lower limits of

θ; the limits of θ are defined through the intersection between the limits of the two inequalities in FD.

The downside of this approach is that to calculate the time in and until this approximated feasible picking

domain, we would have to solve for θ from r(θ).

Our final approach was to combine the aforementioned approach with the initial approach. As before, we

interpolate the way-points of each block. However, we now assign only the positions of these blocks to these

way-points (as opposed to assigning their poses as well), and simply check whether or not these way-points

Suveer Garg, Vera Lee, Zador Pataki, Ayaaz Versi 11 MEAM 520 Final Project Report



are elements of FD and proceed accordingly. The benefit of this method is that it is easier to debug and it

is computationally far more feasible than the first approach. We thus theorized that this approach would be

feasible to apply at every single decision stage.

Once the feasibility domains were defined we applied the following equation to predict the desired times:

tin feasibility =
θub − θ(0)

ωz
,

ttill feasibility = 0, if θ(0) > θub

and

ttill feasibility =
θlb − θ(0)

ωz
, if θ(0) < θub,

where θub and θlb are the (location) angles of the upper and lower bounds respectively, as defined earlier.

θ(0) is the initial (location) angle of a block and tin feasibility and ttill feasibility are the times that a block

will spend in the feasible picking domain and that the block needs to reach the feasible picking domain

respectively, in the current cycle of the dynamic table.

Limitations of these methods

The first approach is limited by its computational complexity and was infeasible for a real-time planner. We

spent some effort on optimizing for speed, but realized we needed a simpler strategy. Our second and third

approaches calculated feasibility domains based on the reachable workspace of the wrist center. The first

approach is sub-optimal in that in each decision stage we would have to solve for θ from r(θ) and we did not

immediately find a function that does this for us automatically. While the second method ran in real-time,

we noticed that the arm usually failed on the edges of the feasibility domain. We reasoned that this was

due to low maneuverability near joint limits. Ultimately, we decided not to use these strategy of predicting

the required times as we realized that making the decision process time-based is far less intuitive than our

position-based approach (Section 1.3.1).

Suveer Garg, Vera Lee, Zador Pataki, Ayaaz Versi 12 MEAM 520 Final Project Report


