
CSElab
Computational Science and Engineering Laboratory

Physics Informed Neural Networks
for Identification and Forecasting of

Chaotic Dynamics

Bachelor Thesis

Zador Pataki

Summer 2020

Supervisors: Prof. Dr. Petros Koumoutsakos
Pantelis Vlachas

Computational Science and Engineering Laboratory, ETH Zürich

“I hereby declare that I am the author of the written work at hand, which is
original and written in my own words. Exceptional content is explicitly cited

as such and listed in the Bibliography.”

Abstract

In this work we investigate the ability of physics informed neural networks
— data-driven neural networks which incorporate laws of physics generally in
the form of partial differential equations — to infer the solutions of and to
identify a number of nonlinear partial differential equations. In particular, in
both continuous- and discrete-time cases, we solve problems of inference and
identification of partial differential equations with different levels of complex-
ity that exhibit distinct ranges of nonlinear phenomena. A relatively simple
physics informed neural network framework was created that can be easily
adjusted and applied to solve any of the mentioned problems concerning dif-
ferent partial differential equations. Highlighting its data efficiency and ro-
bustness, the framework was effectively applied to solve problems of inference
and identification of second order partial differential equations; the Burgers
and the Nonlinear Schrodinger equation. On the other hand when handling
the Kuramoto-Sivashinsky equation, a fourth order partial differential equa-
tion known for its chaotic dynamic behaviour, the adjusted framework was
found not to be as accurate as traditional numerical methods.

i

Contents

Contents ii

List of Figures iii

List of Tables iv

1 Introduction 1

2 Methods 3
2.1 Case specific methods in continuous-time 5

2.1.1 Continuous-time inference methods 5
2.1.2 Continuous-time identification methods 7

2.2 Case specific methods in discrete-time 10
2.2.1 Discrete-time inference methods 10
2.2.2 Discrete-time identification methods 11

3 Execution of the Experiments and Results 14
3.1 Results of examples in continuous-time 14

3.1.1 Continuous-time inference results 14
3.1.2 Continuous-time identification results 18

3.2 Results of examples in discrete-time 22
3.2.1 Discrete-time inference results 22
3.2.2 Discrete-time identification results 24

4 Conclusion 28

5 Appendix 30

Bibliography 34

ii

List of Figures

3.1 Solution of the Burgers Equation 15
3.2 Predictions of the Continuous-time Burgers Equation Inference

Problem . 16
3.3 Solution of the Nonlinear Schrodinger Equation 17
3.4 Predictions of the Continuous-time Nonlinear Schrodinger

Equation Inference Problem 18
3.5 Predictions of the Continuous-time Burgers Equation

Identification Problem 20
3.6 Solution of the Continuous-time Kuramoto-Sivashinsky

Equation . 21
3.7 Predictions of the Continuous-time Kuramoto-Sivashinsky

Equation Identification Problem 23
3.8 Predictions of the Discrete-time Burgers Equation Inference

Problem . 24
3.9 Predictions of the Discrete-time Burgers Equation Identification

Problem . 26
3.10 Predictions of the Discrete-time Kuramoto-Sivashinsky Equation

Identification Problem 27

5.1 Solution of the Kuramoto-Sivashinsky Equation 32
5.2 Predictions of the Discrete-time Kuramoto-Sivashinsky Equation

Identification Problem 33

iii

List of Tables

5.1 Predictions of the individual experiments of the Kuramoto-
Sivashinsky continuous-time identification problem 31

5.2 Errors of the individual experiments of the Kuramoto-
Sivashinsky continuous-time identification problem 31

iv

Chapter 1

Introduction

In the field of machine learning, neural networks (NNS) — conventionally
driven by empirical data — have become a popular tool applied across many
domains, including in science. In scientific domains, however, incorporating
constraints other than that of empirical data (e.g. conservation laws) has
proven to be an effective method, as it makes it possible to generate relatively
accurate solutions even in cases of limited data [1], which would otherwise
present many difficulties; a particularly interesting feature due to the fact
that data is often hard to acquire. Deep NNs (DNNs) have been introduced
as a method which incorporates multiple NN layers between the input and
output layers. They have been found to produce results which have, in some
cases, surpassed human expert performances [2,3], and recently have also been
used to explore the scientific domain in machine learning.

Physics informed NNs (PINNs) are NNs which to some degree incorporate
laws of physics generally in the form of partial differential equations (PDEs),
and have existed as a method in machine learning for over two decades [4].
Recently, however, with the availability of automatic differentiation in machine
learning libraries simplifying their application, PINNs have attracted a new
wave of interest inspiring further research. They have been used in a range
of applications, such as for discovering general physical concepts [5,6] and for
predicting [7,8] and extracting quantitative information of fluid flows [9] using
experimental data. Beyond the pursuit of applications, researchers have also
developed new approaches to further explore PINNs, such as the quantification
of uncertainty in PINNs by employing arbitrary polynomial chaos [10], or
physics informed model developments with no experimental data provided at
all [11].

In a paper by Zhang et al. [12], a summary of the most significant advantages
of PINN applications were presented, where the authors discuss PINNs incor-
porating DNNs. One key feature of such PINNs that the authors highlighted
is that with the use of PINNs "we can truly predict the state of the system,
unlike the DNNs driven solely by data that can interpolate accurately only

1

Chapter 1. Introduction 2

within the training domain." In this work, we try to explore such features
of PINNs in a number of examples incorporating various PDEs occurring in
physics.

We implement PINNs incorporating DNNs in two main problems: (i) a prob-
lem of inference, where we have full knowledge of the PDEs in question, and
using only initial and boundary information we attempt to predict the cor-
responding solutions; (ii) a problem of identification, where only the general
form of the PDEs are known and the goal is to predict the unknown coefficients
using data of the PDEs’ solution provided across the entire spatio-temporal
domains. For each of the two problems two different algorithms are presented:
firstly each problem is treated in continuous-time and secondly in discrete-
time resulting in four different algorithms, which can be easily modified to be
applied to different PDEs.

By enforcing the physical concepts behind PDEs in loss functions, I wanted
to develop algorithms to solve the problems mentioned earlier applied to the
Burgers equation — according to a work by Raissi et al. [6] — and then
adjust these algorithms to apply them to more complex examples of the Non-
linear Schrodinger equation and the Kuramoto-Sivashinsky equation. The
Kuramoto-Sivashinsky equation stands out among the other PDEs treated
in this paper, both for its higher level of complexity and for its chaotic dy-
namic behaviour. Such behaviours are present in natural systems, as noted
by Vlachas et al. [13] and have hindered the forecasting and the understand-
ing of such systems. However, with recent developments in machine learning,
researchers have taken steps to overcome these obstacles.

The Kuramoto-Sivashinsky equation is a prototypical dynamical system devel-
oped by Yoshiki Kuramoto and Gregory Sivashinsky to model diffusive insta-
bilities in a laminar flame front. Raissi et al. solved an identification problem
of the Kuramoto-Sivashinsky equation in discrete-time with a high level of
accuracy, relying on Gaussian processes [1]. To our knowledge, however, such
problems of the Kuramoto-Sivashinsky equation are yet to be solved using
PINNs and so this work aims to investigate the effectiveness of PINNs when
applied to PDEs with chaotic dynamics.

Chapter 2

Methods

In this work, 1D nonlinear PDEs were considered of the general form

ut +N [u; λ] = 0, x ∈ Ω, t ∈ [0, T], (2.1)

where ut denotes the time derivative of u(t, x), which denotes the solution
of a given PDE, N [·; λ] is a non-linear operator parametrized by λ, and Ω
is a subset of RD [6]. Two main problems were considered, where the goal
of the first problem (inference) was to find the solution u(t, x) given initial
and boundary information and the coefficients λ, while the goal of the second
problem (identification) was to find the coefficients λ given some information
on the PDE solution u(t, x).

As opposed to conventional problems solved with NNs, the above mentioned
problems were solved using minimal amounts of data. PINNs were trained
to both fit the data provided and to model the inherent characteristics of the
PDEs, where, for the latter, no additional data was required. The architec-
tures of the PINNs treated in this paper consist of a DNN predicting solutions
of the PDEs and the calculation of the partial derivatives of the predictions
which are then incorporated in physics informing functions introduced below.
Depending on the particular problem, the output of the PINNs includes the
predictions of the solutions of the PDEs, its partial derivatives and further-
more the physics informing function. The training scheme of these PINNs
greatly depends on enforcing both the target solutions and the physical infor-
mation of the PDEs in a loss function.

In the continuous-time cases, the problems were tackled by creating physics
informing functions f(t, x) for each PDE of the general form:

f(t, x) = ut +N [u; λ] . (2.2)

The reader should note that the function above is equal to the left hand side
of PDE (2.1), and therefore in a circular way, the model begins to learn the

3

Chapter 2. Methods 4

characteristics of the PDEs at hand as f(t, x) converges towards zero. In the
case of discrete-time methods, on the other hand, only a pair of time-steps
were considered. By applying a general form of Runge-Kutta methods with
q stages to the general equation (2.1), the solutions at two time-steps n and
n+ 1 were related in the following manner:

un+ci = un −∆t
q∑

j=1
aijN

[
un+cj ;λ

]
, i ∈ {1, ..., q},

un+1 = un −∆t
q∑

j=1
bjN

[
un+cj ;λ

]
,

(2.3)

where un and un+1 are the solutions to the PDE at time-steps n and n + 1
respectively, while {aij , bj , cj} are elements of the Butcher’s Tableau used to
specify the corresponding Runge-Kutta method. As opposed to the continuous-
time case, where the physics informing function (2.2) encapsulates the PDE
characteristics of the entire spatial and temporal domain, in the discrete case,
we define the physics informing function as:

f(n, cj) = −N
[
un+cj ;λ

]
, (2.4)

providing only enough information of the PDE to relate the solutions un and
un+1, i.e. to make the time step comparison possible.

For building the PINN framework applied to the Burgers equation (see chap-
ter 1), the L-BFGS optimizer was used to optimize over the case specific loss
functions. The mentioned optimizer is a full-batch gradient based optimiza-
tion algorithm, which Raissi et al. [6] claimed was more appropriate when
treating cases with smaller data-sets as opposed to otherwise more computa-
tionally efficient mini-batch settings which can readily employ modern variants
of the stochastic gradient descent. Solving the inference and the identification
problems requires different methods depending on whether the continuous-
time or the discrete-time cases are considered, and so it is worth discussing
the methods used for each of the four combinations of inference/identifica-
tion problems and continuous-/discrete-time cases individually although all
methods have similar approaches.

Chapter 2. Methods 5

2.1 Case specific methods in continuous-time

2.1.1 Continuous-time inference methods

In the case of continuous-time inference, the loss function of the training
scheme incorporates the error relating to initial data, boundary conditions
and that of the PDE underlying the physics informing function (2.2). In the
case of inference, the reader should note, the PDEs in question are known and
so the coefficients λ of the just now mentioned function are known constants.
In the following examples, the continuous-time methods for solving both the
Burgers equation and the Nonlinear Schrodinger equation will be presented
in detail.

Continuous-time inference of the Burgers equation

The Burgers equation is a fundamental PDE, with its 1D case being of the form
(2.1). The reader will note that the Burgers equation is an example used in all
combinations of continuous-/discrete-time cases and inference/identification
problems in this paper. Due to the fact that it is a notably easier equation
to apply in comparison to the other differential equations presented, PINN
frameworks were first created to solve the above mentioned problems and
were later adjusted and applied to the Nonlinear Schrodinger equation and
the Kuramoto-Sivashinsky equation.

The Burgers equation along with Dirichlet boundary conditions read as follow:

ut + uux − (0.01/π)uxx = 0, x ∈ [−1, 1], t ∈ [0, 1],
u(0, x) = − sin(πx),
u(t,−1) = u(t, 1) = 0,

(2.5)

such that the corresponding physics informing function can be extracted:

f = ut + uux − (0.01/π)uxx. (2.6)

The following equation is the loss function, which the L-BFGS optimizer at-
tempts to minimize and thereby trains the DNN model in this example. It
is a linear combination of mean squared errors (MSEs) relating to the initial
and boundary conditions presented in (2.5) and the physics informing function
(2.6):

L = MSE0 +MSEb +MSEf (2.7)

Chapter 2. Methods 6

where

MSE0 = 1
N0

N0∑
i=1
|u
(
ti0, x

i
0

)
− ui

0|2

MSEb = 1
Nb

Nb∑
i=1

(
|ui
(
tib,−1

)
|2 + |ui

(
tib, 1

)
|2
)

MSEf = 1
Nf

Nf∑
i=1
|f
(
tif , x

i
f

)
|2.

Here, {xi
0, u

i
0}

N0
i=1 denotes the initial data, {tib}

Nb
i=1 corresponds to the points

on the boundary, and {tif , xi
f}

Nf

i=1 represents the points on f(t, x) [6].

The above function illustrates that there is a multiplicity of domains at which
the predictions of the PDE solutions are required in order to calculate the total
loss. Hence, in a single training step different data-sets need to pass through
the PINN. For this example the PINN architecture was constructed such that
it takes two-dimensional inputs (one spatial and one temporal dimension) and
provides two one-dimensional outputs. The first being the prediction u(t, x)
and the second being the prediction f(t, x), where the latter was calculated
through calculating the corresponding partial derivatives using an automatic
differentiation function. The required network outputs used in (2.7) were
generated in this manner by passing boundary data from both boundaries,
initial data and data across the entire spatio-temporal domain individually.
Similar approaches were taken for all other examples in this paper.

Continuous-time inference of the Nonlinear Schrodinger equation

The Nonlinear Schrodinger equation is a nonlinear version of the Schrodinger
equation in theoretical physics. It stands out from the other equations dis-
cussed in this paper in that its solution is complex and, therefore, two-dimensional.

The 1D Nonlinear Schrodinger Equation along with periodic boundary condi-
tions reads as

iht + 0.5hxx + |h|2h = 0, x ∈ [−5, 5], t ∈ [0, π/2],
h(0, x) = 2 sech(x),
h(t,−5) = h(t, 5)
hx(t,−5) = hx(t, 5),

(2.8)

where h(t, x) = u(t, x)+iv(t, x) is the complex valued solution, which is treated
in the two-dimensional form h(t, x) = [u(t, x) v(t, x)]. Analog to the previous
example the resulting physics informing function reads as

Chapter 2. Methods 7

f = iht + 0.5hxx + |h|2h, (2.9)

or more specifically in the forms it was applied:

fu = ut + 0.5vxx + (u2 + v2)v
fv = vt − 0.5vxx − (u2 + v2)u

and based on the initial and boundary conditions presented in (2.8) the loss
function was constructed as the linear combination of the corresponding MSEs:

L = MSE0 +MSEb +MSEb,x +MSEf (2.10)

where

MSE0 = 1
N0

N0∑
i=1

(
|u
(
ti0, x

i
0

)
− ui

0|2 + |v
(
ti0, x

i
0

)
− vi

0|2
)
,

MSEb = 1
Nb

Nb∑
i=1

(
|ui
(
tib,−1

)
− ui

(
tib, 1

)
|2 + |vi

(
tib,−1

)
− vi

(
tib, 1

)
|2
)
,

MSEb,x = 1
Nb

Nb∑
i=1

(
|ui

x

(
tib,−1

)
− ui

x

(
tib, 1

)
|2 + |vi

x

(
tib,−1

)
− vi

x

(
tib, 1

)
|2
)
,

MSEf = 1
Nf

Nf∑
i=1

(
|fu

(
tif , x

i
f

)
|2 + |fv

(
tif , x

i
f

)
|2
)
.

As opposed to the example of Burgers equation, due to the higher level of
complexity of the PDE and the more demanding boundary conditions (bound-
ary conditions depend not only on outputs h but also on hx), instead of two
one-dimensional outputs, each forward propagation of the PINN was set up
to generate three two-dimensional outputs: [u(t, x) v(t, x)], [ux(t, x) vx(t, x)]
and [fu(t, x) fv(t, x)]. Analogously to the example of the Burgers equation,
however, four sets of data needed to be passed individually through the PINN
in order to generate the required outputs of (2.10).

2.1.2 Continuous-time identification methods

In contrast to the case of inference, in continuous-time identification, the loss
functions incorporate the MSEs relating to target-data spread across the entire
spatio-temporal domain and that of the physics informing function (2.2). The
former relates to the solution of PDE at hand — treated as being only partially
known — while the latter includes the corresponding unknown coefficients λ

Chapter 2. Methods 8

as parameters. In the following examples, the continuous-time method for
identifying the parameters of the 1D Burgers equation and the 1D Kuramoto-
Sivashinsky equation are presented.

Continuous-time identification of the Burgers equation

The general form of the Burgers equation reads as

ut + λ1uux − λ2uxx = 0 (2.11)

where its unknown coefficients have been set as learnable parameters λ =
(λ1, λ2). By assigning these parameters as parameters of the PINN used to
train the model for this problem, the PDE coefficients are treated equivalently
to the parameters of the layers of the DNN, and, as a result, they can be
learned equivalently.

From equation (2.11) we can read out the physics informing function as before,
only that in this case it is parameterized as follows:

f = ut + λ1uux − λ2uxx (2.12)

The solutions of the unknown PDE was provided across the entire spatio-
temporal domain1 as opposed to in the cases of inference, and was used as
a target data-set to solve the problem. The training process consisted of
simultaneously trying to fit the model to the target data and also trying
to converge the physics informing function (2.12) to zero by modifying the
parameters λ. To tackle this problem, a relatively simple loss function was
created, summarizing what was mentioned above, which reads as:

L = MSEu +MSEf (2.13)

where

MSEu = 1
N

N∑
i=1
|u(tiu, xi

u)− ui|2

MSEf = 1
N

N∑
i=1
|f(tiu, xi

u)|2

In comparison to the training process of the inference problems, the applica-
tion of the above described method of PDE identification is relatively simple.

1The reader should note that we used the Burgers equation mentioned in section 2.1.1
in all examples involving the Burgers equation including in this one

Chapter 2. Methods 9

The outputs needed to calculate the loss (2.13) can be generated by passing
a single input-set spread across the entire spatio-temporal domain through
the PINN, which — like in the previous example of the Burgers equation —
takes a two-dimensional input, and outputs only two one-dimensional outputs;
the predictions u(t, x) and f(t, x). In other words, in a single training step,
only a single forward and backward propagation is required, suggesting faster
training speeds.

Continuous-time identification of the Kuramoto-Sivashinsky
equation

The Kuramoto-Sivashinsky equation is a fourth-order nonlinear PDE used
to model the diffusive instabilities in laminar flame front and is known for its
chaotic behaviour. In this identification problem we treated the 1D Kuramoto-
Sivashinsky Equation of the form

ut + uux + uxx + uxxxx = 0, (2.14)

where the coefficients of the PDE were set as unknown parameters λ =
(λ1, λ2, λ3, resulting in the following partially known PDE:

ut + λ1uux + λ2uxx + λ3uxxxx = 0, (2.15)

from which the physics informing function according to (2.2) results:

f(t, x) = ut + λ1uux + λ2uxx + λ3uxxxx. (2.16)

Target-data spread across the spatio-temporal domain was generated for an
example of the PDE (2.14) with periodic boundary conditions. The goal of
this example was to identify the mentioned unknown parameters. The method
for solving this problem is analogous in many ways to the previous example of
identification, including that the PINNs used are identical (except for the case
specific modifications of the physics informing function) and the optimization
occurs over the same loss function (2.13). However, since this example is of a
fourth-order PDE while the other examples mentioned are of second-order, the
higher complexity of the PDE solutions suggest lower accuracy in prediction.

It was found, in fact, that the same application was not capable of generating
representative identifications, and to study this behaviour, different optimiza-
tion methods were implemented. In the first stage, the DNN architecture was
modified by increasing the number of neurons in each layer, and the entire

Chapter 2. Methods 10

provided solution data-set of 6.4 · 104 points was used as target data, in or-
der to assist the training process as much as possible. Here the number of
neurons per layer were limited by the memory of the available GPU. Later
the L-BFGS optimizer was replaced with the Adam optimizer incorporating
a simple step-based learning rate scheduler, which we suspected would help
the model fit the target date. Finally, we combined both the Adam optimizer
and the L-BFGS optimizer, aiming to fine tune the model using the latter
optimizer after the fitting of the former optimizer was completed.

2.2 Case specific methods in discrete-time

2.2.1 Discrete-time inference methods

For the discrete-time cases, the approaches presented to solve the problems
are vastly different as was already implied earlier. In the case of discrete-time
inference, instead of predicting the solution of the PDEs in the entire spatio-
temporal domain, the goal instead is to predict the solution of the PDE in
question at some time-step n+ 1 given the solution at the previous time-step
n and given boundary conditions. Following the work of Raissi et al. [6], (2.3)
was rewritten individually for both the inference and the identification cases,
to make it applicable.

Discrete-time inference of the Burgers equation

For the case of discrete-time inference, (2.3) was rewritten and equivalently
re-expressed in the following form:

un = un
i , i ∈ {1, . . . , q},

un = un
q+1,

(2.17)

where
un

i := un+ci + ∆t
q∑

j=1
aijN [un+cj], i ∈ {1, . . . , q},

un
q+1 := un+1 + ∆t

q∑
j=1

bjN [un+cj].

For this example, the problem of (2.5) was treated again, where, based on the
general equation (2.4) the following physics informing function for the discrete
Burgers equation results:

Chapter 2. Methods 11

f(n, cj) = −N [un+cj] = −un+cju
n+cj
x + (0.01/π)un+cj

xx . (2.18)

Based on the above mentioned approach and by incorporating the relation-
ships defined in (2.18) and the boundary conditions defined in (2.5), the loss
function used to train the model was created as the linear combination of the
sum of squared errors (SSEs) and reads as

L = SSEn + SSEb (2.19)

where

SSEn =
q+1∑
j=1

Nn∑
i=1
|un

j (xn,i)− un,i|2,

SSEb =
q∑

i=1

(
|un+ci(−1)|2 + |un+ci(1)|2

)
+ |un+1(−1)|2 + |un+1(1)|2.

Here, {xn,i, un,i}Nn
i=1 corresponds to the data at time tn. The DNN in the

PINN takes the one-dimensional inputs xn,i and outputs the prediction of
the solution un+1 and all of the corresponding elements of the Runge-Kutta
scheme outputs un+ci . On top of this, by calculating the spatial derivatives
of the mentioned output and by implementing the physics informing function
(2.18), the PINN also outputs the solution un in a manner suggested by (2.3).
Building on this, the loss function, in words, enforces the boundary conditions
in SSEb of the predicted solutions un+1, and also relates the said outputs to
the inputs in SSEn hence (2.3).

Although less straight-forward, this approach is similar to the corresponding
case in continuous-time in that, in one training step, the PINN takes two sets
of inputs (on the boundary and across the spatial domain in this case), and
outputs two one-dimensional outputs. The first output being the prediction
of the DNN and the second being a physics informed prediction.

2.2.2 Discrete-time identification methods

The goal of discrete-time identification is identical to that of continuous-time
in that we search for the unknown coefficients of a PDE given the solutions
of the PDE, by setting them as parameters of the PINN. Similarly to the
previous case of discrete-time inference, we look only at two time steps n and
n+ 1 related by the Runge-Kutta Scheme and the physics informing function
(2.4).

Chapter 2. Methods 12

Discrete-time identification of the Burgers equation

Like in the corresponding case of inference, we rewrite and equivalently re-
express (2.3) as follows:

un = un
i , i ∈ {1, . . . , q},

un+1 = un+1
i , i ∈ {1, . . . , q},

(2.20)

where

un
i := un+ci + ∆t

q∑
j=i

aijN [un+cj ;λ] i ∈ {1, . . . , q},

un+1
i := un+ci + ∆t

q∑
j=i

(aij − bj)N [un+cj ;λ], i ∈ {1, . . . , q}.

In this example, the coefficients which are to be learned are from the Burgers
equation of the general form (2.11), from which, according to (2.2), we extract
the following physics informing function analogous to the previous example:

f(n, cj) = −N [un+cj ;λ] = −λ1u
n+cju

n+cj
x + λ2u

n+cj
xx . (2.21)

Based on the physics informed relationships in (2.20) and the physics inform-
ing functions (2.21), the loss function used for training was constructed as
follows:

L = SSEn + SSEn+1, (2.22)

where

SSEn =
q∑

j=1

Nn∑
i=1
|un

j (xn,i)− un,i|2,

SSEn+1 =
q∑

j=1

Nn+1∑
i=1
|un+1

j (xn+1,i)− un+1,i|2.

Where the discrete-time identification method stands out from the other meth-
ods in this paper is that every element of the loss function is physics informed.
Per training step, the forward and backwards propagation through the PINN
occurs twice. The PINN takes two-dimensional inputs of points across the
spatial domain at times tn and tn+1 and predicts the solutions un+1 and un

respectively. From these predictions and using the relationships presented in
(2.20) and the physics informing function (2.21), the PINN finally predicts
the solutions un and un+1 at the corresponding input times. The final pair of

Chapter 2. Methods 13

predictions are the individual outputs of the PINN which are compared to the
corresponding target solutions, hence the loss function (2.22). Analog to the
continuous-time case, the unknown coefficients are included as parameters in
the PINN, and are learned in parallel to the training of the NN layers.

Discrete-time identification of the Kuramoto-Sivashinsky equation

Given solutions to the 1D Kuramoto-Sivashinsky equation, the goal in this
example is to identify the unknown coefficients of the partially known PDE
(2.15). The target-data of this problem was provided in a work by Raissi et
al. [1]. Analog to the previous example, to tackle solving this problem, we
handle only two time steps n and n + 1 and corresponding target data un

and un+1. By setting up the PINNs to predict the solutions of the PDE at
the input time step while incorporating the corresponding physics informing
function, each output of the PINN is physics informed. As a result, each
output is a function of the unknown coefficients λ = (λ1, λ2, λ3), which are
set as parameters of the PINN, and are modified in parallel to the training of
the DNN layers.

Like in the previous example, we treat equation (2.3) in the form (2.20), and
the loss function used (2.22) is identical. Where these two approaches differ,
however, is in the case specific modifications based on the PDE, where the
physics informing function in this case reads as

f(n, cj) = −N [un+cj ;λ] = −λ1u
n+cju

n+cj
x − λ2u

n+cj
xx − λ3u

n+cj
xxxx. (2.23)

Hence the previous identification example of the Kuramoto-Sivashinsky equa-
tion, it was also suspected here that the PINN implemented would generate
less accurate results than in the corresponding case of the Burgers equation.
To assist the training of the models, the number of data points used as target
data and the number of neurons in each fully connected layer was increased,
however, unlike in the case of the continuous-time identification problem of
the same PDE, a multi-optimizer test was not performed.

Chapter 3

Execution of the Experiments
and Results

For the sake of simplicity and to make different approaches and examples com-
parable, in the areas of the methods which were not case specific, i.e. other
than the loss functions and the physics informing of the PINNs, the approaches
were made as similar as possible. Most importantly, the DNN architecture in
each PINN was chosen to be equivalent across all examples (with the exception
of the output dimensions), modified only if the predictions were unrepresen-
tative of the targets. A four-layer-deep architecture was implemented with
100 neurons in each layer, which was selected after a number of stages of
trial and error. Furthermore, in each case, the L-BFGS optimizing algorithm
implemented was set to have the same settings in each case, including its ter-
mination tolerance1 and learning rate. Again, the optimizer was only modified
in a case where the predictions otherwise were not representative of the target.
Where the individual applications varied, however, is the amount of training
data used to train the models. In the upcoming sections, the results of the
previously mentioned examples are presented.

3.1 Results of examples in continuous-time

3.1.1 Continuous-time inference results

Continuous-time inference of the Burgers equation

The goal of the experiment presented in this example was to predict the so-
lution of the Burgers equation in (2.5). A plot of the target solution of this

1The termination tolerance determines when the optimization process is terminated.
The termination can occur at first order of optimality or based on the rate at which function
values/parameters change.

14

Chapter 3. Execution of the Experiments and Results 15

Figure 3.1 Solution of the Burgers Equation

problem is presented in Fig. 3.1. As described in the methodology section, we
wanted to solve this problem by fitting the initial and boundary conditions
and by informing the DNN implemented using the physics informing function
(2.6). To do this, a target data-set of 150 solutions, u(t, x), was used consisting
of solutions at 50 points at initial time, t = 0, randomly selected across the
spatial domain, as well as solutions lying at 50 points on either boundary of x,
randomly selected across the temporal domain. Furthermore, 2.56 · 104 points
(resulting from the multiplication of 100 temporal against 256 spatial points)
were used as an input for the predictions of the physics informing function,
spread evenly across the entire spatio-temporal domain. The training process
which simultaneously trained across the boundary and initial time target data
and the physics informed loss was set to stop learning once it reached the de-
fault termination tolerance set by the L-BFGS algorithm, after which a final
prediction was made using the entire set of points spread across the entire
domain mentioned above (see Fig. 3.1).

A plot of the result of this prediction is presented in Fig. 3.2 A, where we
note that the target data used is highlighted using black crosses, each corre-
sponding to a single data point, spread across the mentioned domains. Three
snapshots of the predictions are also presented at selected times marked in
black dashed lines and were plotted against the exact solutions, in order to
provide a more direct illustration of the goodness of the results. These three
plots are presented in Fig. 3.2 A, B and C. Finally, the absolute and relative
errors of this final prediction was calculated according to the L2-norm and
were found to be 1.44 · 10−4 and 2.68 · 10−2% respectively.

Chapter 3. Execution of the Experiments and Results 16

Figure 3.2 Predictions of the Continuous-time Burgers Equation Inference
Problem

A: Plot of the prediction of the solution of the Burgers equation with the initial time and
boundary data points marked in black crosses, and the times at which snapshots were taken
marked with dashed black lines; B: The prediction of the solution of the Burgers equation
plotted against the exact solution of the Burgers equation at time t=0.20; C: The prediction
of the solution of the Burgers equation plotted against the exact solution of the Burgers
equation at time t=0.50; D: The prediction of the solution of the Burgers equation plotted
against the exact solution of the Burgers equation at time t=0.80.

Continuous-time inference of the Non-linear Schrodinger equation

Analogous to the previous example, given boundary and initial time target
data, the solution across the entire domain of the Non-linear Schrodinger
equation (2.8) was searched. The mentioned equation has a complex solution
h(t, x) = u(t, x) + iv(t, x). For the sake of simplicity all illustrations present
only the magnitude of the solutions, h(t, x). The domain was made up of 256
spatial against 201 temporal points, resulting (upon multiplying together) in
a total of 51456 evenly spaced points on the basis of which the target solution
data was assigned. A plot of the magnitude of the target solution can be
found in Fig. 3.3. A data-set of size 150 was used to enforce the initial and
boundary conditions, with 50 corresponding to randomly selected points on ei-

Chapter 3. Execution of the Experiments and Results 17

Figure 3.3 Solution of the Nonlinear Schrodinger Equation

ther boundary and another 50 corresponding to randomly selected initial data
points. Note that the provided boundary information does not include the
solution to the PDE on the boundaries but depends only on periodic bound-
ary conditions. As a result no boundary target data was used, instead the
target data-set was only of a size of 50 points at initial time. The mentioned
target data-set is two-dimensional2 as opposed to the previous example where
it is one-dimensional; the first dimension relating to the real and the second
relating to the complex targets. The entire 201 by 256 grid of points was used
as inputs for the physics informed loss.

The training process lasted in accordance with the default termination toler-
ance of the L-BFGS optimizing algorithm, and the resulting trained model was
used to finally make a prediction of the solution of the Nonlinear Schrodinger
Equation. The resulting prediction is plotted in Fig. 3.4 A, with the target
data used marked with black crosses. At three snapshots, the prediction is
also plotted against the exact solution at the given times in Fig. 3.4 B, C and
D. The times at which these snapshots were taken are also marked on Fig 3.4
A using black dashed lines. Errors of the prediction were calculated according
to the L2-norm resulting in an absolute error of 7.29 ·10−5 and a relative error
of 9.80 · 10−3%.

2Note that we consider the target data-set as two dimensional because we treat the
complex solution of the PDE in the form h(t, x) = [u(t, x) v(t, x)] as already explained in
the methodology

Chapter 3. Execution of the Experiments and Results 18

Figure 3.4 Predictions of the Continuous-time Nonlinear Schrodinger
Equation Inference Problem

A: Plot of the magnitude of the prediction of the solution of the Nonlinear Schrodinger
equation with the initial time and boundary data points marked in black crosses, and the
times at which snapshots were taken marked with dashed black lines; B: The magnitude
of the prediction of the solution of the Nonlinear Schrodinger equation plotted against the
magnitude of the exact solution of the Nonlinear Schrodinger equation at time t=0.47; C: The
magnitude of the prediction of the solution of the Nonlinear Schrodinger equation plotted
against the magnitude of the exact solution of the Nonlinear Schrodinger equation at time
t=0.79; D: The magnitude of the prediction of the solution of the Nonlinear Schrodinger
equation plotted against the magnitude of the exact solution of the Nonlinear Schrodinger
equation at time t=1.10.

3.1.2 Continuous-time identification results

The continuous-time identification problems are inherently different in ap-
proach to the inference problems, in that the used target data-set, spread
across the entire domain, is far greater and the PDEs are only partially known.
The greatest obstacle, as a result, is not fitting the model to the solutions, but
to identify the PDEs from relatively uninformed predictions. Here, what is
meant by uninformed is that fitting the model to the target solution can not
rely on the smoothing characteristics of inferring PINNs, hence why larger
target data-sets are required.

Chapter 3. Execution of the Experiments and Results 19

Continuous-time identification of the Burgers equation

Given the general form of the Burgers equation (2.11) — which is the basis for
the physics informing function (2.12) — and target data u(t, x) spread across
the entire domain, the goal was to predict the coefficients λ1 and λ2, which
have target values of 1 and 0.01/π respectively.

Analogous to the earlier described Burgers equation examples, the domain
was split into 100 temporal against 256 spatial points, resulting in a high
resolution grid of a total of 2.56 · 104 points. Although this grid was used to
generate plots in the entire domain, the input points used for both the target
data loss and the physics informed loss was restricted to a set of 2 · 103 points,
randomly spread across the domain. Solutions of the PDE were assigned to
each of these points as target data. The solution of the PDE in question has
already been presented in Fig. 3.1.

The training process in accordance with the presented method in subsection
2.1.1 — simultaneously training the parameters of the DNN layers and the
PDE parameters themselves — lasted until the L-BFGS methods termination
tolerance was reached. After this, the entire grid of points was passed through
the network in order to generate illustrations of the corresponding prediction
to highlight how well the model was able to fit the solutions. A plot of the
fitted solution in the entire domain is presented in Fig. 3.5 A, where the
training data points are marked in black crosses (made small to maintain a
relatively clear image of the fitted solution), and furthermore three snapshots
were taken at times marked with thick black dashed lines. These snapshots
Fig. 3.5 B, C and D are plotted against the exact solutions at given times.

The resulting parameters were found to be λ1 = 0.97 and λ2 = 4.62 · 10−3

= 0.015/π, with relative errors of 3.15% and 45.26% respectively. The relative
error of the second parameter is noticeably large, however, when considering
its absolute error of 1.4 · 10−3, it is in fact less than that of the absolute error
of the first parameter which is 0.032. Considering that the loss functions used
to train the model’s function are on an absolute error basis, these errors are
justified and the estimated coefficients for λ1 and λ2 are to be considered
acceptable for the model.

Continuous-time identification of the Kuramoto-Sivashinsky
equation

Given the general form of the 1D Kuramoto-Sivashinsky equation (2.5), the
goal was to identify the unknown parameter λ = (λ1, λ2, λ3), by incorporating
the physics informing function (2.6) relating to the PDE. The plot of the
target solution is presented in Fig. 3.6.

Chapter 3. Execution of the Experiments and Results 20

Figure 3.5 Predictions of the Continuous-time Burgers Equation
Identification Problem

A: Plot of the model’s fit of the solution of the Burgers equation with the with the target
data points of the solution marked with tiny black crosses, and the times at which snapshots
were taken marked with thick dashed black lines; B: The model’s fit of the solution of the
Burgers equation plotted against the exact solution of the Burgers equation at time t=0.20;
C: The model’s fit of the solution of the Burgers equation plotted against the exact solution
of the Burgers equation at time t=0.50; D: The model’s fit of the solution of the Burgers
equation plotted against the exact solution of the Burgers equation at time t=0.80.

It quickly became clear that when using small data-sets, the proposed method
— which was used to solve the same problem in the Burgers equation —
failed in fitting the model to the target set and the parameters relating to the
unknown coefficients did not develop in a reasonable manner. To explore this
behaviour, the training process was expanded and assisted as much as possible.
The target data-set was set to include the solutions of the PDE corresponding
to every single point in the grid, i.e. for the grid made up of 1000 temporal
points against 64 spatial points, a target data-set of size 6.4 · 104 was used.
Moreover, the fully connected layers were increased to include 200 neurons
in one experiment and 400 neurons in another. In this section, the focus is
on the case of using 400 neurons, as it allowed the model to fit the target

Chapter 3. Execution of the Experiments and Results 21

Figure 3.6 Solution of the Continuous-time Kuramoto-Sivashinsky Equation

with a higher level of accuracy3. For interested readers, more on the details of
the experiment findings including plots can be found in the Appendix of this
paper.

With this new set-up, the model was capable of fitting the target solution to a
higher degree, as one would expect, however when compared to the level of fit
present in the other examples of this paper, the fit was still very far from ideal.
The found absolute and relate errors according to the L2-norm are 0.62 and
64.3% respectively. The predicted coefficients were found to be λ1 = 0.008,
λ2 = 0.009 and λ3 = 0.001. However, due to the great fitting errors, this was
no surprise.

Following this observation, a new method was implemented to increase the
fitting accuracy. The training scheme was altered by first replacing the L-
BFGS optimizer with a simple Adam optimizer with a step-based learning rate
scheduler with a batch size of 64, set to stop learning after 5 · 104 iterations,
i.e. after 50 epochs. It was found that although this method did increase the
fitting accuracy, resulting in absolute and relative errors of 0.122 and 12.5%,
according to the L2-norm, the predictions of the unknown PDE coefficients
were not sufficiently reasonable (λ1 = 5.28 ·10−2, λ2 = −1.19 · 10−2 and λ3 =
−0.03 · 10−2).

As a final test, the two optimizers were combined in the following manner: first
the model is trained using the previously defined Adam scheme, after which
the L-BFGS optimizing scheme is applied according to the method used in
the other examples in this paper. The idea behind incorporating the L-BFGS

3400 neurons per layer was the limit at which these experiments could be performed
governed by the memory of the GPU implemented

Chapter 3. Execution of the Experiments and Results 22

optimizing scheme after the Adams scheme was to both fine tune the fitting
of the model and to see if in the case of a relatively good fit, the L-BFGS
method would be able to extract a more accurate estimation of the unknown
coefficients of the model. Note that for this particular experiment, the training
process was manually terminated after over 6 hours of training, when it was
clear that the model was not developing in a meaningful manner.

A plot of the fitted solution in the entire domain is presented in Fig. 3.7 A,
where the dashed lines represent times at which snapshots were taken. The
mentioned snapshots of the fitted predictions are plotted against the target
solutions at the corresponding times in Fig. 3.7 B, C and D. It is apparent
that the model was able to fit the target to a relatively high degree, com-
parable to that of the corresponding example treating the Burgers equation.
The absolute and relative errors according to the L2-norm were found to by
0.009 and 9.30% respectively. Despite this, although the parameters of the
PINN corresponding to the unknown coefficients did present a slightly greater
divergence from their initial values of zero than in the other experiments, the
predicted coefficients: λ1 = 0.093, λ2 = −0.055 and λ3 = −0.001 were still
not reasonably representative of the target.

3.2 Results of examples in discrete-time

3.2.1 Discrete-time inference results

Discrete-time inference of the Burgers equation

As opposed to the continuous-time case, the goal here was to infer the solution
of the Burgers equation presented in (2.5) at a specific time tn+1, given the
boundary conditions presented and the solution to the problem at time tn. In
this example, the time-steps we looked at were tn = 0.10 and tn+1 = 0.90,
which — according to the method presented in section 2.2.1 — resulted in a
time-step size of ∆t = 0.8 where the general form of the Runge-Kutta method
was applied with q = 500 stages. For the physics informed loss, we used
a data-set of 250 points randomly spaced across the spatial domain at the
first time step n to which the corresponding solutions were assigned, while
for the boundary loss, the target data-set was limited to one point on either
boundary at time step n + 1. The training process was according to the
L-BFGS algorithm, with the default termination tolerances.

The plot of the solution to the Burgers equation in the entire spatial and
temporal domain is plotted in Fig. 3.6 A, where, with dashed black lines, the
time-steps involved in the training process are illustrated. After the training

Chapter 3. Execution of the Experiments and Results 23

Figure 3.7 Predictions of the Continuous-time Kuramoto-Sivashinsky
Equation Identification Problem

A: Plot of the model’s fit of the solution of the Kuramoto-Sivashinsky equation with the
times at which snapshots were taken marked with thick dashed black lines; B: The model’s
fit of the solution of the Kuramoto-Sivashinsky equation plotted against the exact solution
of the Kuramoto-Sivashinsky equation at time t=50; C: The model’s fit of the solution of the
Burgers equation plotted against the exact solution of the Burgers equation at time t=125;
D: The model’s fit of the solution of the Burgers equation plotted against the exact solution
of the Burgers equation at time t=200.

process was completed, a final prediction of the solution at time-step n+1 was
made. Plots of the previously mentioned time-steps are presented in Fig. 3.6
B and C where the exact solutions are plotted against the provided data and
plotted against the predicted solution respectively. The absolute and relative
errors of the prediction according to the L2-norm were found to be 1.24 · 10−8

and 3.13 · 10−6% respectively.

Chapter 3. Execution of the Experiments and Results 24

Figure 3.8 Predictions of the Discrete-time Burgers Equation Inference
Problem

A: The solution of the Burgers equation with the times steps that were treated in this
discrete-time inference problem marked with dashed black lines; B: The target data points
of the solution of the Burgers equation plotted against the exact solution of the Burgers
equation at time t = 0.10; C: The prediction of the solution of the Burgers equation plotted
against the exact solution of the Burgers equation at time t = 0.90.

3.2.2 Discrete-time identification results

Discrete-time identification of the Burgers equation

As in the previous problem of inference, in this example we studied only the
times tn = 0.10 and tn+1 = 0.90 at time-steps n and n+1 respectively with the
time step size ∆t = 0.8. Using target data at both time-steps randomly spaced
across the spatial domain, the goal was to predict the unknown coefficients
λ1 and λ2 of the PDE (2.11), which have correct values of 1 and 0.01/π
respectively. By incorporating these coefficients as parameters in the PINN,
these parameters were modified in parallel to the layers of the DNN, using the
L-BFGS optimizing algorithm.

Chapter 3. Execution of the Experiments and Results 25

The training was performed according to the method description in section
2.2.2, where the general form of the Runge-Kutta method was applied to the
PDE with q = 81 stages. As opposed to the previous example of inference, in
this method, two loss functions (2.22) of the same form were used to train the
model. By incorporating the physics informing function (2.21) extracted from
the partially known PDE, the first loss function calculated the error between
the target data and the PINNs prediction4 of the PDE solution at time-step
n while the second loss function calculated the same at time-step n+ 1. The
target data-sets used had sizes of 199 and 201 respectively, at randomly spaced
points across the spatial domain.

After the training was completed, the solutions at the time-steps in question
were predicted by the trained model to get an idea of how well the model
was able to fit the target solutions. The trained parameters of the unknown
coefficients were also extracted from the PINN. The solution of the PDE in
the entire domain is plotted in Fig. 3.7 A where the time-steps n and n + 1
are marked with dashed black lines. At the corresponding times, the models
predictions were plotted against the exact solutions in Fig. 3.7 B and C. The
solutions were found to be λ1 = 0.998 and λ2 = 3.70 · 10−3 = 0.012/π with
absolute errors of 2.30 · 10−3 and 0.51 · 10−3, and relative errors of 0.23% and
16.12% respectively. The difference in relative errors can be overlooked when
considering the absolute errors, as already mentioned in the continuous-time
identification problem of the same Burgers equation. The result is supported
by the fact that the loss functions operate on an absolute error basis.

A final observation, which is highlighted by the provided plots, is the error
of the fitting of the solution of the model, such that the comparison between
different identification examples can be made easier. According to the L2-
norm, the absolute and the relative errors were found to be 5.61 · 10−6 and
5.48 · 10−4% respectively.

Discrete-time identification of the Kuramoto-Sivashinsky equation

The method used to tackle this problem, presented in section 2.2.2, is analo-
gous to the corresponding example of the Burgers equation. The time-steps n
and n+ 1 studied were at the times tn = 81.20 and tn+1 = 81.60 respectively,
with a time step size of ∆t = 0.4. The goal here was to predict the unknown
coefficients λ1, λ2 and λ3 from the partially known PDE (2.15), each of which
had correct values of 1.

In this example, the Runge-Kutta method was applied to the PDE with
q = 500 stages and the same loss function (2.22) was used as in the previ-

4Note that the PINNs prediction incorporates not only the DNNs prediction but also
the physics informing function and therefore the unknown parameters.

Chapter 3. Execution of the Experiments and Results 26

Figure 3.9 Predictions of the Discrete-time Burgers Equation Identification
Problem

A: The solution of the Burgers equation with the times steps that were treated in this
discrete-time identification problem marked with dashed black lines; B: Plot of the model’s
fit of the solution of the Burgers equation plotted against the exact solution of the Burgers
equation at time t=0.10; C: Plot of the model’s fit of the solution of the Burgers equation
plotted against the exact solution of the Burgers equation at time t=0.90.

ous example, while (2.23) is physics informing function incorporated in the
PINN. Like in the example of continuous-time identification of the Kuramoto-
Sivashinsky equation, it quickly became clear that the PINN framework strug-
gled to solve the problem, and so both the PINN architecture and the target
data-set size was increased. At time steps n and n+ 1, target data-set sizes of
1000 and 1001 were used respectively, while the number of neurons per fully
connected layer in the DNN were increased from 100 to 6005.

After the training was completed using the L-BFGS optimizer, the fit of the
solutions at the time steps were plotted and the trained parameters of the

5Earlier it was stated that 400 neurons was close to the limit of what the system could
bare. Given the slight difference in application, here the number of neurons could be in-
creased even further.

Chapter 3. Execution of the Experiments and Results 27

Figure 3.10 Predictions of the Discrete-time Kuramoto-Sivashinsky
Equation Identification Problem

A: The solution of the Kuramoto-Sivashinsky equation with the times steps that were treated
in this discrete-time identification problem marked with dashed black lines; B: Plot of the
model’s fit of the solution of the Kuramoto-Sivashinsky equation plotted against the exact
solution of the Burgers equation at time t=0.10; C: Plot of the model’s fit of the solution
of the Kuramoto-Sivashinsky equation plotted against the exact solution of the Burgers
equation at time t=0.90.

unknown coefficients were extracted from the PINN. A plot of the target
solution is plotted in Fig. 3.10 A, where the time-steps treated are marked
with dashed black lines. The solution predictions at the corresponding times
are plotted against the target solutions in Fig. 3.10 B and C. It was found
that the summed absolute and relative errors of fit at times tn and tn+1 were
2.43 and 100.2% respectively, although even from the plots presented it is
clear that the model failed to fit the target solution. The resulting coefficients
λ1, λ2 and λ3 were found to be non reasonable: 0.058, 0.001 and 2.26 · 10−7

respectively, although given that the model was not able to fit the solution,
this is an expected outcome.

Chapter 4

Conclusion

In this paper, a number of applications of PINNs were presented, tackling a
range of problems and treating various PDEs modeling physical phenomena
with relatively simple architectures. Applied to the 1D Burgers equation, the
introduced methods were able to solve problems of inference and identification
in both continuous- and discrete-time effectively, making predictions with rel-
atively low errors according to the L2-norm. The PINN frameworks were
then adjusted and applied to the continuous-time inference problem of the 1D
Nonlinear Schrodinger equation and to both the continuous- and discrete-time
identification problems of the 1D Kuramoto-Sivashinsky equation.

By enforcing the initial and boundary information and the physical constraints
in the loss function of the training scheme, the solution of the Burgers equa-
tion, a second order PDE, was inferred in continuous-time with a relatively
high level of accuracy. As presented in section 3.1.1, the relative error of the
inferred prediction was found to be only 0.027% (according to the L2-norm).
Considering the target data-set size of only 150 points and the prediction re-
lating to over 5 · 104 input points spread across the spatio-temporal domain,
this application, where purely data driven methods would struggle, highlights
the capabilities of PINNs.

The same method was applied to the Nonlinear Schrodinger equation, which
stands out among the other PDEs in this paper in that it has a two-dimensional
solution as opposed to just one. Similarly to the case of its counterpart, the
solution of the Nonlinear Schrodinger equation was predicted with a relatively
high level of accuracy with a relative error of 9.8 ·10−3% (according to the L2-
norm; see section 3.1.1). It is worth noting that for this example of inference,
even less data was used (a total of only 50 target data points) and still the
resulting error was low.

The example of identification of the Burgers equation is only marginally dif-
ferent to that of inference in continuous-time. By incorporating the unknown
coefficients of the PDE as parameters in the PINNs, the loss function used to
train the models remains the same. For case of continuous-time identification

28

Chapter 4. Conclusion 29

of the Burgers equation with target coefficients of 1 and 0.001/π, the predicted
coefficients were found to be 0.98 and 0.0015/π. Using a target data set of
2 · 103 points spread randomly across the spatio-temporal domain, the model
was able to fit the target PDE to a relatively high degree with a relative error
of only 0.07% (according to the L2-norm). As the physics informing function
greatly depends on the level of accuracy of the fit of the model, this suggests
why the predictions of the coefficients was so successful. The PINN frame-
work was then adjusted and applied to the Kuramoto-Sivashinsky equation.
As already mentioned in sections 2.1.2 and 3.1.2, the training needed to be
modified since initially the generated model was unable to fit the solution.
After introducing a training scheme that implemented both the Adams and
L-BFGS optimizer the correct coefficients could still not be extracted at a
reasonable level of accuracy, despite that the model was able to fit the so-
lution with a relative error of 0.93% (according to the L2-norm), which was
considered acceptable.

Similar results were observed in the discrete-time identification examples. Al-
though the introduced schemes were able to effectively predict the unknown
coefficients of the Burgers equation (with absolute errors of 2.30 · 10−3 and
0.51 · 10−3 according to the L2-norm), the adjusted framework failed to make
reasonable predictions when applied to the Kuramoto-Sivashinsky equation.

The PINN frameworks were effectively applied to the problems of inference
and identification when treating second order PDEs, highlighting their ability
to solve problems with minimal amounts of data and their ability to make accu-
rate predictions (according to the L2-norm) in settings where their purely data
driven counterparts would struggle. Furthermore, the proposed PINN frame-
works could be effectively applied to different problems — without much mod-
ification — involving the Burgers equation in both continuous- and discrete-
time cases and to a problem involving the Nonlinear Schrodinger equation,
highlighting the robustness of the applications of DNNs. The same can not
be said about the application of the PINNs to the problems concerning the
Kuramoto-Sivashinsky equation, however. Being a fourth order PDE, it in-
troduces a much higher level of complexity than the other PDEs treated in
this paper. Although PINNs present many interesting features, implementing
them in more complex examples, where chaotic dynamics are present, will
require further research. We believe that apart from increasing the depth of
the network or increasing the sizes of the layers even further, future research
should also investigate the effects of more sophisticated NN architectures. In-
corporating long short-term memory networks, dimensionality reduction or
autoencoders into the architecture of the PINNs might prove to be important
for future refinements. In addition, comparing the data-efficiency of PINNs
with networks utilized in other works [1, 8, 13, 14, 15] might be an interesting
matter of future analysis.

Chapter 5

Appendix

The appendix accompanies the continuous-time identification of the Kuramoto-
Sivashinsky equation example in section 3.1.2. Here, findings of some experi-
ments are presented which aimed to investigate the behaviour of PINN meth-
ods when treating fourth-order PDEs. In each experiment either the fully
connected layer sizes or the optimizing schemes were varied and correspond-
ing final prediction illustrations, identified coefficients and errors are compared.
Note that although the fully connected layer sizes were modified, the PINN
architectures incorporating four-layer-deep NNs were not varied in any other
way.

The experiments are as follows:

(A) L-BFGS optimizing scheme with 200 neurons per layer

(B) L-BFGS optimizing scheme with 400 neurons per layer

(C) Adam optimizing scheme with 200 neurons per layer

(D) Adam optimizing scheme with 400 neurons per layer

(E) Adam + L-BFGS optimizing schemes with 400 neurons per layer

The letters assigned to each experiments will be used to describe each exper-
iment from here on for simplicity. Furthermore, note that certain findings of
experiments B, D and E have have already been presented in section 3.1.2.

After the training process, the unknown coefficients of the Kuramoto-Sivashinsky
equation were predicted. These predictions are presented in Table 5.1 in their
PDE forms, and are compared to the target PDE. As already highlighted in
the methodology section, the coefficients are predicted by including them as
parameters in the PINNs, and are modified in parallel to the model as it tries
to fit the known target solution. For each experiment, the absolute and rela-
tive errors of the fit of the model (according to the L2-norm) are provided in

30

Chapter 5. Appendix 31

Target ut + uux + uxx + uxxxx = 0
Experiment A ut + 0.038 · uux − 0.006 · uxx − 0.001uxxxx = 0
Experiment C ut + 0.008 · uux + 0.009 · uxx + 0.001 · uxxxx = 0
Experiment B ut + 0.045 · uux − 0.004 · uxx − 5.2 · 10−7 · uxxxx = 0
Experiment D ut + 0.052 · uux − 0.012uxx − 3.0 · 10−4 · uxxxx = 0
Experiment E ut + 0.093 · uux − 0.055 · uxx − 0.001 · uxxxx = 0

Table 5.1 Predictions of the individual experiments of the
Kuramoto-Sivashinsky continuous-time identification problem

Experiment Absolute Fit Error Relative Fit Error
A 0.642 65.7 %
B 0.619 63.4%
C 0.242 24.8 %
D 0.122 12.5 %
E 0.009 0.93 %

Table 5.2 Errors of the individual experiments of the
Kuramoto-Sivashinsky continuous-time identification problem

Table 5.2. For each experiment, to illustrate the just now mentioned errors,
three snapshots were taken of the fitted models at three different times. The
snapshots are marked in Figure 5.1 — illustrating the target solution of the
PDE — with dashed black lines. The corresponding snapshots are plotted
against the PDE solutions in Figures 5.2 A to E.

In this example, treating a case with a large data-set, it is notable that that
the Adam optimization scheme lead to the model fitting the target solutions
with far greater accuracies than the L-BFGS scheme1. Furthermore, while the
L-BFGS optimizing scheme lasted a number of hours, the Adam optimizing
scheme lasted no more than tens of minutes. Despite this, more experiments
would have to be performed to be able to draw any conclusions, because
despite higher fitting accuracies, the Adam optimizing scheme did not lead to
better results in the identification of the PDE. The same can be said about
the combination of the Adam and the L-BFGS optimizing scheme, although
the model was able to fit PDE solutions with even higher accuracies.

1Note that in the methodology section 2 of this paper it was claimed that the L-BFGS
optimizing scheme is more appropriate for treating cases with smaller data-sets

Chapter 5. Appendix 32

Figure 5.1 Solution of the Kuramoto-Sivashinsky Equation

Chapter 5. Appendix 33

Figure 5.2 Predictions of the Discrete-time Kuramoto-Sivashinsky
Equation Identification Problem

Bibliography

[1] Maziar Raissi and George Em Karniadakis. Hidden physics models: Ma-
chine learning of nonlinear partial differential equations. Journal of Com-
putational Physics, 357:125–141, 2018.

[2] Fei-Yue Wang, Jun Jason Zhang, Xinhu Zheng, Xiao Wang, Yong Yuan,
Xiaoxiao Dai, Jie Zhang, and Liuqing Yang. Where does alphago go:
From church-turing thesis to alphago thesis and beyond. IEEE/CAA
Journal of Automatica Sinica, 3(2):113–120, 2016.

[3] Noam Brown and Tuomas Sandholm. Superhuman ai for heads-up no-
limit poker: Libratus beats top professionals. Science, 359(6374):418–424,
2018.

[4] Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural
networks for solving ordinary and partial differential equations. IEEE
transactions on neural networks, 9(5):987–1000, 1998.

[5] Raban Iten, Tony Metger, Henrik Wilming, Lídia Del Rio, and Renato
Renner. Discovering physical concepts with neural networks. Physical
Review Letters, 124(1):010508, 2020.

[6] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-
informed neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equations.
Journal of Computational Physics, 378:686–707, 2019.

[7] Ryan King, Oliver Hennigh, Arvind Mohan, and Michael Chertkov. From
deep to physics-informed learning of turbulence: Diagnostics. arXiv
preprint arXiv:1810.07785, 2018.

[8] N Benjamin Erichson, Michael Muehlebach, and Michael W Mahoney.
Physics-informed autoencoders for lyapunov-stable fluid flow prediction.
arXiv preprint arXiv:1905.10866, 2019.

[9] Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. Hidden
fluid mechanics: Learning velocity and pressure fields from flow visualiza-
tions. Science, 367(6481):1026–1030, 2020.

34

Bibliography 35

[10] Dongkun Zhang, Lu Lu, Ling Guo, and George Em Karniadakis. Quanti-
fying total uncertainty in physics-informed neural networks for solving for-
ward and inverse stochastic problems. Journal of Computational Physics,
397:108850, 2019.

[11] Yinhao Zhu, Nicholas Zabaras, Phaedon-Stelios Koutsourelakis, and
Paris Perdikaris. Physics-constrained deep learning for high-dimensional
surrogate modeling and uncertainty quantification without labeled data.
Journal of Computational Physics, 394:56–81, 2019.

[12] Dongkun Zhang, Ling Guo, and George Em Karniadakis. Learning
in modal space: Solving time-dependent stochastic pdes using physics-
informed neural networks. SIAM Journal on Scientific Computing,
42(2):A639–A665, 2020.

[13] Pantelis R Vlachas, Wonmin Byeon, Zhong YWan, Themistoklis P Sapsis,
and Petros Koumoutsakos. Data-driven forecasting of high-dimensional
chaotic systems with long short-term memory networks. Proceedings of
the Royal Society A: Mathematical, Physical and Engineering Sciences,
474(2213):20170844, 2018.

[14] Zhong Yi Wan, Pantelis Vlachas, Petros Koumoutsakos, and Themistok-
lis Sapsis. Data-assisted reduced-order modeling of extreme events in
complex dynamical systems. PloS one, 13(5):e0197704, 2018.

[15] Pantelis R Vlachas, Jaideep Pathak, Brian R Hunt, Themistoklis P Sapsis,
Michelle Girvan, Edward Ott, and Petros Koumoutsakos. Backpropaga-
tion algorithms and reservoir computing in recurrent neural networks for
the forecasting of complex spatiotemporal dynamics. Neural Networks,
2020.

	Contents
	List of Figures
	List of Tables
	Introduction
	Methods
	Case specific methods in continuous-time
	Continuous-time inference methods
	Continuous-time identification methods

	Case specific methods in discrete-time
	Discrete-time inference methods
	Discrete-time identification methods

	Execution of the Experiments and Results
	Results of examples in continuous-time
	Continuous-time inference results
	Continuous-time identification results

	Results of examples in discrete-time
	Discrete-time inference results
	Discrete-time identification results

	Conclusion
	Appendix
	Bibliography

