Web-based XCAT tool for easy ZEC/BTC atomic
trading

Zcash Foundation Grant Proposal (2017 Q4)

Jason Davies <jason@jasondavies.com>

Motivation and overview

Building on the excellent work by @arielgabizon, @arcalinea, and others, 1
propose to make their work more accessible by providing a simple web-based
tool that facilitates:

e Easy setup of an XCAT trade. This includes optional genera-
tion of the random secret in-browser. Once the trade parameters have
been agreed between the parties (secret hash, 4 addresses, 2 amounts),
a URL can be generated for easy (and optional) sharing/bookmarking.
The page would provide instructions for creating and sending the rel-
evant transactions. The page may also allow the transactions to be
broadcast, in the case where users cannot easily do so themselves.

¢ Optional monitoring of a trade. The XCAT mechanism will be
illustrated visually, and progress of the requisite transactions can be
optionally monitored. The visual aspect helps educate users and devel-
opers about how XCAT works, and if monitoring is enabled, it allows
users to see which parts of the trade have completed, and easily see
what to do next to complete the trade (or revoke it if something goes
wrong).

The purpose of the tool is twofold: facilitate easy creation of XCAT trades
and educate users and wallet developers about how XCAT works.

mailto:jason@jasondavies.com
https://z.cash/blog/atomic-trades.html
https://github.com/arielgabizon
https://github.com/arcalinea

Web-based XCAT tool for easy ZEC/BTC atomic trading

Technical approach

e The majority of the work involves designing a nice user interface writ-
ten in JavaScript, HTML and CSS, and intuitive visualisations for the
trade and its progress along the two selected blockchains.

e Initially only ZEC and BTC will be supported.

e The optional monitoring of trade progress will require a server running
both Zcash and Bitcoin nodes ideally with txindex=1.

Background and qualifications

MA (Cantab) CompSci, Univ. of Cambridge, contributor to various open-
source projects; most relevant to this proposal is my work on D3.js, and you
can see various visualisations on my personal website.

I've been following Zcash since its inception and have made some minor
contributions so far:

o zcash-sprout-verifier - verifier for Zcash zk-SNARK proofs in Rust.
e zcash-vanity - vanity z-addr generator in Rust and OpenCL.

I also helped @arielgabizon test the first ever XCAT trade with ZEC/BTC
on their respective testnets.

Evaluation plan

The following deliverables are required:

e A web page that allows the main XCAT parameters to be entered and
agreed upon between two parties.

e The web page should provide instructions for generation and broadcast
of the appropriate transactions.

e A visualisation of the progress of the trade, with optional monitoring
which requires some information to be sent to the server.

https://d3js.org
https://www.jasondavies.com/
https://github.com/plutomonkey/zcash-sprout-verifier
https://github.com/plutomonkey/zcash-vanity
https://github.com/arielgabizon

Web-based XCAT tool for easy ZEC/BTC atomic trading

Security considerations

The basic vision for this web-based tool does not involve any private keys
being shared with the tool; it should only instruct the two parties to enter
their {fund,redeem} addresses for the respective blockchains used in the
trade, and later they may optionally monitor the trade’s progress if they are
happy to share some information with the server.

Given the XCAT parameters (4 addresses, hash of secret, 2 redeemblock-
nums) agreed upon by the counterparties, the tool should generate appro-
priate HTLC (escrow) scripts and accompanying P2SH addresses, and then
instruct the users to send their funds to these addresses in the correct or-
der while checking for sufficient confirmations. Users should be encouraged
to double-check for sufficient confirmations on other blockchain explorers
and/or their own clients.

The page should be served over HTTPS. The HTLC script and address
generation should all be implemented in JavaScript to minimise information
sent to the server.

Users can also bookmark or share their trade, but this does not leak any
trade information to the server as the trade parameters can be stored in the
URI fragment.

The parties to the trade should be able to select the level of privacy with
respect to leaking information to the server, ranging from no information
(other than their IP address, which can be mitigated using Tor or similar),
or if they elect to monitor the progress of the trade, their escrow addresses
need to be shared with the server so that it knows when funds have been
moved to and from the HTLC scripts.

Furthermore, care should be taken when suggesting redeemblocknum pa-
rameters to the users, such that sufficient margins are in place for the cases
where the counterparty does not follow through, and the trade needs to be
aborted.

Schedule
There are three main milestones:

o Implement XCAT in JavaScript (HTLC generation, P2SH address gen-
eration) and store parameters in URI fragment. This is the bare min-

https://en.wikipedia.org/wiki/Fragment_identifier

Web-based XCAT tool for easy ZEC/BTC atomic trading

imum that allows users to make a trade. (Estimate: end of November
2017.)

e Implement an interactive visualisation that illustrates the XCAT pro-
cess. (Estimate: end of November 2017.)

e Implement server-side monitoring on both BTC and ZEC blockchains,
for which users can opt-in, with real-time integration with the XCAT
visualisation. (Estimate: end of December 2017.)

Note that I have submitted a separate proposal for implementing Zcash
JoinSplit & Payment Disclosure validation in Rust, but I do not anticipate
this will significantly affect the above schedule if both proposals are accepted.

Budget and justification

I have spent some time thinking about how the UI and visualisations might
look, so I'm already part-way along in the process. I have also helped Ariel
test their XCAT code so I also already have an understanding of how it fits
together.

I estimate that around $15k would be sufficient to complete the development
of this tool, with a turnaround time of around 1-2 months. I'm happy to
take on hosting costs etc. myself.

	Motivation and overview
	Technical approach
	Background and qualifications
	Evaluation plan
	Security considerations
	Schedule
	Budget and justification

