
Integrating MPC and ZK-compiler technology

Brett Hemenway Marcella Hastings
Daniel Noble

{ fbrett, mhast, dgnoble } @cis.upenn.edu

1 Motivation and Overview

In recent years, academic groups have developed many efficient, open-source compilers to
translate code from a high-level language into secure multiparty-computation (MPC) pro-
tocols. MPC compiler technology has improved dramatically since Fairplay [10], the first
practical implementation, was introduced in 2004. Most MPC compilers convert an ar-
bitrary function defined in a high-level language into an optimized circuit representation,
which is passed to an implementation of a circuit-based MPC protocol like Garbled Circuits,
GMW or BGW.

Compilers for ZK proof systems have similar constraints to MPC protocols, and the ZK
programming pipeline is similar. Indeed, the libsnark documentation suggests the following
workflow: “Express the statements to be proved as an R1CS (or any of the other languages
above, such as arithmetic circuits, Boolean circuits, or TinyRAM). This is done by writing
C++ code that constructs an R1CS, and linking this code together with libsnark.” [18]

Recognizing these similarities, several groups have attempted to leverage MPC technol-
ogy: some ZK compilers use the FairPlay infrastructure to convert a high-level language
(SFDL) into a circuit [20], and the Pepper project has a similar pipeline, compiling a C-
based language into a constraint system suitable for proof using libsnark [13].

We propose integrating modern MPC compilers with zk-SNARK toolchains. MPC com-
pilers like Wysteria [2, 16] and EMP-toolkit [22] provide high-level languages for generating
circuits and executing them securely. Circuit generators like Frigate [12, 11] and CBMC-
GC [7, 19] convert C code into highly optimized Boolean circuits. The circuits generated
by these MPC compilers are intended for consumption by an MPC protocol, but we plan
to translate them into R1CS format and execute them with zk-SNARK technology (e.g.
libsnark).

As we work to connect MPC compilers to zk-SNARK back-ends, we will also be on the
lookout for places where SNARK technology (such as tinyRAM [3, 4, 14]) could be used to
improve MPC compilers.

2 Technical Approach

The circuit generators and MPC compilers above are designed to generate circuits for use in
MPC protocols, but these representations are essentially application-agnostic, and could be
used in proof systems instead of MPC protocols. The challenge in this project is developing
the pipeline from generated circuits to ZK compilers. In principle, these pipelines should be
straightforward, but significant engineering challenges remain: many of the circuit formats

1

are undocumented, and the compilers are generally research-quality code with minimal I/O
options.

We plan to begin our exploration with Wysteria, EMP-toolkit, Frigate and CBMC-GC.
Other advanced MPC compilers like ABY [5, 6] Obliv-C [17], PICCO [15] and SCALE-
MAMBA [9] (formerly SPDZ) build and execute arithmetic and Boolean circuits internally,
but unlike the compilers listed above, they do not provide an easy method to export the
underlying circuit, and would be more difficult to integrate into the zk-SNARK pipeline.

If we are successful in creating a pipeline for generating zk-SNARKs, a possible future
direction would be to make this pipeline verifiable. In other words, given an established
pipeline, can we verify that the resulting circuits and protocols are correct. Integrating
tools from verifiable computation would allow us to provide end-to-end assurance of the
integrity of the entire pipeline.

3 Team Background and Qualifications

Our team consists of three researchers at the University of Pennsylvania, Brett Falk, Mar-
cella Hastings and Daniel Noble. Over the past year, our team has explored almost every
modern open-source MPC compiler with an aim to assess the usability, limitations and effi-
ciency of the field. The knowledge we have gained from this exploration puts us in a unique
position to leverage advances in MPC-compiler technology in the ZK space.

Brett Hemenway Falk is a research assistant professor in the CIS department at Penn.
Dr Falk’s work focuses on cryptography and multiparty computation. Marcella Hastings is a
third-year PhD student at the University of Pennsylvania. Her work focuses on applied cryp-
tography, particularly on leveraging cryptographic tools to better serve developers. Daniel
Noble is a first-year PhD student at the University of Pennsylvania, focusing on practical
applications of secure computation protocols.

4 Evaluation Plan

The long-term goal of this project is to improve both MPC and zk-SNARK compiler tech-
nology by develop software connectors between compilers that allow developers to take
advantage of breakthroughs across fields. In the short-term, there are many concrete goals
that would indicate some level of success. These goals include:

1. Compatibility: Can we execute any circuit produced by an MPC compiler with the
libSNARK back-end?

2. Circuit size: How do circuit sizes compare when using MPC compilers vs SNARK
compilers?

3. Execution time: Can we improve the concrete proving time for a specific computation
using MPC compilers?

4. (Stretch goal) Using SNARK front-ends for MPC: Can we extract a circuit generated
by a SNARK compiler like Pequin or xjSNARK and execute it with an MPC back-end
like ABY?

2

5 Security Considerations

Better front-end compilers for zk-SNARKS should lower the barriers to building zk-SNARKS
and facilitate wider zk-SNARK deployments. Wider adoption of ZK technology should
improve user-privacy and the security of the system as a whole. Hand-coding and optimizing
circuits (or R1CS formulae) is a tedious, error-prone task, and allowing programmers to write
in a high-level language should reduce implementation errors and improve overall security
privacy.

This project will not directly impact end-users of the ZCash system, and thus will not
require any widespread training. Instead, this project is aimed at building tools for devel-
opers. Unfortunately, we are still a long way from building compilers that are easy enough
to use that they require no background knowledge, and current compiler technology is still
aimed at users who have significant cryptographic expertise. Thus the developers (who
would be the users of our tools) would still require some amount of practice or training to
use them correctly. If we are successful in this project, a possible future direction would be
to make these compilers verifiable, which would further reduce the risk of developer errors
and improve the overall security of the system further.

6 Schedule

This project is requires some research exploration, and thus some of the concrete goals may
shift slightly as we learn more about the capabilities and limitations of existing SNARK
compilers. Survey existing SNARK compilers: We will begin by examining the state-of-the-
art SNARK compilers, beginning with: Pequin [13] Sn̊arkl [21] and xJsnark [1, 8].

• Understand the libSNARK input formats: libSNARK supports many different input
types, and linking libSNARK with MPC compilers will require a detailed understand-
ing of the input formats supported by libSNARK.

• Link MPC compilers to libSNARK: Our connection task will be to link the circuit
output of an MPC compiler with libSNARK. We will begin with:

– Frigate: Takes a high-level, C-like language and outputs optimized (boolean)
circuits. In our previous tests, we have found Frigate extremely efficient and easy
to use.

– CBMC-GC: Takes a subset of ANSI-C, and outputs an optimized Boolean circuit.
An interesting feature of CBMC-GC is that the circuits are highly optimized.
CBMC-GCs optimization techniques are fairly computation-intensive and are
thus not suitable for compiling large circuits. It will be interesting to see whether
these aggressive optimization techniques can improve performance in some of the
smaller circuits that are common in the ZK field.

• Benchmark: We will benchmark circuit sizes and running times

7 Budget and Justifications

The primary cost of this project is researcher time. The overall scope of this project –
linking MPC and SNARK compiler technology for mutual benefit – is large, and could

3

easily motivate an enormous research effort. We believe, however, that with 2 months of
effort for each of the members of our research team, we could begin to make the connections
outlined in the timeline above. Two months of salary coverage, including benefits, tuition
and university overhead for the three team members would cost about $86K.

References

[1] akosba. xjsnark. GitHub. https://github.com/akosba/xjsnark. Accessed 8 June
2018.

[2] aseemr. Wysteria. BitBucket. https://bitbucket.org/aseemr/wysteria/. Accessed:
18 May 2018.

[3] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. SNARKs for C:
Verifying progrma executions succinctly and in zero knowledge. In Lecture Notes in
Computer Science, CRYPTO’13, pages 90–108, 2013.

[4] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-
interactive zero knowledge for a von neumann architecture. In Proceedings of the 23rd
USENIX Conference on Security Symposium, SEC’14, pages 781–796, Berkeley, CA,
USA, 2014. USENIX Association.

[5] D. Demmler, T. Schneider, and M. Zohner. ABY - a framework for efficient mixed-
protocol secure two-party computation. In Proceedings of the 2015 Network and Dis-
tributed System Security Symposium, NDSS’15, 2015.

[6] Encrypto Group. ABY. GitHub. https://github.com/encryptogroup/ABY. Ac-
cessed: 17 May 2018.

[7] Andreas Holzer, Martin Franz, Stefan Katzenbeisser, and Helmut Veith. Secure two-
party computations in ansi c. In Proceedings of the 2012 ACM Conference on Computer
and Communications Security, CCS ’12, pages 772–783, New York, NY, USA, 2012.
ACM.

[8] A. Kosba, C. Papamanthou, and E. Shi. xjsnark: A framework for efficient verifiable
computation. In 2018 IEEE Symposium on Security and Privacy (SP), volume 00,
pages 543–560, 2018.

[9] KULeuven-COSIC. SCALE-MAMBA. GitHub. https://github.com/

KULeuven-COSIC/SCALE-MAMBA. Accessed 14 June 2018.

[10] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay—a secure two-
party computation system. In Proceedings of the 13th Conference on USENIX Security
Symposium - Volume 13, SSYM’04, pages 20–20, Berkeley, CA, USA, 2004. USENIX
Association.

[11] B. Mood. Frigate. BitBucket. https://bitbucket.org/bmood/frigaterelease, Ac-
cessed: 17 May 2018.

[12] B. Mood, D. Gupta, H. Carter, K. Butler, and P. Traynor. Frigate: A validated,
extensible, and efficient compiler and interpreter for secure computation. In Proceedings
of the IEEE European Symposium on Security and Privacy, 2016.

4

https://github.com/akosba/xjsnark
https://bitbucket.org/aseemr/wysteria/
https://github.com/encryptogroup/ABY
https://github.com/KULeuven-COSIC/SCALE-MAMBA
https://github.com/KULeuven-COSIC/SCALE-MAMBA
https://bitbucket.org/bmood/frigaterelease

[13] Pepper Project. Pequin. GitHub. https://github.com/pepper-project/pequin.
Accessed: 17 May 2018.

[14] Pepper Project. TinyRam. GitHub. https://github.com/pepper-project/tinyram.
Accessed: 18 May 2018.

[15] PICCO-Team. PICCO. GitHub. https://github.com/PICCO-Team/picco. Accessed
17 May 2018.

[16] Aseem Rastogi, Matthew A. Hammer, and Michael Hicks. Wysteria: A programming
language for generic, mixed-mode multiparty computations. In Proceedings of the 2014
IEEE Symposium on Security and Privacy, SP ’14, pages 655–670, Washington, DC,
USA, 2014. IEEE Computer Society.

[17] samee. Obliv-C. GitHub. https://github.com/samee/obliv-c. Accessed 17 May
2018.

[18] Scipr-Lab. libSNARK project. GitHub. https://github.com/scipr-lab/libsnark.
Accessed: 17 May 2018.

[19] TU Darmstadt Security Engineering Group. CBMC-GC. https://www.seceng.

informatik.tu-darmstadt.de/research/software/cbmc-gc/. Accessed: 18 May
2018.

[20] Srinath Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, Andrew J. Blumberg,
and Michael Walfish. Taking proof-based verified computation a few steps closer to
practicality. In Proceedings of the 21st USENIX Conference on Security Symposium,
Security’12, pages 12–12, Berkeley, CA, USA, 2012. USENIX Association.

[21] Gordon Stewart, Samuel Merten, and Logan Leland. Sn̊arkl: Somewhat Practical,
Pretty Much Declarative Verifiable Computing in Haskell. In PADL’18: The 20th In-
ternational Symposium on Practical Aspects of Declarative Languages, LNCS. Springer,
2018.

[22] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit: Efficient MultiParty
computation toolkit. GitHub, 2016. https://github.com/emp-toolkit. Accessed: 17
May 2018.

5

https://github.com/pepper-project/pequin
https://github.com/pepper-project/tinyram
https://github.com/PICCO-Team/picco
 https://github.com/samee/obliv-c
https://github.com/scipr-lab/libsnark
https://www.seceng.informatik.tu-darmstadt.de/research/software/cbmc-gc/
https://www.seceng.informatik.tu-darmstadt.de/research/software/cbmc-gc/
https://github.com/emp-toolkit

	Motivation and Overview
	Technical Approach
	Team Background and Qualifications
	Evaluation Plan
	Security Considerations
	Schedule
	Budget and Justifications

