Permalink
Switch branches/tags
Nothing to show
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
1959 lines (1613 sloc) 48.1 KB
/*
* Support for OmniVision ov8830 1080p HD camera sensor.
*
* Copyright (c) 2011 Intel Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/kmod.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/gpio.h>
#include <linux/moduleparam.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/bitops.h>
#include <media/v4l2-device.h>
#include <media/v4l2-chip-ident.h>
#include <asm/intel-mid.h>
#include "ov8830.h"
#include "ov8835.h"
#define OV8830_BIN_FACTOR_MAX 2
#define to_ov8830_sensor(sd) container_of(sd, struct ov8830_device, sd)
static int
ov8830_read_reg(struct i2c_client *client, u16 len, u16 reg, u16 *val)
{
struct i2c_msg msg[2];
u16 data[OV8830_SHORT_MAX];
int err, i;
if (!client->adapter) {
v4l2_err(client, "%s error, no client->adapter\n", __func__);
return -ENODEV;
}
/* @len should be even when > 1 */
if (len > OV8830_BYTE_MAX) {
v4l2_err(client, "%s error, invalid data length\n", __func__);
return -EINVAL;
}
memset(msg, 0, sizeof(msg));
memset(data, 0, sizeof(data));
msg[0].addr = client->addr;
msg[0].flags = 0;
msg[0].len = I2C_MSG_LENGTH;
msg[0].buf = (u8 *)data;
/* high byte goes first */
data[0] = cpu_to_be16(reg);
msg[1].addr = client->addr;
msg[1].len = len;
msg[1].flags = I2C_M_RD;
msg[1].buf = (u8 *)data;
err = i2c_transfer(client->adapter, msg, 2);
if (err < 0)
goto error;
/* high byte comes first */
if (len == OV8830_8BIT) {
*val = (u8)data[0];
} else {
/* 16-bit access is default when len > 1 */
for (i = 0; i < (len >> 1); i++)
val[i] = be16_to_cpu(data[i]);
}
return 0;
error:
dev_err(&client->dev, "read from offset 0x%x error %d", reg, err);
return err;
}
static int ov8830_i2c_write(struct i2c_client *client, u16 len, u8 *data)
{
struct i2c_msg msg;
const int num_msg = 1;
int ret;
int retry = 0;
again:
msg.addr = client->addr;
msg.flags = 0;
msg.len = len;
msg.buf = data;
ret = i2c_transfer(client->adapter, &msg, 1);
/*
* It is said that Rev 2 sensor needs some delay here otherwise
* registers do not seem to load correctly. But tests show that
* removing the delay would not cause any in-stablility issue and the
* delay will cause serious performance down, so, removed previous
* mdelay(1) here.
*/
if (ret == num_msg)
return 0;
if (retry <= I2C_RETRY_COUNT) {
dev_err(&client->dev, "retrying i2c write transfer... %d",
retry);
retry++;
msleep(20);
goto again;
}
return ret;
}
static int
ov8830_write_reg(struct i2c_client *client, u16 data_length, u16 reg, u16 val)
{
int ret;
unsigned char data[4] = {0};
u16 *wreg;
const u16 len = data_length + sizeof(u16); /* 16-bit address + data */
if (!client->adapter) {
v4l2_err(client, "%s error, no client->adapter\n", __func__);
return -ENODEV;
}
if (data_length != OV8830_8BIT && data_length != OV8830_16BIT) {
v4l2_err(client, "%s error, invalid data_length\n", __func__);
return -EINVAL;
}
/* high byte goes out first */
wreg = (u16 *)data;
*wreg = cpu_to_be16(reg);
if (data_length == OV8830_8BIT) {
data[2] = (u8)(val);
} else {
/* OV8830_16BIT */
u16 *wdata = (u16 *)&data[2];
*wdata = be16_to_cpu(val);
}
ret = ov8830_i2c_write(client, len, data);
if (ret)
dev_err(&client->dev,
"write error: wrote 0x%x to offset 0x%x error %d",
val, reg, ret);
return ret;
}
/*
* ov8830_write_reg_array - Initializes a list of MT9M114 registers
* @client: i2c driver client structure
* @reglist: list of registers to be written
*
* This function initializes a list of registers. When consecutive addresses
* are found in a row on the list, this function creates a buffer and sends
* consecutive data in a single i2c_transfer().
*
* __ov8830_flush_reg_array, __ov8830_buf_reg_array() and
* __ov8830_write_reg_is_consecutive() are internal functions to
* ov8830_write_reg_array_fast() and should be not used anywhere else.
*
*/
static int __ov8830_flush_reg_array(struct i2c_client *client,
struct ov8830_write_ctrl *ctrl)
{
u16 size;
if (ctrl->index == 0)
return 0;
size = sizeof(u16) + ctrl->index; /* 16-bit address + data */
ctrl->buffer.addr = cpu_to_be16(ctrl->buffer.addr);
ctrl->index = 0;
return ov8830_i2c_write(client, size, (u8 *)&ctrl->buffer);
}
static int __ov8830_buf_reg_array(struct i2c_client *client,
struct ov8830_write_ctrl *ctrl,
const struct ov8830_reg *next)
{
int size;
u16 *data16;
switch (next->type) {
case OV8830_8BIT:
size = 1;
ctrl->buffer.data[ctrl->index] = (u8)next->val;
break;
case OV8830_16BIT:
size = 2;
data16 = (u16 *)&ctrl->buffer.data[ctrl->index];
*data16 = cpu_to_be16((u16)next->val);
break;
default:
return -EINVAL;
}
/* When first item is added, we need to store its starting address */
if (ctrl->index == 0)
ctrl->buffer.addr = next->reg.sreg;
ctrl->index += size;
/*
* Buffer cannot guarantee free space for u32? Better flush it to avoid
* possible lack of memory for next item.
*/
if (ctrl->index + sizeof(u16) >= OV8830_MAX_WRITE_BUF_SIZE)
__ov8830_flush_reg_array(client, ctrl);
return 0;
}
static int
__ov8830_write_reg_is_consecutive(struct i2c_client *client,
struct ov8830_write_ctrl *ctrl,
const struct ov8830_reg *next)
{
if (ctrl->index == 0)
return 1;
return ctrl->buffer.addr + ctrl->index == next->reg.sreg;
}
static int ov8830_write_reg_array(struct i2c_client *client,
const struct ov8830_reg *reglist)
{
const struct ov8830_reg *next = reglist;
struct ov8830_write_ctrl ctrl;
int err;
ctrl.index = 0;
for (; next->type != OV8830_TOK_TERM; next++) {
switch (next->type & OV8830_TOK_MASK) {
case OV8830_TOK_DELAY:
err = __ov8830_flush_reg_array(client, &ctrl);
if (err)
return err;
msleep(next->val);
break;
default:
/*
* If next address is not consecutive, data needs to be
* flushed before proceed.
*/
if (!__ov8830_write_reg_is_consecutive(client, &ctrl,
next)) {
err = __ov8830_flush_reg_array(client, &ctrl);
if (err)
return err;
}
err = __ov8830_buf_reg_array(client, &ctrl, next);
if (err) {
v4l2_err(client, "%s: write error, aborted\n",
__func__);
return err;
}
break;
}
}
return __ov8830_flush_reg_array(client, &ctrl);
}
static int drv201_write8(struct v4l2_subdev *sd, int reg, int val)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct drv201_device *dev = to_drv201_device(sd);
struct i2c_msg msg;
memset(&msg, 0 , sizeof(msg));
msg.addr = DRV201_I2C_ADDR;
msg.len = 2;
msg.buf = dev->buffer;
msg.buf[0] = reg;
msg.buf[1] = val;
return i2c_transfer(client->adapter, &msg, 1);
}
static int drv201_write16(struct v4l2_subdev *sd, int reg, int val)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct drv201_device *dev = to_drv201_device(sd);
struct i2c_msg msg;
memset(&msg, 0 , sizeof(msg));
msg.addr = DRV201_I2C_ADDR;
msg.len = 3;
msg.buf = dev->buffer;
msg.buf[0] = reg;
msg.buf[1] = val >> 8;
msg.buf[2] = val & 0xFF;
return i2c_transfer(client->adapter, &msg, 1);
}
static int drv201_read8(struct v4l2_subdev *sd, int reg)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct drv201_device *dev = to_drv201_device(sd);
struct i2c_msg msg[2];
int r;
memset(msg, 0 , sizeof(msg));
msg[0].addr = DRV201_I2C_ADDR;
msg[0].flags = 0;
msg[0].len = 1;
msg[0].buf = dev->buffer;
msg[0].buf[0] = reg;
msg[1].addr = DRV201_I2C_ADDR;
msg[1].flags = I2C_M_RD;
msg[1].len = 1;
msg[1].buf = dev->buffer;
r = i2c_transfer(client->adapter, msg, ARRAY_SIZE(msg));
if (r != ARRAY_SIZE(msg))
return -EIO;
return dev->buffer[0];
}
static int drv201_init(struct v4l2_subdev *sd)
{
struct drv201_device *dev = to_drv201_device(sd);
struct i2c_client *client = v4l2_get_subdevdata(sd);
dev->platform_data = camera_get_af_platform_data();
if (!dev->platform_data) {
v4l2_err(client, "failed to get platform data\n");
return -ENXIO;
}
return 0;
}
static int drv201_power_up(struct v4l2_subdev *sd)
{
/* Transition time required from shutdown to standby state */
const int WAKEUP_DELAY_US = 100;
const int DEFAULT_CONTROL_VAL = 0x02;
struct drv201_device *dev = to_drv201_device(sd);
struct i2c_client *client = v4l2_get_subdevdata(sd);
int r;
/* Enable power */
r = dev->platform_data->power_ctrl(sd, 1);
if (r)
return r;
udelay(1); /* Wait for VBAT to stabilize */
/* jiggle SCL pin to wake up device */
drv201_write8(sd, DRV201_CONTROL, 1);
usleep_range(WAKEUP_DELAY_US, WAKEUP_DELAY_US * 10);
/* Reset device */
r = drv201_write8(sd, DRV201_CONTROL, 1);
if (r < 0)
goto fail_powerdown;
/* Detect device */
r = drv201_read8(sd, DRV201_CONTROL);
if (r < 0)
goto fail_powerdown;
if (r != DEFAULT_CONTROL_VAL) {
r = -ENXIO;
goto fail_powerdown;
}
/* Use the liner mode to reduce the noise */
r = drv201_write8(sd, DRV201_MODE, DRV201_MODE_LINEAR);
if (r < 0)
goto fail_powerdown;
/* VCM RESONANCE FREQUENCY REGISTER (VCM_FREQ) */
r = drv201_write8(sd, DRV201_VCM_FREQ, DRV201_DEFAULT_VCM_FREQ);
if (r < 0)
goto fail_powerdown;
dev->focus = DRV201_MAX_FOCUS_POS;
dev->initialized = true;
v4l2_info(client, "detected drv201\n");
return 0;
fail_powerdown:
dev->platform_data->power_ctrl(sd, 0);
return r;
}
static int drv201_power_down(struct v4l2_subdev *sd)
{
struct drv201_device *dev = to_drv201_device(sd);
return dev->platform_data->power_ctrl(sd, 0);
}
static int drv201_t_focus_abs(struct v4l2_subdev *sd, s32 value)
{
struct drv201_device *dev = to_drv201_device(sd);
int r;
if (!dev->initialized)
return -ENODEV;
value = clamp(value, 0, DRV201_MAX_FOCUS_POS);
r = drv201_write16(sd, DRV201_VCM_CURRENT, value);
if (r < 0)
return r;
getnstimeofday(&dev->focus_time);
dev->focus = value;
return 0;
}
/* Start group hold for the following register writes */
static int ov8830_grouphold_start(struct v4l2_subdev *sd)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
const int group = 0;
return ov8830_write_reg(client, OV8830_8BIT,
OV8830_GROUP_ACCESS,
group | OV8830_GROUP_ACCESS_HOLD_START);
}
/* End group hold and delay launch it */
static int ov8830_grouphold_launch(struct v4l2_subdev *sd)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
const int group = 0;
int ret;
/* End group */
ret = ov8830_write_reg(client, OV8830_8BIT,
OV8830_GROUP_ACCESS,
group | OV8830_GROUP_ACCESS_HOLD_END);
if (ret)
return ret;
/* Delay launch group (during next vertical blanking) */
return ov8830_write_reg(client, OV8830_8BIT,
OV8830_GROUP_ACCESS,
group | OV8830_GROUP_ACCESS_DELAY_LAUNCH);
}
/*
* Read EEPROM data from the le24l042cs chip and store
* it into a kmalloced buffer. On error return NULL.
* The caller must kfree the buffer when no more needed.
* @size: set to the size of the returned EEPROM data.
*/
static void *le24l042cs_read(struct i2c_client *client, u32 *size)
{
static const unsigned int LE24L042CS_I2C_ADDR = 0xA0 >> 1;
static const unsigned int LE24L042CS_EEPROM_SIZE = 512;
static const unsigned int MAX_READ_SIZE = OV8830_MAX_WRITE_BUF_SIZE;
struct i2c_msg msg[2];
int addr;
char *buffer;
buffer = kmalloc(LE24L042CS_EEPROM_SIZE, GFP_KERNEL);
if (!buffer)
return NULL;
memset(msg, 0, sizeof(msg));
for (addr = 0; addr < LE24L042CS_EEPROM_SIZE; addr += MAX_READ_SIZE) {
unsigned int i2c_addr = LE24L042CS_I2C_ADDR;
unsigned char addr_buf;
int r;
i2c_addr |= (addr >> 8) & 1;
addr_buf = addr & 0xFF;
msg[0].addr = i2c_addr;
msg[0].flags = 0;
msg[0].len = 1;
msg[0].buf = &addr_buf;
msg[1].addr = i2c_addr;
msg[1].flags = I2C_M_RD;
msg[1].len = min(MAX_READ_SIZE, LE24L042CS_EEPROM_SIZE - addr);
msg[1].buf = &buffer[addr];
r = i2c_transfer(client->adapter, msg, ARRAY_SIZE(msg));
if (r != ARRAY_SIZE(msg)) {
kfree(buffer);
dev_err(&client->dev, "read failed at 0x%03x\n", addr);
return NULL;
}
}
if (size)
*size = LE24L042CS_EEPROM_SIZE;
return buffer;
}
static int ov8830_g_priv_int_data(struct v4l2_subdev *sd,
struct v4l2_private_int_data *priv)
{
u32 size;
void *b = le24l042cs_read(v4l2_get_subdevdata(sd), &size);
int r = 0;
if (!b)
return -EIO;
if (copy_to_user(priv->data, b, min_t(__u32, priv->size, size)))
r = -EFAULT;
priv->size = size;
kfree(b);
return r;
}
static int __ov8830_get_max_fps_index(
const struct ov8830_fps_setting *fps_settings)
{
int i;
for (i = 0; i < MAX_FPS_OPTIONS_SUPPORTED; i++) {
if (fps_settings[i].fps == 0)
break;
}
return i - 1;
}
static int __ov8830_update_frame_timing(struct v4l2_subdev *sd, int exposure,
u16 *hts, u16 *vts)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
int ret;
/* Increase the VTS to match exposure + 14 */
if (exposure > *vts - OV8830_INTEGRATION_TIME_MARGIN)
*vts = (u16) exposure + OV8830_INTEGRATION_TIME_MARGIN;
ret = ov8830_write_reg(client, OV8830_16BIT, OV8830_TIMING_HTS, *hts);
if (ret)
return ret;
return ov8830_write_reg(client, OV8830_16BIT, OV8830_TIMING_VTS, *vts);
}
static int __ov8830_set_exposure(struct v4l2_subdev *sd, int exposure, int gain,
int dig_gain, u16 *hts, u16 *vts)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
int exp_val, ret;
/* Update frame timings. Expsure must be minimum < vts-14 */
ret = __ov8830_update_frame_timing(sd, exposure, hts, vts);
if (ret)
return ret;
/* For OV8835, the low 4 bits are fraction bits and must be kept 0 */
exp_val = exposure << 4;
ret = ov8830_write_reg(client, OV8830_8BIT,
OV8830_LONG_EXPO+2, exp_val & 0xFF);
if (ret)
return ret;
ret = ov8830_write_reg(client, OV8830_8BIT,
OV8830_LONG_EXPO+1, (exp_val >> 8) & 0xFF);
if (ret)
return ret;
ret = ov8830_write_reg(client, OV8830_8BIT,
OV8830_LONG_EXPO, (exp_val >> 16) & 0x0F);
if (ret)
return ret;
/* Digital gain : to all MWB channel gains */
if (dig_gain) {
ret = ov8830_write_reg(client, OV8830_16BIT,
OV8830_MWB_RED_GAIN_H, dig_gain);
if (ret)
return ret;
ret = ov8830_write_reg(client, OV8830_16BIT,
OV8830_MWB_GREEN_GAIN_H, dig_gain);
if (ret)
return ret;
ret = ov8830_write_reg(client, OV8830_16BIT,
OV8830_MWB_BLUE_GAIN_H, dig_gain);
if (ret)
return ret;
}
/* set global gain */
return ov8830_write_reg(client, OV8830_8BIT, OV8830_AGC_ADJ, gain);
}
static int ov8830_set_exposure(struct v4l2_subdev *sd, int exposure, int gain,
int dig_gain)
{
struct ov8830_device *dev = to_ov8830_sensor(sd);
const struct ov8830_resolution *res;
u16 hts, vts;
int ret;
mutex_lock(&dev->input_lock);
/* Validate exposure: cannot exceed 16bit value */
exposure = clamp_t(int, exposure, 0, OV8830_MAX_EXPOSURE_VALUE);
/* Validate gain: must not exceed maximum 8bit value */
gain = clamp_t(int, gain, 0, OV8830_MAX_GAIN_VALUE);
/* Validate digital gain: must not exceed 12 bit value*/
dig_gain = clamp_t(int, dig_gain, 0, OV8830_MWB_GAIN_MAX);
/* Group hold is valid only if sensor is streaming. */
if (dev->streaming) {
ret = ov8830_grouphold_start(sd);
if (ret)
goto out;
}
res = &dev->curr_res_table[dev->fmt_idx];
hts = res->fps_options[dev->fps_index].pixels_per_line;
vts = res->fps_options[dev->fps_index].lines_per_frame;
ret = __ov8830_set_exposure(sd, exposure, gain, dig_gain, &hts, &vts);
if (ret)
goto out;
/* Updated the device variable. These are the current values. */
dev->gain = gain;
dev->exposure = exposure;
dev->digital_gain = dig_gain;
out:
/* Group hold launch - delayed launch */
if (dev->streaming)
ret = ov8830_grouphold_launch(sd);
mutex_unlock(&dev->input_lock);
return ret;
}
static int ov8830_s_exposure(struct v4l2_subdev *sd,
struct atomisp_exposure *exposure)
{
return ov8830_set_exposure(sd, exposure->integration_time[0],
exposure->gain[0], exposure->gain[1]);
}
static long ov8830_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
{
switch (cmd) {
case ATOMISP_IOC_S_EXPOSURE:
return ov8830_s_exposure(sd, (struct atomisp_exposure *)arg);
case ATOMISP_IOC_G_SENSOR_PRIV_INT_DATA:
return ov8830_g_priv_int_data(sd, arg);
default:
return -EINVAL;
}
return 0;
}
static int ov8830_init_registers(struct v4l2_subdev *sd)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct ov8830_device *dev = to_ov8830_sensor(sd);
if (dev->sensor_id == OV8835_CHIP_ID)
dev->basic_settings_list = ov8835_basic_settings;
else
dev->basic_settings_list = ov8830_BasicSettings;
return ov8830_write_reg_array(client, dev->basic_settings_list);
}
static int ov8830_init(struct v4l2_subdev *sd, u32 val)
{
struct ov8830_device *dev = to_ov8830_sensor(sd);
int ret;
mutex_lock(&dev->input_lock);
ret = ov8830_init_registers(sd);
mutex_unlock(&dev->input_lock);
return ret;
}
static void ov8830_uninit(struct v4l2_subdev *sd)
{
struct ov8830_device *dev = to_ov8830_sensor(sd);
dev->exposure = 0;
dev->gain = 0;
dev->digital_gain = 0;
}
static int power_up(struct v4l2_subdev *sd)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct ov8830_device *dev = to_ov8830_sensor(sd);
int ret;
/* Enable power */
ret = dev->platform_data->power_ctrl(sd, 1);
if (ret)
goto fail_power;
/* Release reset */
ret = dev->platform_data->gpio_ctrl(sd, 1);
if (ret)
dev_err(&client->dev, "gpio failed 1\n");
/* Enable clock */
ret = dev->platform_data->flisclk_ctrl(sd, 1);
if (ret)
goto fail_clk;
/* Minumum delay is 8192 clock cycles before first i2c transaction,
* which is 1.37 ms at the lowest allowed clock rate 6 MHz */
msleep(2);
return 0;
fail_clk:
dev->platform_data->flisclk_ctrl(sd, 0);
fail_power:
dev->platform_data->power_ctrl(sd, 0);
dev_err(&client->dev, "sensor power-up failed\n");
return ret;
}
static int power_down(struct v4l2_subdev *sd)
{
struct ov8830_device *dev = to_ov8830_sensor(sd);
struct i2c_client *client = v4l2_get_subdevdata(sd);
int ret;
ret = dev->platform_data->flisclk_ctrl(sd, 0);
if (ret)
dev_err(&client->dev, "flisclk failed\n");
/* gpio ctrl */
ret = dev->platform_data->gpio_ctrl(sd, 0);
if (ret)
dev_err(&client->dev, "gpio failed 1\n");
/* power control */
ret = dev->platform_data->power_ctrl(sd, 0);
if (ret)
dev_err(&client->dev, "vprog failed.\n");
return ret;
}
static int __ov8830_s_power(struct v4l2_subdev *sd, int on)
{
struct ov8830_device *dev = to_ov8830_sensor(sd);
int ret, r;
if (on == 0) {
ov8830_uninit(sd);
ret = power_down(sd);
r = drv201_power_down(sd);
if (ret == 0)
ret = r;
dev->power = 0;
} else {
ret = power_up(sd);
if (ret)
return ret;
ret = drv201_power_up(sd);
if (ret) {
power_down(sd);
return ret;
}
dev->power = 1;
/* Initalise sensor settings */
ret = ov8830_init_registers(sd);
}
return ret;
}
static int ov8830_s_power(struct v4l2_subdev *sd, int on)
{
int ret;
struct ov8830_device *dev = to_ov8830_sensor(sd);
mutex_lock(&dev->input_lock);
ret = __ov8830_s_power(sd, on);
mutex_unlock(&dev->input_lock);
/*
* FIXME: Compatibility with old behaviour: return to preview
* when the device is power cycled.
*/
if (!ret && on)
v4l2_ctrl_s_ctrl(dev->run_mode, ATOMISP_RUN_MODE_PREVIEW);
return ret;
}
static int ov8830_g_chip_ident(struct v4l2_subdev *sd,
struct v4l2_dbg_chip_ident *chip)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_OV8830, 0);
return 0;
}
/* Return value of the specified register, first try getting it from
* the register list and if not found, get from the sensor via i2c.
*/
static int ov8830_get_register(struct v4l2_subdev *sd, int reg,
const struct ov8830_reg *reglist)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
const struct ov8830_reg *next;
u16 val;
/* Try if the values is in the register list */
for (next = reglist; next->type != OV8830_TOK_TERM; next++) {
if (next->type != OV8830_8BIT) {
v4l2_err(sd, "only 8-bit registers supported\n");
return -ENXIO;
}
if (next->reg.sreg == reg)
return next->val;
}
/* If not, read from sensor */
if (ov8830_read_reg(client, OV8830_8BIT, reg, &val)) {
v4l2_err(sd, "failed to read register 0x%04X\n", reg);
return -EIO;
}
return val;
}
static int ov8830_get_register_16bit(struct v4l2_subdev *sd, int reg,
const struct ov8830_reg *reglist, unsigned int *value)
{
int high, low;
high = ov8830_get_register(sd, reg, reglist);
if (high < 0)
return high;
low = ov8830_get_register(sd, reg + 1, reglist);
if (low < 0)
return low;
*value = ((u8) high << 8) | (u8) low;
return 0;
}
static int ov8830_get_intg_factor(struct v4l2_subdev *sd,
struct camera_mipi_info *info,
const struct ov8830_reg *reglist)
{
const int ext_clk = 19200000; /* MHz */
struct atomisp_sensor_mode_data *m = &info->data;
struct ov8830_device *dev = to_ov8830_sensor(sd);
const struct ov8830_resolution *res =
&dev->curr_res_table[dev->fmt_idx];
int pll2_prediv;
int pll2_multiplier;
int pll2_divs;
int pll2_seld5;
int t1, t2, t3;
int sclk;
int ret;
memset(&info->data, 0, sizeof(info->data));
pll2_prediv = ov8830_get_register(sd, OV8830_PLL_PLL10, reglist);
pll2_multiplier = ov8830_get_register(sd, OV8830_PLL_PLL11, reglist);
pll2_divs = ov8830_get_register(sd, OV8830_PLL_PLL12, reglist);
pll2_seld5 = ov8830_get_register(sd, OV8830_PLL_PLL13, reglist);
if (pll2_prediv < 0 || pll2_multiplier < 0 ||
pll2_divs < 0 || pll2_seld5 < 0)
return -EIO;
pll2_prediv &= 0x07;
pll2_multiplier &= 0x3F;
pll2_divs = (pll2_divs & 0x0F) + 1;
pll2_seld5 &= 0x03;
if (pll2_prediv <= 0)
return -EIO;
t1 = ext_clk / pll2_prediv;
t2 = t1 * pll2_multiplier;
t3 = t2 / pll2_divs;
sclk = t3;
if (pll2_seld5 == 0)
sclk = t3;
else if (pll2_seld5 == 3)
sclk = t3 * 2 / 5;
else
sclk = t3 / pll2_seld5;
m->vt_pix_clk_freq_mhz = sclk;
/* HTS and VTS */
m->frame_length_lines =
res->fps_options[dev->fps_index].lines_per_frame;
m->line_length_pck = res->fps_options[dev->fps_index].pixels_per_line;
m->coarse_integration_time_min = 0;
m->coarse_integration_time_max_margin = OV8830_INTEGRATION_TIME_MARGIN;
/* OV Sensor do not use fine integration time. */
m->fine_integration_time_min = 0;
m->fine_integration_time_max_margin = 0;
/*
* read_mode indicate whether binning is used for calculating
* the correct exposure value from the user side. So adapt the
* read mode values accordingly.
*/
m->read_mode = res->bin_factor_x ?
OV8830_READ_MODE_BINNING_ON : OV8830_READ_MODE_BINNING_OFF;
ret = ov8830_get_register(sd, OV8830_TIMING_X_INC, res->regs);
if (ret < 0)
return ret;
m->binning_factor_x = ((ret >> 4) + 1) / 2;
ret = ov8830_get_register(sd, OV8830_TIMING_Y_INC, res->regs);
if (ret < 0)
return ret;
m->binning_factor_y = ((ret >> 4) + 1) / 2;
/* Get the cropping and output resolution to ISP for this mode. */
ret = ov8830_get_register_16bit(sd, OV8830_HORIZONTAL_START_H,
res->regs, &m->crop_horizontal_start);
if (ret)
return ret;
ret = ov8830_get_register_16bit(sd, OV8830_VERTICAL_START_H,
res->regs, &m->crop_vertical_start);
if (ret)
return ret;
ret = ov8830_get_register_16bit(sd, OV8830_HORIZONTAL_END_H,
res->regs, &m->crop_horizontal_end);
if (ret)
return ret;
ret = ov8830_get_register_16bit(sd, OV8830_VERTICAL_END_H,
res->regs, &m->crop_vertical_end);
if (ret)
return ret;
ret = ov8830_get_register_16bit(sd, OV8830_HORIZONTAL_OUTPUT_SIZE_H,
res->regs, &m->output_width);
if (ret)
return ret;
return ov8830_get_register_16bit(sd, OV8830_VERTICAL_OUTPUT_SIZE_H,
res->regs, &m->output_height);
}
static int __ov8830_s_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_frame_interval *interval)
{
struct ov8830_device *dev = to_ov8830_sensor(sd);
struct camera_mipi_info *info = v4l2_get_subdev_hostdata(sd);
const struct ov8830_resolution *res =
res = &dev->curr_res_table[dev->fmt_idx];
int i;
int ret;
int fps;
u16 hts;
u16 vts;
if (!interval->interval.numerator)
interval->interval.numerator = 1;
fps = interval->interval.denominator / interval->interval.numerator;
/* Ignore if we are already using the required FPS. */
if (fps == res->fps_options[dev->fps_index].fps)
return 0;
dev->fps_index = 0;
/* Go through the supported FPS list */
for (i = 0; i < MAX_FPS_OPTIONS_SUPPORTED; i++) {
if (!res->fps_options[i].fps)
break;
if (abs(res->fps_options[i].fps - fps)
< abs(res->fps_options[dev->fps_index].fps - fps))
dev->fps_index = i;
}
/* Get the new Frame timing values for new exposure */
hts = res->fps_options[dev->fps_index].pixels_per_line;
vts = res->fps_options[dev->fps_index].lines_per_frame;
/* update frametiming. Conside the curren exposure/gain as well */
ret = __ov8830_set_exposure(sd, dev->exposure, dev->gain,
dev->digital_gain, &hts, &vts);
if (ret)
return ret;
/* Update the new values so that user side knows the current settings */
ret = ov8830_get_intg_factor(sd, info, dev->basic_settings_list);
if (ret)
return ret;
interval->interval.denominator = res->fps_options[dev->fps_index].fps;
interval->interval.numerator = 1;
return 0;
}
/*
* distance - calculate the distance
* @res: resolution
* @w: width
* @h: height
*
* Get the gap between resolution and w/h.
* res->width/height smaller than w/h wouldn't be considered.
* Returns the value of gap or -1 if fail.
*/
/* tune this value so that the DVS resolutions get selected properly,
* but make sure 16:9 does not match 4:3.
*/
#define LARGEST_ALLOWED_RATIO_MISMATCH 500
static int distance(struct ov8830_resolution const *res, const u32 w,
const u32 h)
{
unsigned int w_ratio = ((res->width<<13)/w);
unsigned int h_ratio = ((res->height<<13)/h);
int match = abs(((w_ratio<<13)/h_ratio) - ((int)8192));
if ((w_ratio < (int)8192) || (h_ratio < (int)8192)
|| (match > LARGEST_ALLOWED_RATIO_MISMATCH))
return -1;
return w_ratio + h_ratio;
}
/*
* Returns the nearest higher resolution index.
* @w: width
* @h: height
* matching is done based on enveloping resolution and
* aspect ratio. If the aspect ratio cannot be matched
* to any index, -1 is returned.
*/
static int nearest_resolution_index(struct v4l2_subdev *sd, int w, int h)
{
int i;
int idx = -1;
int dist;
int min_dist = INT_MAX;
const struct ov8830_resolution *tmp_res = NULL;
struct ov8830_device *dev = to_ov8830_sensor(sd);
for (i = 0; i < dev->entries_curr_table; i++) {
tmp_res = &dev->curr_res_table[i];
dist = distance(tmp_res, w, h);
if (dist == -1)
continue;
if (dist < min_dist) {
min_dist = dist;
idx = i;
}
}
return idx;
}
static int get_resolution_index(struct v4l2_subdev *sd, int w, int h)
{
int i;
struct ov8830_device *dev = to_ov8830_sensor(sd);
for (i = 0; i < dev->entries_curr_table; i++) {
if (w != dev->curr_res_table[i].width)
continue;
if (h != dev->curr_res_table[i].height)
continue;
/* Found it */
return i;
}
return -1;
}
static int __ov8830_try_mbus_fmt(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt)
{
int idx;
struct ov8830_device *dev = to_ov8830_sensor(sd);
if (!fmt)
return -EINVAL;
if ((fmt->width > OV8830_RES_WIDTH_MAX) ||
(fmt->height > OV8830_RES_HEIGHT_MAX)) {
fmt->width = OV8830_RES_WIDTH_MAX;
fmt->height = OV8830_RES_HEIGHT_MAX;
} else {
idx = nearest_resolution_index(sd, fmt->width, fmt->height);
/*
* nearest_resolution_index() doesn't return smaller resolutions.
* If it fails, it means the requested resolution is higher than we
* can support. Fallback to highest possible resolution in this case.
*/
if (idx == -1)
idx = dev->entries_curr_table - 1;
fmt->width = dev->curr_res_table[idx].width;
fmt->height = dev->curr_res_table[idx].height;
}
fmt->code = V4L2_MBUS_FMT_SBGGR10_1X10;
return 0;
}
static int ov8830_try_mbus_fmt(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt)
{
struct ov8830_device *dev = to_ov8830_sensor(sd);
int r;
mutex_lock(&dev->input_lock);
r = __ov8830_try_mbus_fmt(sd, fmt);
mutex_unlock(&dev->input_lock);
return r;
}
static int ov8830_s_mbus_fmt(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt)
{
struct ov8830_device *dev = to_ov8830_sensor(sd);
struct camera_mipi_info *ov8830_info = NULL;
struct i2c_client *client = v4l2_get_subdevdata(sd);
u16 hts, vts;
int ret;
const struct ov8830_resolution *res;
ov8830_info = v4l2_get_subdev_hostdata(sd);
if (ov8830_info == NULL)
return -EINVAL;
mutex_lock(&dev->input_lock);
ret = __ov8830_try_mbus_fmt(sd, fmt);
if (ret)
goto out;
dev->fmt_idx = get_resolution_index(sd, fmt->width, fmt->height);
/* Sanity check */
if (unlikely(dev->fmt_idx == -1)) {
ret = -EINVAL;
goto out;
}
/* Sets the default FPS */
dev->fps_index = 0;
/* Get the current resolution setting */
res = &dev->curr_res_table[dev->fmt_idx];
/* Write the selected resolution table values to the registers */
ret = ov8830_write_reg_array(client, res->regs);
if (ret)
goto out;
/* Frame timing registers are updates as part of exposure */
hts = res->fps_options[dev->fps_index].pixels_per_line;
vts = res->fps_options[dev->fps_index].lines_per_frame;
/*
* update hts, vts, exposure and gain as one block. Note that the vts
* will be changed according to the exposure used. But the maximum vts
* dev->curr_res_table[dev->fmt_idx] should not be changed at all.
*/
ret = __ov8830_set_exposure(sd, dev->exposure, dev->gain,
dev->digital_gain, &hts, &vts);
if (ret)
goto out;
ret = ov8830_get_intg_factor(sd, ov8830_info, dev->basic_settings_list);
out:
mutex_unlock(&dev->input_lock);
return ret;
}
static int ov8830_g_mbus_fmt(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt)
{
struct ov8830_device *dev = to_ov8830_sensor(sd);
if (!fmt)
return -EINVAL;
mutex_lock(&dev->input_lock);
fmt->width = dev->curr_res_table[dev->fmt_idx].width;
fmt->height = dev->curr_res_table[dev->fmt_idx].height;
fmt->code = V4L2_MBUS_FMT_SBGGR10_1X10;
mutex_unlock(&dev->input_lock);
return 0;
}
static int ov8830_detect(struct i2c_client *client, u16 *id, u8 *revision)
{
struct i2c_adapter *adapter = client->adapter;
u16 id35;
int ret, s_ret;
/* i2c check */
if (!i2c_check_functionality(adapter, I2C_FUNC_I2C))
return -ENODEV;
/* check sensor chip ID - are same for both 8830 and 8835 modules */
ret = ov8830_read_reg(client, OV8830_16BIT, OV8830_CHIP_ID_HIGH, id);
if (ret)
return ret;
/* This always reads as 0x8830, even on 8835. */
dev_info(&client->dev, "chip_id = 0x%4.4x\n", *id);
if (*id != OV8830_CHIP_ID)
return -ENODEV;
/*
* Check which module is attached OV8835 or OV8830.
* We need to support OV8830 for a while.
*
* For correctly identifying the OV8835 module, sensor needs
* to start streaming, OTP read enabled and wait for about 10ms
* before reading the OTB Bank 0 for OV8835 module identification.
*
* TODO/FIXME Revisit OTP support is added or OV8830 not needed anymore.
*/
ret = ov8830_write_reg_array(client, ov8835_module_detection);
if (ret)
return ret;
msleep(20);
ret = ov8830_read_reg(client, OV8830_8BIT, OV8830_OTP_BANK0_PID, &id35);
if (ret)
goto out;
/* OTP BANK0 read will return 0x35 for OV8835 else 0*/
if (id35 == 0x35)
*id = OV8835_CHIP_ID;
dev_info(&client->dev, "sensor is ov%4.4x\n", *id);
/* REVISIT: HACK: Driver is currently forcing revision to 0 */
*revision = 0;
out:
/* Stream off now. */
s_ret = ov8830_write_reg(client, OV8830_8BIT, OV8830_STREAM_MODE, 0);
return ret ? ret : s_ret;
}
/*
* ov8830 stream on/off
*/
static int ov8830_s_stream(struct v4l2_subdev *sd, int enable)
{
struct ov8830_device *dev = to_ov8830_sensor(sd);
struct i2c_client *client = v4l2_get_subdevdata(sd);
int ret;
mutex_lock(&dev->input_lock);
ret = ov8830_write_reg(client, OV8830_8BIT, 0x0100, enable ? 1 : 0);
if (ret != 0) {
mutex_unlock(&dev->input_lock);
v4l2_err(client, "failed to set streaming\n");
return ret;
}
dev->streaming = enable;
mutex_unlock(&dev->input_lock);
return 0;
}
/*
* ov8830 enum frame size, frame intervals
*/
static int ov8830_enum_framesizes(struct v4l2_subdev *sd,
struct v4l2_frmsizeenum *fsize)
{
unsigned int index = fsize->index;
struct ov8830_device *dev = to_ov8830_sensor(sd);
mutex_lock(&dev->input_lock);
if (index >= dev->entries_curr_table) {
mutex_unlock(&dev->input_lock);
return -EINVAL;
}
fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE;
fsize->discrete.width = dev->curr_res_table[index].width;
fsize->discrete.height = dev->curr_res_table[index].height;
fsize->reserved[0] = dev->curr_res_table[index].used;
mutex_unlock(&dev->input_lock);
return 0;
}
static int ov8830_enum_frameintervals(struct v4l2_subdev *sd,
struct v4l2_frmivalenum *fival)
{
unsigned int index = fival->index;
int fmt_index;
struct ov8830_device *dev = to_ov8830_sensor(sd);
const struct ov8830_resolution *res;
mutex_lock(&dev->input_lock);
/*
* since the isp will donwscale the resolution to the right size,
* find the nearest one that will allow the isp to do so important to
* ensure that the resolution requested is padded correctly by the
* requester, which is the atomisp driver in this case.
*/
fmt_index = nearest_resolution_index(sd, fival->width, fival->height);
if (-1 == fmt_index)
fmt_index = dev->entries_curr_table - 1;
res = &dev->curr_res_table[fmt_index];
/* Check if this index is supported */
if (index > __ov8830_get_max_fps_index(res->fps_options)) {
mutex_unlock(&dev->input_lock);
return -EINVAL;
}
fival->type = V4L2_FRMIVAL_TYPE_DISCRETE;
fival->discrete.numerator = 1;
fival->discrete.denominator = res->fps_options[index].fps;
mutex_unlock(&dev->input_lock);
return 0;
}
static int ov8830_enum_mbus_fmt(struct v4l2_subdev *sd, unsigned int index,
enum v4l2_mbus_pixelcode *code)
{
*code = V4L2_MBUS_FMT_SBGGR10_1X10;
return 0;
}
static int ov8830_s_config(struct v4l2_subdev *sd,
int irq, void *pdata)
{
struct ov8830_device *dev = to_ov8830_sensor(sd);
struct i2c_client *client = v4l2_get_subdevdata(sd);
u8 sensor_revision;
u16 sensor_id;
int ret;
if (pdata == NULL)
return -ENODEV;
dev->platform_data = pdata;
mutex_lock(&dev->input_lock);
if (dev->platform_data->platform_init) {
ret = dev->platform_data->platform_init(client);
if (ret) {
mutex_unlock(&dev->input_lock);
v4l2_err(client, "ov8830 platform init err\n");
return ret;
}
}
ret = __ov8830_s_power(sd, 1);
if (ret) {
mutex_unlock(&dev->input_lock);
v4l2_err(client, "ov8830 power-up err.\n");
return ret;
}
ret = dev->platform_data->csi_cfg(sd, 1);
if (ret)
goto fail_csi_cfg;
/* config & detect sensor */
ret = ov8830_detect(client, &sensor_id, &sensor_revision);
if (ret) {
v4l2_err(client, "ov8830_detect err s_config.\n");
goto fail_detect;
}
dev->sensor_id = sensor_id;
dev->sensor_revision = sensor_revision;
/* power off sensor */
ret = __ov8830_s_power(sd, 0);
mutex_unlock(&dev->input_lock);
if (ret) {
v4l2_err(client, "ov8830 power-down err.\n");
return ret;
}
return 0;
fail_detect:
dev->platform_data->csi_cfg(sd, 0);
fail_csi_cfg:
__ov8830_s_power(sd, 0);
mutex_unlock(&dev->input_lock);
dev_err(&client->dev, "sensor power-gating failed\n");
return ret;
}
static int
ov8830_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh,
struct v4l2_subdev_mbus_code_enum *code)
{
if (code->index)
return -EINVAL;
code->code = V4L2_MBUS_FMT_SBGGR10_1X10;
return 0;
}
static int
ov8830_enum_frame_size(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh,
struct v4l2_subdev_frame_size_enum *fse)
{
int index = fse->index;
struct ov8830_device *dev = to_ov8830_sensor(sd);
mutex_lock(&dev->input_lock);
if (index >= dev->entries_curr_table) {
mutex_unlock(&dev->input_lock);
return -EINVAL;
}
fse->min_width = dev->curr_res_table[index].width;
fse->min_height = dev->curr_res_table[index].height;
fse->max_width = dev->curr_res_table[index].width;
fse->max_height = dev->curr_res_table[index].height;
mutex_unlock(&dev->input_lock);
return 0;
}
static struct v4l2_mbus_framefmt *
__ov8830_get_pad_format(struct ov8830_device *sensor,
struct v4l2_subdev_fh *fh, unsigned int pad,
enum v4l2_subdev_format_whence which)
{
if (which == V4L2_SUBDEV_FORMAT_TRY)
return v4l2_subdev_get_try_format(fh, pad);
return &sensor->format;
}
static int
ov8830_get_pad_format(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh,
struct v4l2_subdev_format *fmt)
{
struct ov8830_device *dev = to_ov8830_sensor(sd);
fmt->format = *__ov8830_get_pad_format(dev, fh, fmt->pad, fmt->which);
return 0;
}
static int
ov8830_set_pad_format(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh,
struct v4l2_subdev_format *fmt)
{
struct ov8830_device *dev = to_ov8830_sensor(sd);
struct v4l2_mbus_framefmt *format =
__ov8830_get_pad_format(dev, fh, fmt->pad, fmt->which);
*format = fmt->format;
return 0;
}
static int ov8830_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct ov8830_device *dev = container_of(
ctrl->handler, struct ov8830_device, ctrl_handler);
struct i2c_client *client = v4l2_get_subdevdata(&dev->sd);
/* input_lock is taken by the control framework, so it
* doesn't need to be taken here.
*/
/* We only handle V4L2_CID_RUN_MODE for now. */
switch (ctrl->id) {
case V4L2_CID_RUN_MODE:
switch (ctrl->val) {
case ATOMISP_RUN_MODE_VIDEO:
dev->curr_res_table = dev->sensor_id == OV8835_CHIP_ID ?
ov8835_res_video : ov8830_res_video;
dev->entries_curr_table =
dev->sensor_id == OV8835_CHIP_ID ?
ARRAY_SIZE(ov8835_res_video) :
ARRAY_SIZE(ov8830_res_video);
break;
case ATOMISP_RUN_MODE_STILL_CAPTURE:
dev->curr_res_table = dev->sensor_id == OV8835_CHIP_ID ?
ov8835_res_still : ov8830_res_still;
dev->entries_curr_table =
dev->sensor_id == OV8835_CHIP_ID ?
ARRAY_SIZE(ov8835_res_still) :
ARRAY_SIZE(ov8830_res_still);
break;
default:
dev->curr_res_table = dev->sensor_id == OV8835_CHIP_ID ?
ov8835_res_preview : ov8830_res_preview;
dev->entries_curr_table =
dev->sensor_id == OV8835_CHIP_ID ?
ARRAY_SIZE(ov8835_res_preview) :
ARRAY_SIZE(ov8830_res_preview);
}
dev->fmt_idx = 0;
dev->fps_index = 0;
return 0;
case V4L2_CID_TEST_PATTERN:
return ov8830_write_reg(client, OV8830_16BIT, 0x3070,
ctrl->val);
case V4L2_CID_FOCUS_ABSOLUTE:
return drv201_t_focus_abs(&dev->sd, ctrl->val);
}
return -EINVAL; /* Should not happen. */
}
static int ov8830_g_ctrl(struct v4l2_ctrl *ctrl)
{
struct ov8830_device *dev = container_of(
ctrl->handler, struct ov8830_device, ctrl_handler);
switch (ctrl->id) {
case V4L2_CID_FOCUS_STATUS: {
static const struct timespec move_time = {
/* The time required for focus motor to move the lens */
.tv_sec = 0,
.tv_nsec = 60000000,
};
struct drv201_device *drv201 = to_drv201_device(&dev->sd);
struct timespec current_time, finish_time, delta_time;
getnstimeofday(&current_time);
finish_time = timespec_add(drv201->focus_time, move_time);
delta_time = timespec_sub(current_time, finish_time);
if (delta_time.tv_sec >= 0 && delta_time.tv_nsec >= 0) {
/* VCM motor is not moving */
ctrl->val = ATOMISP_FOCUS_HP_COMPLETE |
ATOMISP_FOCUS_STATUS_ACCEPTS_NEW_MOVE;
} else {
/* VCM motor is still moving */
ctrl->val = ATOMISP_FOCUS_STATUS_MOVING |
ATOMISP_FOCUS_HP_IN_PROGRESS;
}
return 0;
}
case V4L2_CID_BIN_FACTOR_HORZ:
case V4L2_CID_BIN_FACTOR_VERT: {
uint16_t reg = ctrl->id == V4L2_CID_BIN_FACTOR_VERT ?
OV8830_TIMING_X_INC : OV8830_TIMING_Y_INC;
int r = ov8830_get_register(
&dev->sd, reg, dev->curr_res_table[dev->fmt_idx].regs);
if (r < 0)
return r;
ctrl->val = fls((r >> 4) + (r & 0xf)) - 2;
return 0;
}
}
return 0;
}
static int
ov8830_g_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_frame_interval *interval)
{
struct ov8830_device *dev = to_ov8830_sensor(sd);
const struct ov8830_resolution *res;
mutex_lock(&dev->input_lock);
/* Return the currently selected settings' maximum frame interval */
res = &dev->curr_res_table[dev->fmt_idx];
interval->interval.numerator = 1;
interval->interval.denominator = res->fps_options[dev->fps_index].fps;
mutex_unlock(&dev->input_lock);
return 0;
}
static int ov8830_s_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_frame_interval *interval)
{
struct ov8830_device *dev = to_ov8830_sensor(sd);
int ret;
mutex_lock(&dev->input_lock);
ret = __ov8830_s_frame_interval(sd, interval);
mutex_unlock(&dev->input_lock);
return ret;
}
static int ov8830_g_skip_frames(struct v4l2_subdev *sd, u32 *frames)
{
struct ov8830_device *dev = to_ov8830_sensor(sd);
mutex_lock(&dev->input_lock);
*frames = dev->curr_res_table[dev->fmt_idx].skip_frames;
mutex_unlock(&dev->input_lock);
return 0;
}
static const struct v4l2_subdev_video_ops ov8830_video_ops = {
.s_stream = ov8830_s_stream,
.enum_framesizes = ov8830_enum_framesizes,
.enum_frameintervals = ov8830_enum_frameintervals,
.enum_mbus_fmt = ov8830_enum_mbus_fmt,
.try_mbus_fmt = ov8830_try_mbus_fmt,
.g_mbus_fmt = ov8830_g_mbus_fmt,
.s_mbus_fmt = ov8830_s_mbus_fmt,
.g_frame_interval = ov8830_g_frame_interval,
.s_frame_interval = ov8830_s_frame_interval,
};
static const struct v4l2_subdev_sensor_ops ov8830_sensor_ops = {
.g_skip_frames = ov8830_g_skip_frames,
};
static const struct v4l2_subdev_core_ops ov8830_core_ops = {
.g_chip_ident = ov8830_g_chip_ident,
.queryctrl = v4l2_subdev_queryctrl,
.g_ctrl = v4l2_subdev_g_ctrl,
.s_ctrl = v4l2_subdev_s_ctrl,
.s_power = ov8830_s_power,
.ioctl = ov8830_ioctl,
.init = ov8830_init,
};
/* REVISIT: Do we need pad operations? */
static const struct v4l2_subdev_pad_ops ov8830_pad_ops = {
.enum_mbus_code = ov8830_enum_mbus_code,
.enum_frame_size = ov8830_enum_frame_size,
.get_fmt = ov8830_get_pad_format,
.set_fmt = ov8830_set_pad_format,
};
static const struct v4l2_subdev_ops ov8830_ops = {
.core = &ov8830_core_ops,
.video = &ov8830_video_ops,
.pad = &ov8830_pad_ops,
.sensor = &ov8830_sensor_ops,
};
static int ov8830_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct ov8830_device *dev = to_ov8830_sensor(sd);
if (dev->platform_data->platform_deinit)
dev->platform_data->platform_deinit();
media_entity_cleanup(&dev->sd.entity);
v4l2_ctrl_handler_free(&dev->ctrl_handler);
dev->platform_data->csi_cfg(sd, 0);
v4l2_device_unregister_subdev(sd);
kfree(dev);
return 0;
}
static const struct v4l2_ctrl_ops ctrl_ops = {
.s_ctrl = ov8830_s_ctrl,
.g_volatile_ctrl = ov8830_g_ctrl,
};
static const char * const ctrl_run_mode_menu[] = {
NULL,
"Video",
"Still capture",
"Continuous capture",
"Preview",
};
static const struct v4l2_ctrl_config ctrl_run_mode = {
.ops = &ctrl_ops,
.id = V4L2_CID_RUN_MODE,
.name = "run mode",
.type = V4L2_CTRL_TYPE_MENU,
.min = 1,
.def = 4,
.max = 4,
.qmenu = ctrl_run_mode_menu,
};
static const struct v4l2_ctrl_config ctrls[] = {
{
.ops = &ctrl_ops,
.id = V4L2_CID_EXPOSURE_ABSOLUTE,
.name = "Absolute exposure",
.type = V4L2_CTRL_TYPE_MENU,
.max = 0xffff,
.qmenu = ctrl_run_mode_menu,
}, {
.ops = &ctrl_ops,
.id = V4L2_CID_TEST_PATTERN,
.name = "Test pattern",
.type = V4L2_CTRL_TYPE_INTEGER,
.step = 1,
.max = 0xffff,
}, {
.ops = &ctrl_ops,
.id = V4L2_CID_FOCUS_ABSOLUTE,
.name = "Focus absolute",
.type = V4L2_CTRL_TYPE_INTEGER,
.step = 1,
.max = DRV201_MAX_FOCUS_POS,
}, {
/* This one is junk: see the spec for proper use of this CID. */
.ops = &ctrl_ops,
.id = V4L2_CID_FOCUS_STATUS,
.name = "Focus status",
.type = V4L2_CTRL_TYPE_INTEGER,
.step = 1,
.max = 100,
.flags = V4L2_CTRL_FLAG_READ_ONLY | V4L2_CTRL_FLAG_VOLATILE,
}, {
/* This is crap. For compatibility use only. */
.ops = &ctrl_ops,
.id = V4L2_CID_FOCAL_ABSOLUTE,
.name = "Focal lenght",
.type = V4L2_CTRL_TYPE_INTEGER,
.min = (OV8830_FOCAL_LENGTH_NUM << 16) | OV8830_FOCAL_LENGTH_DEM,
.max = (OV8830_FOCAL_LENGTH_NUM << 16) | OV8830_FOCAL_LENGTH_DEM,
.step = 1,
.def = (OV8830_FOCAL_LENGTH_NUM << 16) | OV8830_FOCAL_LENGTH_DEM,
.flags = V4L2_CTRL_FLAG_READ_ONLY,
}, {
/* This one is crap, too. For compatibility use only. */
.ops = &ctrl_ops,
.id = V4L2_CID_FNUMBER_ABSOLUTE,
.name = "F-number",
.type = V4L2_CTRL_TYPE_INTEGER,
.min = (OV8830_F_NUMBER_DEFAULT_NUM << 16) | OV8830_F_NUMBER_DEM,
.max = (OV8830_F_NUMBER_DEFAULT_NUM << 16) | OV8830_F_NUMBER_DEM,
.step = 1,
.def = (OV8830_F_NUMBER_DEFAULT_NUM << 16) | OV8830_F_NUMBER_DEM,
.flags = V4L2_CTRL_FLAG_READ_ONLY,
}, {
/*
* The most utter crap. _Never_ use this, even for
* compatibility reasons!
*/
.ops = &ctrl_ops,
.id = V4L2_CID_FNUMBER_RANGE,
.name = "F-number range",
.type = V4L2_CTRL_TYPE_INTEGER,
.min = (OV8830_F_NUMBER_DEFAULT_NUM << 24) | (OV8830_F_NUMBER_DEM << 16) | (OV8830_F_NUMBER_DEFAULT_NUM << 8) | OV8830_F_NUMBER_DEM,
.max = (OV8830_F_NUMBER_DEFAULT_NUM << 24) | (OV8830_F_NUMBER_DEM << 16) | (OV8830_F_NUMBER_DEFAULT_NUM << 8) | OV8830_F_NUMBER_DEM,
.step = 1,
.def = (OV8830_F_NUMBER_DEFAULT_NUM << 24) | (OV8830_F_NUMBER_DEM << 16) | (OV8830_F_NUMBER_DEFAULT_NUM << 8) | OV8830_F_NUMBER_DEM,
.flags = V4L2_CTRL_FLAG_READ_ONLY,
}, {
.ops = &ctrl_ops,
.id = V4L2_CID_BIN_FACTOR_HORZ,
.name = "Horizontal binning factor",
.type = V4L2_CTRL_TYPE_INTEGER,
.max = OV8830_BIN_FACTOR_MAX,
.step = 1,
.flags = V4L2_CTRL_FLAG_READ_ONLY | V4L2_CTRL_FLAG_VOLATILE,
}, {
.ops = &ctrl_ops,
.id = V4L2_CID_BIN_FACTOR_VERT,
.name = "Vertical binning factor",
.type = V4L2_CTRL_TYPE_INTEGER,
.max = OV8830_BIN_FACTOR_MAX,
.step = 1,
.flags = V4L2_CTRL_FLAG_READ_ONLY | V4L2_CTRL_FLAG_VOLATILE,
}
};
static int ov8830_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct ov8830_device *dev;
unsigned int i;
int ret;
/* allocate sensor device & init sub device */
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev) {
v4l2_err(client, "%s: out of memory\n", __func__);
return -ENOMEM;
}
mutex_init(&dev->input_lock);
dev->fmt_idx = 0;
v4l2_i2c_subdev_init(&(dev->sd), client, &ov8830_ops);
ret = drv201_init(&dev->sd);
if (ret < 0)
goto out_free;
if (client->dev.platform_data) {
ret = ov8830_s_config(&dev->sd, client->irq,
client->dev.platform_data);
if (ret)
goto out_free;
}
dev->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
dev->pad.flags = MEDIA_PAD_FL_SOURCE;
dev->sd.entity.type = MEDIA_ENT_T_V4L2_SUBDEV_SENSOR;
dev->format.code = V4L2_MBUS_FMT_SBGGR10_1X10;
ret = v4l2_ctrl_handler_init(&dev->ctrl_handler, ARRAY_SIZE(ctrls) + 1);
if (ret) {
ov8830_remove(client);
return ret;
}
dev->run_mode = v4l2_ctrl_new_custom(&dev->ctrl_handler,
&ctrl_run_mode, NULL);
for (i = 0; i < ARRAY_SIZE(ctrls); i++)
v4l2_ctrl_new_custom(&dev->ctrl_handler, &ctrls[i], NULL);
if (dev->ctrl_handler.error) {
ov8830_remove(client);
return dev->ctrl_handler.error;
}
/* Use same lock for controls as for everything else. */
dev->ctrl_handler.lock = &dev->input_lock;
dev->sd.ctrl_handler = &dev->ctrl_handler;
v4l2_ctrl_handler_setup(&dev->ctrl_handler);
ret = media_entity_init(&dev->sd.entity, 1, &dev->pad, 0);
if (ret) {
ov8830_remove(client);
return ret;
}
return 0;
out_free:
v4l2_device_unregister_subdev(&dev->sd);
kfree(dev);
return ret;
}
static const struct i2c_device_id ov8830_id[] = {
{OV8830_NAME, 0},
{}
};
MODULE_DEVICE_TABLE(i2c, ov8830_id);
static struct i2c_driver ov8830_driver = {
.driver = {
.owner = THIS_MODULE,
.name = OV8830_NAME,
},
.probe = ov8830_probe,
.remove = ov8830_remove,
.id_table = ov8830_id,
};
static __init int ov8830_init_mod(void)
{
return i2c_add_driver(&ov8830_driver);
}
static __exit void ov8830_exit_mod(void)
{
i2c_del_driver(&ov8830_driver);
}
module_init(ov8830_init_mod);
module_exit(ov8830_exit_mod);
MODULE_DESCRIPTION("A low-level driver for Omnivision OV8830 sensors");
MODULE_LICENSE("GPL");