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A1
A2
A3
A4
A5
A6
A7 × × ×
A8 × × × × × × × ×
A9 × × × × × × × × × × ×

A10 × × × × × × × × × × ×
C1
C2
C3
C4
C5
C6
C7 ×
C8 × × × × ×
C9 × × × × × × × × × ×

C10 × × × × × × × × × × ×
G1
G2
G3
G4
G5
G6
G7 ×
G8 × × × ×
G9 × × × × × × × × × × ×

G10 × × × × × × × × × × ×
N1
N2
N3
N4
N5
N6
N7 × ×
N8 × × × × ×
N9 × × × × × × × × × × ×

N10 × × × × × × × × × × ×
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Álgebra

Problema 1. Let Q>0 denote the set of all positive rational numbers. Determine all functions f : Q>0 → Q>0
satisfying

f(x2f(y)2) = f(x)2f(y)

for all x, y ∈ Q>0

Problema 2. Determine todos os inteiros n ≥ 3 para os quais existem números reais a1, a2, . . . , an+2, tais que
an+1 = a1, an+2 = a2 e

aiai+1 + 1 = ai+2

para i = 1, 2, . . . , n.

Problema 3. Given any set S of positive integers, show that at least one of the following two assertions is true:

1. there exist distinct finite subsets F and G of S such that
∑
x∈F 1/x =

∑
x∈G 1/x;

2. there exists a positive rational number r < 1 such that
∑
x∈F 1/x 6= r, for all finite subsets F of S.

Problema 4. Let a0, a1, a2, . . . be a sequence of real numbers such that a0 = 0, a1 = 1, and for every n ≥ 2 there
exists 1 ≤ k ≤ n satisfying

an = an−1 + · · ·+ an−k
k

.

Find the maximal value of a2018 − a2017.

Problema 5. Determine all functions f : (0,∞)→ R satisfying(
x+ 1

x

)
f(y) = f(xy) + f

(y
x

)
for all x, y > 0.

Problema 6. Let m,n ≥ 2 be integers. Let f(x1, . . . , xn) be a polynomial with real coefficients such that

f(x1, . . . , xn) =
⌊
x1 + · · ·+ xn

m

⌋
for everyx1, . . . , xn ∈ {0, 1, . . .m− 1}.

Prove that the total degree of f is at least n.

Problema 7. Find the maximal value of

S = 3

√
a

b+ 7 + 3

√
b

c+ 7 + 3

√
c

d+ 7 + 3

√
d

a+ 7
where a, b, c, d are nonnegative real numbers which satisfy a+ b+ c+ d = 100
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Combinatória

Problema 1. Let n ≥ 3 be an integer. Prove that there exists a set S of 2n positive integers satisfying the following
property: For every m = 2, 3, . . . , n the set S can be partitioned into two subsets with equal sum of elements, with
one of the subsets of cardinality m.

Problema 2. Guilherme and Zeus play a game on a 20 × 20 chessboard. In the beginning the board is empty. In
every turn, Zeus places a black knight on an empty square in such a way that his new knight does not attack any
previous knights. Then, Guilherme places a white queen on an empty square. The game gets finished when somebody
cannot move.

Find the maximal positive K such that, regardless of the strategy of Guilherme, Zeus can put at least K knights
on the board.

Problema 3. Seja n um inteiro positivo. Guilherme executa uma sequência de movimentos numa fita que consiste
em n+ 1 quadrados enfileirados, numerados de 0 a n, da esquerda pra direita. Inicialmente, n perdras são colocadas
no quadrado 0, e os outros quadrados ficam vazios. Em cada turno, Guilherme escolhe qualquer quadrado não vazio
(com k pedras), tira uma dessas pedras e move ela para a direita no máximo k quadrados (a pedra deve continuar na
fita). O objetivo de Guilherme é mover todas as n pedras para o quadrado n.

Prove que Guilherme não alcança seu objetivo com menos que⌈n
1

⌉
+
⌈n

2

⌉
+
⌈n

3

⌉
+ · · ·+

⌈n
n

⌉
movimentos.

Problema 4. Um triângulo anti-Pascal é uma disposição de números em forma de triângulo equilátero tal que, exceto
para os números na última linha, cada número é o módulo da diferença entre os dois números imediatamente abaixo
dele. Por exemplo, a seguinte disposição de números é um triângulo anti-Pascal com quatro linhas que contém todos
os inteiros de 1 até 10.

4

2 6

5 7 1

8 3 10 9

Determine se existe um triângulo anti-Pascal com 2018 linhas que contenha todos os inteiros de 1 até 1+2+· · ·+2018.

Problema 5. Let k be a positive integer. The organising committee of a tennis tournament is to schedule the matches
for 2k players so that every two players play once, each day exactly one match is played, and each player arrives to
the tournament site the day of his first match, and departs the day of his last match. For every day a player is present
on the tournment, the committee has to pay 1 coin to the hotel. The organizers want to design the schedule so as to
minimise the total cost of all players’ stays. Determine this minimum cost.

Problema 6. Let a and b be distinct positive integers. The following infinite process takes place on an initially empty
board.

1. If there is at least a pair of equal numbers on the board, we choose such a pair and increase one of its components
by a and the other by b.

2. If no such pair exists, we write down two times the number 0.

Prove that, no matter how we make the choices in (i), operation (ii) will be performed only finitely many times.

Problema 7. Consider 2018 pairwise crossing circles no three of which are concurrent. These circles subdivide the
plane into regions bounded by circular edges that meet at vertices. Notice that there are an even number of vertices
on each circle. given the circle, alternately colour the vertices on that circle red and blue. In doing so for each circle,
every vertex is coulored twice – once for each of the two circles that cross at that point. If two colourings agree at a
vertex, then it is assigned that colour; otherwise, it becomes yellow. Show that, if some circle contains at least 2061
yellow points, then the vertices of some region are all yellow.
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Geometria

Problema 1. Seja Γ o circunćırculo do triângulo acutângulo ABC. Os pontos D e E estão sobre os segmentos AB e
AC, respectivamente, de modo que AD = AE. As mediatrizes de BD e CE intersectam os arcos menores AB e AC
de Γ nos pontos F e G, respectivamente. Prove que as retas DE e FG são paralelas (ou são a mesma reta).

Problema 2. Seja ABC um triângulo com AB = AC, e seja M o ponto médio de BC. Seja P um ponto tal que
PB < PC e PA paralelo a BC. Sejam X e Y pontos nas retas PB e PC, respectivamente, tal que B cai no segmento
PX, C cai no segmento PY , e ∠PXM = ∠PYM . Prove que o quadrilátero APXY é ćıclico.

Problema 3. A circle ω of radius 1 is given. A collection T of triangles is called good if the following conditions hold:

1. each triangle from T is inscribled in ω;

2. no two triangles from T have a common interior point.

Determine all the positive real numbers t such that, for each positive integer n, there exists a good collection of n
triangles, each of perimeter greater than t.

Problema 4. A point T is chosen inside a triangle ABC. Let A1, B1, and C1 be the reflections of T in BC, CA and
AB, respectively. Let Ω be the circumcircle of A1B1C1. The lines A1T , B1T and C1T meet Ω again at A2, B2 and
C2, respectively. Prove that the lines AA2, BB2 and CC2 are concurrent on Ω.

Problema 5. Let ABC be a triancle with circumcircle ω and incentre I. A line ` intersects the lines AI, BI and
CI at points D, E, and F , respectively, distinct from the points A, B, C and I. The perpendicular bissectors of the
segments AD, BE, and CF determine a triangle Θ. Show that the circumcircle of the triangle Θ is tangent to ω.

Problema 6. Um quadrilátero convexo ABCD satisfaz AB ·CD = BC ·DA. O ponto X está no interior de ABCD
de modo que

∠XAB = ∠XCD e ∠XBC = ∠XDA

Prove que ∠BXA+ ∠DXC = 180◦.

Problema 7. Let O be the circumcentre, and Ω be the circumcircle of an acute-angled triangle ABC. Let P be an
arbitrary point on Ω, distict from A, B, C, and their antipodes in Ω. Denote the circumcentres od the triangles AOP ,
BOP , and COP by OA, OB , and OC , respectively. The lines `A, `B , and `C are perpendicular to BC, CA, and AB
pass through OA, OB , and OC , respectively. Prove that the circumcircle of the triangle formed by `A, `B , and `C is
tangent to the line OP .



IMO Shortlist 2018

Teoria dos Números

Problema 1. Determine all pairs (m,n) of positive integers for which there exists a positive integer s such that sm
and sn have an equal number of divisors.

Problema 2. Let n > 1 be a positive integer. Each cell of an n × n table contains an integer. Suppose that the
following conditions are satisfied:

Each number in the table is congruent to 1 modulo n.The sum of numbers in any row, as well as the sum of
numbers in any column, is congruent to n modulo n2.

Let Ri be the product of the numbers in the ith row, and Cj be the product of the number in the jth column.
Prove that the sums R1 + . . . Rn and C1 + . . . Cn are congruent modulo n4.

Problema 3. Define the sequence a0, a1, . . . by an = 2n + 2bn/2c. Prove that there are infinitely many terms of the
sequence which can be expressed as sum of (two or more) distinct terms of the sequence, as well as infinitely many of
those which cannot be expressed in such a way.

Problema 4. Sejam a1, a2, . . . uma sequência infinita de inteiros positivos. Suponha que existe um inteiro N > 1 tal
que, para cada n ≥ N , o número

a1

a2
+ a2

a3
+ · · ·+ an+1

an
+ an
a1

é um inteiro. Prove que existe um inteiro positivo M tal que am = am+1 para todo m ≥M .

Problema 5. Four positive integers x, y, z and t satisfy the relations

xy − zt = x+ y = z + t.

Is it possible that both xy and zt are perfect squares?

Problema 6. Let f : {1, 2, 3, . . . } → {2, 3, . . . } be a function such that f(m + n)|f(m) + f(n) for all pairs m,n of
positive integers. Prove that there exists a positive integer c > 1 which divides all values of f .

Problema 7. Let n ≥ 2018 be an integer, and let a1, a2, . . . , an, b1, b2, . . . , bn be pairwise distinct positive integers
not exceeding 5n. Suppose that the sequence

a1

b1
,
a2

b2
, · · · , an

bn

forms an arithmetic progression. Prove that the terms of the sequence are equal.
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Álgebra

Problema 1. Let a1, a2, . . . , an, k and M be positive integers such that
1
a1

+ 1
a2

+ · · ·+ 1
an

= k and a1a2 · · · an = M.

If M > 1 , prove that the polynomial

P (x) = M(x+ 1)k − (x+ a1)(x+ a2) · · · (x+ an)

has no positive roots.

Problema 2. Let q be a real number. Gugu has a napkin with ten distinct real numbers written on it, and he writes
the following three lines of real numbers on the blackboard:

• In the first line, Gugu writes down every number of the form a − b , where a and b are two (not necessarily
distinct) numbers on his napkin.

• In the second line, Gugu writes down every number of the form qab , where a and b are two (not necessarily
distinct) numbers from the first line.

• In the third line, Gugu writes down every number of the form a2 + b2 − c2 − d2 , where a, b, c, d are four (not
necessarily distinct) numbers from the first line.

Determine all values of q such that, regardless of the numbers on Gugu’s napkin, every number in the second line
is also a number in the third line.

Problema 3. Seja S um conjunto finito, e seja A o conjunto de todas as funções de S em S. Seja f um elemento de
A, e seja T = f(S) a imagem de S pela função f . Supponha que f ◦ g ◦ f 6= g ◦ f ◦ g para todo g em A com g 6= f .
Mostre que f(T ) = T .

Problema 4. A sequence of real numbers a1, a2, . . . satisfies the relation

an = − max
i+j=n

(ai + aj) for all n > 2017.

Prove that the sequence is bounded, i.e., there is a constant M such that |an| ≤M for all positive integers n.

Problema 5. An integer n ≥ 3 is given. We call an n-tuple of real numbers (x1, x2, . . . , xn) Shiny if for each
permutation y1, y2, . . . , yn of these numbers, we have

n−1∑
i=1

yiyi+1 = y1y2 + y2y3 + y3y4 + · · ·+ yn−1yn ≥ −1.

Find the largest constant K = K(n) such that ∑
1≤i<j≤n

xixj ≥ K

holds for every Shiny n-tuple (x1, x2, . . . , xn).

Problema 6. Let R be the set of real numbers. Determine all functions f : R → R such that, for any real numbers
x and y,

f(f(x)f(y)) + f(x+ y) = f(xy).

Problema 7. Let a0, a1, a2, . . . be a sequence of integers and b0, b1, b2, . . . be a sequence of positive integers such that
a0 = 0, a1 = 1, and

an+1 =
{
anbn + an−1 if bn−1 = 1
anbn − an−1 if bn−1 > 1

for n = 1, 2, . . . .

for n = 1, 2, . . . . Prove that at least one of the two numbers a2017 and a2018 must be greater than or equal to 2017.

Problema 8. A function f : R→ R has the following property:

For every x, y ∈ R such that (f(x) + y)(f(y) + x) > 0, we have f(x) + y = f(y) + x.

Prove that f(x) + y ≤ f(y) + x whenever x > y.
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Combinatória

Problema 1. A rectangle R with odd integer side lengths is divided into small rectangles with integer side lengths.
Prove that there is at least one among the small rectangles whose distances from the four sides of R are either all odd
or all even.
Problema 2. Let n be a positive integer. Define a chameleon to be any sequence of 3n letters, with exactly n
occurrences of each of the letters a, b, and c. Define a swap to be the transposition of two adjacent letters in a
chameleon. Prove that for any chameleon X, there exists a chameleon Y such that X cannot be changed to Y using
fewer than 3n2/2 swaps.
Problema 3. Sir Alex plays the following game on a row of 9 cells. Initially, all cells are empty. In each move, Sir
Alex is allowed to perform exactly one of the following two operations:

Choose any number of the form 2j , where j is a non-negative integer, and put it into an empty cell. Choose two
(not necessarily adjacent) cells with the same number in them; denote that number by 2j . Replace the number in one
of the cells with 2j+1 and erase the number in the other cell.

At the end of the game, one cell contains 2n, where n is a given positive integer, while the other cells are empty.
Determine the maximum number of moves that Sir Alex could have made, in terms of n.
Problema 4. An integer N ≥ 2 is given. A collection of N(N + 1) soccer players, no two of whom are of the same
height, stand in a row. Sir Alex wants to remove N(N − 1) players from this row leaving a new row of 2N players in
which the following N conditions hold:

(1) no one stands between the two tallest players,

(2) no one stands between the third and fourth tallest players,
...

(N) no one stands between the two shortest players.

Show that this is always possible.
Problema 5. A hunter and an invisible rabbit play a game in the Euclidean plane. The rabbit’s starting point, A0,
and the hunter’s starting point, B0 are the same. After n − 1 rounds of the game, the rabbit is at point An−1 and
the hunter is at point Bn−1. In the nth round of the game, three things occur in order: The rabbit moves invisibly
to a point An such that the distance between An−1 and An is exactly 1. A tracking device reports a point Pn to the
hunter. The only guarantee provided by the tracking device to the hunter is that the distance between Pn and An is
at most 1. The hunter moves visibly to a point Bn such that the distance between Bn−1 and Bn is exactly 1.

Is it always possible, no matter how the rabbit moves, and no matter what points are reported by the tracking
device, for the hunter to choose her moves so that after 109 rounds, she can ensure that the distance between her and
the rabbit is at most 100?
Problema 6. Let n > 1 be a given integer. An n × n × n cube is composed of n3 unit cubes. Each unit cube is
painted with one colour. For each n×n× 1 box consisting of n2 unit cubes (in any of the three possible orientations),
we consider the set of colours present in that box (each colour is listed only once). This way, we get 3n sets of colours,
split into three groups according to the orientation.

It happens that for every set in any group, the same set appears in both of the other groups. Determine, in terms
of n, the maximal possible number of colours that are present.
Problema 7. For any finite sets X and Y os positive integers, denote by fX(k) the kth smallest positive integer not
in X, and let

X ∗ Y = X ∪ {fX(y) : y ∈ Y }.
Let A be a set of a > 0 positive integers and let B be a set of b > 0 positive integers. Prove that if A ∗ B = B ∗ A,
then

A ∗ (A ∗ · · · (A ∗ (A ∗A)) · · · )︸ ︷︷ ︸
A appears b times

= B ∗ (B ∗ · · · (B ∗ (B ∗B)) · · · )︸ ︷︷ ︸
B appears a times

.

Problema 8. Let n be a given positive integer. In the Cartesian plane, each lattice point with nonnegative coordinates
initially contains a butterfly, and there are no other butterflies. The neighborhood of a lattice point c consists of all
lattice points within the axis-aligned (2n+ 1)× (2n+ 1) square entered at c , apart from c itself. We call a butterfly
lonely , crowded , or comfortable , depending on whether the number of butterflies in its neighborhood N is respectively
less than, greater than, or equal to half of the number of lattice points in N . Every minute, all lonely butterflies fly
away simultaneously. This process goes on for as long as there are any lonely butterflies. Assuming that the process
eventually stops, determine the number of comfortable butterflies at the final state.



IMO Shortlist 2017

Geometria

Problema 1. Let ABCDE be a convex pentagon such that AB = BC = CD, ∠EAB = ∠BCD, and ∠EDC =
∠CBA. Prove that the perpendicular line from E to BC and the line segments AC and BD are concurrent.

Problema 2. Let R and S be different points on a circle Ω such that RS is not a diameter. Let ` be the tangent line
to Ω at R. Point T is such that S is the midpoint of the line segment RT . Point J is chosen on the shorter arc RS of
Ω so that the circumcircle Γ of triangle JST intersects ` at two distinct points. Let A be the common point of Γ and
` that is closer to R. Line AJ meets Ω again at K. Prove that the line KT is tangent to Γ.

Problema 3. Let O be the circumcenter of an acute triangle ABC. Line OA intersects the altitudes of ABC through
B and C at P and Q, respectively. The altitudes meet at H. Prove that the circumcenter of triangle PQH lies on a
median of triangle ABC.

Problema 4. In triangle ABC, let ω be the excircle opposite to A. Let D,E and F be the points where ω is tangent
to BC,CA, and AB, respectively. The circle AEF intersects line BC at P and Q. Let M be the midpoint of AD.
Prove that the circle MPQ is tangent to ω.

Problema 5. Let ABCC1B1A1 be a convex hexagon such that AB = BC, and suppose that the line segments
AA1, BB1, and CC1 have the same perpendicular bisector. Let the diagonals AC1 and A1C meet at D, and denote
by ω the circle ABC. Let ω intersect the circle A1BC1 again at E 6= B. Prove that the lines BB1 and DE intersect
on ω.

Problema 6. Let n ≥ 3 be an integer. Two regular n-gons A and B are given in the plane. Prove that the vertices
of A that lie inside B or on its boundary are consecutive.

(That is, prove that there exists a line separating those vertices of A that lie inside B or on its boundary from the
other vertices of A.)

Problema 7. A convex quadrilateral ABCD has an inscribed circle with center I. Let Ia, Ib, Ic and Id be the incenters
of the triangles DAB,ABC,BCD and CDA, respectively. Suppose that the common external tangents of the circles
AIbId and CIbId meet at X, and the common external tangents of the circles BIaIc and DIaIc meet at Y . Prove that
∠XIY = 90◦.

Problema 8. There are 2017 mutually external circles drawn on a blackboard, such that no two are tangent and no
three share a common tangent. A tangent segment is a line segment that is a common tangent to two circles, starting
at one tangent point and ending at the other one. Luciano is drawing tangent segments on the blackboard, one at a
time, so that no tangent segment intersects any other circles or previously drawn tangent segments. Luciano keeps
drawing tangent segments until no more can be drawn.

Find all possible numbers of tangent segments when Luciano stops drawing.



IMO Shortlist 2017

Teoria dos Números

Problema 1. For each integer a0 > 1, define the sequence a0, a1, a2, . . . for n ≥ 0 as

an+1 =
{√

an if √an is an integer,
an + 3 otherwise.

Determine all values of a0 such that there exists a number A such that an = A for infinitely many values of n .

Problema 2. Let p ≥ 2 be a prime number. Eduardo and Fernando play the following game making moves alternately:
in each move, the current player chooses an index i in the set {1, 2, . . . , p − 1} that was not chosen before by either
of the two players and then chooses an element ai from the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} . Eduardo has the first move.
The game ends after all the indices have been chosen .Then the following number is computed:

M = a0 + a110 + a2102 + · · ·+ ap−110p−1 =
p−1∑
i=0

ai.10i

.
The goal of Eduardo is to make M divisible by p , and the goal of Fernando is to prevent this.
Prove that Eduardo has a winning strategy.

Problema 3. Determiner all integers n ≥ 2 having the following property: for any integers a1, a2, . . . , an whose sum
is not divisible by n , there exists an index 1 ≤ i ≤ n such that none of the numbers

ai, ai + ai+1, . . . , ai + ai+1 + . . .+ ai+n−1

is divisible by n . Here, we let ai = ai−n when i > n .

Problema 4. Call a rational number short if it has finitely many digits in its decimal expansion. For a positive integer
m , we say that a positive integer t is m− tastic if there exists a number c ∈ {1, 2, 3, . . . , 2017} such that 10t − 1

c ·m
is

short, and such that 10k − 1
c ·m

is not short for any 1 ≤ k < t . Let S(m) be the the set of m− t astic numbers. Consider
S(m) for m = 1, 2, . . . . What is the maximum number of elements in S(m) ?

Problema 5. Find all pairs (p, q) of prime numbers which p > q and

(p+ q)p+q(p− q)p−q − 1
(p+ q)p−q(p− q)p+q − 1

is an integer.

Problema 6. Find the smallest positive integer n or show no such n exists, with the following property: there are
infinitely many distinct n - tuples of positive rational numbers (a1, a2, . . . , an) such that both

a1 + a2 + · · ·+ an and 1
a1

+ 1
a2

+ · · ·+ 1
an

are integers.

Problema 7. An ordered pair (x, y) of integers is a primitive point if the greatest common divisor of x and y is 1
. Given a finite set S of primitive points, prove that there exist a positive integer n and integers a0, a1, . . . , an such
that, for each (x, y) in S , we have:

a0x
n + a1x

n−1y + a2x
n−2y2 + · · ·+ an−1xy

n−1 + any
n = 1.

Problema 8. Let p be an odd prime number and Z>0 be the set of positive integers. Suppose that a function
f : Z>0 × Z>0 → {0, 1} satisfies the following properties:

• f(1, 1) = 0.

• f(a, b) + f(b, a) = 1 for any pair of relatively prime positive integers a, b not both equal to 1;

• f(a+ b, b) = f(a, b) for any pair of relatively prime positive integers (a, b) .

Prove that
p−1∑
n=1

f(n2, p) >
√

2p− 2.
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Álgebra

Problema 1. Let a, b, c be positive real numbers such that min(ab, bc, ca) ≥ 1. Prove that

3
√

(a2 + 1)(b2 + 1)(c2 + 1) ≤
(
a+ b+ c

3

)2
+ 1.

Problema 2. Find the smallest constant C > 0 for which the following statement holds: among any five positive real
numbers a1, a2, a3, a4, a5 (not necessarily distinct), one can always choose distinct subscripts i, j, k, l such that∣∣∣∣ aiaj − ak

al

∣∣∣∣ ≤ C.
Problema 3. Find all positive integers n such that the following statement holds: Suppose real numbers a1, a2, . . . ,
an, b1, b2, . . . , bn satisfy |ak| + |bk| = 1 for all k = 1, . . . , n. Then there exists ε1, ε2, . . . , εn, each of which is either
−1 or 1, such that ∣∣∣∣∣

n∑
i=1

εiai

∣∣∣∣∣+
∣∣∣∣∣
n∑
i=1

εibi

∣∣∣∣∣ ≤ 1.

Problema 4. Find all functions f : (0,∞)→ (0,∞) such that for any x, y ∈ (0,∞),

xf(x2)f(f(y)) + f(yf(x)) = f(xy)
(
f(f(x2)) + f(f(y2))

)
.

Problema 5. Consider fractions a
b where a and b are positive integers.

(a) Prove that for every positive integer n, there exists such a fraction a
b such that

√
n ≤ a

b ≤
√
n+ 1 and b ≤

√
n+1.

(b) Show that there are infinitely many positive integers n such that no such fraction a
b satisfies

√
n ≤ a

b ≤
√
n+ 1

and b ≤
√
n.

Problema 6. The equation

(x− 1)(x− 2) · · · (x− 2016) = (x− 1)(x− 2) · · · (x− 2016)

is written on the board, with 2016 linear factors on each side. What is the least possible value of k for which it is
possible to erase exactly k of these 4032 linear factors so that at least one factor remains on each side and the resulting
equation has no real solutions?

Problema 7. Find all functions f : R→ R such that f(0) 6= 0 and for all x, y ∈ R,

f(x+ y)2 = 2f(x)f(y) + max
{
f(x2 + y2), f(x2) + f(y2)

}
.

Problema 8. Find the largest real constant a such that for all n ≥ 1 and for all real numbers x0, x1, ..., xn satisfying
0 = x0 < x1 < x2 < · · · < xn we have

1
x1 − x0

+ 1
x2 − x1

+ · · ·+ 1
xn − xn−1

≥ a
(

2
x1

+ 3
x2

+ · · ·+ n+ 1
xn

)
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Combinatória

Problema 1. The leader of an IMO team chooses positive integers n and k with n > k, and announces them to
the deputy leader and a contestant. The leader then secretly tells the deputy leader an n-digit binary string, and
the deputy leader writes down all n-digit binary strings which differ from the leader’s in exactly k positions. (For
example, if n = 3 and k = 1, and if the leader chooses 101, the deputy leader would write down 001, 111 and 100.)
The contestant is allowed to look at the strings written by the deputy leader and guess the leader’s string. What is
the minimum number of guesses (in terms of n and k) needed to guarantee the correct answer?

Problema 2. Find all positive integers n for which all positive divisors of n can be put into the cells of a rectangular
table under the following constraints:

• each cell contains a distinct divisor;

• the sums of all rows are equal;

• and the sums of all columns are equal.

Problema 3. Let n be a positive integer relatively prime to 6. We paint the vertices of a regular n-gon with three
colours so that there is an odd number of vertices of each colour. Show that there exists an isosceles triangle whose
three vertices are of different colours.

Problema 4. Find all integers n for which each cell of n × n table can be filled with one of the letters I,M and O
in such a way that:

• in each row and each column, one third of the entries are I, one third are M and one third are O and;

• in any diagonal, if the number of entries on the diagonal is a multiple of three, then one third of the entries are
I, one third are M and one third are O.

Note: The rows and columns of an n×n table are each labelled 1 to n in a natural order. Thus each cell corresponds
to a pair of positive integer (i, j) with 1 ≤ i, j ≤ n. For n > 1, the table has 4n− 2 diagonals of two types. A diagonal
of first type consists all cells (i, j) for which i+ j is a constant, and the diagonal of this second type consists all cells
(i, j) for which i− j is constant.

Problema 5. Let n ≥ 3 be a positive integer. Find the maximum number of diagonals in a regular n-gon one can
select, so that any two of them do not intersect in the interior or they are perpendicular to each other.

Problema 6. There are n ≥ 3 islands in a city. Initially, the ferry company offers some routes between some pairs of
islands so that it is impossible to divide the islands into two groups such that no two islands in different groups are
connected by a ferry route.

After each year, the ferry company will close a ferry route between some two islands X and Y . At the same time,
in order to maintain its service, the company will open new routes according to the following rule: for any island
which is connected to a ferry route to exactly one of X and Y , a new route between this island and the other of X
and Y is added.

Suppose at any moment, if we partition all islands into two nonempty groups in any way, then it is known that
the ferry company will close a certain route connecting two islands from the two groups after some years. Prove that
after some years there will be an island which is connected to all other islands by ferry routes.

Problema 7. There are n ≥ 2 line segments in the plane such that every two segments cross and no three segments
meet at a point. Geoff has to choose an endpoint of each segment and place a frog on it facing the other endpoint.
Then he will clap his hands n − 1 times. Every time he claps,each frog will immediately jump forward to the next
intersection point on its segment. Frogs never change the direction of their jumps. Geoff wishes to place the frogs in
such a way that no two of them will ever occupy the same intersection point at the same time.

(a) Prove that Geoff can always fulfill his wish if n is odd.

(b) Prove that Geoff can never fulfill his wish if n is even.

Problema 8. Let n be a positive integer. Determine the smallest positive integer k with the following property: it is
possible to mark k cells on a 2n× 2n board so that there exists a unique partition of the board into 1× 2 and 2× 1
dominoes, none of which contain two marked cells.
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Geometria

Problema 1. Triangle BCF has a right angle at B. Let A be the point on line CF such that FA = FB and F lies
between A and C. Point D is chosen so that DA = DC and AC is the bisector of ∠DAB. Point E is chosen so that
EA = ED and AD is the bisector of ∠EAC. Let M be the midpoint of CF . Let X be the point such that AMXE
is a parallelogram. Prove that BD,FX and ME are concurrent.

Problema 2. Let ABC be a triangle with circumcircle Γ and incenter I and let M be the midpoint of BC. The
points D, E, F are selected on sides BC, CA, AB such that ID ⊥ BC, IE ⊥ AI, and IF ⊥ AI. Suppose that the
circumcircle of 4AEF intersects Γ at a point X other than A. Prove that lines XD and AM meet on Γ.

Problema 3. Let B = (−1, 0) and C = (1, 0) be fixed points on the coordinate plane. A nonempty, bounded subset
S of the plane is said to be nice if:

(i) there is a point T in S such that for every point Q in S, the segment TQ lies entirely in S;

(ii) for any triangle P1P2P3, there exists a unique point A in S and a permutation σ of the indices {1, 2, 3} for which
triangles ABC and Pσ(1)Pσ(2)Pσ(3) are similar.

Prove that there exist two distinct nice subsets S and S′ of the set {(x, y) : x ≥ 0, y ≥ 0} such that if A ∈ S and
A′ ∈ S′ are the unique choices of points in (ii), then the product BA · BA′ is a constant independent of the triangle
P1P2P3.

Problema 4. Let ABC be a triangle with AB = AC 6= BC and let I be its incentre. The line BI meets AC at
D, and the line through D perpendicular to AC meets AI at E. Prove that the reflection of I in AC lies on the
circumcircle of triangle BDE.

Problema 5. Let D be the foot of perpendicular from A to the Euler line (the line passing through the circumcentre
and the orthocentre) of an acute scalene triangle ABC. A circle ω with centre S passes through A and D, and it
intersects sides AB and AC at X and Y respectively. Let P be the foot of altitude from A to BC, and let M be the
midpoint of BC. Prove that the circumcentre of triangle XSY is equidistant from P and M .

Problema 6. Let ABCD be a convex quadrilateral with ∠ABC = ∠ADC < 90◦. The internal angle bisectors of
∠ABC and ∠ADC meet AC at E and F respectively, and meet each other at point P . Let M be the midpoint of AC
and let ω be the circumcircle of triangle BPD. Segments BM and DM intersect ω again at X and Y respectively.
Denote by Q the intersection point of lines XE and Y F . Prove that PQ ⊥ AC.

Problema 7. Let I be the incentre of a non-equilateral triangle ABC, IA be the A-excentre, I ′A be the reflection of
IA in BC, and lA be the reflection of line AI ′A in AI. Define points IB , I ′B and line lB analogously. Let P be the
intersection point of lA and lB .

(a) Prove that P lies on line OI where O is the circumcentre of triangle ABC.

(b) Let one of the tangents from P to the incircle of triangle ABC meet the circumcircle at points X and Y . Show
that ∠XIY = 120◦.

Problema 8. Let A1, B1 and C1 be points on sides BC, CA and AB of an acute triangle ABC respectively, such
that AA1, BB1 and CC1 are the internal angle bisectors of triangle ABC. Let I be the incentre of triangle ABC, and
H be the orthocentre of triangle A1B1C1. Show that

AH +BH + CH ≥ AI +BI + CI.
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Teoria dos Números

Problema 1. For any positive integer k, denote the sum of digits of k in its decimal representation by S(k). Find
all polynomials P (x) with integer coefficients such that for any positive integer n ≥ 2016, the integer P (n) is positive
and

S(P (n)) = P (S(n)).

Problema 2. Let τ(n) be the number of positive divisors of n. Let τ1(n) be the number of positive divisors of n
which have remainders 1 when divided by 3. Find all positive integral values of the fraction τ(10n)

τ1(10n) .

Problema 3. A set of postive integers is called fragrant if it contains at least two elements and each of its elements
has a prime factor in common with at least one of the other elements. Let P (n) = n2 + n + 1. What is the least
possible positive integer value of b such that there exists a non-negative integer a for which the set

{P (a+ 1), P (a+ 2), . . . , P (a+ b)}

is fragrant?

Problema 4. Let n,m, k and l be positive integers with n 6= 1 such that nk +mnl + 1 divides nk+l − 1. Prove that
m = 1 and l = 2k ; or l|k and m = nk−l−1

nl−1 .

Problema 5. Let a be a positive integer which is not a perfect square, and consider the equation

k = x2 − a
x2 − y2 .

Let A be the set of positive integers k for which the equation admits a solution in Z2 with x >
√
a, and let B be the

set of positive integers for which the equation admits a solution in Z2 with 0 ≤ x <
√
a. Show that A = B.

Problema 6. Denote by N the set of all positive integers. Find all functions f : N → N such that for all positive
integers m and n, the integer f(m) + f(n)−mn is nonzero and divides mf(m) + nf(n).

Problema 7. Let P = A1A2 · · ·Ak be a convex polygon in the plane. The vertices A1, A2, . . . , Ak have integral
coordinates and lie on a circle. Let S be the area of P . An odd positive integer n is given such that the squares of
the side lengths of P are integers divisible by n. Prove that 2S is an integer divisible by n.

Problema 8. Find all polynomials P (x) of odd degree d and with integer coefficients satisfying the following property:
for each positive integer n, there exists n positive integers x1, x2, . . . , xn such that 1

2 <
P (xi)
P (xj) < 2 and P (xi)

P (xj) is the d-th
power of a rational number for every pair of indices i and j with 1 ≤ i, j ≤ n.
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Álgebra

Problema 1. Suppose that a sequence a1, a2, . . . of positive real numbers satisfies

ak+1 ≥
kak

a2
k + (k − 1)

for every positive integer k. Prove that a1 + a2 + . . .+ an ≥ n for every n ≥ 2.

Problema 2. Determine all functions f : Z→ Z with the property that

f(x− f(y)) = f(f(x))− f(y)− 1

holds for all x, y ∈ Z.

Problema 3. Let n be a fixed positive integer. Find the maximum possible value of∑
1≤r<s≤2n

(s− r − n)xrxs,

where −1 ≤ xi ≤ 1 for all i = 1, · · · , 2n.

Problema 4. Let R be the set of real numbers. Determine all functions f : R→ R that satisfy the equation

f(x+ f(x+ y)) + f(xy) = x+ f(x+ y) + yf(x)

for all real numbers x and y.

Problema 5. Let 2Z + 1 denote the set of odd integers. Find all functions f : Z 7→ 2Z + 1 satisfying

f(x+ f(x) + y) + f(x− f(x)− y) = f(x+ y) + f(x− y)

for every x, y ∈ Z.

Problema 6. Let n be a fixed integer with n ≥ 2. We say that two polynomials P and Q with real coefficients are
block-similar if for each i ∈ {1, 2, . . . , n} the sequences

P (2015i), P (2015i− 1), . . . , P (2015i− 2014) and
Q(2015i), Q(2015i− 1), . . . , Q(2015i− 2014)

are permutations of each other.

(a) Prove that there exist distinct block-similar polynomials of degree n+ 1.

(b) Prove that there do not exist distinct block-similar polynomials of degree n.
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Combinatória

Problema 1. In Lineland there are n ≥ 1 towns, arranged along a road running from left to right. Each town has
a left bulldozer (put to the left of the town and facing left) and a right bulldozer (put to the right of the town and
facing right). The sizes of the 2n bulldozers are distinct. Every time when a left and right bulldozer confront each
other, the larger bulldozer pushes the smaller one off the road. On the other hand, bulldozers are quite unprotected
at their rears; so, if a bulldozer reaches the rear-end of another one, the first one pushes the second one off the road,
regardless of their sizes.

Let A and B be two towns, with B to the right of A. We say that town A can sweep town B away if the right
bulldozer of A can move over to B pushing off all bulldozers it meets. Similarly town B can sweep town A away if the
left bulldozer of B can move over to A pushing off all bulldozers of all towns on its way.

Prove that there is exactly one town that cannot be swept away by any other one.

Problema 2. We say that a finite set S of points in the plane is balanced if, for any two different points A and B in
S, there is a point C in S such that AC = BC. We say that S is centre-free if for any three different points A,

B and C in S, there is no points P in S such that PA = PB = PC.

(a) Show that for all integers n ≥ 3, there exists a balanced set consisting of n points.

(b) Determine all integers n ≥ 3 for which there exists a balanced centre-free set consisting of n points.

Problema 3. For a finite set A of positive integers, a partition of A into two disjoint nonempty subsets A1 and A2
is good if the least common multiple of the elements in A1 is equal to the greatest common divisor of the elements
in A2. Determine the minimum value of n such that there exists a set of n positive integers with exactly 2015 good
partitions.

Problema 4. Let n be a positive integer. Two players A and B play a game in which they take turns choosing
positive integers k ≤ n. The rules of the game are:

• A player cannot choose a number that has been chosen by either player on any previous turn.

• A player cannot choose a number consecutive to any of those the player has already chosen on any previous turn.

• The game is a draw if all numbers have been chosen; otherwise the player who cannot choose a number anymore
loses the game.

The player A takes the first turn. Determine the outcome of the game, assuming that both players use optimal
strategies.

Problema 5. The sequence a1, a2, . . . of integers satisfies the conditions:

• 1 ≤ aj ≤ 2015 for all j ≥ 1,

• k + ak 6= `+ a` for all 1 ≤ k < `.

Prove that there exist two positive integers b and N for which∣∣∣∣∣∣
n∑

j=m+1
(aj − b)

∣∣∣∣∣∣ ≤ 10072

for all integers m and n such that n > m ≥ N .

Problema 6. Let S be a nonempty set of positive integers. We say that a positive integer n is clean if it has a unique
representation as a sum of an odd number of distinct elements from S. Prove that there exist infinitely many positive
integers that are not clean.

Problema 7. In a company of people some pairs are enemies. A group of people is called unsociable if the number
of members in the group is odd and at least 3, and it is possible to arrange all its members around a round table so
that every two neighbors are enemies. Given that there are at most 2015 unsociable groups, prove that it is possible
to partition the company into 11 parts so that no two enemies are in the same part.
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Problema 1. Let ABC be an acute triangle with orthocenter H. Let G be the point such that the quadrilateral
ABGH is a parallelogram. Let I be the point on the line GH such that AC bisects HI. Suppose that the line AC
intersects the circumcircle of the triangle GCI at C and J . Prove that IJ = AH.

Problema 2. Triangle ABC has circumcircle Ω and circumcenter O. A circle Γ with center A intersects the segment
BC at points D and E, such that B, D, E, and C are all different and lie on line BC in this order. Let F and G be
the points of intersection of Γ and Ω, such that A, F , B, C, and G lie on Ω in this order. Let K be the second point
of intersection of the circumcircle of triangle BDF and the segment AB. Let L be the second point of intersection of
the circumcircle of triangle CGE and the segment CA.

Suppose that the lines FK and GL are different and intersect at the point X. Prove that X lies on the line AO.

Problema 3. Let ABC be a triangle with ∠C = 90◦, and let H be the foot of the altitude from C. A point D is
chosen inside the triangle CBH so that CH bisects AD. Let P be the intersection point of the lines BD and CH. Let
ω be the semicircle with diameter BD that meets the segment CB at an interior point. A line through P is tangent
to ω at Q. Prove that the lines CQ and AD meet on ω.

Problema 4. Let ABC be an acute triangle and let M be the midpoint of AC. A circle ω passing through B and M
meets the sides AB and BC at points P and Q respectively. Let T be the point such that BPTQ is a parallelogram.
Suppose that T lies on the circumcircle of ABC. Determine all possible values of BT

BM .

Problema 5. Let ABC be a triangle with CA 6= CB. Let D, F , and G be the midpoints of the sides AB, AC, and
BC respectively. A circle Γ passing through C and tangent to AB at D meets the segments AF and BG at H and I,
respectively. The points H ′ and I ′ are symmetric to H and I about F and G, respectively. The line H ′I ′ meets CD
and FG at Q and M , respectively. The line CM meets Γ again at P . Prove that CQ = QP .

Problema 6. Let ABC be an acute triangle with AB > AC. Let Γ be its cirumcircle, H its orthocenter, and F the
foot of the altitude from A. Let M be the midpoint of BC. Let Q be the point on Γ such that ∠HQA = 90◦ and let
K be the point on Γ such that ∠HKQ = 90◦. Assume that the points A, B, C, K and Q are all different and lie on
Γ in this order.

Prove that the circumcircles of triangles KQH and FKM are tangent to each other.

Problema 7. Let ABCD be a convex quadrilateral, and let P , Q, R, and S be points on the sides AB, BC, CD,
and DA, respectively. Let the line segment PR and QS meet at O. Suppose that each of the quadrilaterals APOS,
BQOP , CROQ, and DSOR has an incircle. Prove that the lines AC,

PQ, and RS are either concurrent or parallel to each other.

Problema 8. A triangulation of a convex polygon Π is a partitioning of Π into triangles by diagonals having no
common points other than the vertices of the polygon. We say that a triangulation is a Thaiangulation if all triangles
in it have the same area.

Prove that any two different Thaiangulations of a convex polygon Π differ by exactly two triangles. (In other
words, prove that it is possible to replace one pair of triangles in the first Thaiangulation with a different pair of
triangles so as to obtain the second Thaiangulation.)
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Problema 1. Determine all positive integers M such that the sequence a0, a1, a2, · · · defined by

a0 = M + 1
2 and ak+1 = akbakc for k = 0, 1, 2, · · ·

contains at least one integer term.

Problema 2. Let a and b be positive integers such that a! + b! divides a!b!. Prove that 3a ≥ 2b+ 2.

Problema 3. Let m and n be positive integers such that m > n. Define xk = m+k
n+k for k = 1, 2, . . . , n+ 1. Prove that

if all the numbers x1, x2, . . . , xn+1 are integers, then x1x2 . . . xn+1 − 1 is divisible by an odd prime.

Problema 4. Suppose that a0, a1, · · · and b0, b1, · · · are two sequences of positive integers such that a0, b0 ≥ 2 and

an+1 = gcd (an, bn) + 1, bn+1 = lcm (an, bn)− 1.

Show that the sequence an is eventually periodic; in other words, there exist integers N ≥ 0 and t > 0 such that
an+t = an for all n ≥ N .

Problema 5. Find all postive integers (a, b, c) such that

ab− c, bc− a, ca− b

are all powers of 2.

Problema 6. Let Z>0 denote the set of positive integers. Consider a function f : Z>0 → Z>0. For any m,n ∈ Z>0
we write fn(m) = f(f(. . . f︸ ︷︷ ︸

n

(m) . . .)). Suppose that f has the following two properties:

(i) if m,n ∈ Z>0, then fn(m)−m
n ∈ Z>0;

(ii) The set Z>0 \ {f(n) | n ∈ Z>0} is finite.

Prove that the sequence f(1)− 1, f(2)− 2, f(3)− 3, . . . is periodic.

Problema 7. Let Z>0 denote the set of positive integers. For any positive integer k, a function f : Z>0 → Z>0 is
called k-good if gcd(f(m) + n, f(n) +m) ≤ k for all m 6= n. Find all k such that there exists a k-good function.

Problema 8. For every positive integer n with prime factorization n =
∏k
i=1 p

αi
i , define

f(n) =
∑

i: pi>10100

αi.

That is, f(n) is the number of prime factors of n greater than 10100, counted with multiplicity.
Find all strictly increasing functions f : Z→ Z such that

f(f(a)− f(b)) ≤ f(a− b) for all integers a and b with a > b.
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Problema 1. Let a0 < a1 < a2 . . . be an infinite sequence of positive integers. Prove that there exists a unique
integer n ≥ 1 such that

an <
a0 + a1 + a2 + · · ·+ an

n
≤ an+1.

Problema 2. Define the function f : (0, 1)→ (0, 1) by

f(x) =
{
x+ 1

2 if x < 1
2

x2 if x ≥ 1
2

Let a and b be two real numbers such that 0 < a < b < 1. We define the sequences an and bn by a0 = a, b0 = b, and
an = f(an−1),

bn = f(bn−1) for n > 0. Show that there exists a positive integer n such that

(an − an−1)(bn − bn−1) < 0.

Problema 3. For a sequence x1, x2, . . . , xn of real numbers, we define its price as

max
1≤i≤n

|x1 + · · ·+ xi|.

Given n real numbers, Dave and George want to arrange them into a sequence with a low price. Diligent Dave checks
all possible ways and finds the minimum possible price D. Greedy George, on the other hand, chooses x1 such that |x1|
is as small as possible; among the remaining numbers, he chooses x2 such that |x1 + x2| is as small as possible, and so
on. Thus, in the i-th step he chooses xi among the remaining numbers so as to minimise the value of |x1 +x2 + · · ·xi|.
In each step, if several numbers provide the same value, George chooses one at random. Finally he gets a sequence
with price G.

Find the least possible constant c such that for every positive integer n, for every collection of n real numbers, and
for every possible sequence that George might obtain, the resulting values satisfy the inequality G ≤ cD.

Problema 4. Determine all functions f : Z→ Z satisfying

f
(
f(m) + n

)
+ f(m) = f(n) + f(3m) + 2014

for all integers m and n.

Problema 5. Consider all polynomials P (x) with real coefficients that have the following property: for any two real
numbers x and y one has

|y2 − P (x)| ≤ 2|x| if and only if |x2 − P (y)| ≤ 2|y|.

Determine all possible values of P (0).

Problema 6. Find all functions f : Z→ Z such that

n2 + 4f(n) = f(f(n))2

for all n ∈ Z.
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Problema 1. Let n points be given inside a rectangle R such that no two of them lie on a line parallel to one of the
sides of R. The rectangle R is to be dissected into smaller rectangles with sides parallel to the sides of R in such a
way that none of these rectangles contains any of the given points in its interior. Prove that we have to dissect R into
at least n+ 1 smaller rectangles.

Problema 2. We have 2m sheets of paper, with the number 1 written on each of them. We perform the following
operation. In every step we choose two distinct sheets; if the numbers on the two sheets are a and b, then we erase
these numbers and write the number a+ b on both sheets. Prove that after m2m−1 steps, the sum of the numbers on
all the sheets is at least 4m.

Problema 3. Let n ≥ 2 be an integer. Consider an n×n chessboard consisting of n2 unit squares. A configuration of
n rooks on this board is peaceful if every row and every column contains exactly one rook. Find the greatest positive
integer k such that, for each peaceful configuration of n rooks, there is a k × k square which does not contain a rook
on any of its k2 unit squares.

Problema 4. Construct a tetromino by attaching two 2×1 dominoes along their longer sides such that the midpoint
of the longer side of one domino is a corner of the other domino. This construction yields two kinds of tetrominoes
with opposite orientations. Let us call them S- and Z-tetrominoes, respectively.

Assume that a lattice polygon P can be tiled with S-tetrominoes. Prove that no matter how we tile P using only
S- and Z-tetrominoes, we always use an even number of Z-tetrominoes.

Problema 5. A set of lines in the plane is in general position if no two are parallel and no three pass through the
same point. A set of lines in general position cuts the plane into regions, some of which have finite area; we call these
its finite regions . Prove that for all sufficiently large n, in any set of n lines in general position it is possible to colour
at least

√
n lines blue in such a way that none of its finite regions has a completely blue boundary.

Note: Results with
√
n replaced by c

√
n will be awarded points depending on the value of the constant c.

Problema 6. We are given an infinite deck of cards, each with a real number on it. For every real number x, there
is exactly one card in the deck that has x written on it. Now two players draw disjoint sets A and B of 100 cards
each from this deck. We would like to define a rule that declares one of them a winner. This rule should satisfy the
following conditions:

• The winner only depends on the relative order of the 200 cards: if the cards are laid down in increasing order
face down and we are told which card belongs to which player, but not what numbers are written on them, we
can still decide the winner.

• If we write the elements of both sets in increasing order as A = {a1, a2, . . . , a100} and B = {b1, b2, . . . , b100}, and
ai > bi for all i, then A beats B.

• If three players draw three disjoint sets A,B,C from the deck, A beats B and B beats C then A also beats C.

How many ways are there to define such a rule? Here, we consider two rules as different if there exist two sets A
and B such that A beats B according to one rule, but B beats A according to the other.

Problema 7. Let M be a set of n ≥ 4 points in the plane, no three of which are collinear. Initially these points are
connected with n segments so that each point in M is the endpoint of exactly two segments. Then, at each step, one
may choose two segments AB and CD sharing a common interior point and replace them by the segments AC and
BD if none of them is present at this moment. Prove that it is impossible to perform n3/4 or more such moves.

Problema 8. A card deck consists of 1024 cards. On each card, a set of distinct decimal digits is written in such a
way that no two of these sets coincide (thus, one of the cards is empty). Two players alternately take cards from the
deck, one card per turn. After the deck is empty, each player checks if he can throw out one of his cards so that each
of the ten digits occurs on an even number of his remaining cards. If one player can do this but the other one cannot,
the one who can is the winner; otherwise a draw is declared.

Determine all possible first moves of the first player after which he has a winning strategy.

Problema 9. There are n circles drawn on a piece of paper in such a way that any two circles intersect in two points,
and no three circles pass through the same point. Turbo the snail slides along the circles in the following fashion.
Initially he moves on one of the circles in clockwise direction. Turbo always keeps sliding along the current circle until
he reaches an intersection with another circle. Then he continues his journey on this new circle and also changes the
direction of moving, i.e. from clockwise to anticlockwise or vice versa.

Suppose that Turbo’s path entirely covers all circles. Prove that n must be odd.
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Geometria

Problema 1. Let P and Q be on segment BC of an acute triangle ABC such that ∠PAB = ∠BCA and ∠CAQ =
∠ABC. Let M and N be the points on AP and AQ, respectively, such that P is the midpoint of AM and Q is the
midpoint of AN . Prove that the intersection of BM and CN is on the circumference of triangle ABC.

Problema 2. Let ABC be a triangle. The points K,L, and M lie on the segments BC,CA, and AB, respectively,
such that the lines AK,BL, and CM intersect in a common point. Prove that it is possible to choose two of the
triangles ALM,BMK, and CKL whose inradii sum up to at least the inradius of the triangle ABC.

Problema 3. Let Ω and O be the circumcircle and the circumcentre of an acute-angled triangle ABC with AB > BC.
The angle bisector of ∠ABC intersects Ω at M 6= B. Let Γ be the circle with diameter BM . The angle bisectors
of ∠AOB and ∠BOC intersect Γ at points P and Q, respectively. The point R is chosen on the line PQ so that
BR = MR. Prove that BR ‖ AC.

(Here we always assume that an angle bisector is a ray.)

Problema 4. Consider a fixed circle Γ with three fixed points A,B, and C on it. Also, let us fix a real number
λ ∈ (0, 1). For a variable point P 6∈ {A,B,C} on Γ, let M be the point on the segment CP such that CM = λ · CP
. Let Q be the second point of intersection of the circumcircles of the triangles AMP and BMC. Prove that as P
varies, the point Q lies on a fixed circle.

Problema 5. Convex quadrilateral ABCD has ∠ABC = ∠CDA = 90◦. Point H is the foot of the perpendicular
from A to BD. Points S and T lie on sides AB and AD, respectively, such that H lies inside triangle SCT and

∠CHS − ∠CSB = 90◦, ∠THC − ∠DTC = 90◦.

Prove that line BD is tangent to the circumcircle of triangle TSH.

Problema 6. Let ABC be a fixed acute-angled triangle. Consider some points E and F lying on the sides AC and
AB, respectively, and let M be the midpoint of EF . Let the perpendicular bisector of EF intersect the line BC at
K, and let the perpendicular bisector of MK intersect the lines AC and AB at S and T , respectively. We call the
pair (E,F ) interesting, if the quadrilateral KSAT is cyclic.

Suppose that the pairs (E1, F1) and (E2, F2) are interesting. Prove that E1E2

AB
= F1F2

AC
.

Problema 7. Let ABC be a triangle with circumcircle Ω and incentre I. Let the line passing through I and
perpendicular to CI intersect the segment BC and the arc BC (not containing A) of Ω at points U and V , respectively.
Let the line passing through U and parallel to AI intersect AV at X, and let the line passing through V and parallel
to AI intersect AB at Y . Let W and Z be the midpoints of AX and BC, respectively. Prove that if the points I, X,
and Y are collinear, then the points I, W , and Z are also collinear.
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Teoria dos Números

Problema 1. Let n ≥ 2 be an integer, and let An be the set

An = {2n − 2k | k ∈ Z, 0 ≤ k < n}.

Determine the largest positive integer that cannot be written as the sum of one or more (not necessarily distinct)
elements of An.

Problema 2. Determine all pairs (x, y) of positive integers such that

3
√

7x2 − 13xy + 7y2 = |x− y|+ 1.

Problema 3. Para cada inteiro positivo n, o Banco de Cabo Verde produz moedas com valor 1
n . Dada uma coleção

finita de tais moedas (com valores não necessariamente distintos) com valor total de até 99 + 1
2 , prove que é posśıvel

dividir essa coleção em 100 ou menos grupos, tal que cada grupo contém valor total menor ou igual a 1.

Problema 4. Let n > 1 be a given integer. Prove that infinitely many terms of the sequence (ak)k≥1, defined by

ak =
⌊
nk

k

⌋
,

are odd. (For a real number x, bxc denotes the largest integer not exceeding x.)

Problema 5. Find all triples (p, x, y) consisting of a prime number p and two positive integers x and y such that
xp−1 + y and x+ yp−1 are both powers of p.

Problema 6. Let a1 < a2 < · · · < an be pairwise coprime positive integers with a1 being prime and a1 ≥ n + 2.
On the segment I = [0, a1a2 · · · an] of the real line, mark all integers that are divisible by at least one of the numbers
a1, . . . , an . These points split I into a number of smaller segments. Prove that the sum of the squares of the lengths
of these segments is divisible by a1.

Problema 7. Let c ≥ 1 be an integer. Define a sequence of positive integers by a1 = c and

an+1 = a3
n − 4c · a2

n + 5c2 · an + c

for all n ≥ 1. Prove that for each integer n ≥ 2 there exists a prime number p dividing an but none of the numbers
a1, . . . , an−1.

Problema 8. For every real number x, let ||x|| denote the distance between x and the nearest integer.
Prove that for every pair (a, b) of positive integers there exist an odd prime p and a positive integer k satisfying∣∣∣∣∣∣∣∣ apk

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣ bpk

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣a+ b

pk

∣∣∣∣∣∣∣∣ = 1.
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Problema 1. Let n be a positive integer and let a1, . . . , an−1 be arbitrary real numbers. Define the sequences
u0, . . . , un and v0, . . . , vn inductively by u0 = u1 = v0 = v1 = 1, and uk+1 = uk + akuk−1, vk+1 = vk + an−kvk−1 for
k = 1, . . . , n− 1.

Prove that un = vn.

Problema 2. Prove that in any set of 2000 distinct real numbers there exist two pairs a > b and c > d with a 6= c or
b 6= d, such that ∣∣∣∣a− bc− d

− 1
∣∣∣∣ < 1

100000 .

Problema 3. Let Q>0 be the set of all positive rational numbers. Let f : Q>0 → R be a function satisfying the
following three conditions:

(i) for all x, y ∈ Q>0, we have f(x)f(y) ≥ f(xy);

(ii) for all x, y ∈ Q>0, we have f(x+ y) ≥ f(x) + f(y);

(iii) there exists a rational number a > 1 such that f(a) = a.

Prove that f(x) = x for all x ∈ Q>0.

Problema 4. Let n be a positive integer, and consider a sequence a1, a2, · · · , an of positive integers. Extend it
periodically to an infinite sequence a1, a2, · · · by defining an+i = ai for all i ≥ 1. If

a1 ≤ a2 ≤ · · · ≤ an ≤ a1 + n

and
aai ≤ n+ i− 1 for i = 1, 2, · · · , n,

prove that
a1 + · · ·+ an ≤ n2.

Problema 5. Let Z≥0 be the set of all nonnegative integers. Find all the functions f : Z≥0 → Z≥0 satisfying the
relation

f(f(f(n))) = f(n+ 1) + 1

for all n ∈ Z≥0.

Problema 6. Let m 6= 0 be an integer. Find all polynomials P (x) with real coefficients such that

(x3 −mx2 + 1)P (x+ 1) + (x3 +mx2 + 1)P (x− 1) = 2(x3 −mx+ 1)P (x)

for all real number x.
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Combinatória

Problema 1. Let n be an positive integer. Find the smallest integer k with the following property; Given any real
numbers a1, · · · , ad such that a1 + a2 + · · ·+ ad = n and 0 ≤ ai ≤ 1 for i = 1, 2, · · · , d, it is possible to partition these
numbers into k groups (some of which may be empty) such that the sum of the numbers in each group is at most 1.
Problema 2. A configuration of 4027 points in the plane is called Colombian if it consists of 2013 red points and 2014
blue points, and no three of the points of the configuration are collinear. By drawing some lines, the plane is divided
into several regions. An arrangement of lines is good for a Colombian configuration if the following two conditions are
satisfied:

(a) No line passes through any point of the configuration.

(b) No region contains points of both colors.

Find the least value of k such that for any Colombian configuration of 4027 points, there is a good arrangement of
k lines.
Problema 3. A crazy physicist discovered a new kind of particle wich he called an imon, after some of them
mysteriously appeared in his lab. Some pairs of imons in the lab can be entangled, and each imon can participate in
many entanglement relations. The physicist has found a way to perform the following two kinds of operations with
these particles, one operation at a time.

(i) If some imon is entangled with an odd number of other imons in the lab, then the physicist can destroy it.

(ii) At any moment, he may double the whole family of imons in the lab by creating a copy I ′ of each imon I. During
this procedure, the two copies I ′ and J ′ become entangled if and only if the original imons I and J are entangled,
and each copy I ′ becomes entangled with its original imon I; no other entanglements occur or disappear at this
moment.

Prove that the physicist may apply a sequence of much operations resulting in a family of imons, no two of which
are entangled.
Problema 4. Let n be a positive integer, and let A be a subset of {1, · · · , n}. An A-partition of n into k parts is a
representation of n as a sum n = a1 + · · ·+ak, where the parts a1, · · · , ak belong to A and are not necessarily distinct.
The number of different parts in such a partition is the number of (distinct) elements in the set {a1, a2, · · · , ak}.

We say that an A-partition of n into k parts is optimal if there is no A-partition of n into r parts with r < k.
Prove that any optimal A-partition of n contains at most 3

√
6n different parts.

Problema 5. Let r be a positive integer, and let a0, a1, · · · be an infinite sequence of real numbers. Assume that for
all nonnegative integers m and s there exists a positive integer n ∈ [m+ 1,m+ r] such that

am + am+1 + · · ·+ am+s = an + an+1 + · · ·+ an+s

Prove that the sequence is periodic, i.e. there exists some p ≥ 1 such that an+p = an for all n ≥ 0.
Problema 6. In some country several pairs of cities are connected by direct two-way flights. It is possible to go
from any city to any other by a sequence of flights. The distance between two cities is defined to be the least possible
numbers of flights required to go from one of them to the other. It is known that for any city there are at most 100
cities at distance exactly three from it. Prove that there is no city such that more than 2550 other cities have distance
exactly four from it.
Problema 7. Let n ≥ 3 be an integer, and consider a circle with n+ 1 equally spaced points marked on it. Consider
all labellings of these points with the numbers 0, 1, ..., n such that each label is used exactly once; two such labellings
are considered to be the same if one can be obtained from the other by a rotation of the circle. A labelling is called
beautiful if, for any four labels a < b < c < d with a + d = b + c, the chord joining the points labelled a and d does
not intersect the chord joining the points labelled b and c.

Let M be the number of beautiful labelings, and let N be the number of ordered pairs (x, y) of positive integers
such that x+ y ≤ n and gcd(x, y) = 1. Prove that

M = N + 1.

Problema 8. Players A and B play a ”paintful”game on the real line. Player A has a pot of paint with four units
of black ink. A quantity p of this ink suffices to blacken a (closed) real interval of length p. In every round, player
A picks some positive integer m and provides 1/2m units of ink from the pot. Player B then picks an integer k and
blackens the interval from k/2m to (k+ 1)/2m (some parts of this interval may have been blackened before). The goal
of player A is to reach a situation where the pot is empty and the interval [0, 1] is not completely blackened.

Decide whether there exists a strategy for player A to win in a finite number of moves.
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Geometria

Problema 1. Let ABC be an acute triangle with orthocenter H, and let W be a point on the side BC, lying strictly
between B and C. The points M and N are the feet of the altitudes from B and C, respectively. Denote by ω1 is the
circumcircle of BWN , and let X be the point on ω1 such that WX is a diameter of ω1. Analogously, denote by ω2
the circumcircle of triangle CWM , and let Y be the point such that WY is a diameter of ω2. Prove that X,Y and H
are collinear.

Problema 2. Let ω be the circumcircle of a triangle ABC. Denote by M and N the midpoints of the sides AB
and AC, respectively, and denote by T the midpoint of the arc BC of ω not containing A. The circumcircles of the
triangles AMT and ANT intersect the perpendicular bisectors of AC and AB at points X and Y , respectively; assume
that X and Y lie inside the triangle ABC. The lines MN and XY intersect at K. Prove that KA = KT .

Problema 3. In a triangle ABC, let D and E be the feet of the angle bisectors of angles A and B, respectively. A
rhombus is inscribed into the quadrilateral AEDB (all vertices of the rhombus lie on different sides of AEDB) . Let
ϕ be the non-obtuse angle of the rhombus. Prove that ϕ ≤ max{∠BAC,∠ABC}.

Problema 4. Let ABC be a triangle with ∠B > ∠C. Let P and Q be two different points on line AC such that
∠PBA = ∠QBA = ∠ACB and A is located between P and C. Suppose that there exists an interior point D of
segment BQ for which PD = PB. Let the ray AD intersect the circle ABC at R 6= A. Prove that QB = QR.

Problema 5. Let ABCDEF be a convex hexagon with AB = DE, BC = EF , CD = FA, and ∠A − ∠D =
∠C − ∠F = ∠E − ∠B. Prove that the diagonals AD,

BE, and CF are concurrent.

Problema 6. Let the excircle of triangle ABC opposite the vertex A be tangent to the side BC at the point A1.
Define the points B1 on CA and C1 on AB analogously, using the excircles opposite B and C, respectively. Suppose
that the circumcentre of triangle A1B1C1 lies on the circumcircle of triangle ABC. Prove that triangle ABC is
right-angled.
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Problema 1. Let Z>0 be the set of positive integers. Find all functions f : Z>0 → Z>0 such that

m2 + f(n) | mf(m) + n

for all positive integers m and n.

Problema 2. Assume that k and n are two positive integers. Prove that there exist positive integers m1, . . . ,mk

such that
1 + 2k − 1

n
=
(

1 + 1
m1

)
· · ·
(

1 + 1
mk

)
.

Problema 3. Prove that there exist infinitely many positive integers n such that the largest prime divisor of n4+n2+1
is equal to the largest prime divisor of (n+ 1)4 + (n+ 1)2 + 1.

Problema 4. Existe um inteiro positivo N e uma sequência infinita de d́ıgitos a1, a2, . . . , todos não-nulos, tais que,
para todo k > N , o número cuja representação decimal é (akak−1 . . . a1) é um quadrado perfeito?

Problema 5. Fix an integer k > 2. Two players, called Ana and Banana, play the following game of numbers.
Initially, some integer n ≥ k gets written on the blackboard. Then they take moves in turn, with Ana beginning. A
player making a move erases the number m just written on the blackboard and replaces it by some number m′ with
k ≤ m′ < m that is coprime to m. The first player who cannot move anymore loses.

An integer n ≥ k is called good if Banana has a winning strategy when the initial number is n, and bad otherwise.
Consider two integers n, n′ ≥ k with the property that each prime number p ≤ k divides n if and only if it divides

n′. Prove that either both n and n′ are good or both are bad.

Problema 6. Determine all functions f : Q→ Z satisfying

f

(
f(x) + a

b

)
= f

(
x+ a

b

)
for all x ∈ Q, a ∈ Z, and b ∈ Z>0.

Problema 7. Let ν be an irrational positive number, and let m be a positive integer. A pair of (a, b) of positive
integers is called good if

a dbνe − b baνc = m.

A good pair (a, b) is called excellent if neither of the pair (a− b, b) and (a, b− a) is good.
Prove that the number of excellent pairs is equal to the sum of the positive divisors of m.
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Problema 1. Find all functions f : Z → Z such that, for all integers a, b, c that satisfy a + b + c = 0, the following
equality holds:

f(a)2 + f(b)2 + f(c)2 = 2f(a)f(b) + 2f(b)f(c) + 2f(c)f(a).

Problema 2. Let Z and Q be the sets of integers and rationals respectively.

(a) Does there exist a partition of Z into three non-empty subsets A,B,C such that the sets A+ B,B + C,C + A
are disjoint?

(b) Does there exist a partition of Q into three non-empty subsets A,B,C such that the sets A+ B,B + C,C + A
are disjoint?

Here, X + Y denotes the set {x+ y : x ∈ X, y ∈ Y }, for X,Y ⊆ Z and for X,Y ⊆ Q.

Problema 3. Let n ≥ 3 be an integer, and let a2, a3, . . . , an be positive real numbers such that a2a3 · · · an = 1. Prove
that

(1 + a2)2(1 + a3)3 · · · (1 + an)n > nn.

Problema 4. Let f and g be two nonzero polynomials with integer coefficients and deg f > deg g. Suppose that for
infinitely many primes p the polynomial pf + g has a rational root. Prove that f has a rational root.

Problema 5. Find all functions f : R→ R that satisfy the conditions

f(1 + xy)− f(x+ y) = f(x)f(y) for all x, y ∈ R,

and f(−1) 6= 0.

Problema 6. Let f : N → N be a function, and let fm be f applied m times. Suppose that for every n ∈ N there
exists a k ∈ N such that f2k(n) = n + k, and let kn be the smallest such k. Prove that the sequence k1, k2, . . . is
unbounded.

Problema 7. We say that a function f : Rk → R is a metapolynomial if, for some positive integers m and n, it can
be represented in the form

f(x1, · · · , xk) = max
i=1,··· ,m

min
j=1,··· ,n

Pi,j(x1, · · · , xk),

where Pi,j are multivariate polynomials. Prove that the product of two metapolynomials is also a metapolynomial.
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Problema 1. Several positive integers are written in a row. Iteratively, Alice chooses two adjacent numbers x and y
such that x > y and x is to the left of y, and replaces the pair (x, y) by either (y + 1, x) or (x− 1, x). Prove that she
can perform only finitely many such iterations.

Problema 2. Let n ≥ 1 be an integer. What is the maximum number of disjoint pairs of elements of the set
{1, 2, . . . , n} such that the sums of the different pairs are different integers not exceeding n?

Problema 3. In a 999× 999 square table some cells are white and the remaining ones are red. Let T be the number
of triples (C1, C2, C3) of cells, the first two in the same row and the last two in the same column, with C1, C3 white
and C2 red. Find the maximum value T can attain.

Problema 4. Guilherme and Zeus play a game with N ≥ 2012 coins and 2012 boxes arranged around a circle.
Initially Guilherme distributes the coins among the boxes so that there is at least 1 coin in each box. Then the two
of them make moves in the order Zeus, Guilherme, Zeus, Guilherme, . . . by the following rules:

(a) On every of their moves, Zeus passes 1 coin from every box to an adjacent box.

(b) On every of their moves, Guilherme chooses several coins that were not involved in Zeus’s previous move and
are in different boxes. She passes every coin to and adjacent box.

Guilherme’s goal is to ensure at least 1 coin in each box after every move of them, regardless of how Zeus plays
and how many moves are made. Find the least N that enables Guilherme to succeed.

Problema 5. The columns and the row of a 3n × 3n square board are numbered 1, 2, . . . , 3n. Every square (x, y)
with 1 ≤ x, y ≤ 3n is colored asparagus, byzantium or citrine according as the modulo 3 remainder of x+ y is 0, 1 or 2
respectively. One token colored asparagus, byzantium or citrine is placed on each square, so that there are 3n2 tokens
of each color.

Suppose that one can permute the tokens so that each token is moved to a distance of at most d from its original
position, each asparagus token replaces a byzantium token, each byzantium token replaces a citrine token, and each
citrine token replaces an asparagus token. Prove that it is possible to permute the tokens so that each token is moved
to a distance of at most d+ 2 from its original position, and each square contains a token with the same color as the
square.

Problema 6. The liar’s guessing game is a game played between two players A and B. The rules of the game depend
on two positive integers k and n which are known to both players.

At the start of the game A chooses integers x and N with 1 ≤ x ≤ N. Player A keeps x secret, and truthfully tells N
to player B. Player B now tries to obtain information about x by asking player A questions as follows: each question
consists of B specifying an arbitrary set S of positive integers (possibly one specified in some previous question), and
asking A whether x belongs to S. Player B may ask as many questions as he wishes. After each question, player A
must immediately answer it with yes or no, but is allowed to lie as many times as she wants; the only restriction is
that, among any k + 1 consecutive answers, at least one answer must be truthful.

After B has asked as many questions as he wants, he must specify a set X of at most n positive integers. If x
belongs to X, then B wins; otherwise, he loses. Prove that:

(a) If n ≥ 2k, then B can guarantee a win.

(b) For all sufficiently large k, there exists an integer n ≥ (1.99)k such that B cannot guarantee a win.

Problema 7. There are given 2500 points on a circle labeled 1, 2, . . . , 2500 in some order. Prove that one can choose
100 pairwise disjoint chords joining some of theses points so that the 100 sums of the pairs of numbers at the endpoints
of the chosen chord are equal.
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Geometria

Problema 1. Given triangle ABC the point J is the centre of the excircle opposite the vertex A. This excircle is
tangent to the side BC at M , and to the lines AB and AC at K and L, respectively. The lines LM and BJ meet at
F , and the lines KM and CJ meet at G. Let S be the point of intersection of the lines AF and BC, and let T be the
point of intersection of the lines AG and BC. Prove that M is the midpoint of ST.

Problema 2. Let ABCD be a cyclic quadrilateral whose diagonals AC and BD meet at E. The extensions of the
sides AD and BC beyond A and B meet at F . Let G be the point such that ECGD is a parallelogram, and let H be
the image of E under reflection in AD. Prove that D,H,F,G are concyclic.

Problema 3. In an acute triangle ABC the points D,E and F are the feet of the altitudes through A,B and C
respectively. The incenters of the triangles AEF and BDF are I1 and I2 respectively; the circumcenters of the
triangles ACI1 and BCI2 are O1 and O2 respectively. Prove that I1I2 and O1O2 are parallel.

Problema 4. Let ABC be a triangle with AB 6= AC and circumcenter O. The bisector of ∠BAC intersects BC at
D. Let E be the reflection of D with respect to the midpoint of BC. The lines through D and E perpendicular to
BC intersect the lines AO and AD at X and Y respectively. Prove that the quadrilateral BXCY is cyclic.

Problema 5. Let ABC be a triangle with ∠BCA = 90◦, and let D be the foot of the altitude from C. Let X be a
point in the interior of the segment CD. Let K be the point on the segment AX such that BK = BC. Similarly, let
L be the point on the segment BX such that AL = AC. Let M be the point of intersection of AL and BK.

Show that MK = ML.

Problema 6. Let ABC be a triangle with circumcenter O and incenter I. The points D,E and F on the sides
BC,CA and AB respectively are such that BD+BF = CA and CD+CE = AB. The circumcircles of the triangles
BFD and CDE intersect at P 6= D.

Prove that OP = OI.

Problema 7. Let ABCD be a convex quadrilateral with non-parallel sides BC and AD. Assume that there is a
point E on the side BC such that the quadrilaterals ABED and AECD are circumscribed.

Prove that there is a point F on the side AD such that the quadrilaterals ABCF and BCDF are circumscribed
if and only if AB is parallel to CD.

Problema 8. Let ABC be a triangle with circumcircle ω and ` a line without common points with ω. Denote by P
the foot of the perpendicular from the center of ω to `. The side-lines BC,CA,AB intersect ` at the points X,Y, Z
different from P .

Prove that the circumcircles of the triangles AXP , BY P and CZP have a common point different from P or are
mutually tangent at P .
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Problema 1. Call admissible a set A of integers that has the following property:
If x, y ∈ A (possibly x = y) then x2 + kxy + y2 ∈ A for every integer k.
Determine all pairs m,n of nonzero integers such that the only admissible set containing both m and n is the set

of all integers.

Problema 2. Find all triples (x, y, z) of positive integers such that x ≤ y ≤ z and

x3(y3 + z3) = 2012(xyz + 2).

Problema 3. Determine all integers m ≥ 2 such that every n with m
3 ≤ n ≤ m

2 divides the binomial coefficient(
n

m−2n
)
.

Problema 4. An integer a is called friendly if the equation (m2 + n)(n2 + m) = a(m − n)3 has a solution over the
positive integers.

(a) Prove that there are at least 500 friendly integers in the set {1, 2, . . . , 2012}.

(b) Decide whether a = 2 is friendly.

Problema 5. For a nonnegative integer n define rad(n) = 1 if n = 0 or n = 1, and rad(n) = p1p2 · · · pk where
p1 < p2 < · · · < pk are all prime factors of n. Find all polynomials f(x) with nonnegative integer coefficients such
that rad(f(n)) divides rad(f(nrad(n))) for every nonnegative integer n.

Problema 6. Let x and y be positive integers. If x2n − 1 is divisible by 2ny + 1 for every positive integer n, prove
that x = 1.

Problema 7. Find all positive integers n for which there exist non-negative integers a1, a2, . . . , an such that

1
2a1

+ 1
2a2

+ · · ·+ 1
2an

= 1
3a1

+ 2
3a2

+ · · ·+ n

3an
= 1.

Problema 8. Prove that for every prime p > 100 and every integer r, there exist two integers a and b such that p
divides a2 + b5 − r.
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Álgebra

Problema 1. Given any set A = {a1, a2, a3, a4} of four distinct positive integers, we denote the sum a1 +a2 +a3 +a4
by sA. Let nA denote the number of pairs (i, j) with 1 ≤ i < j ≤ 4 for which ai + aj divides sA. Find all sets A of
four distinct positive integers which achieve the largest possible value of nA.

Problema 2. Determine all sequences (x1, x2, . . . , x2011) of positive integers, such that for every positive integer n
there exists an integer a with

2011∑
j=1

jxnj = an+1 + 1

Problema 3. Determine all pairs (f, g) of functions from the set of real numbers to itself that satisfy

g(f(x+ y)) = f(x) + (2x+ y)g(y)

for all real numbers x and y.

Problema 4. Determine all pairs (f, g) of functions from the set of positive integers to itself that satisfy

fg(n)+1(n) + gf(n)(n) = f(n+ 1)− g(n+ 1) + 1

for every positive integer n. Here, fk(n) means f(f(. . . f︸ ︷︷ ︸
k

(n) . . .)).

Problema 5. Prove that for every positive integer n, the set {2, 3, 4, . . . , 3n+ 1} can be partitioned into n triples in
such a way that the numbers from each triple are the lengths of the sides of some obtuse triangle.

Problema 6. Let f : R→ R be a real-valued function defined on the set of real numbers that satisfies

f(x+ y) ≤ yf(x) + f(f(x))

for all real numbers x and y. Prove that f(x) = 0 for all x ≤ 0.

Problema 7. Let a, b and c be positive real numbers satisfying min(a + b, b + c, c + a) >
√

2 and a2 + b2 + c2 = 3.
Prove that

a

(b+ c− a)2 + b

(c+ a− b)2 + c

(a+ b− c)2 ≥
3

(abc)2 .
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Combinatória

Problema 1. Let n > 0 be an integer. We are given a balance and n weights of weight 20, 21, · · · , 2n−1. We are to
place each of the n weights on the balance, one after another, in such a way that the right pan is never heavier than
the left pan. At each step we choose one of the weights that has not yet been placed on the balance, and place it on
either the left pan or the right pan, until all of the weights have been placed.

Determine the number of ways in which this can be done.

Problema 2. Suppose that 1000 students are standing in a circle. Prove that there exists an integer k with 100 ≤
k ≤ 300 such that in this circle there exists a contiguous group of 2k students, for which the first half contains the
same number of girls as the second half.

Problema 3. Let S be a finite set of at least two points in the plane. Assume that no three points of S are collinear.
A windmill is a process that starts with a line ` going through a single point P ∈ S. The line rotates clockwise about
the pivot P until the first time that the line meets some other point belonging to S. This point, Q, takes over as
the new pivot, and the line now rotates clockwise about Q, until it next meets a point of S. This process continues
indefinitely.

Show that we can choose a point P in S and a line ` going through P such that the resulting windmill uses each
point of S as a pivot infinitely many times.

Problema 4. Determine the greatest positive integer k that satisfies the following property: The set of positive
integers can be partitioned into k subsets A1, A2, . . . , Ak such that for all integers n ≥ 15 and all i ∈ {1, 2, . . . , k} there
exist two distinct elements of Ai whose sum is n.

Problema 5. Let m be a positive integer, and consider a m × m checkerboard consisting of unit squares. At the
centre of some of these unit squares there is an ant. At time 0, each ant starts moving with speed 1 parallel to some
edge of the checkerboard. When two ants moving in the opposite directions meet, they both turn 90◦ clockwise and
continue moving with speed 1. When more than 2 ants meet, or when two ants moving in perpendicular directions
meet, the ants continue moving in the same direction as before they met. When an ant reaches one of the edges of
the checkerboard, it falls off and will not re-appear.

Considering all possible starting positions, determine the latest possible moment at which the last ant falls off the
checkerboard, or prove that such a moment does not necessarily exist.

Problema 6. Let n be a positive integer, and let W = . . . x−1x0x1x2 . . . be an infinite periodic word, consisting of
just letters a and/or b. Suppose that the minimal period N of W is greater than 2n.

A finite nonempty word U is said to appear in W if there exist indices k ≤ ` such that U = xkxk+1 . . . x`. A finite
word U is called ubiquitous if the four words Ua, Ub, aU , and bU all appear in W . Prove that there are at least n
ubiquitous finite nonempty words.

Problema 7. On a square table of 2011 by 2011 cells we place a finite number of napkins that each cover a square of
52 by 52 cells. In each cell we write the number of napkins covering it, and we record the maximal number k of cells
that all contain the same nonzero number. Considering all possible napkin configurations, what is the largest value of
k?
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Geometria

Problema 1. Let ABC be an acute triangle. Let ω be a circle whose centre L lies on the side BC. Suppose that ω
is tangent to AB at B′ and AC at C ′. Suppose also that the circumcentre O of triangle ABC lies on the shorter arc
B′C ′ of ω. Prove that the circumcircle of ABC and ω meet at two points.

Problema 2. Let A1A2A3A4 be a non-cyclic quadrilateral. Let O1 and r1 be the circumcentre and the circumradius
of the triangle A2A3A4. Define O2, O3, O4 and r2, r3, r4 in a similar way. Prove that

1
O1A2

1 − r2
1

+ 1
O2A2

2 − r2
2

+ 1
O3A2

3 − r2
3

+ 1
O4A2

4 − r2
4

= 0.

Problema 3. Let ABCD be a convex quadrilateral whose sides AD and BC are not parallel. Suppose that the circles
with diameters AB and CD meet at points E and F inside the quadrilateral. Let ωE be the circle through the feet of
the perpendiculars from E to the lines AB,BC and CD. Let ωF be the circle through the feet of the perpendiculars
from F to the lines CD,DA and AB. Prove that the midpoint of the segment EF lies on the line through the two
intersections of ωE and ωF .

Problema 4. Let ABC be an acute triangle with circumcircle Ω. Let B0 be the midpoint of AC and let C0 be the
midpoint of AB. Let D be the foot of the altitude from A and let G be the centroid of the triangle ABC. Let ω be
a circle through B0 and C0 that is tangent to the circle Ω at a point X 6= A. Prove that the points D,G and X are
collinear.

Problema 5. Let ABC be a triangle with incentre I and circumcircle ω. Let D and E be the second intersection
points of ω with AI and BI, respectively. The chord DE meets AC at a point F , and BC at a point G. Let P
be the intersection point of the line through F parallel to AD and the line through G parallel to BE. Suppose that
the tangents to ω at A and B meet at a point K. Prove that the three lines AE,BD and KP are either parallel or
concurrent.

Problema 6. Let ABC be a triangle with AB = AC and let D be the midpoint of AC. The angle bisector of ∠BAC
intersects the circle through D,B and C at the point E inside the triangle ABC. The line BD intersects the circle
through A,E and B in two points B and F . The lines AF and BE meet at a point I, and the lines CI and BD meet
at a point K. Show that I is the incentre of triangle KAB.

Problema 7. Let ABCDEF be a convex hexagon all of whose sides are tangent to a circle ω with centre O. Suppose
that the circumcircle of triangle ACE is concentric with ω. Let J be the foot of the perpendicular from B to CD.
Suppose that the perpendicular from B to DF intersects the line EO at a point K. Let L be the foot of the
perpendicular from K to DE. Prove that DJ = DL.

Problema 8. Let ABC be an acute triangle with circumcircle Γ. Let ` be a tangent line to Γ, and let `a, `b and `c
be the lines obtained by reflecting ` in the lines BC,

CA and AB, respectively. Show that the circumcircle of the triangle determined by the lines `a, `b and `c is tangent
to the circle Γ.
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Teoria dos Números

Problema 1. For any integer d > 0, let f(d) be the smallest possible integer that has exactly d positive divisors (so
for example we have f(1) = 1, f(5) = 16, and f(6) = 12) . Prove that for every integer k ≥ 0 the number f

(
2k
)

divides f
(
2k+1) .

Problema 2. Consider a polynomial P (x) =
∏9
j=1(x+ dj), where d1, d2, . . . d9 are nine distinct integers. Prove that

there exists an integer N, such that for all integers x ≥ N the number P (x) is divisible by a prime number greater
than 20.

Problema 3. Let n ≥ 1 be an odd integer. Determine all functions f from the set of integers to itself, such that for
all integers x and y the difference f(x)− f(y) divides xn − yn.

Problema 4. For each positive integer k, let t(k) be the largest odd divisor of k. Determine all positive integers a for
which there exists a positive integer n, such that all the differences

t(n+ a)− t(n); t(n+ a+ 1)− t(n+ 1), . . . , t(n+ 2a− 1)− t(n+ a− 1)

are divisible by 4.

Problema 5. Let f be a function from the set of integers to the set of positive integers. Suppose that, for any two
integers m and n, the difference f(m) − f(n) is divisible by f(m − n). Prove that, for all integers m and n with
f(m) ≤ f(n), the number f(n) is divisible by f(m).

Problema 6. Let P (x) and Q(x) be two polynomials with integer coefficients, such that no nonconstant polynomial
with rational coefficients divides both P (x) and Q(x). Suppose that for every positive integer n the integers P (n) and
Q(n) are positive, and 2Q(n) − 1 divides 3P (n) − 1. Prove that Q(x) is a constant polynomial.

Problema 7. Let p be an odd prime number. For every integer a, define the number Sa =
∑p−1
j=1

aj

j . Let m,n ∈ Z,
such that S3 + S4 − 3S2 = m

n . Prove that p divides m.

Problema 8. Let k ∈ Z+ and set n = 2k + 1. Prove that n is a prime number if and only if the following holds:
there is a permutation a1, . . . , an−1 of the numbers 1, 2, . . . , n− 1 and a sequence of integers g1, . . . , gn−1, such that n
divides gai

i − ai+1 for every i ∈ {1, 2, . . . , n− 1}, where we set an = a1.
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Álgebra

Problema 1. Find all function f : R→ R such that for all x, y ∈ R the following equality holds

f(bxc y) = f(x) bf(y)c

where bac is greatest integer not greater than a.

Problema 2. Let the real numbers a, b, c, d satisfy the relations a+ b+ c+ d = 6 and a2 + b2 + c2 + d2 = 12. Prove
that

36 ≤ 4
(
a3 + b3 + c3 + d3)− (a4 + b4 + c4 + d4) ≤ 48.

Problema 3. Let x1, . . . , x100 be nonnegative real numbers such that xi + xi+1 + xi+2 ≤ 1 for all i = 1, . . . , 100 (we
put x101 = x1, x102 = x2). Find the maximal possible value of the sum S =

∑100
i=1 xixi+2.

Problema 4. A sequence x1, x2, . . . is defined by x1 = 1 and x2k = −xk, x2k−1 = (−1)k+1xk for all k ≥ 1. Prove that
∀n ≥ 1 x1 + x2 + . . .+ xn ≥ 0.

Problema 5. Denote by Q+ the set of all positive rational numbers. Determine all functions f : Q+ 7→ Q+ which
satisfy the following equation for all x, y ∈ Q+ :

f
(
f(x)2y

)
= x3f(xy).

Problema 6. Suppose that f and g are two functions defined on the set of positive integers and taking positive integer
values. Suppose also that the equations f(g(n)) = f(n)+1 and g(f(n)) = g(n)+1 hold for all positive integers. Prove
that f(n) = g(n) for all positive integer n.

Problema 7. Let a1, a2, a3, . . . be a sequence of positive real numbers, and s be a positive integer, such that

an = max{ak + an−k | 1 ≤ k ≤ n− 1} for all n > s.

Prove there exist positive integers ` ≤ s and N , such that

an = a` + an−` for all n ≥ N.

Problema 8. Given six positive numbers a, b, c, d, e, f such that a < b < c < d < e < f. Let a + c + e = S and
b+ d+ f = T. Prove that

2ST >
√

3(S + T ) (S(bd+ bf + df) + T (ac+ ae+ ce)).
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Combinatória

Problema 1. In a concert, 20 singers will perform. For each singer, there is a (possibly empty) set of other singers
such that he wishes to perform later than all the singers from that set. Can it happen that there are exactly 2010
orders of the singers such that all their wishes are satisfied?

Problema 2. On some planet, there are 2N countries (N ≥ 4). Each country has a flag N units wide and one unit
high composed of N fields of size 1 × 1, each field being either yellow or blue. No two countries have the same flag.
We say that a set of N flags is diverse if these flags can be arranged into an N ×N square so that all N fields on its
main diagonal will have the same color. Determine the smallest positive integer M such that among any M distinct
flags, there exist N flags forming a diverse set.

Problema 3. 2500 chess kings have to be placed on a 100× 100 chessboard so that(i) no king can capture any other
one (i.e. no two kings are placed in two squares sharing a common vertex);(ii) each row and each column contains
exactly 25 kings.

Find the number of such arrangements. (Two arrangements differing by rotation or symmetry are supposed to be
different.)

Problema 4. Each of the six boxes B1, B2, B3, B4, B5, B6 initially contains one coin. The following operations are
allowed

Type 1) Choose a non-empty box Bj , 1 ≤ j ≤ 5, remove one coin from Bj and add two coins to Bj+1;
Type 2) Choose a non-empty box Bk, 1 ≤ k ≤ 4, remove one coin from Bk and swap the contents (maybe empty)

of the boxes Bk+1 and Bk+2.
Determine if there exists a finite sequence of operations of the allowed types, such that the five boxes B1, B2, B3,

B4, B5 become empty, while box B6 contains exactly 201020102010 coins.

Problema 5. n ≥ 4 players participated in a tennis tournament. Any two players have played exactly one game, and
there was no tie game. We call a company of four players bad if one player was defeated by the other three players,
and each of these three players won a game and lost another game among themselves. Suppose that there is no bad
company in this tournament. Let wi and li be respectively the number of wins and losses of the i-th player. Prove
that

n∑
i=1

(wi − li)3 ≥ 0.

Problema 6. Given a positive integer k and other two integers b > w > 1. There are two strings of pearls, a string
of b black pearls and a string of w white pearls. The length of a string is the number of pearls on it. One cuts these
strings in some steps by the following rules. In each step:(i) The strings are ordered by their lengths in a non-increasing
order. If there are some strings of equal lengths, then the white ones precede the black ones. Then k first ones (if
they consist of more than one pearl) are chosen; if there are less than k strings longer than 1, then one chooses all of
them.(ii) Next, one cuts each chosen string into two parts differing in length by at most one. (For instance, if there are
strings of 5, 4, 4, 2 black pearls, strings of 8, 4, 3 white pearls and k = 4, then the strings of 8 white, 5 black, 4 white
and 4 black pearls are cut into the parts (4, 4), (3, 2), (2, 2) and (2, 2) respectively.) The process stops immediately
after the step when a first isolated white pearl appears.

Prove that at this stage, there will still exist a string of at least two black pearls.

Problema 7. Let P1, . . . , Ps be arithmetic progressions of integers, the following conditions being satisfied:(i) each
integer belongs to at least one of them;(ii) each progression contains a number which does not belong to other
progressions.

Denote by n the least common multiple of the ratios of these progressions; let n = pα1
1 · · · p

αk

k its prime factorization.
Prove that

s ≥ 1 +
k∑
i=1

αi(pi − 1).
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Geometria

Problema 1. Let ABC be an acute triangle with D,E, F the feet of the altitudes lying on BC,CA,AB respectively.
One of the intersection points of the line EF and the circumcircle is P. The lines BP and DF meet at point Q. Prove
that AP = AQ.

Problema 2. Let P be a point interior to triangle ABC (with CA 6= CB). The lines AP , BP and CP meet again
its circumcircle Γ at K, L, respectively M . The tangent line at C to Γ meets the line AB at S. Show that from
SC = SP follows MK = ML.

Problema 3. Let A1A2 . . . An be a convex polygon. Point P inside this polygon is chosen so that its projections
P1, . . . , Pn onto lines A1A2, . . . , AnA1 respectively lie on the sides of the polygon. Prove that for arbitrary points
X1, . . . , Xn on sides A1A2, . . . , AnA1 respectively,

max
{
X1X2

P1P2
, . . . ,

XnX1

PnP1

}
≥ 1.

Problema 4. Given a triangle ABC, with I as its incenter and Γ as its circumcircle, AI intersects Γ again at D. Let
E be a point on the arc BDC, and F a point on the segment BC, such that ∠BAF = ∠CAE <

1
2∠BAC. If G is the

midpoint of IF , prove that the meeting point of the lines EI and DG lies on Γ.

Problema 5. Let ABCDE be a convex pentagon such that BC ‖ AE, AB = BC +AE, and ∠ABC = ∠CDE. Let
M be the midpoint of CE, and let O be the circumcenter of triangle BCD. Given that ∠DMO = 90◦, prove that
2∠BDA = ∠CDE.

Problema 6. The vertices X,Y, Z of an equilateral triangle XY Z lie respectively on the sides BC,CA,AB of an
acute-angled triangle ABC. Prove that the incenter of triangle ABC lies inside triangle XY Z.

Problema 7. Three circular arcs γ1, γ2, and γ3 connect the points A and C. These arcs lie in the same half-
plane defined by line AC in such a way that arc γ2 lies between the arcs γ1 and γ3. Point B lies on the segment
AC. Let h1, h2, and h3 be three rays starting at B, lying in the same half-plane, h2 being between h1 and h3. For
i, j = 1, 2, 3, denote by Vij the point of intersection of hi and γj (see the Figure below). Denote by V̂ijVkj V̂klVil
the curved quadrilateral, whose sides are the segments VijVil, VkjVkl and arcs VijVkj and VilVkl. We say that this
quadrilateral is circumscribed if there exists a circle touching these two segments and two arcs. Prove that if the curved
quadrilaterals V̂11V21V̂22V12, V̂12V22V̂23V13, V̂21V31V̂32V22 are circumscribed, then the curved quadrilateral V̂22V32V̂33V23
is circumscribed, too.



IMO Shortlist 2010

Teoria dos Números

Problema 1. Find the least positive integer n for which there exists a set {s1, s2, . . . , sn} consisting of n distinct
positive integers such that (

1− 1
s1

)(
1− 1

s2

)
· · ·
(

1− 1
sn

)
= 51

2010 .

Problema 2. Find all pairs (m,n) of nonnegative integers for which

m2 + 2 · 3n = m
(
2n+1 − 1

)
.

Problema 3. Find the smallest number n such that there exist polynomials f1, f2, . . . , fn with rational coefficients
satisfying

x2 + 7 = f1 (x)2 + f2 (x)2 + . . .+ fn (x)2
.

Problema 4. Let a, b be integers, and let P (x) = ax3 + bx. For any positive integer n we say that the pair (a, b)
is n-good if n|P (m) − P (k) implies n|m − k for all integers m, k. We say that (a, b) is very good if (a, b) is n-good
for infinitely many positive integers n.(a) Find a pair (a, b) which is 51-good, but not very good.(b) Show that all
2010-good pairs are very good.

Problema 5. Find all functions g : N→ N such that

(g(m) + n) (g(n) +m)

is a perfect square for all m,n ∈ N.

Problema 6. The rows and columns of a 2n × 2n table are numbered from 0 to 2n − 1. The cells of the table have
been coloured with the following property being satisfied: for each 0 ≤ i, j ≤ 2n − 1, the j-th cell in the i-th row and
the (i+ j)-th cell in the j-th row have the same colour. (The indices of the cells in a row are considered modulo 2n.)
Prove that the maximal possible number of colours is 2n.
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Álgebra

Problema 1. Find the largest possible integer k, such that the following statement is true:
Let 2009 arbitrary non-degenerated triangles be given. In every triangle the three sides are coloured, such that one

is blue, one is red and one is white. Now, for every colour separately, let us sort the lengths of the sides. We obtain

b1 ≤ b2 ≤ . . . ≤ b2009 the lengths of the blue sides
r1 ≤ r2 ≤ . . . ≤ r2009 the lengths of the red sides

and w1 ≤ w2 ≤ . . . ≤ w2009 the lengths of the white sides

Then there exist k indices j such that we can form a non-degenerated triangle with side lengths bj , rj , wj .

Problema 2. Let a, b, c be positive real numbers such that 1
a

+ 1
b

+ 1
c

= a+ b+ c. Prove that:

1
(2a+ b+ c)2 + 1

(a+ 2b+ c)2 + 1
(a+ b+ 2c)2 ≤

3
16 .

Problema 3. Determine all functions f from the set of positive integers to the set of positive integers such that, for
all positive integers a and b, there exists a non-degenerate triangle with sides of lengths

a, f(b) and f(b+ f(a)− 1).

(A triangle is non-degenerate if its vertices are not collinear.)

Problema 4. Let a, b, c be positive real numbers such that ab+ bc+ ca ≤ 3abc. Prove that√
a2 + b2

a+ b
+
√
b2 + c2

b+ c
+
√
c2 + a2

c+ a
+ 3 ≤

√
2
(√

a+ b+
√
b+ c+

√
c+ a

)
Problema 5. Let f be any function that maps the set of real numbers into the set of real numbers. Prove that there
exist real numbers x and y such that

f (x− f(y)) > yf(x) + x

Problema 6. Suppose that s1, s2, s3, . . . is a strictly increasing sequence of positive integers such that the sub-
sequences

ss1 , ss2 , ss3 , . . . and ss1+1, ss2+1, ss3+1, . . .

are both arithmetic progressions. Prove that the sequence s1, s2, s3, . . . is itself an arithmetic progression.

Problema 7. Find all functions f from the set of real numbers into the set of real numbers which satisfy for all x, y
the identity

f (xf(x+ y)) = f (yf(x)) + x2
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Combinatória

Problema 1. Consider 2009 cards, each having one gold side and one black side, lying on parallel on a long table.
Initially all cards show their gold sides. Two player, standing by the same long side of the table, play a game with
alternating moves. Each move consists of choosing a block of 50 consecutive cards, the leftmost of which is showing
gold, and turning them all over, so those which showed gold now show black and vice versa. The last player who can
make a legal move wins.

(a) Does the game necessarily end?
(b) Does there exist a winning strategy for the starting player?

Problema 2. For any integer n ≥ 2, let N(n) be the maxima number of triples (ai, bi, ci), i = 1, . . . , N(n), consisting
of nonnegative integers ai, bi and ci such that the following two conditions are satisfied:

ai + bi + ci = n for all i = 1, . . . , N(n), If i 6= j then ai 6= aj , bi 6= bj and ci 6= cj
Determine N(n) for all n ≥ 2.

Problema 3. Let n be a positive integer. Given a sequence ε1, . . . , εn−1 with εi = 0 or εi = 1 for each i = 1, . . . ,
n− 1, the sequences a0, . . . , an and b0, . . . , bn are constructed by the following rules:

a0 = b0 = 1, a1 = b1 = 7,

ai+1 =
{

2ai−1 + 3ai,
3ai−1 + ai,

if εi = 0,
if εi = 1, for each i = 1, . . . , n− 1,

bi+1 =
{

2bi−1 + 3bi,
3bi−1 + bi,

if εn−i = 0,
if εn−i = 1, for each i = 1, . . . , n− 1.

Prove that an = bn.

Problema 4. For an integer m ≥ 1, we consider partitions of a 2m× 2m chessboard into rectangles consisting of cells
of chessboard, in which each of the 2m cells along one diagonal forms a separate rectangle of side length 1. Determine
the smallest possible sum of rectangle perimeters in such a partition.

Problema 5. Five identical empty buckets of 2-liter capacity stand at the vertices of a regular pentagon. Cinderella
and her wicked Stepmother go through a sequence of rounds: At the beginning of every round, the Stepmother takes
one liter of water from the nearby river and distributes it arbitrarily over the five buckets. Then Cinderella chooses
a pair of neighbouring buckets, empties them to the river and puts them back. Then the next round begins. The
Stepmother goal’s is to make one of these buckets overflow. Cinderella’s goal is to prevent this. Can the wicked
Stepmother enforce a bucket overflow?

Problema 6. On a 999× 999 board a limp rook can move in the following way: From any square it can move to any
of its adjacent squares, i.e. a square having a common side with it, and every move must be a turn, i.e. the directions
of any two consecutive moves must be perpendicular. A non-intersecting route of the limp rook consists of a sequence
of pairwise different squares that the limp rook can visit in that order by an admissible sequence of moves. Such a
non-intersecting route is called cyclic, if the limp rook can, after reaching the last square of the route, move directly
to the first square of the route and start over.

How many squares does the longest possible cyclic, non-intersecting route of a limp rook visit?

Problema 7. Let a1, a2, . . . , an be distinct positive integers and let M be a set of n−1 positive integers not containing
s = a1 +a2 + . . .+an. A grasshopper is to jump along the real axis, starting at the point 0 and making n jumps to the
right with lengths a1, a2, . . . , an in some order. Prove that the order can be chosen in such a way that the grasshopper
never lands on any point in M.

Problema 8. For any integer n ≥ 2, we compute the integer h(n) by applying the following procedure to its decimal
representation. Let r be the rightmost digit of n.If r = 0, then the decimal representation of h(n) results from the
decimal representation of n by removing this rightmost digit 0.If 1 ≤ r ≤ 9 we split the decimal representation of n into
a maximal right part R that solely consists of digits not less than r and into a left part L that either is empty or ends
with a digit strictly smaller than r. Then the decimal representation of h(n) consists of the decimal representation of
L, followed by two copies of the decimal representation of R − 1. For instance, for the number 17, 151, 345, 543, we
will have L = 17, 151, R = 345, 543 and h(n) = 17, 151, 345, 542, 345, 542.

Prove that, starting with an arbitrary integer n ≥ 2, iterated application of h produces the integer 1 after finitely
many steps.
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Geometria

Problema 1. Let ABC be a triangle with AB = AC . The angle bisectors of ∠CAB and ∠ABC meet the sides BC
and CA at D and E , respectively. Let K be the incentre of triangle ADC. Suppose that ∠BEK = 45◦ . Find all
possible values of ∠CAB.Jan Vonk, Belgium, Peter Vandendriessche, Belgium and Hojoo Lee, Korea

Problema 2. Let ABC be a triangle with circumcentre O. The points P and Q are interior points of the sides CA
and AB respectively. Let K,L and M be the midpoints of the segments BP,CQ and PQ. respectively, and let Γ be
the circle passing through K,L and M . Suppose that the line PQ is tangent to the circle Γ. Prove that OP = OQ.

Problema 3. Let ABC be a triangle. The incircle of ABC touches the sides AB and AC at the points Z and Y ,
respectively. Let G be the point where the lines BY and CZ meet, and let R and S be points such that the two
quadrilaterals BCY R and BCSZ are parallelogram.

Prove that GR = GS.

Problema 4. Given a cyclic quadrilateral ABCD, let the diagonals AC and BD meet at E and the lines AD and
BC meet at F . The midpoints of AB and CD are G and H, respectively. Show that EF is tangent at E to the circle
through the points E, G and H.

Problema 5. Let P be a polygon that is convex and symmetric to some point O. Prove that for some parallelogram
R satisfying P ⊂ R we have

|R|
|P |
≤
√

2

where |R| and |P | denote the area of the sets R and P , respectively.

Problema 6. Let the sides AD and BC of the quadrilateral ABCD (such that AB is not parallel to CD) intersect
at point P . Points O1 and O2 are circumcenters and points H1 and H2 are orthocenters of triangles ABP and
CDP , respectively. Denote the midpoints of segments O1H1 and O2H2 by E1 and E2, respectively. Prove that the
perpendicular from E1 on CD, the perpendicular from E2 on AB and the lines H1H2 are concurrent.

Problema 7. Let ABC be a triangle with incenter I and let X, Y and Z be the incenters of the triangles BIC, CIA
and AIB, respectively. Let the triangle XY Z be equilateral. Prove that ABC is equilateral too.

Problema 8. Let ABCD be a circumscribed quadrilateral. Let g be a line through A which meets the segment BC
in M and the line CD in N . Denote by I1, I2 and I3 the incenters of 4ABM , 4MNC and 4NDA, respectively.
Prove that the orthocenter of 4I1I2I3 lies on g.
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Teoria dos Números

Problema 1. Seja n um inteiro positivo e a1, a2, . . . , ak (k ≥ 2) elementos distintos do conjunto 1, 2, . . . , n tal que n
divide ai(ai+1 − 1) para i = 1, 2, . . . k − 1. Prove que n não divide ak(a1 − 1).

Problema 2. A positive integer N is called balanced, if N = 1 or if N can be written as a product of an even
number of not necessarily distinct primes. Given positive integers a and b, consider the polynomial P defined by
P (x) = (x+ a)(x+ b).

(a) Prove that there exist distinct positive integers a and b such that all the number P (1), P (2), . . ., P (50) are
balanced.

(b) Prove that if P (n) is balanced for all positive integers n, then a = b.

Problema 3. Let f be a non-constant function from the set of positive integers into the set of positive integer, such
that a − b divides f(a) − f(b) for all distinct positive integers a, b. Prove that there exist infinitely many primes p
such that p divides f(c) for some positive integer c.

Problema 4. Find all positive integers n such that there exists a sequence of positive integers a1, a2, . . ., an satisfying:

ak+1 = a2
k + 1

ak−1 + 1 − 1

for every k with 2 ≤ k ≤ n− 1.

Problema 5. Let P (x) be a non-constant polynomial with integer coefficients. Prove that there is no function T
from the set of integers into the set of integers such that the number of integers x with Tn(x) = x is equal to P (n)
for every n ≥ 1, where Tn denotes the n-fold application of T .

Problema 6. Let k be a positive integer. Show that if there exists a sequence a0, a1, . . . of integers satisfying the
condition

an = an−1 + nk

n
for all n ≥ 1,

then k − 2 is divisible by 3.

Problema 7. Let a and b be distinct integers greater than 1. Prove that there exists a positive integer n such that
(an − 1)(bn − 1) is not a perfect square.
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Álgebra

Problema 1. Find all functions f : (0,∞) 7→ (0,∞) (so f is a function from the positive real numbers) such that

(f(w))2 + (f(x))2

f(y2) + f(z2) = w2 + x2

y2 + z2

for all positive real numbers w, x, y, z, satisfying wx = yz.

Problema 2. (a) Prove that
x2

(x− 1)2 + y2

(y − 1)2 + z2

(z − 1)2 ≥ 1

for all real numbers x, y, z, each different from 1, and satisfying xyz = 1.(b) Prove that equality holds above for
infinitely many triples of rational numbers x, y, z, each different from 1, and satisfying xyz = 1.

Problema 3. Let S ⊆ R be a set of real numbers. We say that a pair (f, g) of functions from S into S is a Spanish
Couple on S, if they satisfy the following conditions:

(i) Both functions are strictly increasing, i.e. f(x) < f(y) and g(x) < g(y) for all x, y ∈ S with x < y;

(ii) The inequality f(g(g(x))) < g(f(x)) holds for all x ∈ S.

Decide whether there exists a Spanish Couple:

(a) on the set S = N of positive integers;

(b) on the set S = {a− 1
b : a, b ∈ N}.

Problema 4. For an integer m, denote by t(m) the unique number in {1, 2, 3} such that m+ t(m) is a multiple of 3.
A function f : Z→ Z satisfies f(−1) = 0, f(0) = 1, f(1) = −1 and f (2n +m) = f (2n − t(m))− f(m) for all integers
m, n ≥ 0 with 2n > m. Prove that f(3p) ≥ 0 holds for all integers p ≥ 0.

Problema 5. Let a, b, c, d be positive real numbers such that abcd = 1 and a+ b+ c+ d >
a

b
+ b

c
+ c

d
+ d

a
. Prove

that
a+ b+ c+ d <

b

a
+ c

b
+ d

c
+ a

d

Problema 6. Let f : R → N be a function which satisfies f
(
x+ 1

f(y)

)
= f

(
y + 1

f(x)

)
for all x, y ∈ R. Prove

that there is a positive integer which is not a value of f .

Problema 7. Prove that for any four positive real numbers a, b, c, d the inequality

(a− b)(a− c)
a+ b+ c

+ (b− c)(b− d)
b+ c+ d

+ (c− d)(c− a)
c+ d+ a

+ (d− a)(d− b)
d+ a+ b

≥ 0

holds. Determine all cases of equality.
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Combinatória

Problema 1. In the plane we consider rectangles whose sides are parallel to the coordinate axes and have positive
length. Such a rectangle will be called a box. Two boxes intersect if they have a common point in their interior or on
their boundary. Find the largest n for which there exist n boxes B1, . . ., Bn such that Bi and Bj intersect if and only
if i 6≡ j ± 1 (mod n).

Problema 2. Let n ∈ N and An set of all permutations (a1, . . . , an) of the set {1, 2, . . . , n} for which

k|2(a1 + · · ·+ ak), for all 1 ≤ k ≤ n.

Find the number of elements of the set An.

Problema 3. In the coordinate plane consider the set S of all points with integer coordinates. For a positive integer
k, two distinct points a, B ∈ S will be called k-friends if there is a point C ∈ S such that the area of the triangle
ABC is equal to k. A set T ⊂ S will be called k-clique if every two points in T are k-friends. Find the least positive
integer k for which there exits a k-clique with more than 200 elements.

Problema 4. Let n and k be positive integers with k ≥ n and k− n an even number. Let 2n lamps labelled 1, 2, ...,
2n be given, each of which can be either on or off. Initially all the lamps are off. We consider sequences of steps: at
each step one of the lamps is switched (from on to off or from off to on).

Let N be the number of such sequences consisting of k steps and resulting in the state where lamps 1 through n
are all on, and lamps n+ 1 through 2n are all off.

Let M be number of such sequences consisting of k steps, resulting in the state where lamps 1 through n are all
on, and lamps n+ 1 through 2n are all off, but where none of the lamps n+ 1 through 2n is ever switched on.

Determine N
M .

Problema 5. Let S = {x1, x2, . . . , xk+l} be a (k + l)-element set of real numbers contained in the interval [0, 1]; k
and l are positive integers. A k-element subset A ⊂ S is called nice if∣∣∣∣∣∣1k

∑
xi∈A

xi −
1
l

∑
xj∈S\A

xj

∣∣∣∣∣∣ ≤ k + l

2kl

Prove that the number of nice subsets is at least 2
k + l

(
k + l

k

)
.

Problema 6. For n ≥ 2, let S1, S2, . . ., S2n be 2n subsets of A = {1, 2, 3, . . . , 2n+1} that satisfy the following
property: There do not exist indices a and b with a < b and elements x, y, z ∈ A with x < y < z and y, z ∈ Sa, and
x, z ∈ Sb. Prove that at least one of the sets S1, S2, . . ., S2n contains no more than 4n elements.
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Geometria

Problema 1. An acute-angled triangle ABC has orthocentre H. The circle passing through H with centre the
midpoint of BC intersects the line BC at A1 and A2. Similarly, the circle passing through H with centre the midpoint
of CA intersects the line CA at B1 and B2, and the circle passing through H with centre the midpoint of AB intersects
the line AB at C1 and C2. Show that A1, A2, B1, B2, C1, C2 lie on a circle.

Problema 2. Given trapezoid ABCD with parallel sides AB and CD, assume that there exist points E on line BC
outside segment BC, and F inside segment AD such that ∠DAE = ∠CBF . Denote by I the point of intersection of
CD and EF , and by J the point of intersection of AB and EF . Let K be the midpoint of segment EF , assume it
does not lie on line AB. Prove that I belongs to the circumcircle of ABK if and only if K belongs to the circumcircle
of CDJ .

Problema 3. Let ABCD be a convex quadrilateral and let P and Q be points in ABCD such that PQDA and QPBC
are cyclic quadrilaterals. Suppose that there exists a point E on the line segment PQ such that ∠PAE = ∠QDE and
∠PBE = ∠QCE. Show that the quadrilateral ABCD is cyclic.

Problema 4. In an acute triangle ABC segments BE and CF are altitudes. Two circles passing through the point
A and F and tangent to the line BC at the points P and Q so that B lies between C and Q. Prove that lines PE
and QF intersect on the circumcircle of triangle AEF .

Problema 5. Let k and n be integers with 0 ≤ k ≤ n− 2. Consider a set L of n lines in the plane such that no two
of them are parallel and no three have a common point. Denote by I the set of intersections of lines in L. Let O be a
point in the plane not lying on any line of L. A point X ∈ I is colored red if the open line segment OX intersects at
most k lines in L. Prove that I contains at least 1

2(k + 1)(k + 2) red points.

Problema 6. There is given a convex quadrilateral ABCD. Prove that there exists a point P inside the quadrilateral
such that ∠PAB + ∠PDC = ∠PBC + ∠PAD = ∠PCD + ∠PBA = ∠PDA+ ∠PCB = 90◦

if and only if the diagonals AC and BD are perpendicular.

Problema 7. Let ABCD be a convex quadrilateral with BA 6= BC. Denote the incircles of triangles ABC and
ADC by ω1 and ω2 respectively. Suppose that there exists a circle ω tangent to ray BA beyond A and to the ray BC
beyond C, which is also tangent to the lines AD and CD. Prove that the common external tangents to ω1 and ω2
intersect on ω.
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Teoria dos Números

Problema 1. Let n be a positive integer and let p be a prime number. Prove that if a, b, c are integers (not necessarily
positive) satisfying the equations

an + pb = bn + pc = cn + pa

then a = b = c.

Problema 2. Let a1, a2, . . ., an be distinct positive integers, n ≥ 3. Prove that there exist distinct indices i and j
such that ai + aj does not divide any of the numbers 3a1, 3a2, . . ., 3an.

Problema 3. Let a0, a1, a2, . . . be a sequence of positive integers such that the greatest common divisor of any two
consecutive terms is greater than the preceding term; in symbols, gcd(ai, ai+1) > ai−1. Prove that an ≥ 2n for all
n ≥ 0.

Problema 4. Let n be a positive integer. Show that the numbers(
2n − 1

0

)
,

(
2n − 1

1

)
,

(
2n − 1

2

)
, . . . ,

(
2n − 1

2n−1 − 1

)
are congruent modulo 2n to 1, 3, 5, . . ., 2n − 1 in some order.

Problema 5. For every n ∈ N let d(n) denote the number of (positive) divisors of n. Find all functions f : N → N
with the following properties:

d (f(x)) = x for all x ∈ N.f(xy) divides (x− 1)yxy−1f(x) for all x, y ∈ N.

Problema 6. Prove that there are infinitely many positive integers n such that n2 + 1 has a prime divisor greater
than 2n+

√
2n.
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Álgebra

Problema 1. Real numbers a1, a2, . . ., an are given. For each i, (1 ≤ i ≤ n), define

di = max{aj | 1 ≤ j ≤ i} −min{aj | i ≤ j ≤ n}

and let d = max{di | 1 ≤ i ≤ n}.

(a) Prove that, for any real numbers x1 ≤ x2 ≤ · · · ≤ xn,

max{|xi − ai| | 1 ≤ i ≤ n} ≥
d

2 .

(b) Show that there are real numbers x1 ≤ x2 ≤ · · · ≤ xn such that the equality holds in the equation above.

Problema 2. Consider those functions f : N 7→ N which satisfy the condition

f(m+ n) ≥ f(m) + f(f(n))− 1

for all m,n ∈ N. Find all possible values of f(2007).

Problema 3. Let n be a positive integer, and let x and y be a positive real number such that xn + yn = 1. Prove
that (

n∑
k=1

1 + x2k

1 + x4k

)
·

(
n∑
k=1

1 + y2k

1 + y4k

)
<

1
(1− x) · (1− y) .

Problema 4. Find all functions f : R+ → R+ satisfying f (x+ f (y)) = f (x+ y) + f (y) for all pairs of positive reals
x and y. Here, R+ denotes the set of all positive reals.

Problema 5. Let c > 2, and let a(1), a(2), . . . be a sequence of nonnegative real numbers such that

a(m+ n) ≤ 2 · a(m) + 2 · a(n) for all m,n ≥ 1,

and a
(
2k
)
≤ 1

(k+1)c for all k ≥ 0. Prove that the sequence a(n) is bounded.

Problema 6. Let a1, a2, . . . , a100 be nonnegative real numbers such that a2
1 + a2

2 + . . .+ a2
100 = 1. Prove that

a2
1 · a2 + a2

2 · a3 + . . .+ a2
100 · a1 <

12
25 .

Problema 7. Let n be a positive integer. Consider

S = {(x, y, z) | x, y, z ∈ {0, 1, . . . , n}, x+ y + z > 0}

as a set of (n+ 1)3 − 1 points in the three-dimensional space. Determine the smallest possible number of planes, the
union of which contains S but does not include (0, 0, 0).
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Combinatória

Problema 1. Let n > 1 be an integer. Find all sequences a1, a2, . . . an2+n satisfying the following conditions:

(a) ai ∈ {0, 1} for all 1 ≤ i ≤ n2 + n;

(b) ai+1 + ai+2 + . . .+ ai+n < ai+n+1 + ai+n+2 + . . .+ ai+2n for all 0 ≤ i ≤ n2 − n.

Problema 2. A rectangle D is partitioned in several (≥ 2) rectangles with sides parallel to those of D. Given that
any line parallel to one of the sides of D, and having common points with the interior of D, also has common interior
points with the interior of at least one rectangle of the partition; prove that there is at least one rectangle of the
partition having no common points with D’s boundary.

Problema 3. Find all positive integers n for which the numbers in the set S = {1, 2, . . . , n} can be colored red and
blue, with the following condition being satisfied: The set S × S × S contains exactly 2007 ordered triples (x, y, z)
such that:

(a) the numbers x, y, z are of the same color, and

(b) the number x+ y + z is divisible by n.

Problema 4. Let A0 = (a1, . . . , an) be a finite sequence of real numbers. For each k ≥ 0, from the sequence
Ak = (x1, . . . , xk) we construct a new sequence Ak+1 in the following way.

(i) We choose a partition {1, . . . , n} = I ∪ J , where I and J are two disjoint sets, such that the expression∣∣∣∣∣∣
∑
i∈I

xi −
∑
j∈J

xj

∣∣∣∣∣∣
attains the smallest value. (We allow I or J to be empty; in this case the corresponding sum is 0.) If there are
several such partitions, one is chosen arbitrarily.

(ii) We set Ak+1 = (y1, . . . , yn) where yi = xi + 1 if i ∈ I, and yi = xi − 1 if i ∈ J .

Prove that for some k, the sequence Ak contains an element x such that |x| ≥ n
2 .

Problema 5. In the Cartesian coordinate plane define the strips Sn = {(x, y)|n ≤ x < n+ 1}, n ∈ Z and color each
strip black or white. Prove that any rectangle which is not a square can be placed in the plane so that its vertices
have the same color.IMO Shortlist 2007 Problem C5 as it appears in the official booklet:

In the Cartesian coordinate plane define the strips Sn = {(x, y)|n ≤ x < n + 1} for every integer n. Assume each
strip Sn is colored either red or blue, and let a and b be two distinct positive integers. Prove that there exists a
rectangle with side length a and b such that its vertices have the same color.

(Edited by Orlando Döhring)

Problema 6. In a mathematical competition some competitors are friends. Friendship is always mutual. Call a group
of competitors a clique if each two of them are friends. (In particular, any group of fewer than two competitiors is a
clique.) The number of members of a clique is called its size.

Given that, in this competition, the largest size of a clique is even, prove that the competitors can be arranged
into two rooms such that the largest size of a clique contained in one room is the same as the largest size of a clique
contained in the other room.

Problema 7. Let α < 3−
√

5
2 be a positive real number. Prove that there exist positive integers n and p > α · 2n for

which one can select 2 · p pairwise distinct subsets S1, . . . , Sp, T1, . . . , Tp of the set {1, 2, . . . , n} such that Si ∩ Tj 6= ∅
for all 1 ≤ i, j ≤ p

Problema 8. Given is a convex polygon P with n vertices. Triangle whose vertices lie on vertices of P is called good
if all its sides are equal in length. Prove that there are at most 2n

3 good triangles.



IMO Shortlist 2007

Geometria

Problema 1. No triângulo ABC, a bissetriz do ângulo ∠BCA intersecta o circumćırculo de novo em R, intersecta a
mediatriz de BC em P , e intersecta a mediatriz de AC em Q. O ponto médio de BC é K e o ponto médio de AC é
L. Prove que os triângulos RPK and RQL têm a mesma área.

Problema 2. Denote by M midpoint of side BC in an isosceles triangle 4ABC with AC = AB. Take a point X on
a smaller arc MA of circumcircle of triangle 4ABM . Denote by T point inside of angle BMA such that ∠TMX = 90
and TX = BX.

Prove that ∠MTB − ∠CTM does not depend on choice of X.

Problema 3. The diagonals of a trapezoid ABCD intersect at point P . Point Q lies between the parallel lines BC
and AD such that ∠AQD = ∠CQB, and line CD separates points P and Q. Prove that ∠BQP = ∠DAQ.

Problema 4. Consider five points A, B, C, D and E such that ABCD is a parallelogram and BCED is a cyclic
quadrilateral. Let ` be a line passing through A. Suppose that ` intersects the interior of the segment DC at F and
intersects line BC at G. Suppose also that EF = EG = EC. Prove that ` is the bisector of angle DAB.

Problema 5. Let ABC be a fixed triangle, and let A1, B1, C1 be the midpoints of sides BC, CA, AB, respectively.
Let P be a variable point on the circumcircle. Let lines PA1, PB1, PC1 meet the circumcircle again at A′, B′, C ′,
respectively. Assume that the points A, B, C, A′, B′, C ′ are distinct, and lines AA′, BB′, CC ′ form a triangle. Prove
that the area of this triangle does not depend on P .

Problema 6. Determine the smallest positive real number k with the following property. Let ABCD be a convex
quadrilateral, and let points A1, B1, C1, and D1 lie on sides AB, BC, CD, and DA, respectively. Consider the areas
of triangles AA1D1, BB1A1, CC1B1 and DD1C1; let S be the sum of the two smallest ones, and let S1 be the area
of quadrilateral A1B1C1D1. Then we always have kS1 ≥ S.

Problema 7. Given an acute triangle ABC with ∠B > ∠C. Point I is the incenter, and R the circumradius. Point
D is the foot of the altitude from vertex A. Point K lies on line AD such that AK = 2R, and D separates A and K.
Lines DI and KI meet sides AC and BC at E,F respectively. Let IE = IF .

Prove that ∠B ≤ 3∠C.

Problema 8. Point P lies on side AB of a convex quadrilateral ABCD. Let ω be the incircle of triangle CPD,
and let I be its incenter. Suppose that ω is tangent to the incircles of triangles APD and BPC at points K and L,
respectively. Let lines AC and BD meet at E, and let lines AK and BL meet at F . Prove that points E, I, and F
are collinear.
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Teoria dos Números

Problema 1. Find all pairs of natural numbers (a, b) such that 7a − 3b divides a4 + b2.

Problema 2. Let b, n > 1 be integers. Suppose that for each k > 1 there exists an integer ak such that b − ank is
divisible by k. Prove that b = An for some integer A.

Problema 3. Let X be a set of 10,000 integers, none of them is divisible by 47. Prove that there exists a 2007-element
subset Y of X such that a− b+ c− d+ e is not divisible by 47 for any a, b, c, d, e ∈ Y.

Problema 4. For every integer k ≥ 2, prove that 23k divides the number(
2k+1

2k

)
−
(

2k
2k−1

)
but 23k+1 does not.

Problema 5. Find all surjective functions f : N → N such that for every m,n ∈ N and every prime p, the number
f(m+ n) is divisible by p if and only if f(m) + f(n) is divisible by p.

Problema 6. Let k be a positive integer. Prove that the number (4 ·k2−1)2 has a positive divisor of the form 8kn−1
if and only if k is even.

Problema 7. For a prime p and a given integer n let νp(n) denote the exponent of p in the prime factorisation of n!.
Given d ∈ N and {p1, p2, . . . , pk} a set of k primes, show that there are infinitely many positive integers n such that
d | νpi

(n) for all 1 ≤ i ≤ k.


