Skip to content
A Python implementation of the Kanade–Lucas–Tomasi (KLT) feature tracker
Python
Branch: master
Clone or download
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
demo Updated README.md Nov 19, 2018
results Remove redundant code and files Nov 19, 2018
.gitignore Add getFeatures.py Nov 6, 2018
Easy.mp4 Initial commit Nov 4, 2018
Medium.mp4 Initial commit Nov 4, 2018
README.md Updated README.md Nov 19, 2018
applyGeometricTransformation.py Updated README.md Nov 19, 2018
estimateAllTranslation.py
estimateFeatureTranslation.py
getFeatures.py Clean up, Add video writer Nov 19, 2018
hard.mp4 Initial commit Nov 4, 2018
objectTracking.py Updated README.md Nov 19, 2018

README.md

Project 3b: Optical Flow & Visual Tracking

Getting Started

Dependency

  • OpenCV
  • numpy
  • scipy
  • scikit-image

Usage

Run objectTracking.py to evaluate.

Method

Step1 Generate Feature Points

feature detection

Step2 Estimate Direction of Motion

optical flow

Step3 Estimate and Apply Geometric Transform

affine transformation

Reject outliers by thresholing.

You can’t perform that action at this time.