Permalink
Switch branches/tags
Nothing to show
Find file Copy path
228fa3a Feb 1, 2018
2 contributors

Users who have contributed to this file

@ZipCPU @foobar2016
373 lines (338 sloc) 11.1 KB
////////////////////////////////////////////////////////////////////////////////
//
// Filename: cpuops.v
//
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
//
// Purpose: This supports the instruction set reordering of operations
// created by the second generation instruction set, as well as
// the new operations of POPC (population count) and BREV (bit reversal).
//
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015-2017, Gisselquist Technology, LLC
//
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License along
// with this program. (It's in the $(ROOT)/doc directory. Run make with no
// target there if the PDF file isn't present.) If not, see
// <http://www.gnu.org/licenses/> for a copy.
//
// License: GPL, v3, as defined and found on www.gnu.org,
// http://www.gnu.org/licenses/gpl.html
//
//
////////////////////////////////////////////////////////////////////////////////
//
//
`default_nettype none
//
`include "cpudefs.v"
//
module cpuops(i_clk,i_reset, i_ce, i_op, i_a, i_b, o_c, o_f, o_valid,
o_busy);
parameter IMPLEMENT_MPY = `OPT_MULTIPLY;
input wire i_clk, i_reset, i_ce;
input wire [3:0] i_op;
input wire [31:0] i_a, i_b;
output reg [31:0] o_c;
output wire [3:0] o_f;
output reg o_valid;
output wire o_busy;
// Shift register pre-logic
wire [32:0] w_lsr_result, w_asr_result, w_lsl_result;
wire signed [32:0] w_pre_asr_input, w_pre_asr_shifted;
assign w_pre_asr_input = { i_a, 1'b0 };
assign w_pre_asr_shifted = w_pre_asr_input >>> i_b[4:0];
assign w_asr_result = (|i_b[31:5])? {(33){i_a[31]}}
: w_pre_asr_shifted;// ASR
assign w_lsr_result = ((|i_b[31:6])||(i_b[5]&&(i_b[4:0]!=0)))? 33'h00
:((i_b[5])?{32'h0,i_a[31]}
: ( { i_a, 1'b0 } >> (i_b[4:0]) ));// LSR
assign w_lsl_result = ((|i_b[31:6])||(i_b[5]&&(i_b[4:0]!=0)))? 33'h00
:((i_b[5])?{i_a[0], 32'h0}
: ({1'b0, i_a } << i_b[4:0])); // LSL
// Bit reversal pre-logic
wire [31:0] w_brev_result;
genvar k;
generate
for(k=0; k<32; k=k+1)
begin : bit_reversal_cpuop
assign w_brev_result[k] = i_b[31-k];
end endgenerate
// Prelogic for our flags registers
wire z, n, v;
reg c, pre_sign, set_ovfl, keep_sgn_on_ovfl;
always @(posedge i_clk)
if (i_ce) // 1 LUT
set_ovfl<=(((i_op==4'h0)&&(i_a[31] != i_b[31]))//SUB&CMP
||((i_op==4'h2)&&(i_a[31] == i_b[31])) // ADD
||(i_op == 4'h6) // LSL
||(i_op == 4'h5)); // LSR
always @(posedge i_clk)
if (i_ce) // 1 LUT
keep_sgn_on_ovfl<=
(((i_op==4'h0)&&(i_a[31] != i_b[31]))//SUB&CMP
||((i_op==4'h2)&&(i_a[31] == i_b[31]))); // ADD
wire [63:0] mpy_result; // Where we dump the multiply result
reg mpyhi; // Return the high half of the multiply
wire mpybusy; // The multiply is busy if true
wire mpydone; // True if we'll be valid on the next clock;
// A 4-way multiplexer can be done in one 6-LUT.
// A 16-way multiplexer can therefore be done in 4x 6-LUT's with
// the Xilinx multiplexer fabric that follows.
// Given that we wish to apply this multiplexer approach to 33-bits,
// this will cost a minimum of 132 6-LUTs.
wire this_is_a_multiply_op;
assign this_is_a_multiply_op = (i_ce)&&((i_op[3:1]==3'h5)||(i_op[3:0]==4'hc));
generate
if (IMPLEMENT_MPY == 0)
begin // No multiply support.
assign mpy_result = 64'h00;
assign mpybusy = 1'b0;
assign mpydone = 1'b1;
always @(*) mpyhi = 1'b0; // Not needed
end else if (IMPLEMENT_MPY == 1)
begin // Our single clock option (no extra clocks)
wire signed [63:0] w_mpy_a_input, w_mpy_b_input;
assign w_mpy_a_input = {{(32){(i_a[31])&(i_op[0])}},i_a[31:0]};
assign w_mpy_b_input = {{(32){(i_b[31])&(i_op[0])}},i_b[31:0]};
assign mpy_result = w_mpy_a_input * w_mpy_b_input;
assign mpybusy = 1'b0;
assign mpydone = 1'b0;
always @(*) mpyhi = 1'b0; // Not needed
end else if (IMPLEMENT_MPY == 2)
begin // Our two clock option (ALU must pause for 1 clock)
reg signed [63:0] r_mpy_a_input, r_mpy_b_input;
always @(posedge i_clk)
begin
r_mpy_a_input <={{(32){(i_a[31])&(i_op[0])}},i_a[31:0]};
r_mpy_b_input <={{(32){(i_b[31])&(i_op[0])}},i_b[31:0]};
end
assign mpy_result = r_mpy_a_input * r_mpy_b_input;
assign mpybusy = 1'b0;
reg mpypipe;
initial mpypipe = 1'b0;
always @(posedge i_clk)
if (i_reset)
mpypipe <= 1'b0;
else
mpypipe <= (this_is_a_multiply_op);
assign mpydone = mpypipe; // this_is_a_multiply_op;
always @(posedge i_clk)
if (this_is_a_multiply_op)
mpyhi = i_op[1];
end else if (IMPLEMENT_MPY == 3)
begin // Our three clock option (ALU pauses for 2 clocks)
reg signed [63:0] r_smpy_result;
reg [63:0] r_umpy_result;
reg signed [31:0] r_mpy_a_input, r_mpy_b_input;
reg [1:0] mpypipe;
reg [1:0] r_sgn;
initial mpypipe = 2'b0;
always @(posedge i_clk)
if (i_reset)
mpypipe <= 2'b0;
else
mpypipe <= { mpypipe[0], this_is_a_multiply_op };
// First clock
always @(posedge i_clk)
begin
r_mpy_a_input <= i_a[31:0];
r_mpy_b_input <= i_b[31:0];
r_sgn <= { r_sgn[0], i_op[0] };
end
// Second clock
`ifdef VERILATOR
wire signed [63:0] s_mpy_a_input, s_mpy_b_input;
wire [63:0] u_mpy_a_input, u_mpy_b_input;
assign s_mpy_a_input = {{(32){r_mpy_a_input[31]}},r_mpy_a_input};
assign s_mpy_b_input = {{(32){r_mpy_b_input[31]}},r_mpy_b_input};
assign u_mpy_a_input = {32'h00,r_mpy_a_input};
assign u_mpy_b_input = {32'h00,r_mpy_b_input};
always @(posedge i_clk)
r_smpy_result <= s_mpy_a_input * s_mpy_b_input;
always @(posedge i_clk)
r_umpy_result <= u_mpy_a_input * u_mpy_b_input;
`else
wire [31:0] u_mpy_a_input, u_mpy_b_input;
assign u_mpy_a_input = r_mpy_a_input;
assign u_mpy_b_input = r_mpy_b_input;
always @(posedge i_clk)
r_smpy_result <= r_mpy_a_input * r_mpy_b_input;
always @(posedge i_clk)
r_umpy_result <= u_mpy_a_input * u_mpy_b_input;
`endif
always @(posedge i_clk)
if (this_is_a_multiply_op)
mpyhi <= i_op[1];
assign mpybusy = mpypipe[0];
assign mpy_result = (r_sgn[1])?r_smpy_result:r_umpy_result;
assign mpydone = mpypipe[1];
// Results are then set on the third clock
end else // if (IMPLEMENT_MPY <= 4)
begin // The three clock option
reg [63:0] r_mpy_result;
reg [31:0] r_mpy_a_input, r_mpy_b_input;
reg r_mpy_signed;
reg [2:0] mpypipe;
// First clock, latch in the inputs
initial mpypipe = 3'b0;
always @(posedge i_clk)
begin
// mpypipe indicates we have a multiply in the
// pipeline. In this case, the multiply
// pipeline is a two stage pipeline, so we need
// two bits in the pipe.
if (i_reset)
mpypipe <= 3'h0;
else begin
mpypipe[0] <= this_is_a_multiply_op;
mpypipe[1] <= mpypipe[0];
mpypipe[2] <= mpypipe[1];
end
if (i_op[0]) // i.e. if signed multiply
begin
r_mpy_a_input <= {(~i_a[31]),i_a[30:0]};
r_mpy_b_input <= {(~i_b[31]),i_b[30:0]};
end else begin
r_mpy_a_input <= i_a[31:0];
r_mpy_b_input <= i_b[31:0];
end
// The signed bit really only matters in the
// case of 64 bit multiply. We'll keep track
// of it, though, and pretend in all other
// cases.
r_mpy_signed <= i_op[0];
if (this_is_a_multiply_op)
mpyhi <= i_op[1];
end
assign mpybusy = |mpypipe[1:0];
assign mpydone = mpypipe[2];
// Second clock, do the multiplies, get the "partial
// products". Here, we break our input up into two
// halves,
//
// A = (2^16 ah + al)
// B = (2^16 bh + bl)
//
// and use these to compute partial products.
//
// AB = (2^32 ah*bh + 2^16 (ah*bl + al*bh) + (al*bl)
//
// Since we're following the FOIL algorithm to get here,
// we'll name these partial products according to FOIL.
//
// The trick is what happens if A or B is signed. In
// those cases, the real value of A will not be given by
// A = (2^16 ah + al)
// but rather
// A = (2^16 ah[31^] + al) - 2^31
// (where we have flipped the sign bit of A)
// and so ...
//
// AB= (2^16 ah + al - 2^31) * (2^16 bh + bl - 2^31)
// = 2^32(ah*bh)
// +2^16 (ah*bl+al*bh)
// +(al*bl)
// - 2^31 (2^16 bh+bl + 2^16 ah+al)
// - 2^62
// = 2^32(ah*bh)
// +2^16 (ah*bl+al*bh)
// +(al*bl)
// - 2^31 (2^16 bh+bl + 2^16 ah+al + 2^31)
//
reg [31:0] pp_f, pp_l; // F and L from FOIL
reg [32:0] pp_oi; // The O and I from FOIL
reg [32:0] pp_s;
always @(posedge i_clk)
begin
pp_f<=r_mpy_a_input[31:16]*r_mpy_b_input[31:16];
pp_oi<=r_mpy_a_input[31:16]*r_mpy_b_input[15: 0]
+ r_mpy_a_input[15: 0]*r_mpy_b_input[31:16];
pp_l<=r_mpy_a_input[15: 0]*r_mpy_b_input[15: 0];
// And a special one for the sign
if (r_mpy_signed)
pp_s <= 32'h8000_0000-(
r_mpy_a_input[31:0]
+ r_mpy_b_input[31:0]);
else
pp_s <= 33'h0;
end
// Third clock, add the results and produce a product
always @(posedge i_clk)
begin
r_mpy_result[15:0] <= pp_l[15:0];
r_mpy_result[63:16] <=
{ 32'h00, pp_l[31:16] }
+ { 15'h00, pp_oi }
+ { pp_s, 15'h00 }
+ { pp_f, 16'h00 };
end
assign mpy_result = r_mpy_result;
// Fourth clock -- results are clocked into writeback
end
endgenerate // All possible multiply results have been determined
//
// The master ALU case statement
//
always @(posedge i_clk)
if (i_ce)
begin
pre_sign <= (i_a[31]);
c <= 1'b0;
casez(i_op)
4'b0000:{c,o_c } <= {1'b0,i_a}-{1'b0,i_b};// CMP/SUB
4'b0001: o_c <= i_a & i_b; // BTST/And
4'b0010:{c,o_c } <= i_a + i_b; // Add
4'b0011: o_c <= i_a | i_b; // Or
4'b0100: o_c <= i_a ^ i_b; // Xor
4'b0101:{o_c,c } <= w_lsr_result[32:0]; // LSR
4'b0110:{c,o_c } <= w_lsl_result[32:0]; // LSL
4'b0111:{o_c,c } <= w_asr_result[32:0]; // ASR
4'b1000: o_c <= w_brev_result; // BREV
4'b1001: o_c <= { i_a[31:16], i_b[15:0] }; // LODILO
4'b1010: o_c <= mpy_result[63:32]; // MPYHU
4'b1011: o_c <= mpy_result[63:32]; // MPYHS
4'b1100: o_c <= mpy_result[31:0]; // MPY
default: o_c <= i_b; // MOV, LDI
endcase
end else // if (mpydone)
// set the output based upon the multiply result
o_c <= (mpyhi)?mpy_result[63:32]:mpy_result[31:0];
reg r_busy;
initial r_busy = 1'b0;
always @(posedge i_clk)
if (i_reset)
r_busy <= 1'b0;
else
r_busy <= ((IMPLEMENT_MPY > 1)
&&(this_is_a_multiply_op))||mpybusy;
assign o_busy = (r_busy); // ||((IMPLEMENT_MPY>1)&&(this_is_a_multiply_op));
assign z = (o_c == 32'h0000);
assign n = (o_c[31]);
assign v = (set_ovfl)&&(pre_sign != o_c[31]);
wire vx = (keep_sgn_on_ovfl)&&(pre_sign != o_c[31]);
assign o_f = { v, n^vx, c, z };
initial o_valid = 1'b0;
always @(posedge i_clk)
if (i_reset)
o_valid <= 1'b0;
else if (IMPLEMENT_MPY <= 1)
o_valid <= (i_ce);
else
o_valid <=((i_ce)&&(!this_is_a_multiply_op))||(mpydone);
endmodule