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• Investigating how hiring (and ranking 

algorithms in general) are biased and what 

are the effective ways to mitigate the bias.

• Experimenting the efficacy of removing 

gender, race, and class identifiers to 

generate fair ranking. 

• Existing hiring algorithms that companies claim 

to be “unbiased” oftentimes only try to meet the 

Equal Employment Opportunity Commission 

(EEOC) basic requirements.

• Even when a hiring algorithm is “good enough” 

for EEOC standards, its interaction with humans 

such as hiring managers still encourages 

discriminatory actions.

• Two assessments of discrimination: [1]

o disparate treatment 

o disparate impact ("4/5" rule)

• Two general categories of current approaches to 

mitigating bias in ranking algorithms:

o in-processing: data cleaning -> ranking 

(normally done WITHOUT machine learning)

o post-processing: data cleaning -> ranking -> 

evaluating -> reranking (normally done WITH 

machine learning, and evaluating and 

reranking could happen multiple times)

• Understand, then Compare and Contrast various 

types of ranking algorithms. 

• Experiment with a particular algorithm

o Themis-ml [2]

o a fairness-aware *post-processing* machine 

learning algorithm

• Four Training Models [2] (protected attribute = 

gender; training data = German Credit Score):

1. Baseline (B): classifier trained on all available 

input variables, including protected attributes.

2. Remove Protected Attribute (RPA): classifier 

where input variables do not contain protected 

attributes. 

3. Reject-Option Classification (ROC): 

classifier using the reject-option classification 

method.

4. Additive Counterfactually Fair 

Model (ACF): classifier using the additive 

counterfactually fair method.

• Evaluate fairness by comparing the percentage 

of men and women classified as low-risk for a 

loan.

• Evaluate utility effectiveness by checking if the 

AUC value remains the same. 

- Raw Data • Simply removing the identifiers related to certain 

attributes (e.g. gender, race, or class) can not 

improve the fairness of the ranking result. 

• This is still a simple data set that produces binary 

classifications. We should deploy real-life 

evaluation on the algorithms to see if the 

algorithms can achieve better representation for 

the marginalized group. 

• Future work should also focus on the social and 

systemic dimensions for ranking or hiring 

algorithms to be in place.
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- Reranking Result

* Men (unprotected group) are 12% more likely to 

be labeled as low risk than Women (protected 

group).

• For PRA and B, there is no noticeable change in 

distribution between the two gender groups.

• For ACF, the difference between the two gender 

groups is significantly decreased by 11%.

• For ROC, surprisingly, women are more likely to 

be labeled as low risk, and the difference 

between the two groups is -8%.

• All four training models maintain the utility AUC 

value around 62%. 

ACKONWLEDGEMENT

Thanks to Brown ExploreCSR program and my 

mentor Zainab Iftikhar for guiding this project.

https://dl.acm.org/doi/abs/10.1145/3351095.3372828
https://arxiv.org/abs/1905.01989
https://dl.acm.org/doi/abs/10.1145/3461702.3462602

