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Unit Testing

Memory Error Detection

Sanitization

Dynamic Symbolic Execution

Fuzz Testing
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Fuzz Testing
Automatically providing unexpected data to a program
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bash -c "echo this is a test"

Normal Tests

Fuzz Tests

A='() { 0 ��a ��b ��c ��d ��e ��f ��g ��h ��i ��j ��k ��l ��m; }' :

A='() { x() { _; }; x() { _; } ��a; }' bash -c : 
A='() { _; } >_[$($())] { echo hi; id; }' bash -c : 
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Collect Feedback

Fuzzing large systems is difficult

~600k  Lines of Code to fuzz a single system
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Collect Feedback

Generating Inputs to Large Systems is Difficult
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Collect Feedback

Security Researchers spend effort generating better inputs
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Execute Input Find CrashesGenerate Input

Collect Feedback

Reshaping makes large targets conducive to fuzzing with 

small modifications to the execution and feedback stages
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Reshaping: modifying a target to make it conducive to 

fuzzing without granular harnesses/grammars

Thesis:

Input-space reshaping is more effective 

than grammar-based harnessing 

approaches for fuzzing complex targets.



Research Questions

Is reshaped fuzzing...

RQ1: effective at finding bugs?

RQ2: competitve with other approaches on coverage-achieved?

RQ3: applicable to a diverse set of targets?

RQ4: beneficial even when grammars exist?

RQ5: compatible with other SoTA fuzzing techniques?
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write 0xe102003b 0xff

write 0xe1020118 0xffffffff

write 0xe1020420 0xffffffff
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write 0x5c048 0x8a

write 0x5c04a 0x31

write 0x5c04b 0xff

write 0xe1020403 0xff
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Abstract

The security of the entire cloud ecosystem crucially de-

pends on the isolation guarantees that hypervisors provide

between guest VMs and the host system. To allow VMs to

communicate with their environment, hypervisors provide

a slew of virtual-devices including network interface cards

and performance-optimized VIRTIO-based SCSI adapters.

As these devices sit directly on the hypervisor’s isolation

boundary and accept potentially attacker controlled input (e.g.,

from a malicious cloud tenant), bugs and vulnerabilities in

the devices’ implementations have the potential to render the

hypervisor’s isolation guarantees moot. Prior works applied

fuzzing to simple virtual-devices, focusing on a narrow subset

of the vast input-space and the state-of-the-art virtual-device

fuzzer, Nyx, requires precise, manually-written, specifications

to exercise complex devices.

In this paper we present MORPHUZZ, a generic approach

that leverages insights about hypervisor design combined with

coverage-guided fuzzing to find bugs in virtual device imple-

mentations. Crucially MORPHUZZ does not rely on expert

knowledge specific to each device. MORPHUZZ is the first

approach that automatically elicits the complex I/O behaviors

of the real-world virtual devices found in modern clouds. To

demonstrate this capability, we implemented MORPHUZZ in

QEMU and bhyve and fuzzed 33 different virtual devices (a

superset of the 16 devices analyzed by prior work). Addition-

ally, we show that MORPHUZZ is not tied to a specific CPU

architecture, by fuzzing 3 additional ARM devices. MOR-

PHUZZ matches or exceeds coverage obtained by Nyx, for

13/16 virtual devices, and identified a superset (110) of all

crashes reported by Nyx (44). We reported all newly discov-

ered bugs to the respective developers. Notably, MORPHUZZ

achieves this without initial seed-inputs, or expert guidance.

1 IntroductionWhile the cloud unveils unique opportunities to IT businesses,

presents a host of fundamental security issues. From a

hnical standpoint, virtualization is the core technolo

ering cloud-infrastructure. Virtualization H

VMMs) multiplex the hardware resources of a physical ma-

chine (the host), between multiple Virtual Machines (VMs or

guests). Cloud-ready hypervisors are complex pieces of soft-

ware, tasked with isolating the software running inside a VM

(i.e., a guest), from the other guests, and the hypervisor itself.

Beyond the cloud, hypervisors are commonly used to sandbox

applications (e.g., for malware research), and for desktop use,

to run applications not supported by the host OS. Regard-

less the application, hypervisors are trusted with providing a

layer of isolation between virtual machines and the host OS.

Crucially, to provide their functionality to guests, hypervisors

include a slew of implementations for virtual devices, and the

code for these devices commonly executes at the privilege

level of the hypervisor itself. Virtual devices play a critical

role in ensuring that the guest is isolated, but due to the com-

plexity of these devices, it can be difficult to safely implement

their functionality in software. Unfortunately exploits com-

promising this layer of isolation (and specifically the virtual

devices) are a tangible reality. In 2015, VENOM [14] was

highly publicized as a VM-Escape vulnerability, which allows

an attacker running within an untrusted guest to compromise

the underlying hypervisor and execute code outside the secu-

rity confines of the VM. VENOM is certainly not a unique

example, and security researchers have identified many vul-

nerabilities leading to potential VM-Escape. Ranked by the

size of bug bounties, VM-escapes are considered among the

most critical classes of vulnerabilities, along with iOS, An-

droid, and browser bugs [58]. Though VM-escape attacks

can take advantage of weaknesses in other hypervisor com-

ponents, such as shadow page tables, our work focuses on

virtual-devices which are responsible for the vast majority of

reported VM-escape vulnerabilities [37].

Software fuzz testing has proven to be a v

nique, capable of exposing vulnerabi

of software [3, 12, 15 19

virtual deviceap l
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Reshaping the Input Space

Achieve a precise view of the regions that are actively engaged in IO
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EndStart Name
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EndStart Name

00000000000C0000 RAM

0009FFFF00000000 RAM

FEBBFFFF000C0000 RAM

FEBDFFFFFEBC0000 NETWORK

000BFFFF000A0000 VGA

Reshaping Port IO and MMIO

Hypervisors must track PIO/MMIO 

regions to trap and emulate accesses.

e memory layout table provides a 

perfect view of active IO regions.
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DMA Memory
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1. Fuzz MMIO

2. Device initiates a DMA access

dma_memory_read(���);

3. Pause the Access
4. Populate DMA Region 

with fuzzer data

5. Resume the Access

Reshaping DMA
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• Two Hypervisors (QEMU and Bhyve)

• 33 Virtual Devices

• Coverage
     • Fuzzed for 24 Hours
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       13/16 Devices
• DMA Evaluation

• Improves Coverage for 24/33 Devices
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Audio

ac97

cs4231a

es1370

intel-hda

sb16

IBM PC

fdc

parallel

serial

Block

ide/core

ahci

sdhci

virtio-blk

virtio-scsi

megasas

sd

scsi-disk

Network

eepro100

e1000

e1000e_core

ne2000

pcnet

rtl8139

vmxnet3

virtio-net

Graphics

virtio-gpu

cirrus_vga

USB

hcd-ehci

hcd-xhci

ARM

arm_gic

smc91c111

xgmac

bhyve

pci_xhci

virtio_block
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VDF‡
Hyper-Cube* Nyx‡ QMORPHUZZ

Device 25-65 Days 24 Hours 24 Hours 24 Hours Bug

Source File Cov. Cov. Cov. Cov.

Block

ide/core 27.5% 74.87% 74.69% 78.63% 4

ahci 80.86% 4

sdhci 90.5% 81.15% 88.93% 84.8% 4

virtio-blk 68.51% 4

virtio-scsi 66.78% 4

megasas 88.41% 4

sd 70.11% 4

scsi-disk 74.09% 4

Average 61.67% 76.35% 78.16% 85.76%

Average (All devices) 81.08%

Evaluation
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No-DMA Scratch-Buffer QMORPHUZZ

Device 24 Hours 24 Hours 24 Hours

Source File Cov. Cov. Cov.

Network

eepro100 87.13% 87.13% (0.00) 89.26% (+2.13)

e1000 65.77% 66.14% (+0.37) 89.23% (+23.09)

e1000e_core 75.24% 75.84% (+0.60) 90.54% (+14.70)

ne2000 82.95% 83.47% (+0.52) 98.71% (+15.24)

pcnet 71.38% 72.72% (+1.34) 96.35% (+23.63)

rtl8139 81.78% 84.92% (+3.14) 94.01% (+9.09)

vmxnet3 45.37% 47.63% (+2.26) 63.89% (+16.26)

virtio-net 50.67% 51.58% (+0.91) 60.23% (+8.65)

Average 67.51% 69.42% 81.08%

Evaluation



66 New (110 Total)

29 Assertion Failures

8 Stack Overflow

8 Null-Ptr Deref

7 UAF

7 Buffer Overflow

7 Other

Assertion-failure in audio_bug
Assertion-failure in mch_update_pciexbar
Assertion-failure in vmxnet3_validate_interrupt_idx
Assertion-failure in vmxnet3_validate_queues
Assertion-failure in address_space_stw_le_cached through virtio-net
Assertion-failure in address_space_stw_le_cached through virtio-blk
Assertion-failure in address_space_cache_invalidate through virtio-gpu
Assertion-failure in address_space_unmap through ahci_map_clb_address
Assertion-failure in address_space_unmap through virtio-blk
Assertion-failure in virtio_blk_reset
Assertion-failure in bdrv_aio_cancel
Assertion-failure in bmdma_active_if
Assertion-failure in e1000e_write_lgcy_rx_descr
Assertion-failure in e1000e_write_rx_descr
Assertion-failure in e1000e_write_to_rx_buffers
Assertion-failure in e1000e_intrmgr_on_throttling_timer
Assertion-failure in e1000e_intmgr_collect_delayed_causes
Assertion-failure in eth_get_gso_type through e1000e
Assertion-failure in iov_from_buf_full through e1000e
Assertion-failure in net_tx_pkt_add_raw_fragment through vmxnet3
Assertion-failure in net_tx_pkt_reset through vmxnet3
Assertion-failure in pci_bus_get_irq_level
Assertion-failure in scsi_dma_complete, with megasas
Assertion-failure in usb_detach
Assertion-failure in ati_reg_read_offs and ati_reg_write_offs
Assertion in modify_bar_registration
Assertion in unregister_mem
Assertion in pci_vtnet_proctx
Assertion in pci_vtnet_cfgwrite
Assertion-failure in gic_clear_pending_sgi
Assertion-failure in bcm2835_thermal_read
Assertion-failure in dwc2_hsotg_write
Stack-overflow in ahci_cond_start_engines
Stack-overflow in _eth_get_rss_ex_dst_addr
Stack-overflow in rtlNUMBER_transmit_one
Stack-overflow in pcnet_poll_timer
Stack-overflow in e1000_receive_iov
Stack-overflow in flatview_do_translate through e1000
Stack-overflow in intel_hda_corb_run
Stack-overflow in xhci_pci_intr_raise
Null-Ptr Deref in virtio_write_config
Null-Ptr Deref in address_space_to_flatview through ide
Null-Ptr Deref in blk_bs
Null-Ptr Deref in megasas_command_complete
Null-Ptr Deref in megasas_handle_frame
Null-Ptr Deref in tcg_handle_interrupt
Null-Ptr Deref in usb_bus_from_device
Null-Ptr Deref in vq_getchain
Null-Ptr Deref in smc91c111_writeb
Heap-use-after-free in e1000e_write_packet_to_guest
Heap use-after-free in e1000e_write_to_rx_buffers
Heap-use-after-free in ehci_flush_qh
Heap-use-after-free in usb_packet_copy
Heap-use-after-free in usb_packet_unmap
Heap-use-after-free in virtio_gpu_ctrl_response
Heap-use-after-free through double-fetch in ehci
Heap-use-after-free in gic_dist_writeb
Buffer-underflow in xhci_runtime_write
Global-buffer-overflow in mode_sense_page
Heap-buffer-overflow in sdhci_write_dataport
Heap-buffer-overflow in sdhci_data_transfer
Heap-buffer-overflow in sd_erase
Heap-buffer-overflow in msix_table_mmio_write
Heap-buffer-overflow in pcnet_receive
Memcpy-param-overlap in flatview_write_continue
Memcpy param-overlap in ip_stripoptions
Memcpy param-overlap through e1000e_write_to_rx_buffers
Memory Exhaustion in vmxnet3_activate_device
Memory Exhaustion in hpet_timer
Infinite Loop in sdhci_data_transfer
Floating-point exception in ide_set_sector

Bugs
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Morphuzz is Upstream in QEMU

• Continuously fuzzed on OSS-Fuzz

• 200+ Issues Reported

• Reproducers are simple to use

• Bugs are caught before release

git clone git.qemu.org/qemu.git
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Bend the virtual-device input space to make it conducive to fuzzing

Fuzz any device, across all PIO, MMIO, and DMA interfaces. 
No per-device analysis or descriptions, needed

Use time-tested off-the-shelf fuzzers
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AbstractThe security guarantees of cloud computing depend on the iso-

lation guarantees of the underlying hypervisors. Prior works

have presented effective methods for automatically identify-

ing vulnerabilities in hypervisors. However, these approaches

are limited in scope. For instance, their implementation is

typically hypervisor-specific and limited by requirements

for detailed grammars, access to source-code, and assump-

tions about hypervisor behaviors. In practice, complex closed-

source and recent open-source hypervisors are often not suit-

able for off-the-shelf fuzzing techniques.

HYPERPILL introduces a generic approach for fuzzing ar-

bitrary hypervisors. HYPERPILL leverages the insight that

although hypervisor implementations are diverse, all hypervi-

sors rely on the identical underlying hardware-virtualization

interface to manage virtual-machines. To take advantage of

the hardware-virtualization interface, HYPERPILL makes a

snapshot of the hypervisor, inspects the snapshotted hardware

state to enumerate the hypervisor’s input-spaces, and lever-

ages feedback-guided snapshot-fuzzing within an emulated

environment to identify vulnerabilities in arbitrary hypervi-

sors. In our evaluation, we found that beyond being the first

hypervisor-fuzzer capable of identifying vulnerabilities in

arbitrary hypervisors across all major attack-surfaces (i.e.,

PIO/MMIO/Hypercalls/DMA), HYPERPILL also outperforms

state-of-the-art approaches that rely on access to source-code,

due to the granularity of feedback provided by HYPERPILL’s

emulation-based approach. In terms of coverage, HYPERPILL

outperformed past fuzzers for 10/12 QEMU devices, without

the API hooking or source-code instrumentation techniques

required by prior works. HYPERPILL identified 26 new bugs

n recent versions of QEMU, Hyper-V, and macOS Virtual-

ation Framework across four device-categories.
All work was completed prior to author joining Amazon

1 IntroductionHypervisors provide the security foundations necessary for

the cloud. They enable efficient use of hardware resources,

by colocating workloads from multiple tenants on the same

bare-metal machines, isolated in individual virtual-machines

(VMs). As such, hypervisors ensure that code running in VMs

cannot violate the virtualization boundary (e.g., by performing

a VM escape attack) and compromise the workloads of the

other tenants, or the hypervisor itself.

Unfortunately, VM escape attacks are a tangible reality.

Hundreds of bugs have been identified in the complex hyper-

visor code. Due to the severity of these bugs, hypervisor com-

promises are awarded large bug bounties, similar to other high-

value targets such as web browsers and mobile devices [53].

In parallel, fuzzing has emerged as one of the most powerful

techniques for automatically uncovering vulnerabilities in a

large range of software [4,10,14,18,20,21,27,28,39,45,49,52].

As such, a significant amount of academic research has fo-

cused on leveraging fuzzing to automatically identify bugs in

hypervisor code, so that they can be promptly fixed, prevent-

ing malicious exploitation [6, 13, 26, 29, 32, 37, 38].

State-of-the-art approaches [6, 26] are capable of automati-

cally finding complex bugs across most major attack-surfaces

(i.e., PIO/MMIO/DMA). However, these approaches rely on

access and manual modifications to hypervisor source-code

to effectively fuzz virtual-devices. Even with access to source-

code, porting current methods to new targets is a non-trivial

process that requires considerable manual effort by an expert.

Furthermore, most fuzzers do not handle the hypercall attack-

surface as hypercalls are often implemented in a separate

component from the core device-emulation (e.g., in the OS

kernel), for performance reasons. Thus, even though

open-source targets such as QEMU and Vi

extensively fuzzed, closed-sou

macOS Virtualizati
fuzzed

22
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1
Snapshot target HypervisorHypervisor

Instance

2
Probe Hypervisor Input SpacesSnapshot

3
Fuzz Hypervisor in Emulated 

Environment

Snapshot
Fuzzing

Once per Hypervisor

Once per Snapshot



1
Snapshot target Hypervisor

Once per Hypervisor 2
Probe Hypervisor Input Spaces

Once per Snapshot 3
Fuzz Hypervisor in Emulated 

Environment
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Snapshot of the Target Hypervisor

Input Interpreter

Inject IO

Fuzzing Engine

Modified Input

Instrumented

Execution Comparisons

Guest-Memory

Accesses

Covered Edges

Fuzz-VM

}

}

}

Target

Crashes

List of PIO/MMIO Regions

Categorized Guest Memory Frames

HyperPill-Fuzz

HP-Inspect

VMCS

CR3
EPTP

RIP
...

Fuzz-VM

Static

Dynamic

}
}Guest Memory

Frames

Potential MMIO
Regions

Inject IO

Await vmresume

Measure:
ICount

 Covered PCs

 sysret Usage

Probe PIO/MMIO

1

2

Target

3

4

5

List of PIO/MMIO Regions

Paravirtual NIC

Virtual Disk

Virtual Display

...

HyperPill-Snap L0

L1

Snapshot of the Target Hypervisor

Target1
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Paravirtual NIC

Virtual Disk

Virtual Display

Virtual Audio

Keyboard

Fuzz-VM

mov rax, 0xdeadbeef

vmcall

2

3

L2



1. Make a Snapshot
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HyperPill-Snap L0

L1

Snapshot of the Target Hypervisor

Target1

54

Paravirtual NIC

Virtual Disk

Virtual Display

Virtual Audio

Keyboard

Fuzz-VM

mov rax, 0xdeadbeef

vmcall

2

3

L2

1. Run the target hypervisor (L1) nested in KVM (L0)
2. Configure/Start a VM in L1 (L2)
3. Invoke a special "snapshot" hypercall in (L2)
4. Collect a memory/register snapshot of L1, 
just as it is about to handle the hypercall VM 

exit from L2.



2. Enumerate the Input Spaces

HP-Inspect

Snapshot of the Target Hypervisor

VMCS

CR3
EPTP

RIP
...

Fuzz-VM

Static

Dynamic

}
}Guest Memory

Frames

Potential MMIO
Regions

Inject IO

Await vmresume

Measure:
ICount

 Covered PCs

 sysret Usage

Probe PIO/MMIO

1

2

Target

3

4

5

List of PIO/MMIO Regions

Categorized Guest Memory Frames

Paravirtual NIC

Virtual Disk

Virtual Display

...
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1. Load the snapshot into an emulator (Bochs)
2. Inspect the VMCS that L1 created for L2 to 

identify MMIO Regions and physical frames 

allocated to L2's memory 
3. Perform probing of IO input-space to identify 

active ports by tracking icounts, covered PCs 

and exits to userspace.



3. Fuzz the Hypervisor
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1. Load the snapshot into the emulator
2. Modify the register/VMCS state to inject fuzzer-

generated PIO/MMIO 
3. Resume the hypervisor and wait for it to handle 

the VMExit.
4. Instead of running the L2 VM, immeditately 

inject another fuzzer-provided VMexit.
5. When the hypervisor reads from L2's memory, 

fill the read with fuzzer-provided data. (DMA)
6. Once the whole input is executed, reload the 

snapshot

Snapshot of the Target Hypervisor

Input Interpreter

Inject IO

Fuzzing Engine

Modified Input

Instrumented

Execution Comparisons

Guest-Memory

Accesses

Covered Edges

Fuzz-VM

}

}

}

Target

Crashes

List of PIO/MMIO Regions

Categorized Guest Memory Frames

HyperPill-Fuzz



Results: QEMU Coverage
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Morphuzz ViDeZZo HYPERPILL

12 Cores 24 Hours

Device Branch Coverage (Executions/Second) Bug

Block

ahci 42.43% (25.68) 30.42% (562.24) 45.90% (26.18) ✓
nvme 29.12% (23.82) 36.44% (14.45) ✓
sdhci 69.81% (22.98) 72.37% (107.22) 66.85% (32.34)

virtio-scsi 27.96% (23.83) 11.73% (217.28) 48.83% (51.68)

Display

cirrus 88.10% (19.06) 83.42% (138.78) 88.67% (32.18) ✓
qxl 59.68% (26.96) ✓

virtio-gpu 24.37% (26.21) 2.77% (222.42) 45.52% (36.53) ✓
Networking

e1000e 50.27% (24.83) 41.52% (53.04) 55.99% (42.22) ✓
igb 29.73% (25.63) 35.93% (60.85) ✓

vmxnet 50.75% (27.01) 19.64% (145.73) 56.89% (48.14)

USB

ehci 73.76% (24.58) 74.38% (177.08) 73.32% (10.46)

xhci 55.54% (28.83) 29.25% (1061.36) 76.64% (69.26) ✓
Geo. Mean 45.20% (24.65) 28.00% (203.07) 55.45% (33.20)



Results: Bugs
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QEMU

Arbitrary memory-access in e1000e_start_xmit

Heap-overflow in usb_mouse_poll

Heap-overflow in virtqueue_alloc_element

Heap-overflow in qxl_cookie_new

Heap-overflow in igb_tx_pkt_switch

Out-of-bounds memory access in nvme_process_sq

Out-of-bounds memory access in nvme_io_mgmt_send

DoS via arbitrary-sized allocation in qxl

DoS via arbitrary-sized allocation in virtio_gpu

DoS in process_ncq_command

DoS in icmp_input

Hyper-V

Heap-corruption in EthernetCard::HandleTransmitSetupFrame

Abort in EthernetCard::PollForTransmitDataTimer

Abort after IdeChannel::EnlightenedHddCommand

EthernetCard::SetupEthernetCardModeFromRegisters

Out-of-bounds write in GuestStateAccess::SetDeviceInfo

Abort after PitDevice::NotifyIoPortRead

Abort in I8042Device::HandleCommand

Abort after HvCallDetachDevice

Abort after HvCallGetGpaPagesAccessState

macOS Virtualization Framework

Memory-privilege violation in xHCI

Out-of-bounds write in virtio-gpu

Out-of-bounds write in virtio-audio

Out-of-bounds access in virtio-block

Out-of-bounds access in virtio-console

Out-of-bounds access in virtio-net
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Reshape hypervisors by modifying the CPU virtualization interface 
No modification to hypervisors code needed!

More precise than source-level reshaping

Fuzz any hypervisor across its PIO, MMIO, DMA, and Hypercall
interfaces
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Abstract—The integr ity of the entire computing ecosystem

depends on the secur ity of our operating systems (OSes). Unfor-

tunately, due to the scale and complexity of OS code, hundreds

of secur ity issues are found in OSes, every year [32]. As such,

operating systems have constantly been pr ime use-cases for

applying secur ity-analysis tools. In recent years, fuzz-testing has

appeared as the dominant technique for automatically finding

secur ity issues in software. As such, fuzzing has been adapted

to find thousands of bugs in kernels [14]. However, modern OS

fuzzers, such as Syzkaller , rely on precise, extensive, manually-

created harnesses and grammars for each inter face fuzzed within

the kernel. Due to this reliance on grammars, cur rent OS fuzzers

are faced with scaling-issues.
In this paper, we present FUZZNG, our gener ic approach to

fuzzing system-calls on OSes. Unlike Syzkaller , FUZZNG does not

require intr icate descr iptions of system-call inter faces in order to

function. Instead FUZZNG leverages fundamental kernel design

features in order to reshape and simplify the fuzzer ’s input-space.

As such FUZZNG only requires a small config, for each new

target: essentially a list of files and system-call numbers the fuzzer

should explore.
We implemented FUZZNG for the Linux kernel. Testing

FUZZNG over 10 Linux components with extensive descr ip-

tions in Syzkaller showed that, on average, FUZZNG achieves

102.5% of Syzkaller ’s coverage. FUZZNG found 9 new bugs

(5 in components that Syzkaller had already fuzzed extensively,

for years). Additionally, FUZZNG’s lightweight configs are less

than 1.7% the size of Syzkaller ’s manually-wr itten grammars.

Crucially, FUZZNG achieves this without initial seed-inputs, or

exper t guidance.

I. INTRODUCTION

The Operating System continues to serve as one of the

most security-critical building blocks in modern computing.

The OS’ role in managing resources and enforcing isolation

between applications makes it a target for attackers who seek

to violate OS-provided guarantees. Recognizing the critical

nature of OS security, fuzzers have identified and helped

fix thousands of bugs in OS kernels. Recently, the success

of OS fuzzers has emphasized difficulty of writing secure

low-level code, and has even spurred initiatives such as

support for safer languages in the Linux kernel, and the

sage of hardware-features such as Memory Tagging to enable

dvanced low-overhead defenses against memory-corruption

issues [23], [44]. Most OS fuzzers focus on the critical system-

call interface, which enables user-space applications to request

services from the kernel.Syzkaller[14], the most prolific system-call fuzzer, has

become an integral component of the Linux Kernel develop-

ment lifecycle, with over 2,700 mentions in kernel commit

messages. As such, syzkaller, itself, has grown to be a sizeable

project, with over 200 contributors. Crucially, Syzkaller can

only fuzz system-calls that are sufficiently described by a

“syzlang” grammar. These grammars encode and annotate the

types of resources provided as inputs and returned as outputs,

by system-calls. Therefore, much of the syzkaller community’s

work is focused around developing and refining “syzlang”

descriptions for system-calls, which are essential to Syzkaller’s

success.

Developing such grammars is a manual process, and re-

quires detailed knowledge about the interface (i.e., set of

system calls) in question. As such, grammars are prone to

human-error, and can lead to gaps in coverage, or over-fitting

(preventing the fuzzer from exploring all states and scenarios

in which code could be covered). Additionally, syzkaller

sometimes requires writing supplementary harnessing code to

fuzz particularly complex interfaces. For example, to fuzz the

Linux Kernel Virtual Machine (KVM) interface, which powers

security-critical virtualization software, Syzkaller developers

committed 891 lines of detailed syscall descriptions, 243

KVM-related constants, and a further 879 lines of KVM-

specific C harnessing code (illustrated in Figure 1). Even

though Syzkaller features tens-of-thousands of hand-crafted

“syzlang” rules, the current process cannot scale to fuzz

the millions of lines of code added to the Linux Kernel

each year [33]. Academic works have recognized Syzkaller’s

scalability problem with manually-created syzlang grammars,

and have focused on automatically generating grammars.

Works such as Difuze, IMF, SyzGen, and KSG apply static

and dynamic-analysis techniques to automatically generate

system-call descriptions [12], [18], [9], [51]. Difuze, IMF and

SyzGen are designed and evaluated against interfaces, such

as Android Drivers, and macOS APIs, for which no bas

line manual-descriptions exist. KSG’s description

improve Syzkaller’s coverage, howeve

been released and upstream S

efforts continue to r l

Some up tt
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Fuzzing System Calls

Kernel

Userspace

syscall %rdi %rsi %rdx %r10 %r8 %r9
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Kernel

Userspace

syscall FUZZ FUZZ FUZZ FUZZ FUZZ FUZZ
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Fuzzing System Calls

Kernel

Userspace

syscall FUZZ FUZZ FUZZ FUZZ FUZZ FUZZ

Adding a New System Call                                       
--------------------------------------- 

For more sophisticated system calls that involve a larger number of arguments, 
it's preferred to encapsulate the majority of the arguments into a structure   
that is passed in by pointer.  Such a structure can cope with future extension 
by including a size argument in the structure

���                                                                      
                                                                              
If your new system call allows userspace to refer to a kernel object, it      
should use a file descriptor as the handle for that object -- don't invent a  
new type of userspace object handle when the kernel already has mechanisms and
well-defined semantics for using file descriptors.

linux-kernel/Documentation/process/adding-syscalls.rst                   
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Kernel

Userspace

syscall FUZZ FUZZ FUZZ FUZZ FUZZ FUZZ
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Fuzzing System Calls

Kernel

Userspace

fd = open("/var/log/messages", O_RDONLY)
read(fd, buf, 100);

syscall 0x2 0xce51020 0x0 0x0 0x0 0x0 = 0x3
syscall 0x0 0x3 0x55a4e3c2a000 100 0x0 0x0
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Kernel

Userspace

Memory

fd = open("/var/log/messages", O_RDONLY)
read(fd, buf, 100);

syscall 0x2 0xce51020 0x0 0x0 0x0 0x0 = 0x3
syscall 0x0 0x3 0x55a4e3c2a000 100 0x0 0x0
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Fuzzing System Calls

Kernel

Userspace

Memory

fd = open("/var/log/messages", O_RDONLY)
read(fd, buf, 100);

syscall 0x2 0xce51020 0x0 0x0 0x0 0x0 = 0x3
syscall 0x0 0x3 0x55a4e3c2a000 100 0x0 0x0

0ce51010 5548 89e5 9090 5dc3 3030 3030 3030 0a00  UH����].000000��
0ce51020 2f76 6172 2f6c 6f67 2f6d 6573 7361 6765  /var/log/message
0ce51030 7300 4572 726f 7220 6f70 656e 696e 6720  s.Error opening 
0ce51040 6669 6c65 2e00 5265 6164 696e 6720 7468  file��Reading th
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Memory
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syscall FUZZ FUZZ FUZZ FUZZ FUZZ FUZZ
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Fuzzing System Calls

Kernel

Userspace

Memory

3

0

Files

1

2

Pointers and File-Descriptors 

result in an enormous system-call input-space

syscall FUZZ FUZZ FUZZ FUZZ FUZZ FUZZ
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syz_io_uring_setup(entries int32[1:IORING_MAX_ENTRIES], params ptr[inout, io_uring_params], addr_ring vma, addr_sqes vma, ring_ptr ptr[out, ring_ptr], sqes_ptr ptr[out, sqes_ptr]) fd_io_uring

io_uring_setup(entries int32[1:IORING_MAX_ENTRIES], params ptr[inout, io_uring_params]) fd_io_uring
io_uring_enter(fd fd_io_uring, to_submit int32[0:IORING_MAX_ENTRIES], min_complete int32[0:IORING_MAX_CQ_ENTRIES], flags flags[io_uring_enter_flags], sigmask ptr[in, sigset_t], size len[sigmask])
io_uring_register$IORING_REGISTER_BUFFERS(fd fd_io_uring, opcode const[IORING_REGISTER_BUFFERS], arg ptr[in, array[iovec_out]], nr_args len[arg])
io_uring_register$IORING_UNREGISTER_BUFFERS(fd fd_io_uring, opcode const[IORING_UNREGISTER_BUFFERS], arg const[0], nr_args const[0])
io_uring_register$IORING_REGISTER_FILES(fd fd_io_uring, opcode const[IORING_REGISTER_FILES], arg ptr[in, array[fd]], nr_args len[arg])
io_uring_register$IORING_UNREGISTER_FILES(fd fd_io_uring, opcode const[IORING_UNREGISTER_FILES], arg const[0], nr_args const[0])
io_uring_register$IORING_REGISTER_EVENTFD(fd fd_io_uring, opcode const[IORING_REGISTER_EVENTFD], arg ptr[in, fd_event], nr_args const[1])
io_uring_register$IORING_UNREGISTER_EVENTFD(fd fd_io_uring, opcode const[IORING_UNREGISTER_EVENTFD], arg const[0], nr_args const[0])
io_uring_register$IORING_REGISTER_FILES_UPDATE(fd fd_io_uring, opcode const[IORING_REGISTER_FILES_UPDATE], arg ptr[in, io_uring_files_update], nr_args len[arg:fds])
io_uring_register$IORING_REGISTER_EVENTFD_ASYNC(fd fd_io_uring, opcode const[IORING_REGISTER_EVENTFD_ASYNC], arg ptr[in, fd_event], nr_args const[1])
io_uring_register$IORING_REGISTER_PROBE(fd fd_io_uring, opcode const[IORING_REGISTER_PROBE], arg ptr[inout, io_uring_probe], nr_args len[arg:ops])
io_uring_register$IORING_REGISTER_PERSONALITY(fd fd_io_uring, opcode const[IORING_REGISTER_PERSONALITY], arg const[0], nr_args const[0]) ioring_personality_id
io_uring_register$IORING_UNREGISTER_PERSONALITY(fd fd_io_uring, opcode const[IORING_UNREGISTER_PERSONALITY], arg const[0], nr_args ioring_personality_id)

# The mmap'ed area for SQ and CQ rings are really the same -- the difference is
# accounted for with the usage of offsets.
mmap$IORING_OFF_SQ_RING(addr vma, len len[addr], prot flags[mmap_prot], flags flags[mmap_flags], fd fd_io_uring, offset const[IORING_OFF_SQ_RING]) ring_ptr
mmap$IORING_OFF_CQ_RING(addr vma, len len[addr], prot flags[mmap_prot], flags flags[mmap_flags], fd fd_io_uring, offset const[IORING_OFF_CQ_RING]) ring_ptr
mmap$IORING_OFF_SQES(addr vma, len len[addr], prot flags[mmap_prot], flags flags[mmap_flags], fd fd_io_uring, offset const[IORING_OFF_SQES]) sqes_ptr

# If no flags are specified(0), the io_uring instance is setup for interrupt driven IO.
io_uring_setup_flags = 0, IORING_SETUP_IOPOLL, IORING_SETUP_SQPOLL, IORING_SETUP_SQ_AFF, IORING_SETUP_CQSIZE, IORING_SETUP_CLAMP, IORING_SETUP_ATTACH_WQ
io_uring_enter_flags = IORING_ENTER_GETEVENTS, IORING_ENTER_SQ_WAKEUP
_ = __NR_mmap2

# Once an io_uring is set up by calling io_uring_setup, the offsets to the member fields
# to be used on the mmap'ed area are set in structs io_sqring_offsets and io_cqring_offsets.
# Except io_sqring_offsets.array, the offsets are static while all depend on how struct io_rings
# is organized in code. The offsets can be marked as resources in syzkaller descriptions but
# this makes it difficult to generate correct programs by the fuzzer. Thus, the offsets are
# hard-coded here (and in the executor).
define SQ_HEAD_OFFSET 0
define SQ_TAIL_OFFSET 64
define SQ_RING_MASK_OFFSET 256
define SQ_RING_ENTRIES_OFFSET 264
define SQ_FLAGS_OFFSET 276
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io_uring_setup(entries int32[1:IORING_MAX_ENTRIES], 
               params ptr[inout, io_uring_params]) fd_io_uring

System-Call Grammars

34



io_uring_setup(entries int32[1:IORING_MAX_ENTRIES], 
               params ptr[inout, io_uring_params]) fd_io_uring

io_uring_register$IORING_REGISTER_PROBE(fd fd_io_uring,
                                        opcode const[IORING_REGISTER_PROBE],
                                        arg ptr[inout, io_uring_probe], nr_args len[arg:ops])
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io_uring_setup(entries int32[1:IORING_MAX_ENTRIES], 
               params ptr[inout, io_uring_params]) fd_io_uring

io_uring_register$IORING_REGISTER_PROBE(fd fd_io_uring,
                                        opcode const[IORING_REGISTER_PROBE],
                                        arg ptr[inout, io_uring_probe], nr_args len[arg:ops])
io_uring_probe {                                  
    last_op const[0, int8]                        
    ops_len const[0, int8]                        
    resv    const[0, int16]                       
    resv2   array[const[0, int32], 3]             
    ops array[io_uring_probe_op, 0:IORING_OP_LAST]
}                                          
io_uring_probe_op {                               
    op  const[0, int8]                            
    resv    const[0, int8]                        
    flags   const[0, int16]                       
    resv2   const[0, int32]                       
}                                                 
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4000+ Lines of Code to Describe a Single Subsystem (KVM)

Current System-Call Fuzzers rely on detailed grammars to 

describe pointer and file-descriptor arguments



FuzzNG

Reshape the pointer and file-descriptor input-spaces to make 

system-calls conducive to off-the-shelf fuzzing methods
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What will it take to make fuzzer-generated pointers

and file-descriptors result in meaningful target behaviors?
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Bend the system-call input space to make it conducive to fuzzing

Use time-tested off-the-shelf fuzzers

Competitive fuzzing performance with tiny component configs
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Is reshaped fuzzing...

RQ1: effective at finding bugs?
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RQ3: applicable to a diverse set of targets?
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RQ5: compatible with other SoTA fuzzing techniques?
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Thesis:

Input-space reshaping is more effective 

than grammar-based harnessing 

approaches for fuzzing complex targets.
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xperts with varying time and resources at

are beginning to address rehosting chal-

n earnest. In this paper, we establish that

conduct large-scale dynamic analysis of

s and present rehosting as a firmware-

re, we taxonomize preliminary rehost-

mental components of the rehosting

for future research.

of part or all of this work for personal or

ded that copies are not made or distributed

copies bear this notice and the full citation

omponents of this work must be honored.

.

Hong Kong

CCS CONCEPTS
• Software and its engineering → Software reverse engineering;

Software post-development issues; Dynamic analysis; • Hardware

→ Post-manufacture validation and debug; Simulation and emula-

tion; • Computer systems organization → Firmware; Embedded

software; Real-time systems.
KEYWORDSDynamic program analysis; firmware security; emulation; embed-

ded systems; internet of things; virtualization; rehosting

ACM Reference Format:

Andrew Fasano, Tiemoko Ballo, Marius Muench, Tim Leek, Alexander Bulekov,

Brendan Dolan-Gavitt, Manuel Egele, Aurélien Francillon, Long Lu, Nick

Gregory, Davide Balzarotti, and William Robertson. 2021. SoK: Enabling

Security Analyses of Embedded Systems via Rehosting . In Proceedings of

the 2021 ACM Asia Conference on Computer and Communications Secu-

rity (ASIA CCS ’21), June 7–11, 2021, Hong Kong, Hong Kong. ACM, New

York, NY, USA, 15 pages. https://doi.org/10.1145/3433210.3453093

1 INTRODUCTION
Whereas enterprise edge systems are typically maintained by IT pro-

fessionals, the rise of low-cost, consumer edge devices (“Internet of

Things”) has led to an increasingly large number of Internet-accessible

machines which malicious actors can exploit. In 2016, the Mirai

malware exploited insecure default credentials on many of these ma-

chines to create a botnet of approximately 600,000 devices [1]. But

poor security posture is a problem emblematic of many embedded

systems, not just consumer edge devices. Despite the frequent use

of embedded systems for safety-critical, industrial applicatio

90% of embedded real-time operating system f
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Introduces the benefits and challenges of of 
virtualizing embedded software 

Identifies the essential steps in the rehosting 
process and a high-level, iterative process for 
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Abstract
ted languages, such as PHP, power a host of platform-

dent applications, including websites, instant messen-

eo games, and development environments. With the

g popularity of these applications, attackers have

on finding and exploiting vulnerabilities in inter-

Generally, all parts of an interpreted application

h uniform and superfluous privileges, increasing

damage from an exploit. This lack of privilege-

n stark violation of the principle of least privi-

0 web app remote code execution (RCE) vul-

overed in 2018 alone [25], current defenses

te detection of vulnerable code, or exten-

benign inputs. Considering the limitations

tems, the violation of the PoLP exposes

arily-high risks.entify the current challenges with apply-

reted PHP applications, and propose a

for automatically deriving system-call

nterpreted programs. This effectively

e (i.e., set of system-calls) an exploit

m-calls the script needs to performtation of this approach, Saphire,

prototype with respect to its se-

acteristics. Our evaluation on 21

and plugins shows that Saphire

loits, and is able to do so with

d (i.e., <2% in the worst case)

re performs its service with-

automatically and manually

eb app.

, interpreter PHP, web ap-

execution.

1 IntroductionInterpreted languages, such as PHP and JavaScript, are the

foundation of modern-day computing. This is particularly true

for the web, where online social networks, eCommerce, and

online news attract the attention of billions of daily users. The

ensuing swaths of personal, financial, and otherwise sensitive

information held by these entities, make web sites attractive

targets for cyber attacks. Beyond localized leaks of informa-

tion, web apps and the interpreted languages that power them

have also been at the core of data breaches that affect society

at large. In 2015 attackers allegedly leveraged vulnerabilities

in plugins of the WordPress and Drupal web apps to leak what

has become known as the “Panama Papers” [36]. As testa-

ment to this crisis, Symantec reports [10] that in 2017, one

in every 13 web requests was malicious. What exacerbates

the situation is that, according to W3Techs [43], nine out of

ten most popular web-development languages are interpreted.

Furthermore, 2017 saw a 400% year-over-year increase [24]

of reported vulnerabilities in the top four most popular con-

tent management systems. All four are interpreted web apps

and have attracted significant attention from attackers.

Arbitrary code-executions(ACE) are the most dangerous

class of application vulnerabilities, as they allow an attacker to

take complete control over the running application. The root

issue that makes ACE so hazardous is the fact that modern

interpreted applications do not adhere to the principle of least

privilege (PoLP) [46]. An attacker’s exploit executes with

ambient authority and is constrained only by the operating

systems’ access control mechanisms.

Some at-risk projects have recognized this problem and

taken steps to intentionally reduce the run-time privileges of

their software. By relinquishing access to unneeded system

resources and API’s, the software reduces the potential impact

of a vulnerability. This practice has been widely adopted by

native applications such as Chrome, Firefox, Tor, QEMU

and OpenSSH, but it is not in common use by i

applications. The reason for this is that b

introduce a layer of abstra i
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Three stage approach to automatically protect a 
vulnerable-web application against exploitation.

Leverages, seccomp, a built-in feature of the 
kernel

Blocked every exploit in our dataset
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Morphuzz is Upstream in QEMU

• Continuously fuzzed on OSS-Fuzz

• 200+ Issues Reported

• Reproducers are simple to use

• Bugs are caught before release

git clone git.qemu.org/qemu.git


