Universitat des Saarlandes
Naturwissenschaftlich-Technische Fakultat |
Fachrichtung Informatik
Studiengang Medieninformatik

Bachelorarbeit

Flexible Rasterizer in OpenCL

vorgelegt von
Florian Ziesche

am 22. Mai 2013

Begutachtet von

Prof. Dr. Jens Kriiger
Dr. Tino Weinkauf

Eidesstattliche Erklarung

Ich erklare hiermit an Eides Statt, dass ich die vorliegende Arbeit selbststandig verfasst und

keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement in Lieu of an QOath

| hereby confirm that | have written this thesis on my own and that | have not used any other

media or materials than the ones referred to in this thesis.

Einverstandniserklarung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in die
Bibliothek der Informatik aufgenommen und damit veréffentlicht wird.

Declaration of Consent

| agree to make both versions of my thesis (with a passing grade) accessible to the public by
having them added to the library of the Computer Science Department.

Saarbrucken, 22. Mai 2013

(Ort/Place, Datum/Date) (Unterschrift/Signature)

Contents Flexible Rasterizer in OpenCL - iii

Contents

|1. Introductior‘

E. OpenCL‘

2.1. OpenCL Platform Modei
2.2. OpenCL Execution Modei
2.3. OpenCL Memory Modei
2.4. OpenCL Programmingj

B. Previous and Related Work
3.1. High-Performance Software Rasterization on GPUSI
3.2. 3D Rasterizatiod
3.3. Frustum Cullingj

|4. Pipeline Overview

4.1. Device Stageg
1.2. User Frontend
1.3. Host Interfacesi

b. Pipeline Device Sta resi
H.1. Transform Stagd

5.2. Primitive Processing & Primitive Assembly Stagel

b.3. Binning Stagd
b.4. Rasterization Stage]
H.5. Implementationl

b. Pipeline User Frontend
6.1. OpenCL Built-in Functionsl
6.2. User Programg

6.2.1. Transformation Programl
6.2.2. Rasterization Progrard
6.3. Image Functionsg,
6.4. Framebuffer Functionsi
6.5. Miscellaneousl

|7. Pipeline Host Interface4

7.1. OpenC[J
7.2. Pipelind
7.2.1. Pipeline & Stage Classesl
7.2.2. Imagd

0 ~J Ut =~ W

12

13
14

15
15
15
15

16
17

20
23
25

26
26
26
29
29
29
31
31

Contents Flexible Rasterizer in OpenCL - iv

|7.2.3. Framebufferl 35

7.3. Program| 35
7.4. Core Interfaceé 36

E. Examples‘ 37
8.1. Simple Example Progrard 37
8.2. Otheﬂ 46

b. Conclusion & Future Work| 48
h. OCLRaster on GitHuH 50

.

k. OCLRaster Support Librarﬂ 50

Introduction Flexible Rasterizer in OpenCL - 1

1. Introduction

Today’s real-time computer graphics are mostly dominated by the two graphics
APIs OpenGL and Direct3D, and their derivates, which provide a hardware ab-
straction on top of GPUs and a standardized way to program a predetermined
graphics pipeline. While certain parts of these hardware graphics pipelines are
programmable, other parts are not programmable at all or only allow a low de-
gree of fixed-function parameter tweaking. At the same time, the graphics pipeline
as a whole remains a largely rigid setup that doesn’t allow any rearrangement or
simplification of pipeline stages or the complete removal of specific stages that
are deemed necessary. Further restrictions are a result of the software APIs and
hardware vendors themselves, as they decide on how, which and where hardware
features are exposed, which can lead to situations where only a subset of all possible
GPU features are available to programmers.

This thesis will demonstrate the implementation of an essentially OpenGL 2.0-level
software graphics pipeline, called OCLRaster (short for OpenCL Rasterizer), with
the addition of some unique features and functionality of more recent OpenGL
versions, but also the exclusion of some other features. The pipeline is written
and accelerated by OpenCL C on the device side and C++ on the host side, and
is capable of running on all OpenCL 1.1 desktop hardware. This includes most
modern GPUs and CPUs.

Among the main goals are to provide a simple host API and an easy way to
program the vertex and fragment stage, with the direct intention of being similar
to a hardware graphics pipeline and API, and accordingly requiring no modification
of the pipeline. Both of these should allow for a rather uncomplicated migration
of OpenGL programs.

On the other hand, this project should also provide functionality that facilitates
complete or partial customization of the graphics pipeline.

In regard to the implemented features, this software pipeline supports fully pro-
grammable depth testing and blending, which are both not possible on today’s
graphics hardware, instanced rendering, scissor testing, the previously mentioned
vertex and fragment stage programmability, miscellaneous buffer objects in a sim-
plified and unified way, 2D images, framebuffers and multiple render targets with
less restrictions than hardware pipelines, and of course rendering with perspective
and orthographic projection modes. Other OpenGL 2.0-level features are how-
ever not supported. These include stencil testing (which can however be partially
simulated in software by simply using an additional framebuffer attachment), anti-
aliasing, 1D and 3D images, occlusion querrying and all of the now obsolete legacy

Introduction Flexible Rasterizer in OpenCL - 2

draw functions and modes. The reasons for this are not of any technical nature
that would prevent their implementation, but rather due to the time constraints
of this thesis.

Additional benefits that a software pipeline might provide over a hardware pipeline
is to perform functions that hardware simply can’t do. This can be, for example, the
direct rendering of user-defined non-triangle primitives (Bézier surfaces or actual
quads), or the already mentioned programmable blending and depth testing, or
custom image and framebuffer formats with the possibility of arbitrary types (if
implemented in software), or stripping parts of the pipeline that aren’t used or
necessary or extend the pipeline by a new stage (image or fullscreen shader). Hybrid
techniques are also possible, e.g. a more direct approach at combining rasterization
and ray-tracing [DEG*12] or performing occlusion culling on the CPU [Int13] or
generally relieving the GPU by offloading some work to any other free device.

In general, a software pipeline, and OpenCL in particular, allow for a more flexible
and heterogeneous way of pipeline programming, as the same highly modifiable
code runs on all devices and all of these devices are able to take part in the rendering
of a frame. Furthermore, adjustment and creation of pipeline stages, direct access
to rasterization variables and buffers and strong programming language support via
OpenCL all lead to a kind of programming that is closer to a classical CPU-centric
software pipeline than it is to today’s GPU-centric hardware pipeline.

OpenCL Flexible Rasterizer in OpenCL - 3

2. OpenCL

After the advent of modern GPU programming with CUDA in 2007 [NVI07] and
earlier GPGPU adventures like BrookGPU [BFH'04h, BFH'04a] or Close to Metal
[AMDO6] that were closely hardware dependent, the need for an open, standardized,
cross-platform framework for parallel programming of modern processors arose.
Initiated by Apple and in close collaboration with the major CPU and GPU vendors
AMD, Intel and NVIDIA (among others), the first draft specification was handed
over to the Khronos Group in June 2008 where the Khronos Compute Working
Group (now OpenCL Working Group) was formed [Khr08a, Khr08d]. Following a
fast standardization process, the final OpenCL 1.0 specification was released and
approved by all Khronos members in December 2008 [KhrO8h]. Revisions to the
standard were released in 2010 with OpenCL 1.1 [Khr10] and in 2011 with OpenCL
1.2 [Khrll], which was further updated with additional extensions in November
2012 [Khr12] and is, as of this writing, the most current version of OpenCL.

OpenCL has been widely adopted by many hardware vendors and today runs on
a multitude of hardware ranging from NVIDIA and AMD GPUs, to Intel, IBM,
ARM and AMD CPUs, to Texas Instruments DSPs, to Xilinx and Altera FPGAs.

This thesis and its implementation are based on OpenCL 1.1, as this is the most
widely available OpenCL standard as of today that also provides a certain minimum
set of features that are required for its operation. Furthermore, the implementation
has been tested on and should run on all three major desktop operating systems
(Windows, OS X and Linux) on top of the CPU and GPU OpenCL implementations
of AMD, Apple, Intel and NVIDIA. This translates to OpenGL 4 capable GPUs,
SSE2+ capable CPUs (AMD platform) and SSE4.24+ CPUs (Intel platform). At
the beginning, the project has been shortly tested on iOS 6.1 as well, but further
development has been dropped, since iOS only supports the ARM CPU device
and OpenCL support as-is is still inofficial and experimental with many remaining
implementation issues. In general, OpenCL and this project should also run on
most modern mobile graphics hardware. Imagination and ARM both advertise
OpenCL 1.1 compliance for their current mobile GPUs [Imal3, ARM13, Khr13b],
but widespread support is still missing.

This chapter will mostly reference chapter 3, The OpenCL Architecture, of the
OpenCL specification [OWG12a] and show how it maps to actual hardware, with

the inclusion of a few examples.

OpenCL Flexible Rasterizer in OpenCL - 4

2.1. OpenCL Platform Model

From top to bottom, the OpenCL platform model consists of a host, i.e. the oper-
ating system and its attached hardware (CPU, RAM, ...) that controls everything,
one or more OpenCL implementations (the OpenCL platforms) provided by the
OS or the respective hardware vendors, which in turn give access to one or more
OpenCL devices (CPUs, GPUs, ...).

Devices are further divided up into multiple compute units, which are physically
represented by individual CPU cores (usually logical CPU cores or H/W threads),
(streaming) multiprocessors (NVIDIA GPUs []), or combined SIMD wunits
(AMD GPUs []) Note that multiple platforms can give access to the same
devices (e.g., this is the case when you have both the Intel and the AMD OpenCL
implementations installed with each providing access to the CPU device).

host

platform

device

device

l

platforms ...

devices ...

Figure 1: OpenCL Platform Model

Compute units are divided up into one or more processing elements that are re-
sponsible for the actual execution of OpenCL device code. These are represented
either by single compute cores (NVIDIA), or again by SIMD units (AMD) or logical
CPU cores.

In most cases, multiple processing elements are not physically distinguishable as
their execution is bundled in SIMD units (which currently range from 4-wide with
SSE, to 8-wide with AVX, to 16-wide on AMD GPUs and Intel MICs, to 32-wide
so called warps on NVIDIA hardware). On hardware that purely consists out of
SIMD units (GPUs), branched execution, or any kind of execution that requires
less processing elements than the width of the SIMD unit, is generally achieved
through an execution mask that simply disables the unnecessary parts of the unit

OpenCL Flexible Rasterizer in OpenCL - 5

(i.e. these parts are unused during execution). Additionally, there are usually
several SIMD units per compute unit, which makes program execution within a
compute unit an odd mixture of SIMD and SPMD that one should be very aware of
when programming such devices (know the execution order, where to put memory
fences and barriers and how these are executed).

2.2. OpenCL Execution Model

OpenCL execution happens in so called OpenCL kernels, which are programs writ-
ten in OpenCL C that are compiled for and run on each OpenCL device. Kernels
are organized in OpenCL programs, which contain many different kernels for mul-
tiple devices, but the relation is usually 1:1 (at least in this project, for simplicity
reasons).

OpenCL kernel execution occurs in 1D, 2D or 3D ranges that describe a specific
problem size, i.e. they determine into how many parts the workload is split and
in what kind of dimensionality the problem is processed in. This range is called
the global range. The work is then further divided into smaller local ranges that
are processed by so called work-groups. Work-groups consist of numerous work-
items, which finally perform the actual kernel execution. Each work-item executes
a kernel exactly once.

Figure 2: OpenCL Execution Model:
global ranges (blue), local ranges (green)

OpenCL Flexible Rasterizer in OpenCL - 6

Furthermore, the user doesn’t have to care about the work distribution, as this is
entirely and automatically done by the OpenCL implementation and the OpenCL
device according to the specified global and local range. There are however ways to
circumvent this to some degree, mainly by using persistent kernels and distribut-
ing the workload manually with some form of global synchronization (as will be
demonstated later on).

In hardware, kernel execution translates as follows: one work-group is processed
by exactly one compute unit, work-items within the work-group are distributed to
all processing elements within the compute unit (SIMD units). After a work-group
execution has concluded, the compute unit is assigned the next work-group, and
so on, until all work-groups have been completed.

As an example, let’s imagine that we want to perform some kind of per-pixel
operation on a framebuffer. This framebuffer is 1280px = 720px in size, which
consequently leads to a global 2D range of (1280,720). Determining the local
range is not as obvious, since it highly depends on the hardware and how many
processing elements per compute unit it possesses. There are however hints, as
well as device and kernel specific information that OpenCL provides that aid in
computing the best local range. For now, let’s assume a local 2D range of (16, 16),
i.e. 256 work-items per work-group. In total, this gives us 80 * 45 = 3600 work-
groups and 3600 = 256 = 921600 work-items. In this setup, each work-item will
process exactly one pixel.

1280

720

Figure 3: OpenCL Execution Model example

OpenCL Flexible Rasterizer in OpenCL - 7

2.3. OpenCL Memory Model

OpenCL knows four distinct device address spaces: global memory, local memory,
private memoy and constant memory. Global memory is represented by big, but
relatively slow device RAM that all compute units and the host have access to (read
and write). Local memory is directly coupled with every compute unit and is only
accessible to the processing elements of a compute unit (read and write), although
the available amount of local memory can be controlled from the host, which has
otherwise no access to it. Its speed is usually very high, while its size is very limited:
the OpenCL 1.1 specification requries at least 32KiB of local memory (on current
hardware this equates to 48KiB on Fermi and Kepler NVIDIA GPUs and 32KiB
on AMD GPUs and Intel and AMD CPUs). Private memory is the memory that
is only available to a processing element, usually represented by hardware registers
and thus is the fastest, but also the smallest type of memory. Private memory
is completely inaccessible from the host. Constant memory is a small amount of
memory (at least 64KiB) that is read-only to all compute units, but can be written
to from the host. It is generally located in the global memory and access to it is
cached on most hardware, but this can vary from device to device.

host / platform

host memory (RAM)

device

global / constant memory (VRAM)

I Local memory Local memory Local memory

compute unit compute unit compute unit

s e

private memory private memory private memory

Figure 4: OpenCL Memory Model

For all types of memory except global memory, devices are only capable of static
allocation, i.e. the size must be known at compile time. Allocation of global
memory is not possible at all from the device. The host is capable of dynamically
allocating global, constant and local memory.

OpenCL 1.1 also introduced host unified memory, which makes host memory
(RAM) directly accessible from the OpenCL device. This is mostly beneficial for
devices that share the same physical memory (e.g. integrated GPUs or CPU de-
vices themselves) or in cases where explicitly copying data from the device to the

OpenCL Flexible Rasterizer in OpenCL - 8

host or allocating huge amounts of device memory is unwanted (note however that
these cases rarely give any, if any at all, performance boost, as the data still has
to copied in some way).

2.4. OpenCL Programming

OpenCL devices are programmed in OpenCL C, which is basically a subset of ISO
C99 with a few extensions. OpenCL C does not provide a C standard library, and
in fact, does not supply any header files at all. OpenCL uses a different model, in
which all built-in functions are available everywhere. This follows the model that
other GPU-centric languages have previously used, including GLSL, HLSL and Cg,
but it might slightly confuse more CPU-centric programmers.

Nevertheless, OpenCL offers a huge amount of built-in functions, as described in
chapter 6.12 of the specification [OWG124]. Math, integer, geometric and rela-
tional functions are mostly identical to what OpenGL provides with GLSL, with a
few extra functions in OpenCL that are mostly known from the C standard library.
In addition to those, OpenCL also provides atomic functions (both to global and
local memory, as required since OpenCL 1.1), work-group internal synchroniza-
tion functions (barrier and memory fence functions), direct image read and write
functions (as an extension, even write support to 3D images), explicit vector load
and store functions, asynchronous memory copy functions and optionally a printf

function.

An additional extension that OpenCL C delivers is the built-in support for vector
types of 2-, 3-, 4-, 8 and 16-width for all natively supported data types (float,
int, uint, ...). This allows for easy writing of vector code that can be conveniently
utilized by OpenCL compilers to directly generate SIMD code.

Among the C99 features that were removed from OpenCL C are dynamic memory
allocation (on the device), function recursion (mostly due to earlier GPU hardware
not supporting this) and variadic macros (although not really a hardware limita-
tion, and supported by most compilers). Further restrictions apply to the address
space qualifiers, determining how and where these can be used. More extensive

information is available in chapter 6.9 of the OpenCL specification [OWG12al).

OpenCL kernel source code is usually compiled at runtime by the OpenCL C com-
piler that is provided with each OpenCL platform implementation. OpenCL also
allows to retrieve compiled program binaries. The binary format is however spe-
cific to each OpenCL implementation and each device and might even differ across
versions of the same OpenCL implementation. Thus, it is not recommended to
ship any kind of kernel binaries, but always provide and compile kernel source code

OpenCL Flexible Rasterizer in OpenCL - 9

at runtime. In the future, this might be partially mitigated by SPIR [OWG12b],
which is a vendor neutral intermediate bytecode representation that is based on
LLVM IR. It should be relatively easy to implement, as most OpenCL compilers
are Clang/LLVM based.

To provide some insight into OpenCL C, I will show and shortly explain two simple
OpenCL kernels. T will not show any OpenCL host code in here, as this is rather
uninteresting and not really helpful at this point, as OCLRaster builds upon cl.hpp
[OWG13], the C++ abstraction layer on top of the OpenCL host interfaces and
provides additional functionality on top of that, so that users of this project won’t
have to write any direct OpenCL host code.

Onto the first example:

kernel void simple_kernel(global const float4* input,
global float4* output) {
// work-item id for dimension #O
const size_t id = get_global_id(0);

// clamps input to [0, 1] and writes it to output
output [id] = clamp(input[id], 0.0f, 1.0f);

Listing 1: a simple OpenCL kernel

Kernel functions are always specified using the kernel qualifier and always have
to return void. Kernel function parameters are completely in the hands of the
user, with some restrictions that apply to the allowed address space qualifiers (e.g.
no private memory parameters). In this example, the kernel function is supplied
with two global memory buffers, the input buffer being read-only (const), and
the output buffer having read-write access. Inside the kernel function, we first
fetch the global ID (index or unique ID in [0, global range)), which is then used to
get the id-th element of the input buffer, clamp its value and write it to the id-th
position of the output buffer. As one might also notice, both buffers use 4-width
float vector types for their elements, which OpenCL is easily and directly able to
handle.

OpenCL Flexible Rasterizer in OpenCL - 10

The second example is slightly more complex and shows some more advanced
OpenCL C features (image sampling, type conversion and atomic functions):

kernel void histogram(read_only image2d_t image,
global unsigned int* buckets) {
// global range is in 2D
const size_t idx = get_global_id(0);
const size_t idy = get_global_id(1);

// define an image sampler, necessary for reading from images

const sampler_t point_sampler = (// coordinates are in [0, image size)
CLK_NORMALIZED_COORDS_FALSE |
// nearest/point sampling
CLK_FILTER_NEAREST |
// no address checking
CLK_ADDRESS_NONE) ;

// sample the image at coordinate (idx, idy) using the point sampler
const float value = read_imagef (image, point_sampler, (int2) (idx, idy)).x;

// explicit saturated convert (value will be clamped to [0, 255])
const unsigned char uchar_value = convert_uchar_sat(value * 255.0f);

// atomically increment the count for value
// note that atomic_inc only takes a global or local address
atomic_inc(&buckets[uchar_valuel);

Listing 2: a simple histogram kernel in OpenCL

This example computes the histogram of an 8-bit grayscale 2D image. Conse-
quently, the global range is in 2D and should match the image size. The image
is provided as the first kernel parameter (also explicitly being read-only) and the
bucket buffer is provided as the second parameter. The bucket buffer should con-
tain 256 elements of type unsigned int and should be zero initialized on the host
side.

Again, we first retrieve the global ID, but this time in 2D. We then create an image
sampler that is always required when reading (sampling) images, which in this case
happens with nearest (or point) filtering with coordinates that are not normalized
(we directly address the image texel using absolute integer coordinates) and also
don’t require address checking (this tells OpenCL that coordinates are guaranteed
to be valid - other modes allow for coordinate clamping, mirroring and repeating).
We then continue to actually read the texel as a normalized float value. This is
followed by a multiply by 255 to get the value into [0, 255] range and a saturated
convert to an 8-bit unsigned char. And finally, the bucket buffers uchar_value-th

element is atomically increased.

OpenCL Flexible Rasterizer in OpenCL - 11

Note that this kernel is purely for demonstration purposes and shouldn’t be used
in real-world code. For one thing, OpenCL also allows direct reading of (non-
normalized) int and unsigned int image values. Additionally, performing atomic
operations on such a low amount of values is not recommended and will result in a
lot of waiting as multiple work-items try to atomically increase the same value at
the same time. It would be better to synchronize the bucket buffer in local memory
first and then write it to the global buffer, or write some kind of reduction kernel.

Previous and Related Work Flexible Rasterizer in OpenCL - 12

3. Previous and Related Work

This project mostly builds upon the 3D Rasterization paper [DEGT12] for its ras-
terization part, with some simplifications when using orthographic rendering. On
the pipeline side, it is heavily inspired by and expands on the High-Performance
Software Rasterization on GPUs paper [LK11].

3.1. High-Performance Software Rasterization on GPUs

This paper already demonstrated that a GPU based software graphics pipeline
is possible and that performance in the range of 2x - 8x slower than a hardware
graphics pipeline can be achieved. The implementation is however written in CUDA
and very GPU dependent, as all work-sizes and its design closely match the specific
GPU hardware that was used in the paper. This project, and OpenCL, necessitate
a more universal approach to that.

CUDA also provides work-group internal synchronization functions that OpenCL
unfortunately lacks, thus making a direct OpenCL portation impossible. Some of
its general work distribution and synchronization methods were however helpful
and have been utilized in OCLRaster, as will be shown later on.

Additionally, OCLRaster draws upon its general pipeline design, however merging
the bin rasterizer and coarse rasterizer to a single binning stage and splitting the
triangle setup stage into two parts, the transform stage and the primitive processing
& assembly stage. These will be discussed in . In the same way as this
paper, OCLRaster also preserves the primitive input order and guarantees hole-free

rasterization.

Furthermore, OCLRaster gets rid of the viewport limitation of this paper and
allows arbitrary viewport sizes that are only limited by the amount of framebuffer
memory that can be allocated with OpenCL on a device.

Previous and Related Work Flexible Rasterizer in OpenCL - 13

3.2. 3D Rasterization

This paper introduces 3D triangle edge equations based on the Pliicker ray-triangle
intersection test. These can be used as an alternative to 2D edge function of a more
traditional rasterization pipeline. 3D rasterization provides a simpler rasterization
variable setup and requires less computation than when using 2D edge equations.
In addition, it guarantees rasterization consistency and provides rules for it.

Triangle clipping isn’t utilized by 3D rasterization, but OCLRaster still implements
soft-clipping, since it requires certain triangle information in the binning stage and
to some extent when deciding which triangles should be culled in the primitive
processing & assembly stage.

For future reference, when rendering with orthographic projection using only 2D
vertex coordinates and a fixed forward vector of (0,0,1)7, the 3D rasterization
variable setup can be simplified to:

Vi,x =d,- (p((i+2) mod 3),y — P((i4+1) mod 3),y)
Viy = dy - (P((i+1) mod 3)x = P((i+2) mod 3).x)

Vie = Viy P(i+2) mod 3)y — Vix* P((i+2) mod 3).x

V defines the volume, d, and d, are part of the image plane parameterization (right

and up vector) and p specifies the triangles vertices.

Previous and Related Work Flexible Rasterizer in OpenCL - 14

3.3. Frustum Culling

OCLRaster also uses a highly optimized form of frustum culling [] which
is implemented using the p/n-vertex approach. The code has been adapted for
OpenCL and some minor modifications have been made. Since OCLRaster uses no
far plane and the near plane is tested separately (see for an explanation),
this is only used for the side planes of the view frustum. Furthermore, the frustum
planes and the plane normals are transposed, so the loop can, in one step, test all

respective x, y or z values of all planes at once.

const float3 aabb_min = fmin(fmin(vertices[0], vertices[1]), vertices[2]);

const float3 aabb_max = fmax(fmax(vertices[0], vertices[1]), vertices[2]);

// actual scale doesn't matter, but both must have the same scale (no * 0.5f req.):

const float3 aabb_center (aabb_max + aabb_min);
const float3 aabb_extent = (aabb_max - aabb_min);
float4 fc_dot = (float4)(0.0f, 0.0f, 0.0f, 0.0f);
for(unsigned int i = 0; i < 3; i++) {
const float4 plane_normal = cdata->frustum_normals[i];
const uint4 plane_sign = *(const uint4d*)&plane_normal & (uint4)(0x80000000) ;
const uint4 flipped_extent =
(uint4) (((const uint*)&aabb_extent) [i]) ~ plane_sign;
const float4 dot_param =
(float4) (((const float*)&aabb_center) [i]) + *(const float4*)&flipped_extent;
fc_dot += dot_param * plane_normal;
}
// if any dot product is less than O (aabb is completely outside any plane) -> cull
if (any(signbit(fc_dot))) {
discard();

Listing 3: Frustum Culling as used in OCLRaster

Pipeline Overview Flexible Rasterizer in OpenCL - 15

4. Pipeline Overview

As any graphics pipeline, OCLRaster consists of three parts: the user programming
interfaces and pipeline management code on the host side, as well as the actual
graphics pipeline code on the device side. All of these will be explained in detail
in the following chapters.

4.1. Device Stages

OCLRaster implements four device pipeline stages: The Transform Stage, where
all vertex transformation happens and which is directly user-programmable. The
Primitive Processing € Primitive Assembly Stage, which is responsible for assem-
bling transformed vertices into primitives and processing these primitives by com-
puting the required 3D Rasterization variables and cull any invisible primitives.
The Binning Stage computes which triangles are visible in which bins and creates
triangle render queues for each bin. The Rasterization Stage finally rasterizes the
triangles that have been determined to be visible by the Binning Stage. This stage,
or the fragment shading to be precise, is also directly user-programmable.

4.2. User Frontend

The User Frontend section will show what kind of user programs are directly sup-
ported by the pipeline and how they can be programmed. Additionally, it will list
all supported buffer types on the host and device side and also show how a user
can program the depth-test and blending.

4.3. Host Interfaces

This chapter will provide an overview over all host interfaces, with a focus on the
important ones that are required to run user programs and to modify the pipeline.
This includes both programmable pipeline programs and the program base class,
the pipeline main class and pipeline stage classes, the image and framebuffer classes,
the opencl abstraction and a short overview over the core classes.

Pipeline Device Stages Flexible Rasterizer in OpenCL - 16

5. Pipeline Device Stages

The Rasterization Pipeline is divided up into four logical parts, with each part
representing a separate pipeline stage and OpenCL kernel implementation. These
are consecutively executed by the host when issuing a draw command.

buffers

Raster-—
1zation
Stage
program

Primitive

o
3 5

w o g;

Ny E ©

aQ (d)]

') una;

O 7))

— =T

o

transform buffers

iransform
program

»

user
buffers

Figure 5: the OCLRaster pipeline

Pipeline Device Stages Flexible Rasterizer in OpenCL - 17

5.1. Transform Stage

The transform stage is responsible for transforming all vertices by calling a user-
defined transformation program and storing all output data in a transform buffer (or
multiple ones) that has been previously created by, and is automatically managed
by the pipeline. This buffer is created according to the users output specification,
meaning the pipeline has to know the size of each output element and how many

there are (this will be further explained in)

The actual implementation is relatively straightforward, each vertex is processed by
exactly one work-item. This facilitates very good device utilization and parallelism,
since every work-item can work independently and there are as many work-items
as there are vertices. Vertex output is written in a 1:1 relationship, with each work-

item knowing where it has to write its data and thus requiring no synchronization.

In case instancing is used, the workload is simply multiplied by the number of
instances, e.g. N vertices and M instances will result in (N % M) work-items. This
implementation is rather simple and hardly gives any performance improvement in
a software pipeline. The only benefit is that the user doesn’t have to do M draw
calls or duplicate the index buffer M times. As instancing doesn’t matter for the
rest of the pipeline (just more primitives to handle), the transformed data is simply
written into the same transform buffer, although still segmented in instances. In
any case, the rasterization stage is still able to compute the instance ID, both for

the user program and for using the correct indices and transform data.

In the future this could be improved upon by handling the same vertex inside a
work-group with the work-items processing the different instances, so to make use
of any hardware caching (vertex data is the same for all instances). Of course this
only makes sense if there are enough instances to ensure that all work-items have

work to do.

Note that this stage is purely doing modelview transformations via the users pro-
gram and any perspective or camera related transformation is done automatically
by the pipeline, either already in this stage (substract the cameras position) or in
the processing stage.

Discarded vertices are set to float infinity and will directly lead to discarded trian-
gles in the processing stage as well.

Pipeline Device Stages Flexible Rasterizer in OpenCL - 18

5.2. Primitive Processing & Primitive Assembly Stage

This stage will assemble the previously transformed vertices into primitives (at the
moment only triangles) and perform different kinds of processing on the primitive:

frustum culling, culling in general, 3D rasterization setup and some soft-clipping.

Again, each work-item is able to work independently, as every work-item processes
exactly one primitive and knows where to write its output without requiring any

synchronization.

At first, the work-item reads the indices from the index buffer according to the
employed primitive type (full triangles, triangles strips and triangles fans are cur-
rently possible), followed by reading the transformed vertex data from the trans-
form buffer according to the read indices. If any of the primitives vertices has been
discarded, the triangle is directly discarded at this point.

Next, the work-item will perform frustum culling on the primitive as shown in
. The near plane testing is conducted and stored separately, as this
information is required later for use with the soft-clipping. As OCLRaster doesn’t
utilize a far plane, this test can consequently not be performed. A far plane in
OCLRaster is not necessary, because all depth values are stored and handled as
linear depth (in 32-bit floats) and no perspective transformation requiring a far
plane definition is performed. All primitives that fail the frustum culling test are
again directly discarded at this point.

Any primitive that has made it thus far has been established to be within the view
frustum of the camera and is, to a high chance, probably visible. Subsequently, we

can now do all of the complex computation without there being much waste.

In the next step, this stage will compute and set up the 3D rasterization variables,
i.e. compute the volume variables Vj, Vi and V, and the depth variable V., using
the transformed primitive data and the camera setup that has been specified in the
pipeline on the host side. Consider this the 2D edge equation setup and projective
transformation equivalent of a regular hardware graphics pipeline.

An additional step that is unfortunately also required in this stage, is the soft-
clipping (the primitive doesn’t actually get clipped, only the clip coordinates are
computed) and 2D bounds computation of a primitive (screen space AABB). This
information will be used in the binning stage to determine if a primitive covers a
bin (is visible in a bin). 3D rasterization itself doesn’t require this information per
se, but there is no other way of directly knowing if a triangle is visible or not prior
to the rasterization stage which will execute this test on a per-pixel basis, as it was
intended. In this future, this could be improved by computing a per-bin frustum
in the binning stage itself and perform the frustum culling on a per-bin basis.

Pipeline Device Stages Flexible Rasterizer in OpenCL - 19

Due to floating point imprecision and possible invalid input (degenerate triangles),

it is also necessary to cull triangles with a surface area that is smaller than a

1
256

in particular when using anti-aliasing, this should ideally be set to a value that

certain epsilon value. This epsilon is currently set to (of a pixel). In the future,
relates to the desired sub-pixel precision and it should additionally be tested if the
primitive is on top of a sample point. Additional cross-checks are also performed
to rule out or confirm if clipping completely failed due to imprecision issues.

When using orthographic rendering, this pipeline stage will use a different and much
simplified path. For one thing, this uses the specialized 3D rasterization setup (as
shown in) and for another, the 3D frustum culling and soft-clipping
code is unnecessary, since the actual 2D vertex positions can already be computed
in this stage, thus simplifying the viewport test and the scissor test which can also
already be performed here, and the direct ability to test if the primitive area is

large enough (cull if degenerate).

If everything has been successful, the 3D rasterization variables are written to the
internal transform buffer (10 float values per primitive) and the primitive bounds
are written to another buffer (4 float values). These are stored in distinct buffers
for logical reasons, as there are used by different pipeline stages (the former by the
rasterization stage, the latter by the binning stage) and for performance reasons,
because sequential buffer reads are faster than strided reads (especially in this case
where neither 10 nor 14 is a power-of-two value, leading to even worse performance).

Pipeline Device Stages Flexible Rasterizer in OpenCL - 20

5.3. Binning Stage

The binning stage sits at the center between the previous two stages and the raster-
izer, interacting with all of them as it determines which triangles are finally being
rendered. The result of this stage are per-bin render queues that contain the primi-
tive indices of all primitives that are visible in a bin. Due to its relative complexity
and close hardware dependence, the implementation provides two paths: a GPU
friendly version and a CPU friendly version. The GPU version employs manual
work distribution and a manual primitive "cache” in local memory which is highly
beneficial for GPUs and their high number of concurrently executing work-items,
while the CPU version uses none of these and makes use of the much more simple
automatic work distribution. Bins are currently set to be 32px = 32px in size,
as this has shown to provide the best performance on different kinds of hardware
(x86 CPUs as well as NVIDIA and AMD GPUs). Note that this is a simple global
define that can easily be changed.

The manual work distribution of the GPU path is implemented using a permanent
kernel and a fixed amount of work-items, determined by the amount of compute
units times the maximum allowed amount of work-items per work-group (e.g. 8
compute units and a max of 1024 work-items will result in 8 work-groups with
1024 work-items each and 8192 work-items in total). To synchronize and distribute
the work across work-groups, it utilizes a global memory counter, atomic functions
(for global synchronization) and local memory barriers (for local synchronization).
Each work-group processes one batch of primitives at a time, while each work-
item processes that batch for exactly one bin. If there are more bins than there are
work-items, it will simply iterate of the remaining bins, assigning work-items a new
bin when they have fully processed their current one. In case there are less or all
work done, work-items will simply wait until all work-items of a work-group have
finished. Batch assignment is realized through a global memory counter that holds
the next batch index (it is initialized with 0). The first work-item of a work-group
will then do an atomic increment of this counter to receive the next batch index.
This value is then shared with the other work-items in the group through local
memory and a barrier instruction. This approach is similar to the one in [LK11].
Additionally, the GPU version will manually "cache” the primitive bounds of all the
primitives in a batch in local memory, using an asynchronous work-group memory
copy call from global memory to local memory (a built-in OpenCL function). This

gives a 2x speed increase over reading this memory manually later on.

Pipeline Device Stages Flexible Rasterizer in OpenCL - 21

In the CPU path, using automatic work distribution, there are as many work-
groups as there are bins and as many work-items per group as possible (although
only as many work-items as primitive batches). This way, one work-item handles
exactly one triangle batch for one bin at a time.

The primitive batch size is currently limited to a maximum of 256 primitives in an
attempt to decrease the required memory of render queues by storing the primitive
indices within a batch as 8-bit values (relative offsets from the absolute batch prim-
itive index). This is necessary, because the render queues will be stored (”cached”)
in local memory in the rasterization stage, making them the only limiting factor
on how many primitives can be rendered at once (without reading the next batch
of render queues) and how much time is required to read the memory of all of
these queues (4x less memory reads are very much noticeable). In the future, this
could be reduced even further by using bitsets and only storing the visibility of
a primitive in a batch in 1 bit, leading to 8x less memory reads and size. This
would however necessitate more work to "pack” an "unpack” these bitsets and will
definitely require some performance testing. In addition, this would also allow
arbitrary batch sizes.

Now to the actual logic part of this stage, which is the same for both versions.
Each work-item has a private memory queue where it stores the indices of visible
primitives (all invisible ones will simply be ignored). The most inner loop sequen-
tially iterates over all 256 primitives of a batch and each work-item will perform
the visibility test on each primitive. The test itself is very simple, as it only checks
if the previously computed primitive bounds intersect the bin bounds. If this is
the case, the primitive is visible to the bin and the work-item stores the 8-bit loop

index in its private memory queue.

After a batch has been processed, there are three different ways how the private
memory queue of a work-item is stored as the render queue of a bin. If the queue
is completely empty (no primitives of a batch are visible), it will simply store the
16-bit value OxFFFF at the start of the render queue to directly signal that this is an
empty queue. If the queue is completely full, it will simply store all 256 indices in
the render queue and if it’s only partially full, it will write a 0x00 after the index of
the last passing primitive to signal the end of the queue. In both cases, the render
queue write happens via two vstorel6 calls (storing ulong16 values), each copying
128 bytes from the private memory queue to the global memory render queue. As
a small optimization, in case the queue contains less than 128 primitives, it will
only perform one vstorel6 call. These calls to store big chunks of data all at once
are necessary for efficiency reasons (copying every single byte manually is slow).

Pipeline Device Stages Flexible Rasterizer in OpenCL - 22

This stage will also perform a coarse scissor test, in that bins that are completely
outside the scissor rectangle are not used in the first place (no work is "scheduled”
for them).

In the future, it might be beneficial to already perform some kind of depth test in
this stage to directly cull primitives that would fail the depth test for all fragments
in a bin, i.e. it would be better to do this here per-bin than doing this per-fragment

in the rasterization stage.

Pipeline Device Stages Flexible Rasterizer in OpenCL - 23

5.4. Rasterization Stage

The rasterization stage is the last part of the pipeline which will finally (and some-
times hopefully) produce visible output. It uses the render queues computed in the
binning stage to rasterize the primitives of each queue for each fragment of each
bin, and read and writes fragments from and to the user specified framebuffer(s).

Similar to the binning stage, this stage also provides a GPU friendly and a CPU
friendly implementation, with similar manual work distribution in the GPU version

and automatic work distribution in the CPU version.

The work distribution in the GPU path is identical to the one in the binning
stage, with the only logical difference being a change in terminology: work-groups
process bins (instead of batches) and work-items process fragments (instead of
bins). Again, if there are more fragments than there are work-items, work-items
will simply process the remaining fragments in sequence, but still only one at a
time. This stage uses the available local memory as manual cache as well. This
time, it will cache the render queue of a bin in local memory (as this queue is
shared among all work-items in a work-group), once more using an asynchronous
work-group memory copy call, copying data from global to local memory. This
however makes it the limiting factor on how many primitives can be rendered in
one run, but it is still a lot faster than doing single memory reads for each element
of a render queue. With local memory sizes currently ranging from 32 KiB to 48
KiB, this allows for 32768 to 49512 primitives to be rendered in one run (minus a
small amount, because of local memory used elsewhere).

In the CPU path, using automatic work distribution, one work-group contains
exactly one work-item that processes exactly one bin, i.e. it handles all render
queues and all fragments of a bin. There are as many work-groups as there are
compute units (cores). The restriction to only one work-item per group has shown
to provide the best performance on a CPU (on all OpenCL CPU implementations!),
with additional work-items reducing the performance significantly (up to a 100x
loss when using >100 work-items). At this point, I'm not entirely sure why this
happens, but I'd attribute it to the sheer complexity of the rasterization kernel and
due to that compiler limitations.

From here on, the actual work being done is the same for both versions. This

covers the per-fragment computations.

Pipeline Device Stages Flexible Rasterizer in OpenCL - 24

At first, the viewport and scissor test is performed on the computed fragment
coordinate and the fragment is directly discarded if either one fails. After that,
all framebuffer values for the specific fragment (coordinate) are read, including
possible conversions to 32-bit float for 8-bit and 16-bit integer, unsigned integer
and half-float image formats. If a depth buffer is attached, the depth value will be
read as well.

Next, the work-item will iterate over all batches in the render queue (quickly skip-
ping over the empty ones, as described in the previous stage). The most inner loop
then iterates over the primitives in a batch and there, will do the actual primitive

rasterization for the fragment.

Using the fragment coordinate and the 3D rasterization variables computed in the
primitive processing stage, compute the barycentric coordinate for the primitive at
the fragments location. If any component of the barycentric coordinate is greater
or equal to 0 (i.e. the fragment is located outside the primitive), directly discard
the primitive (or less than 0 in case orthographic rendering is used - this is due to
necessarily flipped normals in the 3D rasterization setup code). After that, apply
the consistency rules (top-left filling convention, as described in the 3D rasterization
paper) and discard the fragment if it fails any of these.

The work-item will then continue to compute the depth value of the fragment,
discard the fragment if it has a negative depth (which can happen for triangles
that clip the near plane) and perform the early depth test if it hasn’t been disabled
by the user. This must be disabled if the user wants to write a custom depth value
in the rasterization program and perform a depth test on that value instead (late

depth test after calling the users program).

If the early depth test succeeds or is disabled, read the primitive specific transform
buffer data, interpolate the data according to the computed barycentric coordi-
nate and call the users rasterization program with all gathered input parameters,

including the fragments framebuffer data to which the user will have direct access.

After the render queue and batches for the bin have been processed, this will write
the fragment framebuffer values back to the users framebuffers, of course only if
at least one primitive has been rendered (passed the depth test). This will again
also handle any possible conversion, here, into the opposite direction (32-bit float
values to the used 8-bit or 16-bit image format values).

Pipeline Device Stages Flexible Rasterizer in OpenCL - 25

5.5. Implementation

As listing the implementations code would easily go beyond the scope of this doc-
ument and wouldn’t provide much additional value at this point, I'd rather list the
specific files locations, so anyone who is interested in the actual code can find it
without the trouble of looking through all the source code.

Transform stage code is located at lib/program/transform__program.cpp, primitive
processing and assembly stage code at data/kernels/processing.cl, binning stage
code at data/kernels/bin__rasterize.cl and rasterization stage code at

lib/program /rasterization__program.cpp.

See on where to find the source code.

Pipeline User Frontend Flexible Rasterizer in OpenCL - 26

6. Pipeline User Frontend

6.1. OpenCL Built-in Functions

As previously mentioned in the OpenCL chapter, OpenCL C complies to ISO C99
for the most part and does provide numerous built-in functions. The similarity to
GLSL should facilitate easy porting of GLSL programs to OCLRaster.

6.2. User Programs

The current OCLRaster implementation provides the possibility to directly pro-
gram two pipeline stages: the transformation stage and the rasterization stage.
These two program types are known as vertex shader and fragment (or pixel)
shader in a hardware graphics pipeline. For consistency reasons these will simply
be refered to as transformation program and rasterization program as their names

correspond to the pipeline stages they are used in.

Both of those programs must provide a main function that will be called from
within the respective pipeline kernel. Additionally, the user can provide input and
output parameters that are or will be stored in buffers, image objects that can
be read from or written to, uniform buffer objects (constant parameters), generic
global memory buffers that can be randomly accessed, and only as part of the
rasterization stage: a framebuffer that can contain multiple image objects.

This section will describe the types of buffers that are common among both program
types. Note that all program parameters must be stored inside buffers, as OpenCL
doesn’t allow global variables except for constant memory variables that are known
at compile time. From a performance viewpoint this also makes sense, since it’s
faster to set and upload combined buffers than it is to set each variable individually.
The user can however define and use several buffers of one type. That way, it is for
example still possible to use a separate buffer for vertices, texture coordinates and
normals instead of storing them inside one single buffer. This is largely identical
to what a hardware graphics pipeline allows.

Pipeline User Frontend Flexible Rasterizer in OpenCL - 27

type program typename description
input oclraster_in defines the per-vertex input
output oclraster_out defines the per-vertex transform output
uniform oclraster_uniforms defines constant parameters
buffer oclraster_buffers list of global memory buffers
image oclraster_images list of images
framebuffer oclraster_framebuffer| list of attached framebuffer images
(rasterization program only)

Table 1: available oclraster struct types

The syntax should be familiar to anyone who has ever written a standard C struct,
with the latter three struct types only listing types without creating an actual
object:

oclraster_in [struct_typename] {
(variable_type variable_name;)*
} object_name;

oclraster_out struct_typename {
(variable_type variable_name;)*
} object_name;

oclraster_uniforms struct_typename {
(variable_type variable_name;)*
} object_name;

oclraster_buffers {
(variable_type variable_name;)*

};

oclraster_images {
([access_type]l image2d[<DATA_TYPE_HINT, CHANNEL_HINT>] image_name;)*
};

oclraster_framebuffer {
(image2d | depth_image) [<DATA_TYPE_HINT, CHANNEL_HINT>] image_name;)*
};

Listing 4: syntax of oclraster structs

For an example user program where most of these struct types are used, have a

look at the second part of chapter 8.1l.

Pipeline User Frontend Flexible Rasterizer in OpenCL - 28

Some restrictions however apply:

no interior/nested structs or unions
« no multi-variable declarations (e.g. float x, y, z;)
e no __attribute__ (oclraster structs already use an __attribute__ qualifier)

« use of any oclraster struct specifier in other places is disallowed (no typedefs,

declarations, comments, ...)
» otherwise standard OpenCL C

These restrictions are necessary, since OCLRaster has to parse these structs without
using or implementing a complex C parser itself (this would have exceeded the
scope of this project). Previous limitations ([Ziel3]) have however been lifted in
the course of implementing OCLRaster by using an external C preprocessor project

(, [Bell3]). User-defined types, general preprocessor statements and

include files are possible this way.

OCLRaster needs this information, because it has to automatically create cor-
rectly sized output buffers, correctly copy transform output variables and finally
interpolate variables in the rasterization stage (all in case of oclraster out), pro-
vide correct image or framebuffer objects/pointers (in case of oclraster _images and
oclraster_framebuffer) and correctly provide buffers (in case of oclraster _buffers).
Additionally, and because OCLRaster has to know this itself, the device specific
memory layout of a struct must be retrieved and must also be made available to
the user. The memory layout can be different for each device, but OpenCL unfor-
tunately provides no method of accessing this information. To work around this
limitation, OCLRaster generates and runs a simple OpenCL kernel from the parsed
struct code in which it dumps the struct information (struct data member offsets
and sizes, and the size of the struct itself), using standard C functionality, to a
small integer buffer which is then read back on the host. As the memory layout can
easily differ between the host and the device, especially when using small and odd-
sized types, OCLRaster specifies an alignment of 16 bytes for each struct defintion

which seems to work nicely in most uses cases.

The following sub-sections contain additional information that is specific to each
program type.

Pipeline User Frontend

Flexible Rasterizer in OpenCL - 29

6.2.1. Transformation Program

name type description
vertex_ index unsigned int the index of the vertex inside the vertex
buffer

instance index unsigned int

the index of the current instance

float3

camera,__position

the absolute position of the camera

Table 2: available built-in main function parameters

6.2.2. Rasterization Program

name type

description

primitive_index unsigned int

the index of the primitive

instance__index unsigned int

the index of the current instance

fragment__coord float2 the fragments unnormalized screen
space coordinate
fragment_ depth float the fragments linear depth, computed
by the pipeline
barycentric float3 the barycentric coordinate at the

fragments location

framebuffer

oclraster_framebuffer*

the user defined framebuffer
(the entries for the specific fragment)

Table 3: available built-in main function parameters

6.3. Image Functions

Since OCLRaster provides an image abstraction on top of OpenCL to support non-

native image formats and framebuffer functionality in general, this also requires

functions to read and write image data. For natively supported image formats

these functions directly forward to the corresponding OpenCL image functions.

For software based images (buffer based images), OCLRaster implements all image

read and write functions in software, including filtering and normalization support.

The function prototypes match the built-in OpenCL image function prototypes,

also allowing the same sampler specifications (see chapter 6.12.14 of the OpenCL
specification [OWG12a| for both definitions).

Pipeline User Frontend Flexible Rasterizer in OpenCL - 30

/* return type */ image_read*(/* image type */ image,
const sampler_t sampler,
const float2 coordinate)

/* return type */ image_read*(/* image type */ image,
const sampler_t sampler,
const uint2 coordinate)

void image_write(/* image type */ image,
const uint2 coordinate,
const float4 color)

void image_write(/* image type */ image,
const uint2 coordinate,
const uint4 color)

void image_write(/* image type */ image,
const uint2 coordinate,
const int4 color)

Listing 5: available image functions

There are multiple image read functions, depending on the read image data type.
These are as follows: image_read (implicitly returns f1loat4 values), image_read_int
(returns int4 values), image_read_uint (returns uint4 values), image_read_long

(returns long4 values) and image_read_ulong (returns ulong4 values).

The following table contains the supported image data types and the corresponding
enum type that can be used in image hints when writing oclraster_images and

oclraster_ framebuffer defintions.

image data type supported read & enum name
write types

uchar float, uint UINT_8

ushort float, uint UINT_16
uint uint UINT_32
ulong ulong UINT_64
char float, int INT_8
short float, int INT_16
int int INT_32
long long INT_64
half float (half is not FLOAT_16

directly supported)
float float FLOAT_32
double double FLOAT_64

Table 4: available image types

Note that the double type is only supported on OpenCL devices that have double
support (the cl_khr_ fp64 extension). Furthermore, OpenCL only has weak re-
quirements on the half type, specifying that it only has to be supported as a data

Pipeline User Frontend Flexible Rasterizer in OpenCL - 31

storage type, not as a general variable data type. For this reason, OCLRaster will
return read half values as float values and when half values should be written,
float values must be specified. Also be aware that no OpenCL device (nor the
OpenCL specification) support native 64-bit image formats, making double, long

and ulong formats only available to software based images.

6.4. Framebuffer Functions

Framebuffers can contain almost any amount of normal image objects, but only
one or no depth buffer for obvious logical reasons. As mentioned in ,
each rasterization program has access to the specific fragment of the framebuffer
that it is currently being computed. The framebuffer values are automatically read
and possibly converted to the correct format at the beginning of the rasterization
stage and again written to the framebuffer at the end of the rasterization stage,
after all primitives in a bin queue have been processed.

As OpenCL doesn’t allow read and writes to the same image object in a kernel
(even though there is a read_write keyword, it is not supported), framebuffers
in OCLRaster must use software based image objects (which use simple OpenCL
buffers and can easily be synchronized).

Note that the amount of attached framebuffer image objects is only limited by
the amount of kernel parameters that OpenCL allows. That amount has to be at
least 1024 bytes (which translates to 256 4-byte parameters or pointers on a 32-bit
device), while most implementations allow approximately 4KiB (about 1024 4-byte
parameters). This should be more than enough for any sane use case.

The user also has full access to (and is actually responsible for) any fragment
blending. The previous fragment values are fully accessible, and in fact, the user has
to write to the same framebuffer variable that he is reading from when blending is
to be employed. A built-in function called 1inear_blend that interpolates linearly
between two values using a blend factor is also provided by OCLRaster.

6.5. Miscellaneous

Another advantage that OCLRaster provides over a hardware graphics pipeline is
the ability to fully program the fragment depth test. The user can simply provide
a custom depth_test function that takes the incomming fragment depth and the
current fragment depth and returns true if the fragment should be discarded or not

(i.e. the depth test fails or succeeds). See ghapter 8.1] for an example of a custom

Pipeline User Frontend Flexible Rasterizer in OpenCL - 32

depth test function. All standard depth-test functions known from OpenGL are of
course also available and can be set in the pipeline object.

The user should also be aware that, by default, the depth-test is executed prior to
calling the rasterization program inside the rasterization stage (and in the future
possibly also in the binning stage) to avoid unnecessary computation if a fragment
is not visible anways (early Z-culling). This functionality can however be disabled,
in which case the fragment depth has to be written by the rasterization program
(the built-in fragment_depth value computed by the pipeline is still accessible
regardless of which mode is used).

OCLRaster also includes scissor-testing functionality that is identical to the one in
OpenGL and shouldn’t require any more explanation. On the implementation side,
the scissor test is performed in the binning stage (bins outside the scissor rectangle
are completely ignored) and inside the rasterization stage (the fine, per-pixel scissor
test).

Pipeline Host Interfaces Flexible Rasterizer in OpenCL - 33

7. Pipeline Host Interfaces

The main goals while creating the host interfaces of OCLRaster were to provide
modern C+-+11 interfaces that are both easy to use and more object-oriented
than what is provided with OpenGL. OCLRaster runs on all desktop operating
systems that currently support OpenCL implementations, namely Linux, OS X
and Windows. Due to the advanced use of C++11, OCLRaster currently only
compiles with clang and libc++ [LLV13a, LLV13b] as all other compilers and STL
implementations still lack important features (easy to set up on OS X and Linux,
must use MinGW on Windows [Min13]). This should however be mitigated in the

near future.

Cross-platform support is achieved through the usage of SDL [SDL13] and by
writing platform independent code where possible, or writing platform specific code
for all platforms in situations where it was necessary. This will also be noticable
in all user programs, as these won’t have to provide platform specific code.

As this is not the place nor the format to insert a Doxygen-like code documentation,
this chapter will cover the host interfaces in a more general way, explaining the
important classes, drawing similarites with OpenGL functionality, covering some
design decisions and how one might extend and build upon the OCLRaster project.
I would also highly encourage to read the respective header files, as these are more
logically structured than any generated documentation could provide and possibly

contain additional implementation details.

7.1. OpenCL

OCLRasters OpenCL abstraction is built on top of cL.hpp [OWG13], the C++ ab-
straction layer of OpenCL. OCLRaster provides an immense amount of additional
functionality that make OpenCL easy to use, both in the OCLRaster implemen-
tation itself as well as in any user code that uses OpenCL directly. Among those
features are cross-platform OpenCL context creation (including the ability to cre-
ate shared OpenGL/OpenCL contexts and specifically restricting the context to
certain platforms and device types), general OpenCL platform and device specific
handling, simplified OpenCL kernel compilation (just specify a kernel file or code
string and it’ll handle the code compilation for all devices), simplified OpenCL
buffer and image handling (note that these will have to be used when supplying
the pipeline with user buffers), easy kernel execution, extended error handling,

automatic command queue handling and many more.

Pipeline Host Interfaces Flexible Rasterizer in OpenCL - 34

Two features deserve particular mentioning and will be very helpful to developers.
One being the ability to reload (and recompile) all kernels at runtime, of course
requiring a small amount of handling code on the users side (OCLRaster emits
an event for this that can be handled by the user program). The other one being
automatic kernel binary dumping and consecutive binary disassembling (only on
OS X), provided that the Xcode Tools [Appl3] (for CPU devices) and CUDA are
installed [NVIO7] (for NVIDIA GPU devices).

Note that OCLRaster also provides a CUDA implementation of its OpenCL base
interface, wrapping many OpenCL functions in CUDA and supporting (simple)
source transformation from OpenCL C to CUDA C. Currently, this is however
defunct (not as advanced as required by OCLRasters pipeline), but with further
development it might be of use in the future.

7.2. Pipeline
7.2.1. Pipeline & Stage Classes

The pipeline class is the main interface of OCLRaster. It is responsible for any
rendering (draw calls) and stores and handles most of the rendering pipeline state
(buffers, depth test function, camera setup, projection mode, ...). It also creates
and handles objects of the four pipeline stages (transform_ stage, processing_stage,
binning_stage and rasterization_ stage). These pipeline stage objects only handle
their respective kernel parameter setup and execution, and possibly manage stage
specific memory (e.g. render queues in the binning stage). The pipeline will call

each of these stages in sequence when issueing a draw call.

Buffer and image objects are bound using unique identification names and are
globally bound in regard to the pipeline object. This way, buffer and image objects
don’t have to be rebound across user program changes (if their name is unique).
Internally this uses an unordered_map that provides constant lookup times, so its

use should both be comfortable and fast.

Any kind of pipeline customization will have to happen in this pipeline class and
any stage class that might need changing.

7.2.2. Image

The image class provides all basic 2D image functions that are also part of a
hardware graphics pipeline implementation like OpenGL. Its usage is however more

object-oriented than one might be used to with OpenGL. Functionality includes

Pipeline Host Interfaces Flexible Rasterizer in OpenCL - 35

read and write functions that can copy image data from and to the host as well as
a copy function that can copy image data from another image object. Mapping of
an image object to a host address is also possible.

As mentioned in earlier chapters, OCLRaster supports native OpenCL image ob-
jects and also implements software based image objects (referred to as buffer back-
ing, as the image data is stored in a simple OpenCL buffer) for use in framebuffers
and when image formats that are not natively supported should be employed.
OCLRaster also supports the modification of the image backing at runtime. The
user should still be aware of the natively supported image formats when using this
functionality (these can be queried from the OpenCL class).

7.2.3. Framebuffer

Framebuffers are basically just containers for image objects that can be attached to
them. As mentioned in , there are no limits to the amount of attached
images but the kernel parameter count restrictions imposed by the OpenCL im-
plementation. For logical reasons, OCLRaster only allows no or one depth buffer
attachment, which must furthermore have a single-channel 32-bit float image for-
mat (as a 32-bit float data type is used for all depth computations).

Additionally, this class provides framebuffer clear functions with clear colors or
values that are specific to the framebuffer object (not a global state!).

7.3. Program

The oclraster program class provides the base and common functionality of both
the transform_ program and the rasterization program. This class is responsible
for parsing the user program code, processing it and finally handing it off to the
OpenCL class for compilation. Any inheriting program type, as demonstrated in
transform_ program and the rasterization program, should only perform functions
that are specific to them (e.g. program specific kernel template code and user code

injection).

In addition, oclraster program handles the different kernels necessitated by the
different kernel specifications that the pipeline requires. Since this is a software
pipeline, any change in used image formats, depth test function or projection mode

requires different kernel code.

Pipeline Host Interfaces Flexible Rasterizer in OpenCL - 36

7.4. Core Interfaces

OCLRasters core interfaces include many different basic math primitives, among
them 2-; 3- and 4-wide vector types and a 4x4 matrix type with typedefs for
all native C++ data types. These should specifically be used when specifying
oclraster__structs for use in user programs, but they might also be of use in general
user code.

Additional classes are as follows: a simple logger class (supports logging to a log
file and the console, similar to printf, but with parameter checking using variadic
templates), a basic camera class implementing a first-person camera (controlled
via mouse and keyboard), an event handling system for system events as well as
OCLRaster internal events, basic file [/O and XML read and write capabilities,
a basic model loader (for .a2m, pretty much a binary version of the .obj format)
and threading facilities (thread implementation on top of std::thread and a simple
threaded task implementation).

Examples Flexible Rasterizer in OpenCL - 37

8. Examples

8.1. Simple Example Program

For the sake of simplicity, clarity and less page bloat, I removed the event handling,
the iOS specific code and some other less significant code from this sample, added a
few more meaningful comments in some places and inlined everything in one file and

function. The full source code of this sample can be found in the "samples/simple”

folder (Appendix A).

Since this is still a rather long code example, most of the program functionality
is explained in the comments or should be obvious judging by the function and

variable names.

// include all necessary OCLRaster headers
#include <oclraster/oclraster.h>

#include <oclraster/pipeline/pipeline.h>
#include <oclraster/pipeline/transform_stage.h>
#include <oclraster/pipeline/image.h>

#include <oclraster/core/a2m.h>

#include <oclraster/core/camera.h>

#include <oclraster/program/oclraster_program.h>
#include <oclraster/program/transform_program.h>

#include <oclraster/program/rasterization_program.h>

#define APPLICATION_NAME "oclraster simple sample"

// global vars (these are acessed by multiple functions in the actual sample code)
static bool done { false };

static camerax cam { nullptr };

static constexpr float3 cam_speeds { 0.01f, 0.1f, 0.001f };
static atomic<unsigned int> update_model { false };

static atomic<unsigned int> update_light { true };

static atomic<unsigned int> update_light_color { true };
static transform_program* transform_prog { nullptr };

static rasterization_program* rasterization_prog { nullptr };
static pipeline* p { nullptr };

static atomic<unsigned int> selected_material { 0 };

static constexpr size_t material_count { 5 };

int main(int argc oclr_unused, charx* argv([]) {
// initialize oclraster (binary location + data folder)
oclraster::init(argv[0], (const char*)"../data/");
oclraster::set_caption(APPLICATION_NAME) ;

oclraster::acquire_context();

Examples Flexible Rasterizer in OpenCL - 38

// try to use the "fastest" GPU as the primary opencl device (this is simply

// determined by multiplying the device clock speed by the amount of compute units)
// also note: ocl is the opencl abstraction (object) that is provided by oclraster
ocl->set_active_device(opencl_base::DEVICE_TYPE: :FASTEST_GPU) ;

// create and init a standard first-person camera

cam = new camera();

cam->set_position(0.8f, 0.28f, 3.2f);
cam->set_rotation(-5.2f, 196.0f, 0.0f);
cam->set_speed(cam_speeds.x) ;
cam->set_rotation_speed(cam->get_rotation_speed() * 1.5f);

cam->set_wasd_input (true);

// create the pipeline, set the active camera and

// notify oclraster that this is the active pipeline
p = new pipeline();

p—>set_camera(cam) ;

oclraster::set_active_pipeline(p);

// load the model (blender monkey with uv coordinates)

a2m* model = new a2m(oclraster::data_path("monkey_uv.a2m"));

// add event handlers (... omitted ...)

// load, compile and bind user shaders (inlined for clarity)
// this actually resides in the "load_programs" function, so programs can
// be reloaded at runtime (when a kernel reload event is triggered)
{
if (transform_prog != nullptr) {
delete transform_prog;

transform_prog = nullptr;

X

if (rasterization_prog != nullptr) {
delete rasterization_prog;
rasterization_prog = nullptr;

by

string code_str;
if (!file_io::file_to_string(
oclraster: :kernel_path("user/simple_texturing.cl"), code_str)) {
oclr_error("couldn't open program file!");

return -1;

// create the program objects (with their resp. main function name)

transform_prog = new transform_program(code_str, "transform_main");

Examples Flexible Rasterizer in OpenCL - 39

rasterization_prog = new rasterization_program(code_str, "rasterize_main");

// there is no full program "linking" required; also, programs are
// automatically bound to the correct stage according to their type
p—>bind_program(*transform_prog) ;

p—>bind_program(*rasterization_prog) ;

// create / reference buffers

const opencl::buffer_object& index_buffer = model->get_index_buffer(0);

const opencl::buffer_object& input_attributes = model->get_vertex_buffer();

oclraster_struct tp_uniforms {

matrix4f modelview;

matrix4f rotation_matrix;

} transform_uniforms {

};

matrix4f (),
matrix4f ()

opencl: :buffer_object* tp_uniforms_buffer =

ocl->create_buffer(// read-only buffer from the kernels perspective
opencl: :BUFFER_FLAG: :READ |
// initialize the buffer from the given data pointer
opencl: :BUFFER_FLAG: :INITIAL_COPY |
// always block on buffer writes
opencl: :BUFFER_FLAG: : BLOCK_ON_WRITE,
// the size of this buffer
sizeof (tp_uniforms),
// the data pointer (for initialization)

(void*)&transform_uniforms) ;

// simple light setup, with a light rotating around the origin at

// a distance of 10 and an "intensity" (light influence radius) of 32

float light_pos = PI, light_dist

10.0f, light_intensity = 32.0f;

oclraster_struct rp_uniforms {

float4 camera_position;
float4 light_position; // .w
float4 light_color;

light radius = 2

} rasterize_uniforms {

};

float4(cam->get_position(), 1.0f),
float4(sinf(light_pos) * light_dist,

0.0f,

cosf(light_pos) * light_dist,

light_intensity * light_intensity),
float4(0.0f, 0.3f, 0.7f, 1.0f)

opencl: :buffer_object* rp_uniforms_buffer =

Examples Flexible Rasterizer in OpenCL - 40

ocl->create_buffer(opencl: :BUFFER_FLAG: :READ |
opencl: :BUFFER_FLAG: : INITIAL_COPY |
opencl: :BUFFER_FLAG: : BLOCK_ON_WRITE,
sizeof (rp_uniforms),

(void*)&rasterize_uniforms) ;

// materials/textures (5 sets of 3: diffuse + normal + height)

static constexpr size_t textures_per_material = 3;

static const array<string, material_count*textures_per_material>

texture_names {{

"light_512", "light_normal_512", "light_height_512",
"planks_512", "planks_normal_512", "planks_height_ 512",
"rockwall_512", "rockwall_normal_512", "rockwall_height_ 512",
"acid_512", "acid_normal_512", "acid_height_512",
"blend_test_512", "light_normal_512", "scale_gray",

N

array<array<shared_ptr<image>, textures_per_material>, material_count>
materials;
for(size_t i = 0; i < material_count; i++) {
for(size_t j = 0; j < textures_per_material; j++) {
const string filename = texture_names[(i*textures_per_material) + j]
+ ".png";
materials[i] [j] = make_shared<image>(
// provided static image class function for loading .png files
// via SDL2_image and libpng
image: :from_file(oclraster::data_path(filename),
// try to use native image backing
image: :BACKING: : IMAGE,
// 8-bit per channel (unsigned char/byte)
IMAGE_TYPE: :UINT_8,
// RGBA / four channels
IMAGE_CHANNEL: :RGBA)) ;

// create a simple 512%512px single-channel float noise (random) texture

float* fp_noise_data = new float[512%512];

for(size_t i = 0; i < (512%512); i++) {

fp_noise_datali] = core::rand(0.0f, 1.0f);

}

image* fp_noise = new image(512, 512,
image: :BACKING: : IMAGE,
IMAGE_TYPE: :FLOAT_32,
IMAGE_CHANNEL: :R,
fp_noise_data);

delete [] fp_noise_data;

Examples Flexible Rasterizer in OpenCL - 41

// init done

oclraster::release_context();

// main loop
float model_rotation = 0.0f;
while(!done) {
// set caption (app name, fps info, cam info)
if (oclraster::is_new_fps_count()) {
// fps and average frame time values are automatically provided by oclraster
const unsigned int fps = oclraster::get_fps();
stringstream caption;
caption << APPLICATION_NAME;

caption << " | " << fps << " FPS";

caption << " | ~" << oclraster::get_frame_time() << "ms ";
caption << " | Cam: " << cam->get_position();

caption << " " << cam->get_rotation();

oclraster: :set_caption(caption.str());

// signal oclraster that we're starting a new frame

oclraster: :start_draw();

// run the camera and update the pipeline camera setup
cam->run() ;

p—>set_camera(cam) ;

// to also demonstrate how a custom depth-test function can be specified:
// this is a combination of the "LESS" depth-test function and a function that
// will pass and fail depth values in alternating steps of 0.05
p—>set_depth_function(DEPTH_FUNCTION: : CUSTOM,

"bool depth_test(float incoming, float current) {" \

" const float depth = fmod(incoming, 0.1f);" \

ll}ll);

return (depth > 0.05f && incoming < current);" \

// update uniforms

if (update_model) {
transform_uniforms.modelview = matrix4f().rotate_y(model_rotation);
transform_uniforms.rotation_matrix = transform_uniforms.modelview;
// (... remaining transform updates omitted ...)
// update the transform uniform buffer

ocl->write_buffer(tp_uniforms_buffer, &transform_uniforms);

if (update_light) {
light_pos -= 0.125f;

Examples Flexible Rasterizer in OpenCL - 42

rasterize_uniforms.light_position.set(sinf(light_pos) * light_dist,
0.0f,
cosf(light_pos) * light_dist,
light_intensity * light_intensity);

// update the rasterization uniform buffer

const auto& camera_position = cam->get_position();

rasterize_uniforms.camera_position.set(camera_position.x, camera_position.y
camera_position.z, 1.0f);

ocl->write_buffer(rp_uniforms_buffer, &rasterize_uniforms);

// finally: bind all buffers and images and draw the model
p—>bind_buffer("index_buffer", index_buffer); // "index buffer" is a built-in name
p—>bind_buffer("input_attributes", input_attributes);
p—>bind_buffer("tp_uniforms", *tp_uniforms_buffer);
p—>bind_buffer ("rp_uniforms", *rp_uniforms_buffer);
p—>bind_image("diffuse_texture", materials[selected_material] [0]);
p—>bind_image("normal_texture", materials[selected_material] [1]);
p—>bind_image("height_texture", materials[selected_material] [2]);
p—>bind_image("fp_noise", *fp_noise);
p—>draw(PRIMITIVE_TYPE: : TRIANGLE,

model->get_vertex_count(),

{ 0, model->get_index_count(0) });

// done with this frame -> stop/swap

oclraster: :stop_draw();

// cleanup (... partially omitted ...)
delete p;

oclraster: :destroy();

return O;

Listing 6: simple sample host code

This code example has hopefully shown that writing code that uses OCLRaster is
relatively straightforward and should in most cases be easier than writing OpenGL
code.

The following code listing contains the transformation & rasterization program
that is used in this example (data/kernels/user/simple texturing.cl):

Examples Flexible Rasterizer in OpenCL - 43

// this is the same for both programs
// note that these are automatically interpolated in the rasterization program
oclraster_out simple_output {

float4 vertex;

float4 normal;

float2 tex_coord;

} output_attributes;

#if defined (OCLRASTER_TRANSFORM_PROGRAM)
[11777777171777777777777777777777777777777777777777/77777777777/7777
// transform program
oclraster_in simple_input {

float4 vertex;

float4 normal;

float4 binormal; // unused

float4 tangent; // unused

float2 tex_coord;

} input_attributes;

oclraster_uniforms transform_uniforms {
mat4 modelview_matrix;
mat4 rotation_matrix;

} tp_uniforms;

float4 transform_main() {
// transform the input vertex - note that this is only the modelview transformation,
// a projection transformation is not needed
const float4 mv_vertex = mat4_mul_vec4(tp_uniforms->modelview_matrix,
input_attributes->vertex) ;

output_attributes->vertex = mv_vertex;

// the normal only needs to be rotated
output_attributes->normal = mat4_mul_vec4(tp_uniforms->rotation_matrix,

input_attributes—>normal);

// simply pass-through the texture coordinate

output_attributes->tex_coord = input_attributes->tex_coord;

// return the transformed vertex

return mv_vertex;

#elif defined (OCLRASTER_RASTERIZATION_PROGRAM)
[I7177

// rasterization program

Examples Flexible Rasterizer in OpenCL - 44

oclraster_uniforms rasterize_uniforms {
float4 camera_position;
float4 light_position; // .w = light radius = 2
float4 light_color;

} rp_uniforms;

oclraster_images {
// hints are optional (will default to <UINT_8, RGBA>), but useful for specifying the
// the image format of the first compiled kernel and possibly the intention of an image
read_only image2d<UINT_8, RGBA> diffuse_texture;
read_only image2d<FLOAT_32, R> fp_noise;

+;

oclraster_framebuffer {
image2d color;
depth_image depth;

};

bool rasterize_main() {
// we need two samplers for this:
const sampler_t linear_sampler = (// normalized texture coordinates
CLK_NORMALIZED_COORDS_TRUE |
// repeat/wrap/modulo mode
// in this case: wrap around 1.0
CLK_ADDRESS_REPEAT |
// linear sampling
CLK_FILTER_LINEAR);
const sampler_t point_sampler = (CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_REPEAT |
// nearest/point sampling
CLK_FILTER_NEAREST) ;

// simple noise (depending on the texture coordinate and fragment_coord)
// note that image_read always returns a float4 (akin to the built-in OpenCL functions)
const float noise_offset = image_read(fp_noise,
point_sampler,
output_attributes->tex_coord) .x;
const float noise = image_read(fp_noise,
linear_sampler,
(fragment_coord / 100.0f) + noise_offset).x;

// check if 1it by light (compute attenuation)
float3 light_dir = rp_uniforms->light_position.xyz - output_attributes->vertex.xyz;
light_dir /= rp_uniforms->light_position.w; // / (light radius)”2
float attenuation = 1.0f - dot(light_dir, light_dir) * rp_uniforms->light_position.w;
if (attenuation > 0.0f) {

light_dir = normalize(light_dir);

Examples Flexible Rasterizer in OpenCL - 45

// simple phong lighting
float3 diff_color = (float3)(0.0f, 0.0f, 0.0f);
float3 spec_color = (float3)(0.0f, 0.0f, 0.0f);

const float lambert_term = dot(output_attributes->normal.xyz, light_dir);
if (lambert_term > 0.0f) {

diff_color = rp_uniforms->light_color.xyz * lambert_term * attenuation;

float3 view_dir = normalize(rp_uniforms->camera_position.xyz -
output_attributes->vertex.xyz) ;

float3 R = reflect(-light_dir, output_attributes->normal.xyz);

float specular = pow(max(dot(R, view_dir), 0.0f), 16.0f);

spec_color = rp_uniforms->light_color.xyz * attenuation * specular;

// combined light color
float4 color = (float4) (diff_color + spec_color, 1.0f);

// multiply material diffuse color
color.xyz *= image_read(diffuse_texture,
linear_sampler,

output_attributes->tex_coord) .xyz;

// multiply noise

color.xyz *= 0.5f + (noise * 0.5f);

// update (overwrite) the framebuffer color
framebuffer->color = color;

// depth is written automatically, unless specified otherwise in the pipeline

// "the fragment passed"
return true;

}

#endif

Listing 7: sample transformation & rasterization program

When compiling an OCLRaster program, a transform program will predefine
OCLRASTER_TRANSFORM_PROGRAM while a rasterization program predefines
OCLRASTER_RASTERIZATION_ PROGRAM. This way, both programs can reside in the
same file (or code text string) and can share common code, data structures or

similar.

Examples Flexible Rasterizer in OpenCL - 46

8.2. Other

The OCLRaster code repository () contains additional sample code for

render-to-texture functionality, rendering of other primitive types, volume rendering
and GUI/2D rendering. 1 will not go into these here, because they are not much
different from the previous sample and I think they are rather easy to understand.
However, for completeness sake, I had to mention that these samples do exist and

might be interesting for anyone who wants to delve deeper into OCLRaster.

Nevertheless, actual screenshots are always interesting:

Figure 6: the result of the example program listed in 8.1, showing the custom
depth test function (note the striped rendering) and simple lighting

Figure 7: the same example program using the built-in "LESS” depth test function

Examples Flexible Rasterizer in OpenCL - 47

Figure 8: a more complex shading program showing parallax mapping

Figure 9: the volume example program, rendering the C60 volume using
sliced volume rendering and also showing custom blending

Monkey model "Suzanne” courtesy of Blender [Blel3], Buckminster Fuller carbon
60 volume data set courtesy of ImageVis3D [[mall].

Conclusion & Future Work Flexible Rasterizer in OpenCL - 48

9. Conclusion & Future Work

This thesis has hopefully demonstrated that a software graphics pipeline is quite
feasible on today’s hardware. Of course some performance sacrifices have to be
made, but with additional pipeline optimizations mentioned in earlier chapters
and this chapter, this project might actually provide a genuine alternative to a
hardware graphics pipeline.

There are many possible future extensions to the pipeline that could be included
here, but I will concentrate on the most significant and compelling ones.

An important one is to increase the asynchronism by providing non-blocking draw
calls. This would pretty much necessitate a client-server model instead of the
current direct, but blocking, approach. In addition, this would allow the pipeline to
combine multiple draw calls to a larger one, thus eliminating even more overhead.
This would also require more asynchronism on the user buffer handling side by

making all buffer read and write operations non-blocking, too.

Another possibly easy to fix performance problem is the displaying of the final
framebuffer (or "framebuffer swap”). It is currently necessary to completely copy
the framebuffer from an OpenCL buffer to an OpenGL texture in order to draw
or blit it into the window frame, basically requiring two copies instead of one.
One solution to this might be to move this OpenCL to OpenGL buffer copy to a
separate thread and OpenGL context altogether. This would however need some
kind of software double buffering and cause other issues like increased memory
requirements and, depending on the OpenGL implementation, a greater frame
latency. A better solution would have to be provided by a future OpenCL revision
or extension that would allow OpenCL kernels to read and write to the same image
object in the same kernel, thus eliminating the need for software image buffers and
yielding the ability to use native images instead. This might increase general
framebuffer performance as well, at least on devices with native image support.

On the feature side, OCLRaster is currently lacking two important ones, namely
anti-aliasing and mip-mapping support, including general LOD texture lookup sup-
port and anisotropic filtering. Anti-aliasing should be rather trivial to implement,
as it’s just more fragments that need to be computed and the fragment coordinate
(or sample location) can easily be changed. This should also enable interesting
new anti-aliasing methods, since hardware limitations do not apply and all sample
locations are purely software based, as is the number of samples and the frame-
buffer format. Mip-mapping is not as trivial, because OpenCL doesn’t support
mip-mapping itself or any other kind of texture chain with LOD lookup support,
meaning this would have to be completely implemented in software. This is even

Conclusion & Future Work Flexible Rasterizer in OpenCL - 49

further impeded by how OpenCL handles native image objects, requiring that every

texture level would have to be supplied as a separate kernel parameter.

Reading back the transformed vertex and primitive data is already known from
OpenGL (transform feedback [Khr13a]), but with OCLRaster one could go a step
further and additionally read back and cache the per-bin render queues from the
binning stage, thus giving the ability to dump the complete pipeline state prior
to the rasterization stage. This can be of benefit for certain multi-pass rendering
methods that have to render the same geometry multiple times [KL09] or as an
optimization for shading and overdraw heavy scenes, by simply filling the depth
buffer in a first pass and then performing the actual fragment shading in a second

pass.

Facilitated through the usage of 3D Rasterization [DEGT12] and the fact that
OCLRaster is a full software graphics pipeline, the combination of rasterization
and ray tracing in a graphics pipeline is another interesting possibility.

As a result of OpenCLs design and due to its wide acceptance, as demonstrated
by the number of available OpenCL implementations that exist today and which
will probably soon be followed by additional ones on mobile devices, OCLRaster is
capable of running on a lot of different hardware. This gives rise to two interesting
applications. For one thing, this allows for a heterogenous graphics pipeline where
computation is performed by the device that is most suited for a task (this is
especially appealing on CPUs with integrated GPUs, with both sharing the same
memory space). For another, multi-device rendering with very fine grained control
is also possible. This can go from simply dividing the screen into multiple parts,
each part being computed by a different device, deep down to splitting the vertex
and primitive processing workload into several parts.

OpenCL also directly provides profiling functions that could be used in the future
to measure the performance of new rendering methods, or just simply shader code
in general, in a more direct manner than OpenGL allows, as every pipeline stage

can be measured and dissected separately.

The prospect of complete pipeline programmability, both on the device and the
host side, and the ability to run the same software on a multitude of different

devices is very enticing and leads to many new possibilities.

OCLRaster Support Library Flexible Rasterizer in OpenCL - 50

A. OCLRaster on GitHub

For the full source code and future development, please have a look at the GitHub
project page at https://github.com/a2flo/oclraster. All source code is re-
leased under the GPLv2 licence.

B. TCCPP

As a small side project to the OCLRaster project, mostly out of necessity to allow
more complex user programs (), [forked the TCC project (the Tiny C
Compiler [Bell3]) and stripped it down to only its preprocessing parts. Addition-
ally, some modifications were made that allow TCC to completely work in-memory
(so no temporary files have to be created on disk or have to necessarily be read
from disk - include files still work) and also made all TCC functions depend on a
state object rather than depending on and using static global variables. This makes
it possible to have multiple instances of TCC (state objects) within a process and
thus "multi-threaded” program preprocessing. Preprocessing in itself is of course
still single-threaded, but several programs can be preprocessed in different threads
at the same time. Sadly, at the time of this writing, no OpenCL implementation is
actually capable of building OpenCL programs from multiple threads at the same
time, even though it’s only a context related function and not command queue or

device related. This makes OpenCL program compilation still a blocking operation.

Note that TCC is directly built along OCLRaster and resides in the same library
folder. Building a standalone executable binary is still possible, although rather
pointless.

The projects source code can be found at https://github.com/a2flo/tccpp.

C. OCLRaster Support Library

Also part of this project and meant to showcase and test more advanced rendering
code, is an additional support library. This library implements a simple GUI sys-
tem and provides 2D rendering capabilites that include the rendering of relatively
complex primitives like rounded rectangles and ellipsoids with different kinds of

shading (gradients, textures) as well as font rendering via FreeType [Frel3].

This is included in the OCLRaster GitHub repository at https://github.com/
a2flo/oclraster and located in the support folder, with an Ul example program

in the samples/ui folder.

https://github.com/a2flo/oclraster
https://github.com/a2flo/tccpp
https://github.com/a2flo/oclraster
https://github.com/a2flo/oclraster

References Flexible Rasterizer in OpenCL - 51

References

[AMDO06] AMD. AMD Close to Metal. http://www.amd.com/us/
press-releases/Pages/Press_Release_114147.aspx, November
2006.

[AMD12] AMD. AMD GRAPHICS CORES NEXT (GCN) ARCHI-

TECTURE. http://www.amd.com/la/Documents/GCN_Architecture
whitepaper.pdf, June 2012.

[Appl3] Apple. Xcode Developer Tools. https://developer.apple.com/
technologies/tools, 2013.

[ARM13] ARM. MaliTM-T600 Series GPU OpenCL. http://infocenter.
arm.com/help/topic/com.arm.doc.dui0538e/DUIO538E mali_t600
opencl_dg.pdf, 2013.

[Bel13] Fabrice Bellard. Tiny C Compiler. http://bellard.org/tcc, February
2013.

[BFH*04a] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fata-
halian, Mike Houston, and Pat Hanrahan. Brook for GPUs: Stream
Computing on Graphics Hardware. In ACM SIGGRAPH 2004 Papers,
SIGGRAPH 04, pages 777-786, New York, NY, USA, 2004. ACM.

[BFH*04b] Tan Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fa-
tahalian, Mike Houston, and Pat Hanrahan. BrookGPU. http://
graphics.stanford.edu/projects/brookgpu, 2004.

[Ble13] Blender. Blender project - Free and Open 3D creation software. http:
//www.blender.org, 2013.

[DEG'12] Tomas Davidovi¢, Thomas FEngelhardt, Iliyan Georgiev, Philipp
Slusallek, and Carsten Dachsbacher. 3D Rasterization: A Bridge be-
tween Rasterization and Ray Casting. In Proceedings of Graphics Inter-
face 2012, GI "12, pages 201-208, Toronto, Ont., Canada, Canada, 2012.
Canadian Information Processing Society. http://cg.ibds.kit.edu/
publications/p2012/3dr/gi2012.pdf.

[Frel3] FreeType. The FreeType project. http://www.freetype.org, 2013.

[Giel0] Fabian Giesen. View frustum culling. http://fgiesen.wordpress.com/
2010/10/17/view-frustum-culling/, October 2010.

[Imall] ImageVis3D. ImageVis3D data sets. http://www.sci.utah.edu/
download/IV3DData.html, 2011.

http://www.amd.com/us/press-releases/Pages/Press_Release_114147.aspx
http://www.amd.com/us/press-releases/Pages/Press_Release_114147.aspx
http://www.amd.com/la/Documents/GCN_Architecture_whitepaper.pdf
http://www.amd.com/la/Documents/GCN_Architecture_whitepaper.pdf
https://developer.apple.com/technologies/tools
https://developer.apple.com/technologies/tools
http://infocenter.arm.com/help/topic/com.arm.doc.dui0538e/DUI0538E_mali_t600_opencl_dg.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0538e/DUI0538E_mali_t600_opencl_dg.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0538e/DUI0538E_mali_t600_opencl_dg.pdf
http://bellard.org/tcc
http://graphics.stanford.edu/projects/brookgpu
http://graphics.stanford.edu/projects/brookgpu
http://www.blender.org
http://www.blender.org
http://cg.ibds.kit.edu/publications/p2012/3dr/gi2012.pdf
http://cg.ibds.kit.edu/publications/p2012/3dr/gi2012.pdf
http://www.freetype.org
http://fgiesen.wordpress.com/2010/10/17/view-frustum-culling/
http://fgiesen.wordpress.com/2010/10/17/view-frustum-culling/
http://www.sci.utah.edu/download/IV3DData.html
http://www.sci.utah.edu/download/IV3DData.html

References Flexible Rasterizer in OpenCL - 52

[Imal3] Imagination Technologies. PowerVR Series6 IP Core. http://www.

imgtec.com/powervr/sgx_series6.asp, 2013.

Int13] Intel. Software Occlusion Culling. http://download-software.
g p
intel.com/sites/default/files/softwareocclusionculling.
pdf & http://software.intel.com/en-us/articles/

software-occlusion-culling, January 2013.

[Khr08a] Khronos Group. Khronos Launches Heterogeneous Computing Ini-
tiative. https://www.khronos.org/news/press/khronos_launches_

heterogeneous_computing initiative, June 2008.

[Khr08b] Khronos Group. The Khronos Group Releases OpenCL 1.0 Specifi-
cation. https://www.khronos.org/news/press/the_khronos_group_

releases opencl 1.0 _specification, December 2008.

[Khr08c|] Khronos Group, Neil Trevett. OpenCL The Open Standard for
Heterogeneous Parallel Programming. https://www.khronos.org/
assets/uploads/developers/library/2008 siggraph asia/OpenCLY
200verview%20SIGGRAPH),20Asia%20Dec08. pdf, December 2008.

[Khr10] Khronos Group. Khronos Drives Momentum of Par-
allel Computing Standard with Release of OpenCL 1.1
Specification. https://www.khronos.org/news/press/

khronos-group-releases-opencl-1-1-parallel-computing-standard,
June 2010.

[Khr11] Khronos Group. Khronos Releases OpenCL 1.2 Specification. https:
//www.khronos.org/news/press/khronos-releases-opencl-1.

2-specification, November 2011.

[Khr12] Khronos Group. Khronos Releases Significant ~ OpenCL
1.2 Specification ~ Update. https://www.khronos.org/
news/press/khronos-releases-significant-opencl-1.

2-specification-update, November 2012.

[Khr13a] Khronos. The OpenGL Graphics System: A Specification, Version
4.3 (Core Profile). http://www.opengl.org/registry/doc/glspec43.
core.20130214.pdf, February 2013.

[Khr13b] Khronos Group. Conformant Products. http://www.khronos.org/

conformance/adopters/conformant-products, 2013.

[KLL0O9] Scott Kircher and Alan Lawrance. Inferred lighting: Fast dynamic light-
ing and shadows for opaque and translucent objects. In Proceedings of

http://www.imgtec.com/powervr/sgx_series6.asp
http://www.imgtec.com/powervr/sgx_series6.asp
http://download-software.intel.com/sites/default/files/softwareocclusionculling.pdf
http://download-software.intel.com/sites/default/files/softwareocclusionculling.pdf
http://download-software.intel.com/sites/default/files/softwareocclusionculling.pdf
http://software.intel.com/en-us/articles/software-occlusion-culling
http://software.intel.com/en-us/articles/software-occlusion-culling
https://www.khronos.org/news/press/khronos_launches_heterogeneous_computing_initiative
https://www.khronos.org/news/press/khronos_launches_heterogeneous_computing_initiative
https://www.khronos.org/news/press/the_khronos_group_releases_opencl_1.0_specification
https://www.khronos.org/news/press/the_khronos_group_releases_opencl_1.0_specification
https://www.khronos.org/assets/uploads/developers/library/2008_siggraph_asia/OpenCL%20Overview%20SIGGRAPH%20Asia%20Dec08.pdf
https://www.khronos.org/assets/uploads/developers/library/2008_siggraph_asia/OpenCL%20Overview%20SIGGRAPH%20Asia%20Dec08.pdf
https://www.khronos.org/assets/uploads/developers/library/2008_siggraph_asia/OpenCL%20Overview%20SIGGRAPH%20Asia%20Dec08.pdf
https://www.khronos.org/news/press/khronos-group-releases-opencl-1-1-parallel-computing-standard
https://www.khronos.org/news/press/khronos-group-releases-opencl-1-1-parallel-computing-standard
https://www.khronos.org/news/press/khronos-releases-opencl-1.2-specification
https://www.khronos.org/news/press/khronos-releases-opencl-1.2-specification
https://www.khronos.org/news/press/khronos-releases-opencl-1.2-specification
https://www.khronos.org/news/press/khronos-releases-significant-opencl-1.2-specification-update
https://www.khronos.org/news/press/khronos-releases-significant-opencl-1.2-specification-update
https://www.khronos.org/news/press/khronos-releases-significant-opencl-1.2-specification-update
http://www.opengl.org/registry/doc/glspec43.core.20130214.pdf
http://www.opengl.org/registry/doc/glspec43.core.20130214.pdf
http://www.khronos.org/conformance/adopters/conformant-products
http://www.khronos.org/conformance/adopters/conformant-products

References Flexible Rasterizer in OpenCL - 53

the 2009 ACM SIGGRAPH Symposium on Video Games, Sandbox 09,
pages 39-45, New York, NY, USA, 2009. ACM.

[LK11] Samuli Laine and Tero Karras. High-Performance Software Ras-
terization on GPUs. In Proceedings of High-Performance Graphics
2011, 2011. https://mediatech.aalto.fi/~samuli/publications/
laine2011hpg paper.pdf.

[LLV13a] LLVM. clang: a C language family frontend for LLVM. http://clang.
11lvm.org, 2013.

[LLV13b] LLVM. ’libc++" C++ Standard Library. http://libcxx.llvm.org,
2013.

Min13] MinGW. "MinGW-w64. http://mingw-w64.sourceforge.net, 2013.

[INVIO7] NVIDIA. CUDA. https://developer.nvidia.com/
cuda-toolkit-archive & https://developer.nvidia.com/cuda-fagq,
2007.

[INVI12] NVIDIA. NVIDIA’s Next Generation CUDA Compute Architec-
ture: Kepler GK110. http://www.nvidia.com/content/PDF/kepler/
NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf, 2012.

[OWG12a] Khronos OpenCL Working Group. The OpenCL Specification, Version:
1.2, Document Revision: 19. http://www.khronos.org/registry/cl/
specs/opencl-1.2.pdf, November 2012.

[OWG12b] Khronos OpenCL Working Group, SPIR subgroup. SPIR 1.0 Spec-
ification for OpenCL. http://www.khronos.org/registry/cl/specs/
spir_spec-1.0-provisional.pdf, August 2012.

[OWG13] Khronos OpenCL Working Group. The OpenCL C++ Wrap-
per API, Version: 1.2, Document Revision: 09. http://www.
khronos.org/registry/cl/specs/opencl-cplusplus-1.2.pdf&http:
//www.khronos.org/registry/cl/api/1.2/cl.hpp, May 2013.

[SDL13] SDL. Simple DirectMedia Layer, version 2.0. http://www.libsdl.org,
2013.

[Ziel3] Florian Ziesche. Flexible Rasterizer in OpenCL, Bachelor Seminar pre-
sentation. https://github.com/a2flo/oclraster/blob/master/etc/
oclraster_presentation.pdf, February 2013.

https://mediatech.aalto.fi/~samuli/publications/laine2011hpg_paper.pdf
https://mediatech.aalto.fi/~samuli/publications/laine2011hpg_paper.pdf
http://clang.llvm.org
http://clang.llvm.org
http://libcxx.llvm.org
http://mingw-w64.sourceforge.net
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-faq
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://www.khronos.org/registry/cl/specs/spir_spec-1.0-provisional.pdf
http://www.khronos.org/registry/cl/specs/spir_spec-1.0-provisional.pdf
http://www.khronos.org/registry/cl/specs/opencl-cplusplus-1.2.pdf & http://www.khronos.org/registry/cl/api/1.2/cl.hpp
http://www.khronos.org/registry/cl/specs/opencl-cplusplus-1.2.pdf & http://www.khronos.org/registry/cl/api/1.2/cl.hpp
http://www.khronos.org/registry/cl/specs/opencl-cplusplus-1.2.pdf & http://www.khronos.org/registry/cl/api/1.2/cl.hpp
http://www.libsdl.org
https://github.com/a2flo/oclraster/blob/master/etc/oclraster_presentation.pdf
https://github.com/a2flo/oclraster/blob/master/etc/oclraster_presentation.pdf

	Introduction
	OpenCL
	OpenCL Platform Model
	OpenCL Execution Model
	OpenCL Memory Model
	OpenCL Programming

	Previous and Related Work
	High-Performance Software Rasterization on GPUs
	3D Rasterization
	Frustum Culling

	Pipeline Overview
	Device Stages
	User Frontend
	Host Interfaces

	Pipeline Device Stages
	Transform Stage
	Primitive Processing & Primitive Assembly Stage
	Binning Stage
	Rasterization Stage
	Implementation

	Pipeline User Frontend
	OpenCL Built-in Functions
	User Programs
	Transformation Program
	Rasterization Program

	Image Functions
	Framebuffer Functions
	Miscellaneous

	Pipeline Host Interfaces
	OpenCL
	Pipeline
	Pipeline & Stage Classes
	Image
	Framebuffer

	Program
	Core Interfaces

	Examples
	Simple Example Program
	Other

	Conclusion & Future Work
	OCLRaster on GitHub
	TCCPP
	OCLRaster Support Library

