
Name: Muhammad Allah Rakha
Roll No: P19-0006 BCS-6A (PDC)

Assignment: NVIDIA CUDA on Google Colab
GitHub Link Code: https://github.com/aaaastark/NVIDIA-CUDA-Google-Colab.git

CUDA
Kernel, Grid, Block, Threads and Dimensional of a Block/Grid

CUDA C extends C by allowing the programmer to define C functions, called kernels, that, when called, are

executed N times in parallel by N different CUDA threads, as opposed to only once like regular C functions.

A kernel is defined using the __global__ declaration specifier and the number of CUDA threads that execute

that kernel for a given kernel call is specified using a new <<<…>>> execution configuration syntax. Each

thread that executes the kernel is given a unique thread ID that is accessible within the kernel through the

built-in threadIdx variable.

Syntax: Kernel_Name<<< GridSize, BlockSize, SMEMSize, Stream >>> (arg,...);

SMEMsize: is the size of Shared Memory at Runtime.

Stream: is a stream on which kernel will execute.

Sample Example:

Here, each of the N threads that execute VecAdd()

performs one pair-wise addition.

For convenience, threadIdx is a 3-

component vector, so that threads

can be identified using a one-

dimensional, two-dimensional, or

three-dimensional thread index,

forming a one-dimensional, two-

dimensional, or three-dimensional

thread block. This provides a

natural way to invoke computation

across the elements in a domain

such as a vector, matrix, or volume.

The index of a thread and its thread ID relate to each other in a straightforward way: For a one-dimensional

block, they are the same; for a two-dimensional block of size (Dx, Dy), the thread ID of a thread of index (x,

y) is (x + y Dx); for a three-dimensional block of size (Dx, Dy, Dz), the thread ID of a thread of index

(x, y, z) is (x + y Dx + z Dx Dy).

As an example, the following code adds two matrices A and B of size NxN and stores the result into

matrix.

C Language:

Threads of a block are expected to reside on the same processor core and must share the limited memory

resources of that core. On current GPUs, a thread block may contain up to 1024 threads.

However, a kernel can be executed by multiple equally-shaped thread blocks, so that the total number of

threads is equal to the number of threads per block times the number of blocks.

Blocks are organized into a one-dimensional, two-dimensional, or three-dimensional grid of thread blocks as

illustrated by Figures the number of thread blocks in a grid is usually dictated by the size of the data being

processed or the number of processors in the system, which it can greatly exceed.

The number of threads per

block and the number of

blocks per grid specified in the

<<<…>>> syntax can be of

type int or dim3. Two-

dimensional blocks or grids

can be specified as in the

example above.

Each block within the grid can

be identified by a one-

dimensional, two-dimensional,

or three-dimensional index

accessible within the kernel

through the built-in blockIdx

variable. The dimension of the

thread block is accessible

within the kernel through the

built-in blockDim variable.

Extending the previous MatAdd() example to handle multiple blocks, the code becomes as follows.

A thread block size of 16x16 (256

threads), although arbitrary in this case,

is a common choice. The grid is created

with enough blocks to have one thread

per matrix element as before. For

simplicity, this example assumes that the

number of threads per grid in each

dimension is evenly divisible by the

number of threads per block in that

dimension, although that need not be the

case.

CUDA
Deploy the NVIDIA CUDA on Google Colab (Using GPU)

CUDA
Matrix Multiplicaton

CUDA
Vector Additon

