
Hindawi Publishing Corporation
Journal of Computer Systems, Networks, and Communications
Volume 2008, Article ID 583162, 7 pages
doi:10.1155/2008/583162

Research Article
Internal Clock Drift Estimation in Computer Clusters

Hicham Marouani and Michel R. Dagenais

Department of Computer and Software Engineering, Ecole Polytechnique, P.O. Box 6079, Downtown,
Montreal, QC, Canada H3C 3A7

Correspondence should be addressed to Michel R. Dagenais, michel.dagenais@polymtl.ca

Received 22 August 2007; Revised 12 February 2008; Accepted 4 May 2008

Recommended by Wael Badawy

Most computers have several high-resolution timing sources, from the programmable interrupt timer to the cycle counter. Yet,
even at a precision of one cycle in ten millions, clocks may drift significantly in a single second at a clock frequency of several
GHz. When tracing the low-level system events in computer clusters, such as packet sending or reception, each computer system
records its own events using an internal clock. In order to properly understand the global system behavior and performance, as
reported by the events recorded on each computer, it is important to estimate precisely the clock differences and drift between the
different computers in the system. This article studies the clock precision and stability of several computer systems, with different
architectures. It also studies the typical network delay characteristics, since time synchronization algorithms rely on the exchange
of network packets and are dependent on the symmetry of the delays. A very precise clock, based on the atomic time provided by
the GPS satellite network, was used as a reference to measure clock drifts and network delays. The results obtained are of immediate
use to all applications which depend on computer clocks or network time synchronization accuracy.

Copyright © 2008 H. Marouani and M. R. Dagenais. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. INTRODUCTION

Complex distributed computer systems are increasingly used
to offer a growing array of online services from search
engines to groupware and eCommerce. Each computer will
typically contain several processors and possibly many disks.
A request served by such a cluster may go through a load
balancing frontend to one of several web servers, which will
in turn make requests to authentication servers, database
servers, and file servers before returning the answer.

When the answer is incorrect, or even more if the
performance is below expectations, it may be extremely
difficult to understand and diagnose the problem [1]. This
is where detailed system tracing can provide the needed
information by instrumenting the servers. Limited tracing
tools were available with closed source operating systems.
More recently, with the increasing popularity of open source
operating systems, new tracing tools have appeared. Some
tracers like DTrace [2] and SystemTap [3] allow the dynamic
insertion of tracepoints, at some cost in performance. DTrace
is offered by Sun for Solaris (now OpenSolaris) while
SystemTap is an ongoing project of Red Hat, IBM, Intel,

and Hitachi. Other tracers rely on static instrumentation,
needing a kernel recompilation but minimizing the overhead
and thus the system disturbance. The Linux Trace Toolkit,
LTTng [4–6], is probably the best known system in this
category. SystemTap and LTTng share some of the underlying
trace recording technology, Relay, and it should be relatively
easy in the future to combine events recorded from these two
sources in a single trace.

Each CPU in a multiprocessor computer may record
events. It typically uses its cycle counter to timestamp
each event before recording it in a per CPU buffer. A
separate tracing flow is thus obtained for each CPU. In
some architectures, all cycle counters start with the same
count, at the same time, and are connected to a shared
clock signal. However, it is more typical to have independent
clocks, possibly derived from a common clock signal. In
that case, the different CPUs may not power up and start
counting exactly at the same time, and they may even use
different clock scaling values, for instance depending on their
internal temperature. Different computers in a cluster will
not only have independent clocks but may also exhibit more
differences in terms of technology and architecture [7].

mailto:michel.dagenais@polymtl.ca

2 Journal of Computer Systems, Networks, and Communications

The objective is to estimate the clock differences over
time with respect to a time reference to be used in the trace
viewer [8]. The time reference may or may not correspond to
a real clock but is the reference used to present a global time
view of the events, irrespective of their CPU of origin. Often,
a CPU in a central server, or one connected to a very precise
clock source, will be a convenient choice as time reference.
Each event must thus have its locally generated timestamp
converted to the time reference, using the estimation of the
clock differences over time.

The clock synchronization, computing the difference
between clocks on two CPUs, is performed either by
connecting to a shared clock signal (e.g., the output from
an atomic clock) or by sending messages back and forth
with the current time on each system and compensating as
much as possible for the network delay. The synchronization
may be performed live, adjusting the current time values to
reduce any clock difference found. It may also be performed
a posteriori, computing at trace analysis time the clock
differences over time, and using these values to convert the
local timestamps to the time reference.

In this article, several experiments were conducted to
estimate the accuracy and stability of cycle counters and to
measure the network delay values and variability. Several
different units of the same model, of different models
but same architecture, and of different architectures were
tested while varying the system load and the temperature.
Similarly, the network delays were measured using differ-
ent network adapters and switching equipment. A very
precise clock, generated by a GPS receiver optimized for
time precision, was used as the reference clock. Thus, the
main contribution of this study is the experimental results
which provide a precise measurement of the characteristics
of the computers and networking equipment commonly
found in the distributed systems to be traced. A second
contribution is the efficient experimental setups proposed to
measure the relative clock accuracy and stability of several
networked computers, using a GPS and a modified Linux
kernel.

2. CPU CLOCKS

In earlier architectures, two hardware devices were tradi-
tionally used to update the operating system internal time
[9]: the battery-backed real time clock (RTC) and the
programmable interrupt timer (PIT). The real time clock is
used to maintain the time even when the computer is off.
In IBM PC compatible computers, the RTC circuit is the
Motorola 146818, with a resolution of approximately one
second and a significant drift, and the PIT circuit is the
Intel 8254. The Linux operating system uses the RTC at boot
time to initialize its internal time. It then updates its internal
time by requesting regular interrupts from the PIT, typically
every millisecond, and adding this value to its time variable.
The Linux system call gettimeofday() retrieves this internal
time.

The majority of recent microprocessors, starting with the
Pentium in the i386 architecture, have a built-in clock cycle
counter. This cycle counter, when available, is used by the

Linux operating system to interpolate the time between PIT
interrupts, thus increasing the resolution from 1 millisecond
to 1 microsecond or better. In Intel Pentium processors, this
register is named TSC (TimeStamp Counter) and is 64 bits
long.

Microprocessor clock signals are typically generated with
a circuit based on a quartz crystal. The clock precision [7],
or drift rate, is measured as the offset between the clock
and a very precise reference clock per unit of time, and is
often expressed as a ratio in parts per million. Values of
1 ppm or 10−6 are typical for computer grade crystals (1
microsecond every second or 0.6 second per week). The
circuit temperature directly affects the crystal frequency and
consequently the drift.

3. EXPERIMENTAL SETUP

Each satellite in the Global Positionning System (GPS)
contains a very accurate atomic clock. GPS receivers obtain
time values and coordinates from several satellites and
can accordingly compute their position and the time. The
Motorola M12+ Timing Oncore GPS receiver [10] offers
approximately 12 nanoseconds accuracy with respect to
Universal Time Coordinated, and was used as a time
reference to perform the different measurements. This GPS
receiver produces a pulse per second (PPS) signal which
was connected directly to a pin of the computer RS-232
serial port, from which an interrupt can be generated. For
some of the experiments, the signal cable was split and
connected to several computers using short wires of equal
length.

The PPS signal reaches each CPU with a precision
limited by the variability of the delay outside and inside
the computer [11–13]. The delay outside the computer (i.e.,
speed of electric signal in copper at 5 ns/m) is fairly constant,
and easily compensated, and thus has no effect on the drift
measurement. The internal delay is variable and corresponds
to the difference between the signal arrival time and the
execution of the cycle counter read instruction in the serial
port interrupt handler. The same study [11] reports that for a
Pentium III at 860 MHz, the mean delay is 8.31 microseconds
with a standard deviation of 0.36. This delay is the sum of
the hardware interrupt controller and the operating system
latency.

For our experiment, the lowest-level interrupt handler in
Linux kernel version 2.4.26 was instrumented, as shown in
Algorithm 1, to sample the cycle counter as soon as the PPS
signal interrupt is notified [14, 15]. Thereafter, the difference
between two successive readings is calculated, yielding the
number of clock cycles per second, or clock frequency, for
the CPU.

In the networking experiments, the same PPS signal is
connected to the two computers. In a first setup, the two
computers exchange Ethernet packets in order to measure
the network delays. In a second setup, a third computer
broadcasts an Ethernet packet to the two PPS connected
computers. The difference in broadcast packet arrival time
can then be measured [16].

H. Marouani and M. R. Dagenais 3

/∗ Pseudocode for modified low level interrupt handling routine ∗/
do IRQ ()
{

/∗ Modification to read the cycle counter as early as possible ∗/
if (interrupt is 4 (serial port) and clock experiment active) {

read TSC cycle counter and store in buffer;
increment buffer pointer;

}

/∗ Normal content of do IRQ in Linux ∗/
Call the specialized interrupt handler based on interrupt number;

/∗ Modification for transferring the results to user space ∗/
if (clock experiment active and buffer is full) {

check that the alternate buffer was read by the daemon;
switch to the alternate buffer;
signal the daemon to read the filled buffer;

}
}

Algorithm 1: Pseudocode for the modified main interrupt request handler, used to sample the cycle counter at every GPS pulse per second
in the Linux kernel.

Table 1: CPU clock frequency versus CPU temperature in Celsius.

Temperature
(Celsius)

Frequency (Hz)
Standard deviation

(Hz)

28 349205333 464.67

32 349204698 1686.58

36 349204068 1878.87

40 349203314 2299.72

44 349202799 1469.95

47.25 349202435 1929.43

4. RESULTS

4.1. Effect of temperature on clock frequency

For this experiment, the exact clock frequency (number
of cycles between two PPS signals) is measured while the
temperature varies from room temperature to the maximum
rated temperature. An Intel Pentium II 350 MHz system
was used with the CPU fan disconnected, and started at
room temperature. The CPU temperature value is obtained
through the Linux operating system from the health moni-
toring chip on the motherboard.

Table 1 illustrates that the CPU frequency diminishes at
the rate of approximately 150 Hz per degree Celsius. This
is consistent with other studies [17, 18] showing a linear
relation between the frequency and the temperature, with a
positive or negative slope depending on the specific circuit
used as clock driver.

4.2. CPU load

In this experiment, the effect of system load on the frequency
is characterized. The effect may be twofold. An increased load

Table 2: Measured clock frequency for light, moderate, and heavy
system loads.

Light load Medium load Heavy load

Frequency
350797133 350797332 350797453

(Hz)

Temperature
34.5 34.5 34.5

(Celsius)

Standard deviation
149 331 426

(Hz)

may affect power usage and heat dissipation. Indeed, when
the processor is idle, several units (e.g., ALU) are inactive
and do not consume power. Another possible effect of higher
system load is an increase in interrupt latency variability,
affecting the delay to read the cycle counter after the PPS
signal, and thus the accuracy of the frequency measurement.

Again, an Intel Pentium II 350 MHz system was used for
this experiment. It was tested with no load, only running the
frequency data collection daemon, moderate load archiving
the Linux Kernel source code with command tar, and heavy
load where several processes are added to tar and perform
intensive floating point computations on arrays. For each
case, the frequency was measured at every second for one
hour.

The load variation has little effect on either the frequency
or the temperature, which are closely related as shown in
Table 2. The CPU fan appears fairly efficient at keeping the
CPU close to room temperature despite the power dissi-
pation that could be caused by the system load variations.
On the other hand, the standard deviation of the measured
frequency increases significantly with the load. Indeed, the
heavy load has a direct impact on the interrupt latency since

4 Journal of Computer Systems, Networks, and Communications

Table 3: Clock frequency for 5 1.3 and 3 1.5 GHz AMD micropro-
cessors.

Model Frequency (Hz) 99% interval (μs)

AMD 1.3 number 1 1 343 172 180 0.492

AMD 1.3 number 2 1 343 175 836 0.475

AMD 1.3 number 3 1 343 134 661 0.702

AMD 1.3 number 4 1 343 175 117 0.419

AMD 1.3 number 5 1 343 174 308 0.664

AMD 1.5 number 1 1 533 362 884 0.608

AMD 1.5 number 2 1 544 642 975 0.510

AMD 1.5 number 3 1 544 665 817 0.498

Table 4: Clock frequency for 8 Intel Pentium IV 2.4 GHz micropro-
cessors.

Model Frequency (Hz) 99% interval (μs)

Intel 2.4 number 1 2 393 902 454 2.023

Intel 2.4 number 2 2 393 896 497 2.357

Intel 2.4 number 3 2 393 925 792 1.977

Intel 2.4 number 4 2 393 882 326 1.861

Intel 2.4 number 5 2 393 889 589 2.008

Intel 2.4 number 6 2 393 857 038 2.128

Intel 2.4 number 7 2 393 886 405 2.217

Intel 2.4 number 8 2 393 882 430 1.901

a loaded system spends more time in code sections where
interrupts are temporarily disabled. The interrupt latency
does not affect the clock frequency but rather the accuracy
of its measurement, since the reading of the cycle counter in
the interrupt following a PPS signal may be delayed.

The effect of interrupt latency is relatively easy to mitigate
in a posteriori analysis over a long period of time. By
measuring longer intervals, the relative effect of interrupt
latency can be decreased. Furthermore, by excluding values
too far from the average measurement, it is possible to take
out the cases where interrupts were significantly delayed.

5. CLOCK ACCURACY FOR DIFFERENT
COMPUTER MODELS

The clock frequency accuracy and stability was measured for
computer motherboards from several manifacturers: 5 units
of AMD 1.3 GHz ASUS A7A (AMD1.3), 3 units of AMD
1.5 GHz ASUS A7A (AMD1.5), 8 units of Intel Pentium IV
2.4 GHz Intel D865PES (Intel2.4), 7 units of Intel Pentium II
266 MHz (Intel266), 1 unit of VIA 600 MHz EPIA ME6000
(VIA600), and 1 unit of Intel Itanium 1.4 GHz biprocessor
server SR870BH2 (Itanium1.4). In each case, the average
frequency was measured over a one-hour period, and the
frequency interval within which fall 99% of the samples was
computed.

The results obtained are shown in Tables 3, 4, 5, and 6.
The AMD boards tested have the smallest 99% interval. It
may be caused by a simpler and/or better interrupt controller
or a more precise clock generation circuit.

Table 5: Clock frequency for 7 Intel Pentium II 266 MHz micropro-
cessors.

Model Frequency (Hz) 99% interval (μs)

Intel 266 number 1 266 317 841 1.057

Intel 266 number 2 266 314 530 1.137

Intel 266 number 3 266 314 969 1.168

Intel 266 number 4 266 318 621 1.544

Intel 266 number 5 266 313 279 1.074

Intel 266 number 6 266 316 786 2.641

Intel 266 number 7 266 312 792 1.263

Table 6: Clock frequency for different computer models. The
frequency and interval of the 5 AMD 1.3 GHz, 3 AMD 1.5 GHz, 8
Intel 2.4 GHz, and 7 Intel 266 MHz have been averaged.

Model Frequency (Hz) 99% interval (μs)

AMD1.3 1 343 166 500 0.550

AMD1.5 1 540 890 559 0.539

Intel2.4 2 393 890 316 2.085

Intel266 266 315 545 1.412

VIA600 599 924 976 1.617

Itanium1.4 1 396 283 528 2.584

6. CLOCK STABILITY

The short-term clock variations presented in Table 6 may
in large part be caused by variable interrupt latencies.
Interrupt latency causes a clock frequency measuring error
but, unlike frequency drift, does not accumulate over time.
Thus, assuming that the CPU temperature does not change
much (since the load has little effect on the temperature as
shown in Table 1) and that aging is a very long-term factor,
the clock frequency of a system may remain fairly stable
over a tracing session (which may last anything from a few
seconds to a few hours).

A convenient way to estimate the clock stability is to
calculate the Allan variance, or its square root, the associated
Allan deviation [19, 20]. The Allan variance is based on
the difference between successive readings of the frequency
difference from the reference clock, sampled at a fixed
interval. Its advantage is that it converges over time for most
typically encountered types of noise. The traditional variance
uses the difference between each sample and the average.

The clock frequency of 8 AMD processors was measured
over a period of several hours. The Allan deviation was
plotted over time as more measurements were added. The
Allan deviation rapidly diminishes and converges to a steady
state, as shown in Figure 1. If the clock frequencies drifted in
a measurable way, the values would systematically vary over
time and the Allan deviation would tend to increase with
time.

Similarly, the clock frequency of an Intel Pentium II
350 MHz was monitored for longer periods of several days
[14]. The clock frequency still exhibited excellent stability
over these longer periods. However, it is interesting to note
that a cyclic daily variation clearly appeared, from a high of
350 797 150 to a low of 350 796 890 Hz, for a difference of

H. Marouani and M. R. Dagenais 5

0

100

200

300

400

500

600

700

σ

1 2 4 8 16 32 64 128 256 512 1024

τ

Figure 1: Allan deviation for 8 AMD processors.

260 cycles. The frequency maintains a close to average value
between 10h00 and 23h00, rises from 23h00 to 6h30 in the
morning and then drops sharply from 6h30 to 8h30, before
coming back gradually to the average value around 10h00.
These small variations of plus or minus 130 cycles per second
are likely caused by variations in the electrical supply and
in the ventilation system. The same variations were found
when connecting the systems to either a GPS clock or to an
independent high-precision clock.

7. NETWORK TIME SYNCHRONIZATION ACCURACY

The network synchronization protocols are dependent on the
packets delivery time. A constant, symmetric, delay between
two computers is the ideal case where the send and receive
times perfectly compensate for each other. The Network
Time Protocol (NTP) [7, 21, 22] is the most popular of such
protocols. The same type of clock synchronization algorithm
is used a posteriori during trace analysis to align the traced
events on a common time base in LTTng [8]. The upper
bound on clock difference inaccuracy is the sum of the NTP
request and response packets transmission time (physical
network delay, network interface card processing time, and
operating system latency). The actual error is caused by the
time difference between both directions in the NTP request-
response roundtrip. The achievable accuracy on a 100 Mb/s
Ethernet network is reported to be about 1 millisecond [23].
A tighter bound on synchronization was obtained in [24],
1.45 ± 1.26 microseconds, but using a higher performance
Myrinet network and special network interface cards which
processed in firmware the synchronization messages.

Two networked Pentium II 350 MHz computers were
connected to the same GPS pulse per second signal. Three
different network topologies were tested: a direct crossover
cable, a simple 8 ports DLINK switch, and an institutional
managed switch. In each case, the delays for the NTP like
time request and answer packets were measured, thanks to
the common GPS time reference.

The first test, in Table 7, measures the request and
response times between a client and a server. Both computers
contain 350 MHz Intel Pentium II processors but they differ
otherwise in terms of motherboard chipset and network
adapter. When the server and client roles were exchanged,
the send and receive timings were almost reversed, indicating

Table 7: Query and response times for 3600 NTP requests between
two computers connected by an unmanaged Ethernet switch. All
times are in microseconds.

Direction
Average

(μs)
Standard deviation

(μs)
Minimum

(μs)
Maximum

(μs)

Request 121.03 1.90 113.64 173.55

Reply 110.53 1.60 102.77 117.30

Table 8: Difference between query and response times for NTP
requests on a free versus a busy network, in microseconds.

Network Average difference (μs)

Network with no traffic 10.493

Busy network 10.805

Table 9: Difference between query and response times for different
networking equipment, in microseconds.

Network Average difference (μs)

Crossover cable 11.000

Managed Ethernet switch 10.161

Simple Ethernet switch 10.493

that the hardware configuration and not the client or server
role is responsible for the delay difference. The network
switching equipment is symmetrical and thus should not
contribute to a systematic difference in one way or another.
The delay is from the packet send to the packet receive
functions in the kernel, which were instrumented with
LTTng. The delay values do not vary much in general
(small standard deviation) but are sometimes slightly smaller
(minimum value) or quite larger (maximum value). Thus,
most packets take the same, close to minimal, time, while a
few packets may be delayed significantly.

The second test, shown in Table 8, examines the effect
of network congestion. The switch appears to be effective
as the traffic added to other ports has very little impact on
the network delay between the two computers exchanging
time synchronization packets. The last test, in Table 9,
compares different network switching solutions. The results
are very similar. The networking technology (10 Mb/s,
100 Mb/s, Myrinet) and the hardware (network adapter and
corresponding operating system driver) appear to have much
more influence than the type of switch or the other traffic on
the switches.

A different clock synchronization strategy, using broad-
cast packets, was also tested. A clock server broadcasts the
time to several computers connected to the same local area
network. Two computers connected to this network and
receiving these broadcast packets were at the same time also
connected to the common GPS time base.

While broadcast packets should be received almost
simultaneously by all computers on the local area network,
delays in the switch, network interface card, and operating
system increase the time difference. Nevertheless, broadcast
packets can achieve an accuracy of a few microseconds,

6 Journal of Computer Systems, Networks, and Communications

Table 10: Broadcast time difference, in microseconds, for different
networking equipment.

Network Average difference (μs)

Managed switch 2.411

Simple switch 1.405

which is several times better than what is achievable with the
NTP request response packets.

8. CONCLUSION

The main contribution of this experimental study is to
provide data about the accuracy and stability of computer
clocks and local area network delays, with emphasis on
the various parameters that could affect the precision of
event timestamps when tracing distributed systems. Several
different computers of the same model and of different
models and several networking switches were tested.

This study shows that the microprocessor clock cycle
counter can be used as a high resolution, high accuracy,
low drift, timing system. In the experiments presented,
the variations from one measurement to the other were
mostly due to the interrupt latency (short-term noise), when
processing the pulse per second signal, and not to variations
in the clock frequency (long-term stability). Furthermore,
the clock frequency exhibited an excellent stability even over
several days. The clock frequency does vary with temperature
and line voltage but these parameters are not expected to
change too much in a server room during regular hours,
for example for the duration of a tracing session. While
it is possible to vary the temperature by disconnecting the
fan, little variation is obtained, for instance by varying the
computing load, when the fan is running.

The clock offset between networked computers, with
100 Mb/s Ethernet, can be computed from packet send
and arrival time with an accuracy of approximately 10
microseconds. An even better accuracy, around 2 microsec-
onds, would be possible when broadcast packets are received
simultaneously by several computers. The variations in
network delay time caused by variable interrupt latency can
easily be removed when performing a posteriori analysis
on a trace containing several message exchanges. Indeed,
the excellent clock stability can be used to detect and
ignore the few outliers. These normally correspond to the
reception of a network packet, and the network adapter
raising an interrupt, but this interrupt being delayed because
the operating system was in a critical section, with interrupts
disabled.

Such a precision of approximately 10 microseconds in the
computation of the clock offset to a common time base is
more than adequate for presenting a merged view of several
traces collected from networked computers. Indeed, if some
kernel events are a few microseconds apart (e.g., syscall entry
versus syscall exit), all packets exchanges (DSN, NTP or
HTTP requests, remote procedure calls, etc.) have durations
in the hundreds of microseconds or in milliseconds.

Another interesting contribution of this work is to
propose efficient experimental setups to measure the relative
clock accuracy and stability of several networked computers.
A new, affordable, and extremely precise GPS-based time
source was used to perform the experiments, along with a
modified Linux kernel to intercept and time external events
(pulse per second signal and packet arrival) as early as
possible.

ACKNOWLEDGMENTS

Several researchers, Benoit des Ligneris and Mathieu
Desnoyers from Ecole Polytechnique, Karim Yaghmour from
Opersys, and Tom Zanussi, Robert Wisniewski, and Richard
Moore from IBM, contributed to the experimentation
through stimulating discussions. The financial support of
the Natural Sciences and Engineering Research Council of
Canada is gratefully acknowledged.

REFERENCES

[1] M. Bligh, M. Desnoyers, and R. Schultz, “Linux Kernel
Debugging on Google-sized clusters,” in Proceedings of the
Linux Symposium, Ottawa, Ontario, Canada, June 2007.

[2] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal, “Dynamic
instrumentation of production systems,” in Proceedings of
the USENIX Annual Technical Conference, pp. 15–28, Boston,
Mass, USA, June-July 2004.

[3] V. Prasad, W. Cohen, F. C. Eigler, M. Hunt, J. Keniston,
and B. Chen, “Locating system problems using dynamic
instrumentation,” in Proceedings of the Linux Symposium,
Ottawa, Ontario, Canada, July 2005.

[4] K. Yaghmour and M. R. Dagenais, “Measuring and charac-
terizing system behavior using kernel-level event logging,” in
Proceedings of the USENIX Annual Technical Conference, pp.
13–26, San Diego, Calif, USA, June 2000.

[5] M. Desnoyers and M. R. Dagenais, “The LTTng tracer: a low
impact performance and behavior monitor for GNU/Linux,”
in Proceedings of the Linux Symposium, pp. 209–224, Ottawa,
Ontario, Canada, July 2006.

[6] Linux Trace Toollkit, July 2007, http://ltt.polymtl.ca/.
[7] G. Coulouris, J. Dollimore, and T. Kindberg, “Time and global

state,” in Distributed Systems Concepts and Design, pp. 385–
400, Addison-Wesley, Reading, Mass, USA, 2001.

[8] E. Clement, “Synchronisation de traces dans un réseau
distribué,” Mémoire de maı̂trise, Ecole Polytechnique de
Montréal, Québec, Canada, August 2006.

[9] D. P. Bovet and M. Cesati, Understanding the Linux Kernel,
O’Reilly, Sebastopol, Calif, USA, 2nd edition, 2002.

[10] Motorola GPS, September 2004,
http://www.motorola.com/ies/GPS/productstiming.html.

[11] V. Smotlacha, “Measurement of time servers,” Tech. Rep.
18/2001, CESNET Association, Prague, Czech Republic,
December 2001.

[12] J. R. Ring, C. P. Allen, and S. Snyder, “Adjusting processor
clock information using a clock drift estimate,” US patent
20060208941, September 2006.

[13] W. Lewandowski, J. Azoubib, and W. J. Klepczynski, “GPS:
primary tool for time transfer,” Proceedings of the IEEE, vol.
87, no. 1, pp. 163–172, 1999.

[14] H. Marouani, “Mesure de la précision des compteurs de cycle
et horloge interne des ordinateurs,” Mémoire de maı̂trise,

http://ltt.polymtl.ca/
http://www.motorola.com/ies/GPS/productstiming.html

H. Marouani and M. R. Dagenais 7

Ecole Polytechnique de Montréal, Québec, Canada, October
2004.

[15] H. Marouani and M. R. Dagenais, “Comparing high resolu-
tion timestamps in computer clusters,” in Proceedings of the
18th Annual Canadian Conference on Electrical and Computer
Engineering (CCEC ’05), pp. 400–403, Saskatoon, Canada,
May 2005.

[16] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time
synchronization using reference broadcasts,” ACM SIGOPS
Operating Systems Review, vol. 36, no. S1, pp. 147–163, 2002.

[17] R. K. Karlquist, L. S. Cutler, E. M. Ingman, J. L. Johnson, and
T. Parisek, “A low-profile high-performance crystal oscillator
for timekeeping applications,” in Proceedings of the IEEE
International Frequency Control Symposium, pp. 873–884,
Orlando, Fla, USA, May 1997.

[18] H. Kawashima and K. Sunaga, “Temperature compensated
crystal oscillator employing new shape GT cut quartz crystal
resonator,” in Proceedings of the 45th Annual Symposium on
Frequency Control, pp. 410–417, Los Angeles, Calif, USA, May
1991.

[19] D. W. Allan, “The Allan Variance,” September 2004, http://
www.allanstime.com/AllanVariance/.

[20] D. W. Allan, “Should the classical variance be used as a
basic measure in standards metrology?” IEEE Transactions on
Instrumentation and Measurement, vol. IM-36, no. 2, pp. 646–
654, 1987.

[21] D. L. Mills, “Improved algorithms for synchronizing computer
network clocks,” IEEE/ACM Transactions on Networking, vol.
3, no. 3, pp. 245–254, 1995.

[22] F. Sivrikaya and B. Yener, “Time synchronization in sensor
networks: a survey,” IEEE Network, vol. 18, no. 4, pp. 45–50,
2004.

[23] A. Pásztor and D. Veitch, “PC based precision timing without
GPS,” ACM SIGMETRICS Performance Evaluation Review, vol.
30, no. 1, pp. 1–10, 2002.

[24] C. Liao, M. Martonosi, and D. W. Clark, “Experience with an
adaptive globally-synchronizing clock algorithm,” in Proceed-
ings of the 11th Annual ACM Symposium on Parallel Algorithms
and Architectures (SPAA ’99), pp. 106–114, Saint Malo, France,
June 1999.

http://www.allanstime.com/AllanVariance/
http://www.allanstime.com/AllanVariance/

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

