
Running head: INSERT SHORTTITLE COMMAND IN PREAMBLE 1

A Reproducible Data Analysis Workflow with R Markdown, Git, Make, and Docker

Aaron Peikert1,2 & Andreas M. Brandmaier1,3

Affiliation

Author Note

We are grateful to Julia Delius for her helpful assistance in language and style

editing. We thank the reviewers and all contributors of our GitHub repository for helpful

feedback on the paper. This paper is fully reproducible using the workflow described in

this paper. All materials can be found on the accompanying GitHub repository:

https://github.com/aaronpeikert/reproducible-research/. This particular document was

created from the commit with the hash "4ebca13". To provide feedback or any other type

of comment or questions regarding our workflow, please add an issue to the GitHub

repository of our paper at https://github.com/aaronpeikert/reproducible-research/issues.

Correspondence concerning this article should be addressed to Andreas M.

Brandmaier, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin,

Germany. E-mail: brandmaier@mpib-berlin.mpg.de

https://github.com/aaronpeikert/reproducible-research/
https://github.com/aaronpeikert/reproducible-research/issues
mailto:brandmaier@mpib-berlin.mpg.de

INSERT SHORTTITLE COMMAND IN PREAMBLE 2

Abstract

In this tutorial, we describe a workflow to ensure long-term reproducibility of R-based

data analyses. The workflow leverages established tools and practices from software

engineering. It combines the benefits of various open-source software tools including R

Markdown, Git, Make, and Docker, whose interplay ensures seamless integration of version

management, dynamic report generation conforming to various journal styles and full

cross-platform and long-term computational reproducibility. The workflow ensures meeting

the primary goals that 1) the reporting of statistical results is consistent with the actual

statistical results (dynamic report generation), 2) the analysis exactly reproduces at a later

point in time even if the computing platform or software is changed (computational

reproducibility), and 3) changes at any time (during development and post-publication) are

tracked, tagged, and documented while earlier versions of both data and code remain

accessible. While the research community increasingly recognizes dynamic document

generation and version management as tools to ensure reproducibility, we demonstrate with

practical examples that these alone are not sufficient to ensure long-term computational

reproducibility. Leveraging containerization, dependence management, version

management, and dynamic document generation, the workflow increases scientific

productivity by facilitating later reproducibility and reuse of code and data.

INSERT SHORTTITLE COMMAND IN PREAMBLE 3

A Reproducible Data Analysis Workflow with R Markdown, Git, Make, and Docker

Introduction

In this tutorial, we describe a workflow to ensure long-term and cross-platform

reproducibility of data analyses in R (R Core Team, 2020). Reproducibility is the ability to

draw an identical conclusion from the same statistical analysis and the same data. For us a

statstical result is only reproducible if their generating computational workflows are

reported fully, and transparently, and remain sustainably available, such that a given

workflow can be re-run by a different person, later in time, and that the results will be

identical to the ones initially reported (Claerbout & Karrenbach, 1992; Heroux, Barba,

Parashar, Stodden, & Taufer, 2018; The Turing Way Community et al., 2019). The need to

ensure reproducibility directly follows from commonly accepted rules of good scientific

practice (such as the guidelines of the German Research Foundation, Deutsche

Forschungsgemeinschaft, 2019). Ensuring reproducibility is a prerequisite for replicability

(the ability to reach a similar conclusion from the same analysis and new data), and a

means to increase the trustworthiness of empirical results (Epskamp, 2019). Transparency

and accessibility are central scientific values, and open, reproducible projects will increase

the efficiency and veracity of knowledge accumulation (Nosek & Bar-Anan, 2012).

Here, we combine four software tools, whose interplay can guarantee full

computational reproducibility of data analyses and their reporting. There are various ideas

on how to enhance reproducibility (Piccolo & Frampton, 2016), four of which we believe to

be particularly important: dynamic document generation: (Rule et al., 2019), version

control (Barba, 2016), dependency management (Askren et al., 2016), and containerization

(Clyburne-Sherin, Fei, & Green, 2018). We argue that only a workflow using all four

concepts in unison can guarantee confidence in reproducing a scientific report (see The

Turing Way Community et al., 2019 for similar arguments). Various implementations of

INSERT SHORTTITLE COMMAND IN PREAMBLE 4

these concepts exist, but we consider the following four best suited for the R environment

(R Core Team, 2019): for dynamic document generation, R Markdown (Rmarkdown, n.d.),

for version control, Git (Chacon & Straub, 2014), for dependency management, Make

(Feldman, 1979), and for containerization, Docker (Merkel, 2014). Each of these software

solutions serves a valuable meta-scientific goal (reproducibility) and increases the

researches’ productivity. They all are highly flexible and powerful, so that mastering them

fully, requires a considerable amount of practice. However, for our purposes, it is sufficient

to master a valuable minimal subset of functions to ensure the reproducibility of scientific

analyses.

The Reproducible Workflow in a Nutshell

Figure 1 gives an overview of how the four components of our workflow interface to

ensure computational reproducibility. We begin with a minimal description of the roles of

the four components. In the remainder of this tutorial, we will further detail each of the

four components of our workflow. The first component is version control. Version control

manages changes to files (e.g., data and code) over time so that you can access specific

versions later. Version control offers snapshots of your workflow at different time points

identified by a unique identifier. The different frames in the z-axis of the image illustrate

the different versions of the workflow. How different parts of a analysis and a report of it

relate and in what order they need to be executed is monitored using dependency

management. The arrows visualize dependencies, such as an analysis depending on the

availability of a particular data file. Third, all computer code (such as a statistical analysis

in R) is executed in a virtual environment that guarantuees exact reproduction of results

independent of the host operating system, R version, and installed package versions.

Finally, dynamic document generation (also known as the literate programming paradigm)

interweaves human-readable code and automatically produced results (such as point

INSERT SHORTTITLE COMMAND IN PREAMBLE 5

time

Git
tracks

versions

data/

iris.csv

prepped/
...

...

raw/

iris.csv

LICENSE.md
DockerfileDockerfile
Makefile
manuscript.pdf

R/
manuscript.Rmd

...

...
prepare_data.R

reproducible.Rproj
.git/
.gitignore

Docker
software

environment

some
Software

Virtual Linux

Operating System

LaTex

Packages

R Version

Make

B depends on A

A B
=

manuscript.pdf

Some text.

Petal.Length

Pe
ta

l.W
id

th

RMarkdown
dynamic document

generation

Figure 1 . Schematic illustration of the interplay of the four components central to a

reproducible workflow: version control (git), dependency management (Make),

containerization (Docker), and dynamic document generation (R Markdown).

estimates, p values, or confidence intervals) to eliminate inconsistency errors such as those

arising from careless copy and paste actions.

Dynamic Document Generation

The translation of computational results into a human-readable summary, for

example into a technical report, a presentation, or a journal manuscript, is time-consuming

and error-prone. Typical errors result from copy&paste mistakes, erroneous rounding, or

missed updates of the manuscript when the computer code has changed. In order to create

INSERT SHORTTITLE COMMAND IN PREAMBLE 6

not only fully reproducible results but also fully reproducible reports, one needs to resort

to the Literate Programming paradigm (Knuth, 1984), in which human-readable language

and computer code are intermingled to create dynamic documents whose order follows the

logic of thought rather then the order of the computer. R Markdown is a simple markup

language to create dynamic documents with embedded chunks of R code that can be

exported to standard formats such as documents (docx, rtf, epub), presentations (ppt,

html) or websites (html) using the knitr package (Xie, 2015, 2019). Several packages

extend the functionality of knitr. Of particular note are the papaja package (Aust &

Barth, 2018), which offers additional functions to enable American Psychological

Association (APA) style document formatting, including a journal-style final typeset

format, and the stargazer package (Hlavac, 2018), which provides journal-ready tables

and reports of statistical models. Figure 2 illustrates R Markdown syntax using the papaja

package and Figure 3 shows the resulting rendered document.

Figure 2 . Exemplary source of an R Markdown showing a combination of executable R

code and English manuscript text.

INSERT SHORTTITLE COMMAND IN PREAMBLE 7

“rmarkdown” — 2020/5/19 — 10:54 — page 1 — #1

A simple R markdown example

Aaron Peikert & Andreas M. Brandmaier

May 19, 2020

library("knitr")
library("papaja")

Silly Heading

data("sleep")
result <- t.test(extra ~ group, data = sleep)

This is an example of students’ sleep data taken from help(t.test).

1
Figure 3 . Rendered result of the source code shown in Figure ef{fig:source-rmarkdown}.

Version Management

Fundamentally, reproducibility means that computational results remain identical if

neither the script nor the data have changed. It is often not trivial to find out whether any

element in a project has changed over time and if so, to “go back in time.” The Git

program enables you to do both. A good mental model for Git is that it takes a sequence

of snapshots of all files it is supposed to track. In the language of Git, these snapshots are

“commits.” A commit represents a complete copy of the state of all tracked files. Each

commit has a short, unique identifier (a hash code) and a human-readable description

(commit message). Going back to one state is as easy as traversing the history of all

commits and switching the repository to a given previous state; it is possible to visually

track changes between different versions (similar to the track changes function offered in

Microsoft Word). The collection of all snapshots is called a “repository,” which ideally

INSERT SHORTTITLE COMMAND IN PREAMBLE 8

tracks your entire R project.

A typical Git workflow in the terminal looks like this:

-- type this in a terminal --

git init # to initialize Git in the current directory

git add ./data/iris.csv ./R/analysis.R # track specific files

git commit -m "add data & analysis" # take snapshot with comment

once script or data were changed, take a new snapshot

git commit -a -m "complete data colections" # add (-a) and commit all changes

To keep track of all changes on your local computer, you only need to use git add

and git commit or git commit -a to add and commit at the same time. These

commands need to be executed in the terminal, which you can access from within RStudio

(Shift + Alt + R). RStudio also offers a graphical user interface for Git. For most basic

operations, this interface is convenient and sufficient (see Figure 4).

Figure 4 . Git Pane providing easy access to basic functions in RStudio

In a given Git project, you can inspect all changes (git log) and examine any

previous state by stating the identifier of the commit to git checkout:

-- type this in a terminal --

git log # inspect all changes

git checkout 77db06f78e # revert local directory to previous version with hash code '77db06f78e'

INSERT SHORTTITLE COMMAND IN PREAMBLE 9

Git also makes it particularly easy to share and collaborate on a project with other

researchers. A popular service for sharing materials via Git is GitHub. Alternatively,

institutions can host an equally feature-rich open-source service called GitLab, avoiding the

reliance on commercial service providers. Just sharing Git repositories on GitHub with the

public is always free, private repositories (only visible to persons you invite) are free for

researchers or have limited features. After creating a user account, one can create a new

repository and GitHub provides information on how to upload your repository from the

terminal, e.g., for our repository (here with user name ‘aaronpeikert’ and repository name

‘reproducible-research’):

-- type this in a terminal --

link remote github repository to local directory

git remote add origin https://github.com/aaronpeikert/reproducible-research.git

push all changes from local repository to the remote repository

git push -u origin master

git push or the green upward arrow in the Git pane (see Figure 4) uploads local

updates. To download the remote Git repository on another computer, type into the

terminal:

-- type this in a terminal --

git clone https://github.com/aaronpeikert/reproducible-research.git

Git and GitHub can do even more to support you when collaborating with fellow

researchers, for example, by providing a web interface to track issues and their status

(open/closed/resolved) and further means to manage and merge multiple, parallel versions

of code (such as branches, pull requests, or merges), but this is beyond the scope of this

tutorial. In particular, GitHub’s issue management can be leveraged as a post-publication

https://github.com
https://gitlab.com
https://help.github.com/en/articles/applying-for-an-educator-or-researcher-discount
https://help.github.com/en/articles/applying-for-an-educator-or-researcher-discount

INSERT SHORTTITLE COMMAND IN PREAMBLE 10

platform to discuss manuscripts and their results.1 Another benefit of using Git and

GitHub is that experimentation is highly encouraged since you can go back to any state

quickly. Even when you lose access to the file on your computer, everything can be backed

up on a remote Git server (like GitHub or GitLab). Further, one can reduce the liklihood

of dead code accumulating (e.g., lines that have been commented out) because it is safe to

simply remove unneeded code blocks and track their removal in Git.

GitHub allows you to archive and label a specific version of your repository in the

form of a release. A release tags a particular commit with an arbitrary label, e.g., as

“submission,”2 “preprint,” or “published,” and archives also “binary” products of your

code, e.g. the resulting pdf of the manuscript or the docker image (see Containerization).

From such a release a DOI can be created, making it easier to reference it (see this GitHub

Guide3).

Dependency Tracking and Management

Even when you have obtained a given version of a project with the aim to reproduce

reported results, and you can confirm that this version is unchanged, you may not know

exactly how to reproduce the results because it may be unclear which files should be

executed in which order. This is particularly the case when complex preprocessing

pipelines are part of the computation and/or external dependencies (for example, a

program needs to be called outside the R environment) are present. Handling such

dependencies is easy with Make because it allows you to manage dependencies by creating

(computational) recipes to create or recreate files.
1To comment on our paper, please add an issue to the GitHub repository of our paper: https://github.

com/aaronpeikert/reproducible-research/issues.
2We created an release for the submission: https://github.com/aaronpeikert/reproducible-research/

releases/tag/v0.1.1-submission
3https://guides.github.com/activities/citable-code/

https://guides.github.com/activities/citable-code/
https://guides.github.com/activities/citable-code/
https://github.com/aaronpeikert/reproducible-research/issues
https://github.com/aaronpeikert/reproducible-research/issues
https://github.com/aaronpeikert/reproducible-research/releases/tag/v0.1.1-submission
https://github.com/aaronpeikert/reproducible-research/releases/tag/v0.1.1-submission
https://guides.github.com/activities/citable-code/

INSERT SHORTTITLE COMMAND IN PREAMBLE 11

A Makefile obeys a simple scheme. It contains a list of recipes. Each recipe has a

target (the name of the recipe) followed by a colon and a list of dependent targets or files.

If any of the dependencies have changed since the last time the target was built, the

recipe’s commands are executed to recreate the target file. We illustrate the use of

Makefiles with an example. Assume the final product is a manuscript (manuscript.pdf).

This manuscript is written in Rmarkdown (manuscript.Rmd) and includes dynamically

generated plots from a raw data file (data/iris.csv) that needs to be preprocessed first

using a separate script (R/prepare_data.R) into a prepared data file (ìris_prepped.csv).

A Makefile for these dependencies may look like this:

-- this is a Makefile --

all: manuscript.pdf

manuscript.pdf: data/ìris_prepped.csv manuscript.Rmd

Rscript -e 'rmarkdown::render("manuscript.Rmd")'

data/ìris_prepped.csv: R/prepare_data.R data/iris.csv

Rscript -e 'source("R/prepare_data.R")'

The first line after the comment is the first (default) target called ‘all’, which depends

on manuscript.pdf, which itself is a target. If Make is called without an argument, the first

target is built. To create manuscript.pdf (the second target in the file), the file

manuscript.Rmd needs to be rendered, which depends on data/ìris_prepped.csv. This

dependency is itself a target (the third target in the file). To create

data/ìris_prepped.csv, R/prepare_data.R and data/iris.csv are needed. If you type

make manuscript.pdf, Make first checks whether the dependencies do exist and, if not,

creates them. Here, if data/ìris_prepped.csv does not exist, Make creates it by

executing the third target. Also, if one of the dependencies of a target is newer than the

INSERT SHORTTITLE COMMAND IN PREAMBLE 12

target itself, Make updates everything that directly or indirectly depends on the target.

Here, if data\iris.csv is newer than data\ìris_prepped.csv, Make will attempt to

recreate data\ìris_prepped.csv first and then manuscript.pdf. If there is a dependency

missing, and there is no target to make it, Make stops with an error message. It is a

convention to have the first target named all, which depends on everything. Subsequently,

the command make without any argument automatically creates everything possible in the

project. The button Build All from within RStudio triggers this process (see Figure 5).

knitr::include_graphics("Images/build-pane.png")

Figure 5 . Build pane in RStudio with access to Makefile target ‘all’.

If you have followed our workflow as presented thus far, a fellow researcher is only

three commands away from fully reproducing your analysis. They would simply have to

type the following commands in the terminal:

-- type this in a terminal --

obtain a local copy from the remote repository

git clone https://github.com/aaronpeikert/reproducible-research.git

enter the local copy

cd iris

create all files from that project

make all

If you execute the above on your system, there is a good chance that you cannot

INSERT SHORTTITLE COMMAND IN PREAMBLE 13

reproduce our manuscript and the make all command results in an error. Successful

reproducibility relies on the crucial assumption that your computational environments are

identically or sufficiently compatible, e.g., all software dependencies are installed (R and all

additional R Packages) and no updates or other changes to the computational environment

break or alter your analysis. As we will shortly see, ensuring full computational

reproducibility requires one further level of documentation, that is, documentation of the

computational environment.

Containerization

Docker is a tool that allows encapsulation, sharing, and re-creation of a

computational environment on most operating systems (Windows, macOS & Linux).

Docker achieves these goals by setting up a virtual computer, on which it can execute a

well-defined series of commands (e.g., installing software). It then saves the resulting state

of the virtual computer in what is called an “image.” This image can be started and

execute commands on the virtual computer, e.g., running Rscript or make. A running

instance of an image is called a container. An image can be transferred and executed on

any machine that has Docker installed. Irrespective of the machine that is executing the

container, the computational environment is the same for the programs running inside the

container. The most important advantage over traditional virtual machines is that

containers are lightweight; that is, they start rapidly and do not need much storage space.

Docker achieves this by reusing large parts of the host’s operating system (the extend

varies between Linux, macOS and Windows).

With the following example, we demonstrate the importance of storing computational

environment. Generally, with containers, we would like to safeguard against changes to the

computational environment resulting in unexpected consequences, e.g., changes in the

functionality or default options in packages or even in the R environment itself. While the

INSERT SHORTTITLE COMMAND IN PREAMBLE 14

R programming language is considered stable and much effort is put into backward

compatibility, even basic functions like sample() (to randomly sample from a set)

sometimes change their behaviour from one version to another. To ensure reproducibility

in analyses based on a computer’s pseudo random number generator (PRNG), it is good

practice to rely on fixed PRNG seeds, which are numeric values that set the PRNG into a

deterministic state, i.e., the sequence of random numbers reproduces exactly. Consider the

following R code to randomly draw five numbers between 1 and 10:

-- R code --

set.seed(1234)

sample(1:10, 5)

The usual expectation is that this code delivers the same pseudo-random five numbers

regardless of the operating system or R Version (due to set.seed()). Using Docker, we

can start an image which contains the R Version 3.5.0, and execute the code there.

R.version$version.string

set.seed(1234)

sample(1:10, 5)

This outputs:

[1] "R version 3.5.0 (2018-04-23)"

[1] 2 6 5 8 9

When executing the code in an image with a more recent version of R (3.6.1), the

function results in another sample despite the identical random seed:

INSERT SHORTTITLE COMMAND IN PREAMBLE 15

R.version$version.string

set.seed(1234)

sample(1:10, 5)

This outputs:

[1] "R version 3.6.1 (2019-07-05)"

[1] 10 6 5 4 1

Note, that this is intended behaviour as it is the result of a bugfix in the random

number generator implemented from R 3.6.0 upwards. Now, such changes may strictly

render analyses run on previous R versions not reproducible if they contain, e.g., multiple

imputations, bootstrapping, simulations studies, graphics with random jitter, Bayesian

estimations using sampling algorithms (such as Markov Chain Monte Carlo), or similar

techniques that involve random sampling. We would like to illustrate this with a more

concrete example (the full R code to reproduce this non-reproducibility is provided in the

GitHub repository of this manuscript). We ran a linear regression model on a simulated

dataset with two variables x and y with R’s lm() function regressing x on y. Using the

boot package (Canty & Ripley, 2019), we bootstrapped the 95% confidence intervals

around the regression coefficient estimate with 1000 bootstrap samples to evaluate whether

the estimated confidence interval included zero. To make the analysis reproducible, we set

a random seed. We ran this once in R 3.5.0:

R.version$version.string

set.seed(seed)

results <- boot(data=simdata, statistic=bs,

R=1000, formula=y~1+x)

https://bugs.r-project.org/bugzilla/show_bug.cgi?id=17494

INSERT SHORTTITLE COMMAND IN PREAMBLE 16

get beta estimates' confidence intervals

round(confint(results, type = "bca", parm = 2), 4) # parm = 2 -> b

[1] "R version 3.5.0 (2018-04-23)"

2.5 % 97.5 %

0.0097 0.3842

Subsequently, we ran the identical script with the identical seed in R 3.6.1:

R.version$version.string

set.seed(seed)

results <- boot(data=simdata, statistic=bs,

R=1000, formula=y~1+x)

get beta estimates' confidence intervals

round(confint(results, type = "bca", parm = 2), 4) # parm = 2 -> b

[1] "R version 3.6.1 (2019-07-05)"

2.5 % 97.5 %

-0.0005 0.3748

As we see from these R outputs, the latter of the estimated confidence intervals does

include zero while the former does not. Please note that one could discuss deeper issues

about null hypothesis significance testing here, but with this example, we would simply like

to stress that computational reproducibility in the strict sense requires capturing the full

computational environment.

Only rarely does an analysis depend on base R only. Typically, a considerable

INSERT SHORTTITLE COMMAND IN PREAMBLE 17

number of packages is required that each may depend on multiple other packages, and the

addition of each package will increase the likelihood of breaking reproducibility with every

update to any of the packages or base R (the resulting frustration is sometimes referred to

as dependency hell). The whole endeavour of reproducibility is therefore at stake every

time an update is rolled out. To ensure long-term reproducibility, Docker replicates the

original computational environment of an analysis exactly. Note, that we do not intend to

advocate that software should not be updated; updates typically promote bugfixes and

provide new functionality; our point is that full computational reproducibility is only

achieved if the software versions used originally are precisely documented. Among other

things, this makes it possible to trace back update histories to discover which change in

which package caused the non-reproducibility. Quite to the contrary, with containerization,

it gets easier than ever to safely update to new versions just by changing the R version

number of the Docker image (and reverting back if this update breaks code). This

convenience is possible because of the efforts of the Rocker project (Boettiger &

Eddelbuettel, 2017), which provides Docker images pre-configured with an installation of

selected R versions. These packages are taken from MRAN (Revolution Analytics, 2019), a

repository for R packages fixed to the last date on which the R version of the image was

the most recent. Building upon these Rocker images, researchers can easily build their own

Docker images with all required R packages. The rocker project also provides images that

include RStudio (rocker/rstudio), the tidyverse package (rocker/tidyverse) and the

R Markdown package with LaTeX (rocker/verse). Because our workflow relies on R

Markdown, we suggest using the rocker/verse image (which also contains rstudio &

tidyverse). These images are stored on Dockerhub (Docker Inc., 2019).

Building on a basic Rocker image, we can specify further software dependencies in a

Dockerfile. For example, the basis for this manuscript’s Docker image is the following

Dockerfile:

https://GitHub.com/rocker-org/rocker
https://hub.docker.com

INSERT SHORTTITLE COMMAND IN PREAMBLE 18

-- this is a Dockerfile --

Define the R version to be installed from rocker project

FROM rocker/verse:3.6.1

install CRAN R packages: pacman, here, and pander

RUN install2.r --error --skipinstalled\

pacman here pander

install additional R packages from github: papaja and wordcountaddin

RUN installGithub.r\

crsh/papaja benmarwick/wordcountaddin

set the working directory inside the container

WORKDIR /home/rstudio

The FROM statement specifies which Docker image to use, in this case, the

rocker/verse image with the tag 3.6.1 (referring to the R version 3.6.1). The RUN

statement describes a command to execute, in this case, to run an R script install2.r

which is available on all Rocker images, to install the specified packages (here, pacman,

here & pander). A Dockerfile allows more than one RUN statement, executing arbitrary

system commands. Those RUN statements can install dependencies that are not an R

package, e.g., other programming languages like python or Matlab. The WORKDIR

statement is not strictly necessary but saves time spent on writing the working directory.

The command docker build -t image-name creates an image named image-name from

the Dockerfile in the project. A way to identify the dependencies automatically and

generate a docker image out of them is provided in the liftR package (Xiao, 2019).

The flexibility to fully control the software environment is of particular interest for

software infrastructures where users cannot install software because of limited access rights,

for example, on cloud computing platforms or high-performance computing clusters.

https://cran.r-project.org/web/packages/liftr/vignettes/liftr-intro.html

INSERT SHORTTITLE COMMAND IN PREAMBLE 19

However, Docker needs unrestricted access rights to the system, which are rarely granted on

high-performance computing clusters. For this case, Singularity provides a fully compatible

alternative (see Section under Linux) that can be executed with limited access rights.

There are two ways to share a Docker image; either by sharing the Dockerfile that

creates the image or by sharing the image itself, e.g., through a service like Dockerhub.

While both ways guarantee a replicable computational environment, sharing the Dockerfile

is more transparent and more space-saving; in our workflow, we can use Git to track

changes in the Dockerfile (such as updates to dependencies). A possible downside is that in

order to create an image from a Dockerfile, all software repositories need to be still

available. Hence, to guarantee longterm reproducibility, it is best to archive the complete

binary image at major points of the projects’ progress, for example, on publication (ideally,

using a release tag; see Version Management for details).

There are two options to execute commands in a container. Both options are based

on the docker run command. The first way is to run a command inside the container.

The call takes the form:

-- type this in a terminal --

execute a given command in a given container image; do not save

the state of the container; accept inputs from and return outputs to terminal

docker run --rm -it <IMAGENAME> <COMMAND>

The --rm flag means that the state of the container after the command will have

finished is not going to be saved. The -it flag tells Docker to run the command

interactively, that is, to accept keyboard inputs and return outputs to the terminal. For

example, this is the command to start an interactive R session inside a Docker image called

reproducible-research (see Figure 6 for a screenshot):

https://hub.docker.com

INSERT SHORTTITLE COMMAND IN PREAMBLE 20

-- type this in a terminal --

start an interactive R session in the container named 'reproducible-research'

docker run --rm -it reproducible-research R

Figure 6 . R terminal running inside Docker

The second option is to start the container in the background and to interact with

the container via the web browser and the RStudio server instance running in it. In order

to do so, you need to supply a password to log into the RStudio server (-e

PASSWORD=<YOUR_PASS>) and open a network service on a specified port (-p 8787:8787).

INSERT SHORTTITLE COMMAND IN PREAMBLE 21

docker run -e PASSWORD=<YOUR_PASS> -p 8787:8787 image-name

The address to connect to the RStudio server is your IP address (or localhost on

Linux) in this scheme: <IPADRESS>:8787. This offers a fully functioning RStudio instance

that runs in the image but is accessible through a local web browser.

By default, programs inside the container cannot access files on the local computer,

thus requiring an explicit link to a local folder to enable access (and on macOS and

Windows this also has to be allowed in the settings) :

docker run -v /folder/on/your/computer:/folder/in/docker

The main directory for RStudio inside the container is /home/rstudio, so the

complete call to start RStudio inside a Docker container may look like this in the local

terminal:

start docker in the background, open a local web service with a virtual

Rstudio instance and enable access to selected local directories

docker run --rm -it -e PASSWORD=<YOUR_PASS> -p 8787:8787 -v

/path/to/project:/home/rstudio reproducible-research

Figure 7 . RStudio running inside Docker

Figure 7 shows a screenshot of Rstudio running inside Docker accessed from a local

web browser.

INSERT SHORTTITLE COMMAND IN PREAMBLE 22

Since Docker commands tend to grow long and become tedious to type manually, we

recommend using some automatic way to generate them. Fortunately, one can use Make to

automatically generate the docker commands, e.g. the (simplified) Makefile for this paper

allows the command after $(run) to be conditionally passed through Docker if one types

make DOCKER=TRUE (otherwise, they are run locally):

-- this is a Makefile --

project := $(notdir $(CURDIR))

current_dir := $(CURDIR)

home_dir := $(current_dir)

uid = --user $(shell id -u)

ifeq ($(DOCKER),TRUE)

run:=docker run --rm --user $(uid) -v $(home_dir):/home/rstudio $(project)

current_dir=/home/rstudio

endif

all: manuscript.pdf

build: Dockerfile

docker build -t $(projekt) .

manuscript.pdf: manuscript.Rmd reproducible-research.bib

$(run) Rscript -e 'rmarkdown::render("$(current_dir)/$<")'

INSERT SHORTTITLE COMMAND IN PREAMBLE 23

Installing and Setting Up the Workflow

Other than on R, RStudio, and R Markdown, our workflow relies on three pieces of

software from outside the R environment: Git, Make, and Docker. The smoothness of the

installation process of these software packages varies across operating systems. For

example, on macOS, Make is always available, whereas Linux systems are typically shipped

with both Git and Make. In the following section, we share what we consider the easiest

way to install those packages across common operating systems. However, installation

processes may be subject to change, and we advise that readers also consult the

documentations of the packages or see our collection of links to tutorials and installation

instructions on our GitHub repository.

Windows

Windows systems typically require the biggest efforts to install all necessary pieces of

software. Note, that you must have either Windows Pro, Enterprise, Education, or Server

installed, as Microsoft prevents the use of Docker on Windows Home. There is a package

manager for Windows called Chocolatey, which you can install from:

https://chocolatey.org/install. Chocolatey provides all software packages needed for our

workflow in one place. Having installed Chocolatey (and restarted the computer), all

dependencies can be installed in an admin terminal (Windows key, then type cmd,

right-click Run as administrator) via:

-- type this in a terminal --

install Docker, Make, and Git using Chocolatey

choco install -y git make docker-desktop

To use docker you need to start Docker Desktop. In the settings of Docker Desktop,

https://chocolatey.org/install

INSERT SHORTTITLE COMMAND IN PREAMBLE 24

you have to allow the sharing of your drive. Docker on Windows requires the path to be

special; therefore, you need to hand-edit the Makefile and set current_path to the

current directory and use make all DOCKER=TRUE WINDOWS=TRUE. We hope that future

releases of Docker for Windows will not require that workaround.

macOS

As Make already ships with macOS, you only need Git and Docker. We suggest using

the package manager Homebrew, which you can install from

https://docs.brew.sh/Installation, to install Docker (Git will be installed during the

installation of Homebrew):

-- type this in a terminal --

install Docker via Homebrew

brew cask docker

To use docker, you need to start Docker Desktop. In the settings of Docker you have

to allow the sharing of your drive.

Linux

There is a host of different Linux distributions and almost as many package

managers. Still, to our knowledge, there is no (recent) Linux edition, that does not include

Git, Make and Docker. For example, in Ubuntu Linux, installation is straightforward using

the shipped package manager:

-- type this in a terminal --

https://docs.brew.sh/Installation

INSERT SHORTTITLE COMMAND IN PREAMBLE 25

install Docker via advanced package tool

apt install git make docker

For other distributions, replace apt with the native package manager. You may need

elevated rights for the installation; in this case, add sudo before the installation command.

docker also needs elevated rights to run; therefore, we recommend adding the local user to

the docker group, following the documentation of Docker.

An alternative to Docker on Linux is Singularity (Kurtzer, Sochat, & Bauer, 2017).

To use it, just replace any docker calls with singularity docker because Singularity fully

supports docker images. A possible advantage is that Singularity works well in

high-performance computing environments and on old Linux versions, the downside is that

Singularity is currently only available on Linux.

Project organization

Finally, we conclude with some notes on project organization, which we think makes

migrating projects to a reproducible workflow easier. The first step towards reproducibility

is to create an R script or R Markdown file as the primary entry point for the analysis that

runs on a local computer without error and performs the main statistical analyses. Next,

one needs to make sure that all files relevant to the analysis can be moved to another

computer. To this end, it is recommendable that all files are within one folder (or enclosed

subfolders within it) and all paths are relative to that folder because absolute paths are

specific to a given computer. A robust solution to the problem of making sure that file

access does not break across computing platforms are RStudio projects and the here

package (Müller, 2017) to manage file access. The here package solves two common issues

with relative paths. First, it takes care of the fact that path separator characters vary

across operating systems (typically, slash or backslash). Second, anchor points of relative

https://docs.docker.com/install/linux/linux-postinstall/#manage-docker-as-a-non-root-user
https://r4ds.had.co.nz/workflow-projects.html

INSERT SHORTTITLE COMMAND IN PREAMBLE 26

paths may differ depending on context. For example, knitr interprets paths relative to the

dynamic document, whereas R has a current working directory that may change over the

course of an R session. The here package provides consistent paths relative to the project

directory. The following three examples refer to local files ranging from absolute paths with

system-specific path separators (bad) to relative paths using the here package:

-- R code --

BAD because of path that is specific to the computer

iris <- read.csv("/home/aaron/reproducible-research/data/iris.csv")

GOOD because it is a relative path but slash depends on OS

iris <- read.csv("data/iris.csv")

BETTER because truly compatible across OS

iris <- read.csv(here("data", "iris.csv"))

The folder where all the files reside that you need for analysis (code and data), is

referred to as a ‘project’ (or sometimes as a ‘research compendium’). Working with

projects is particularly convenient with RStudio, an integrated development environment

(IDE) for R. It is useful to organize a data analysis project in a way that strictly segregates

(raw) data and code by placing them in directories called data and R (see Section 4 in

Marwick, Boettiger, & Mullen, 2018); there are also tools that automatize the standardized

creation of folder structures such as workflowr (Blischak, Carbonetto, & Stephens, 2019).

Sometimes external requirements make it impossible for the data to be stored and

shared with the scripts. In most of the cases we have seen, these are either space

constraints or privacy considerations. In these cases, unrestricted reproducibility is not

guaranteed. If dividing data and scripts is unavoidable, we recommend validating all data

files using checksums (also called a “hash”, e.g., using the functions provided in package

digest (Eddelbuettel et al., 2019)) before analyzing them. A checksum is a short

INSERT SHORTTITLE COMMAND IN PREAMBLE 27

fixed-length fingerprint (often displayed in the hexadecimal system) of a file with the

purpose of verifying the integrity of a digital object. Fingerprints are computed from

digital objects such that they change with high probability if data is changed only a little.

To use checksum validation, checksums for all data files must be created and stored at the

time of the original analysis. At the time of reproduction, the current checksum must be

compared with the stored checksum to ensure data integrity.

create a dummy data.frame with two columns

x <- data.frame(VAR1=c(1,2,3,4),VAR2=c(0,4,6,9))

compute checksum using md5

checksum <- digest::digest(x, "md5")

if (checksum != "5ba412f5a26f43842971dd74954fcdeb"){

warning("Mismatch between original and current data file!")

}

Use Case: Reproducing an Analysis

We provide a reproducible analysis as a working example via GitHub. We encourage

interested readers to try to reproduce this example as a practical exercise. The example

shows a minimalistic analysis of the ‘Considerations of Future Consequences (CFC) Scale’.

The analysis demonstrates a complete implementation of our workflow including downloads

of external data, comparison of their integrity using a checksum, and a confirmatory factor

analysis on the first few items using the R package lavaan (Rosseel, 2012). Once all

required tools are installed on a computer, the following four command-line commands are

sufficient to reproduce our demo analysis:

-- type this in a terminal --

(1) obtain a local copy of the remote repository

https://github.com/aaronpeikert/workflow-showcase

INSERT SHORTTITLE COMMAND IN PREAMBLE 28

git clone https://github.com/aaronpeikert/workflow-showcase.git

(2) enter the directory containing the project

cd workflow-showcase

(3) build the docker container

make build

(4) run the analysis and produce the final PDF inside the container

make all DOCKER=TRUE

Summary

The overarching goal of this paper was to provide a complete and easy-to-use

workflow that allows confidence in the reproducibility of R-based data analyses. Analyses

following our workflow can be reproduced with four commands (here shown for our paper):

-- type this in a terminal --

(1) obtain a local copy of the remote repository

git clone https://github.com/aaronpeikert/reproducible-research.git

(2) enter the directory containing the project

cd reproducible-research

(3) build the docker container

make build

(4) run the analysis and produce the final PDF inside the container

make all DOCKER=TRUE

That is, this reproduces a scientific report exactly without regard to the user, the

operating system, the software, the timepoint, or interim changes to the involved files. To

that end, the proposed workflow relies on tools that have been the foundation of reliable

INSERT SHORTTITLE COMMAND IN PREAMBLE 29

software development for years or even decades. As a by-product, it makes transparent

how statistical results depend on the software that created them and, by virtue of this

transparency, facilitates later reuse by other researchers.

Each tool in the workflow reduces the chances of non-reproducibility. Dynamic

reporting with R Markdown guarantees consistency between computational results and

their reporting; Version control with Git ensures permanence and consistency across

multiple versions of data and code; Dependency management with Make affirms defined

entry-points and dependency resolution; containerization with Docker secures

reproducibility of the full computational environment. We believe that this tightening of

loose ends does not restrict researchers but enables them to operate on a solid basis to

deliver sound and sustainable research.

Related approaches

While our approach was designed to scale well with the complexity of a

computationally intense project, we realize that this flexibility may not be straightforward

to integrate into a researcher’s everyday workflow. There are R packages that implement

parts of our workflow and, thus, lower the threshold for adoption when the full flexibility

provided by our workflow is not needed. The use of R Markdown within a project, tracked

with Git can be simplified with the workflowR package (Blischak et al., 2019). The drake

package (Landau, 2018) is directly inspired by Make and takes an R centric approach,

making it especially suited for projects only involving R, but can also handle external

dependencies. The liftR package (Xiao, 2019) and the holepunch package (Ram, 2019)

automatize the use of Docker. The former is perfectly compatible with the described

workflow, and we recommend it to users who are not comfortable with command-line use of

Docker. holepunch uses binder (Project Jupyter et al., 2018) to move the analysis to the

cloud, so that no local installation of Docker is required. holepunch is well suited for

https://github.com/jdblischak/workflowr
https://github.com/ropensci/drake
https://cran.r-project.org/web/packages/liftr/vignettes/liftr-intro.html
https://karthik.github.io/holepunch/
https://mybinder.org

INSERT SHORTTITLE COMMAND IN PREAMBLE 30

simple analyses with low computational demands because binder’s memory and computing

time is limited. There are several alternatives to Docker that manage dependencies on R

packages. renv (Ushey, 2020) is a way to freeze package version via local copies of packages

in the project, but it does not guarantee a given base R version or system dependencies.

Similar approaches are taken by jetpack (Kane, 2019), miniCRAN (de Vries, 2019) and

checkpoint (Corporation, 2019). The package reprex (reproducible example, Bryan,

Hester, Robinson, & Wickham, 2019) is also worth noting, but its scope is limited. A

particularly noteworthy approach is provided by the worcs package (van Lissa et al., 2020,

@worcspaper), which is an R project template that creates a standardized file structure for

code and data supporting version management with Git, package management with renv

and dynamic document generation with R Markdown. We acknowledge that worcs is much

easier to install and provides a one-click solution for the creation of reproducible projects.

It achieves a high standard of reproducibility but does not guarantee full computational

reproducibility and is limited to dependency management within the R environment.

Other than these tools, which ease the process of creating workflows like ours does,

we have noticed an increased interest in changing the way research is published and used

(Perkel, 2018), with the emergence of life code (Perkel, 2019) and continuous integration

(Beaulieu-Jones & Greene, 2017; Yenni et al., 2018). These techniques give us a glimpse of

a paradigm shift from static to dynamic, interactive, and living publications that is yet to

happen.

Limitations

We are aware that implementing the proposed workflow is not straightforward, and

the difficulty of its implementation may vary by platform. For example, the installation of

all tools is already easier on POSIX-compatible platforms such as Unix, Linux, or macOS

(but not Windows). However, once a reproducible workflow is established as a default, it

https://rstudio.github.io/renv/articles/renv.html
https://github.com/ankane/jetpack
https://cran.r-project.org/web/packages/miniCRAN/vignettes/miniCRAN-introduction.html
https://cran.r-project.org/web/packages/checkpoint/vignettes/checkpoint.html
https://github.com/tidyverse/reprex
https://cran.r-project.org/web/packages/worcs

INSERT SHORTTITLE COMMAND IN PREAMBLE 31

can be used with minimal changes for every R project.

In our own experience, it is often not possible to convince all co-authors to switch to

a different document processing environment, such as R Markdown. That is, we have

experienced the case that after writing up the first draft in R Markdown, we eventually

had to generate a Word file that, from then on, was used as static file serving as a basis for

multiple iterations among the co-authors. Retaining reproducibility in such situations then

requires tedious manual synchronization of files across formats. This annoyance may be

reduced with the redoc package (Ross, 2019), which enables a bidirectional

synchronization between Word and R Markdown. Conversions between R Markdown and

Word retain all changes and even support Word’s track-changes feature.

Sharing reproducible workflows

How can one best share a reproducible workflow? We believe that, ideally, a

non-commercial public service provider should be found that guarantees permanent and

reliable hosting of our reproducible workflows, such as the Open Science Framework (Foster

& Deardorff, 2017). A provider mirroring and complementing the services offered by

GitHub, Docker Hub, and MRAN would be desirable. Second, to ensure that other users

are legally able to benefit from the shared materials, authors must choose an appropriate

license format. Typically, there is no single license that works for code, data, and media

(such as text or figures). We encourage authors to choose appropriate license forms that do

not hinder others from freely downloading, using, and modifying the shared workflows and

materials while, at the same time, ensuring recognition for the time and effort invested in

creating the workflow in the first place. In our experience, the Creative Commons license

(CC-BY) is often appropriate for sharing texts, R Markdown files, generated figures, and

other media, whereas scripts and any other computer code are often best shared under the

MIT license. Both licenses assure maximal freedom for future users while requiring the

https://noamross.github.io/redoc/articles/mixed-workflows-with-redoc.html
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://opensource.org/licenses/MIT

INSERT SHORTTITLE COMMAND IN PREAMBLE 32

attribution of the original authors in derivative work. These licenses are also in line with

the recommendations by the Reproducible Research Standard (Stodden, 2009; Stodden et

al., 2016). A great resource to choose a license is choosealicense.com, however, no resource,

including our recommendation, replaces legal advice. To facilitate an inclusive environment,

we recommend naming all contributors and including a Code of Conduct in your project.

Outlook

The proposed workflow leverages various existing tools that are partly integrated into

RStudio already. Parts of the proposed workflow have been integrated into stand-alone

packages (such as worcs (van Lissa et al., 2020), workflowr (Blischak et al., 2019),

holepunch (Ram, 2019)), which are particularly recommendable to beginners but they are

either incomplete in the sense of our proposal or rely on proprietary service providers. We

hope that with increasing awareness of the challenges of computational reproducibility, the

increased demand for unified and open solutions will lead to better integration of existing

tools to allow reproducible workflows to become a standard in psychological research.

https://choosealicense.com
https://opensource.guide/code-of-conduct/

INSERT SHORTTITLE COMMAND IN PREAMBLE 33

References

Askren, M. K., McAllister-Day, T. K., Koh, N., Mestre, Z., Dines, J. N., Korman, B. A.,

. . . Madhyastha, T. M. (2016). Using Make for Reproducible and Parallel

Neuroimaging Workflow and Quality-Assurance. Frontiers in Neuroinformatics, 10.

doi:https://doi.org/10.3389/fninf.2016.00002

Aust, F., & Barth, M. (2018). papaja: Create APA manuscripts with R Markdown

(Version 0.1.0.9842). Retrieved from https://github.com/crsh/papaja

Barba, L. A. (2016). The hard road to reproducibility. Science, 354 (6308), 142.

doi:https://doi.org/10.1126/science.354.6308.142

Beaulieu-Jones, B. K., & Greene, C. S. (2017). Reproducibility of computational workflows

is automated using continuous analysis. Nature Biotechnology, 35 (4), 342–346.

doi:https://doi.org/10.1038/nbt.3780

Blischak, J., Carbonetto, P., & Stephens, M. (2019). Workflowr: A framework for

reproducible and collaborative data science (Version 1.4.0.9001). Retrieved from

https://github.com/jdblischak/workflowr

Boettiger, C., & Eddelbuettel, D. (2017). An introduction to rocker: Docker containers for

R. The R Journal, 9 (2), 527. doi:https://doi.org/10.32614/RJ-2017-065

Bryan, J., Hester, J., Robinson, D., & Wickham, H. (2019). Reprex: Prepare reproducible

example code via the clipboard (Version 0.3.0). Retrieved from

https://CRAN.R-project.org/package=reprex

Canty, A., & Ripley, B. D. (2019). Boot: Bootstrap r (s-plus) functions (Version 1.3-23).

Retrieved from https://CRAN.R-project.org/package=boot

https://doi.org/https://doi.org/10.3389/fninf.2016.00002
https://github.com/crsh/papaja
https://doi.org/https://doi.org/10.1126/science.354.6308.142
https://doi.org/https://doi.org/10.1038/nbt.3780
https://github.com/jdblischak/workflowr
https://doi.org/https://doi.org/10.32614/RJ-2017-065
https://CRAN.R-project.org/package=reprex
https://CRAN.R-project.org/package=boot

INSERT SHORTTITLE COMMAND IN PREAMBLE 34

Chacon, S., & Straub, B. (2014). Pro Git (2nd ed. edition.). New York, NY: Apress.

Claerbout, J. F., & Karrenbach, M. (1992). Electronic documents give reproducible

research a new meaning. In SEG Technical Program Expanded Abstracts 1992 (pp.

601–604). Society of Exploration Geophysicists.

doi:https://doi.org/10.1190/1.1822162

Clyburne-Sherin, A., Fei, X., & Green, S. A. (2018). Computational Reproducibility via

Containers in Social Psychology. doi:https://doi.org/10.31234/osf.io/mf82t

Corporation, M. (2019). Checkpoint: Install packages from snapshots on the checkpoint

server for reproducibility (Version 0.4.6). Retrieved from

https://CRAN.R-project.org/package=checkpoint

Deutsche Forschungsgemeinschaft. (2019). Leitlinien zur Sicherung guter wissenschaftlicher

Praxis. Retrieved from https://www.dfg.de/download/pdf/foerderung/rechtliche_

rahmenbedingungen/gute_wissenschaftliche_praxis/kodex_gwp.pdf

de Vries, A. (2019). MiniCRAN: Create a mini version of cran containing only selected

packages. Retrieved from https://CRAN.R-project.org/package=miniCRAN

Docker Inc. (2019). Docker Hub. Retrieved August 14, 2019, from https://hub.docker.com/

Eddelbuettel, D., Lucas, A., Tuszynski, J., Bengtsson, H., Urbanek, S., Frasca, M., . . .

Denney, B. (2019). Digest: Create compact hash digests of r objects (Version

0.6.21). Retrieved from https://CRAN.R-project.org/package=digest

Epskamp, S. (2019). Reproducibility and replicability in a fast-paced methodological

world. Advances in Methods and Practices in Psychological Science, 2 (2), 145–155.

doi:https://doi.org/10.1177/2515245919847421

Feldman, S. I. (1979). Make — a program for maintaining computer programs. Software:

https://doi.org/https://doi.org/10.1190/1.1822162
https://doi.org/https://doi.org/10.31234/osf.io/mf82t
https://CRAN.R-project.org/package=checkpoint
https://www.dfg.de/download/pdf/foerderung/rechtliche_rahmenbedingungen/gute_wissenschaftliche_praxis/kodex_gwp.pdf
https://www.dfg.de/download/pdf/foerderung/rechtliche_rahmenbedingungen/gute_wissenschaftliche_praxis/kodex_gwp.pdf
https://CRAN.R-project.org/package=miniCRAN
https://hub.docker.com/
https://CRAN.R-project.org/package=digest
https://doi.org/https://doi.org/10.1177/2515245919847421

INSERT SHORTTITLE COMMAND IN PREAMBLE 35

Practice and Experience, 9 (4), 255–265. doi:https://doi.org/10.1002/spe.4380090402

Foster, E. D., & Deardorff, A. (2017). Open Science Framework (OSF). Journal of the

Medical Library Association, 105 (2), 203–206.

doi:https://doi.org/10.5195/jmla.2017.88

Heroux, M. A., Barba, L., Parashar, M., Stodden, V., & Taufer, M. (2018). Toward a

Compatible Reproducibility Taxonomy for Computational and Computing Sciences.

(No. SAND2018-11186). Sandia National Lab. (SNL-NM), Albuquerque, NM.

doi:https://doi.org/10.2172/1481626

Hlavac, M. (2018). Stargazer: Well-formatted regression and summary statistics tables

(Version 5.2.2). Bratislava, Slovakia: Central European Labour Studies Institute

(CELSI). Retrieved from https://CRAN.R-project.org/package=stargazer

Kane, A. (2019). Jetpack: A friendly package manager. Retrieved from

https://github.com/ankane/jetpack

Knuth, D. E. (1984). Literate programming. The Computer Journal, 27 (2), 97–111.

Kurtzer, G. M., Sochat, V., & Bauer, M. W. (2017). Singularity: Scientific containers for

mobility of compute. PLOS ONE, 12 (5), e0177459.

doi:https://doi.org/10.1371/journal.pone.0177459

Landau, W. M. (2018). The drake R package: A pipeline toolkit for reproducibility and

high-performance computing. Journal of Open Source Software, 3 (21). Retrieved

from https://doi.org/10.21105/joss.00550

Marwick, B., Boettiger, C., & Mullen, L. (2018). Packaging data analytical work

reproducibly using R (and friends). The American Statistician, 72 (1), 80–88.

doi:https://doi.org/10.1080/00031305.2017.1375986

https://doi.org/https://doi.org/10.1002/spe.4380090402
https://doi.org/https://doi.org/10.5195/jmla.2017.88
https://doi.org/https://doi.org/10.2172/1481626
https://CRAN.R-project.org/package=stargazer
https://github.com/ankane/jetpack
https://doi.org/https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.21105/joss.00550
https://doi.org/https://doi.org/10.1080/00031305.2017.1375986

INSERT SHORTTITLE COMMAND IN PREAMBLE 36

Merkel, D. (2014). Docker: Lightweight linux containers for consistent development and

deployment. Linux J., 2014 (239). Retrieved from

http://dl.acm.org/citation.cfm?id=2600239.2600241

Müller, K. (2017). Here: A simpler way to find your files (Version 0.1). Retrieved from

https://CRAN.R-project.org/package=here

Nosek, B. A., & Bar-Anan, Y. (2012). Scientific utopia: I. Opening scientific

communication. Psychological Inquiry, 23 (3), 217–243.

Perkel, J. M. (2018). A toolkit for data transparency takes shape. Nature, 560, 513–515.

doi:https://doi.org/10.1038/d41586-018-05990-5

Perkel, J. M. (2019). Pioneering “live-code” article allows scientists to play with each

other’s results. Nature, 567, 17–18. doi:https://doi.org/10.1038/d41586-019-00724-7

Piccolo, S. R., & Frampton, M. B. (2016). Tools and techniques for computational

reproducibility. GigaScience, 5 (1), 30.

doi:https://doi.org/10.1186/s13742-016-0135-4

Project Jupyter, Bussonnier, M., Forde, J., Freeman, J., Granger, B., Head, T., . . .

Willing, C. (2018). Binder 2.0 - Reproducible, interactive, sharable environments for

science at scale. In Fatih Akici, David Lippa, Dillon Niederhut, & M. Pacer (Eds.),

Proceedings of the 17th Python in Science Conference (pp. 113–120).

doi:https://doi.org/10.25080/Majora-4af1f417-011

Ram, K. (2019). Holepunch: Configure your R project for ’binderhub’. Retrieved from

https://github.com/karthik/holepunch

R Core Team. (2019). R: A language and environment for statistical computing. Vienna,

Austria: R Foundation for Statistical Computing. Retrieved from

http://dl.acm.org/citation.cfm?id=2600239.2600241
https://CRAN.R-project.org/package=here
https://doi.org/https://doi.org/10.1038/d41586-018-05990-5
https://doi.org/https://doi.org/10.1038/d41586-019-00724-7
https://doi.org/https://doi.org/10.1186/s13742-016-0135-4
https://doi.org/https://doi.org/10.25080/Majora-4af1f417-011
https://github.com/karthik/holepunch

INSERT SHORTTITLE COMMAND IN PREAMBLE 37

https://www.R-project.org/

R Core Team. (2020). R: A language and environment for statistical computing. Vienna,

Austria: R Foundation for Statistical Computing. Retrieved from

https://www.R-project.org/

Revolution Analytics. (2019). Reproducibility: Using fixed CRAN repository snapshots.

MRAN. Microsoft R Application Network. Retrieved August 14, 2019, from

https://mran.microsoft.com/documents/rro/reproducibility

Rmarkdown: Dynamic documents for R. (n.d.).

Ross, N. (2019). Redoc: Reversible reproducible documents. Retrieved from

https://github.com/noamross/redoc

Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of

Statistical Software, 48 (2), 1–36. Retrieved from http://www.jstatsoft.org/v48/i02/

Rule, A., Birmingham, A., Zuniga, C., Altintas, I., Huang, S.-C., Knight, R., . . . Rose, P.

W. (2019). Ten simple rules for writing and sharing computational analyses in

Jupyter Notebooks. PLOS Computational Biology, 15 (7), e1007007.

doi:https://doi.org/10.1371/journal.pcbi.1007007

Stodden, V. (2009). Enabling Reproducible Research: Open Licensing for Scientific

Innovation (SSRN Scholarly Paper No. ID 1362040). Rochester, NY: Social Science

Research Network. Retrieved from https://papers.ssrn.com/abstract=1362040

Stodden, V., McNutt, M., Bailey, D. H., Deelman, E., Gil, Y., Hanson, B., . . . Taufer, M.

(2016). Enhancing reproducibility for computational methods. Science, 354 (6317),

1240–1241. doi:https://doi.org/10.1126/science.aah6168

The Turing Way Community, Arnold, B., Bowler, L., Herterich, S. G. P., Higman, R.,

https://www.R-project.org/
https://www.R-project.org/
https://mran.microsoft.com/documents/rro/reproducibility
https://github.com/noamross/redoc
http://www.jstatsoft.org/v48/i02/
https://doi.org/https://doi.org/10.1371/journal.pcbi.1007007
https://papers.ssrn.com/abstract=1362040
https://doi.org/https://doi.org/10.1126/science.aah6168

INSERT SHORTTITLE COMMAND IN PREAMBLE 38

Krystalli, A., . . . Whitaker, K. (2019). The turing way: A handbook for reproducible

data science (v0.0.4). doi:http://doi.org/10.5281/zenodo.3233986

Ushey, K. (2020). Renv: Project environments. Retrieved from

https://CRAN.R-project.org/package=renv

van Lissa, C. J., Brinkman, L., Vreede, B., Schoot, R. van de, Peikert, A., & Brandmaier,

A. M. (2020). WORCS: A workflow for open reproducible code in science.

doi:10.17605/OSF.IO/ZCVBS

van Lissa, C. J., Peikert, A., & Brandmaier, A. M. (2020). Worcs: Workflow for open

reproducible code in science. Retrieved from https://github.com/cjvanlissa/worcs

Xiao, N. (2019). Liftr: Containerize R markdown documents for continuous reproducibility.

Retrieved from https://CRAN.R-project.org/package=liftr

Xie, Y. (2015). Dynamic documents with R and knitr (2nd ed.). Boca Raton, Florida:

Chapman; Hall/CRC. Retrieved from https://yihui.name/knitr/

Xie, Y. (2019). Knitr: A general-purpose package for dynamic report generation in R

(Version 1.22). Retrieved from https://yihui.name/knitr/

Yenni, G. M., Christensen, E. M., Bledsoe, E. K., Supp, S. R., Diaz, R. M., White, E. P.,

& Ernest, S. K. M. (2018). Developing a modern data workflow for living data.

bioRxiv, 344804. doi:https://doi.org/10.1101/344804

https://doi.org/http://doi.org/10.5281/zenodo.3233986
https://CRAN.R-project.org/package=renv
https://doi.org/10.17605/OSF.IO/ZCVBS
https://github.com/cjvanlissa/worcs
https://CRAN.R-project.org/package=liftr
https://yihui.name/knitr/
https://yihui.name/knitr/
https://doi.org/https://doi.org/10.1101/344804

	Abstract
	A Reproducible Data Analysis Workflow with R Markdown, Git, Make, and Docker
	Introduction
	The Reproducible Workflow in a Nutshell
	Dynamic Document Generation
	Version Management
	Dependency Tracking and Management
	Containerization
	Installing and Setting Up the Workflow
	Windows
	macOS
	Linux

	Project organization
	Use Case: Reproducing an Analysis

	Summary
	Related approaches
	Limitations
	Sharing reproducible workflows
	Outlook

	References

