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ABSTRACT 

Vehicle transportation has evolved significantly with the 
introduction of smart technology around us. “Driver 
assistance features” such as “Lane Keep Assist”, 
“Adaptive Cruise Control”, and “Adaptive Emergency 
Braking” have become common in today’s vehicles. With 
Tesla’s Auto Pilot Feature being a great hit, customers 
expect smarter features and want the vehicle to do more 
of the driving. As a result, we’ve seen the industry shift its 
research heavily to develop and explore partial 
automation that builds on the level 1 ADAS features with 
a hope of a future where full automation could become a 
reality. However, in order to implement such features 
many advancements are required. 

Vehicles need to be more aware and receive 
measurements/data of their surroundings, this can be 
done through smart sensors installed on the vehicle, as 
well as information received from surrounding radar/traffic 
towers and other vehicles. The concept of “Vehicle to 
Vehicle (V2V)” and “Vehicle to Infrastructure (V2I)” [7][8] 
is at the core of imagining an autonomous future. Second, 
vehicles need to be able to use this data intelligently. This 
involves semantically labeling and mapping their 
surroundings, accurately estimating the vehicle state at 
any given moment, and path planning intelligently and 
dynamically in order to safely reach their destination while 
respecting traffic laws and regulations. This is no easy 
feet and requires knowledge and expertise in robotics and 
machine learning concepts as well as ample data and 
time to train a model that serves these functions.  At the 
core of many ADAS and autonomous features is state 
estimation. This can be done using many techniques 
from, UKF (“Unscented Kalman Filter”) [5], “Particle 
Filtering” [10], EKF (“Extended Kalman Filter”) [2] etc.… 
This paper will explore one of the first and common 
technique used in state estimation; the basic yet effective 
Kalman Filter. A simulation toy example will be introduced 
to illustrate its feasibility and discuss the results and some 
of its short coming.  

INTRODUCTION 

State estimation is a common topic in robotics circles and 
one that has become very popular in autonomous 
applications. Without accurate state estimation autonomy 
features would not be feasible. One of the most commonly 
discussed state estimation techniques is the Kalman 
Filter. This method propagates a probability distribution 
through a non-linear function using Taylor Series 
Expansion. Linearizing using Taylor Series Expansion 
means we need to compute the first order Jacobian, 

evaluate the Jacobian around a point, and represent the 
non linear function in its linearized form.  This allows us to 
treat the non-linear function as an affine transformation; 
and for a gaussian distribution we can extract the 
propagated mean and covariance according to 
𝑦~𝒩(𝐹𝜇 + 𝑥0,𝐹Σ𝐹𝑇 ) where 𝐹 is the Jacobian, 𝜇 is the 
current state estimation, and Σ is the covariance.  

In a Kalman Filter (KF) generally this process is done in 
two steps; both are based on recursive Bayes filter.  

The first is the prediction step where the predicted state 
is estimated as propagated through the affine 
transformation of the vehicle motion model; where the 
motion of the vehicle is generally accompanied by noise 
that may result from sensor drift for example.  

The second, is the correction step where we rely on the 
measurements received or recorded by the vehicle these 
measurements are generally noisy and are compared to 
the measurements acquired as a result of the predicted 
state as propagated through the Taylor Series Expansion 
of the measurement model. This then yields a state and 
covariance for the vehicle as estimated at this time by the 
Kalman Filter. 

In this paper I will implement these techniques on a toy 
example. The goal is to explore the Kalman Filter in an 
application that represents a V2I environment. The 
trajectory data that will be estimated here will be based on 
the extracted 2D (𝑥, 𝑦 coordinates) ground truth data from 
the KITTI data [12] set 07 sequence as parsed by SLO (a 
past collaborative object I was involved in; referenced 
below [11]). This provides the Special Euclidian 3 
trajectory data with the rotation and translation 
coordinates. 

To simulate a V2I environment the data will be used to 
generate noisy measurements from 3 separate radar 
towers that will return the distance of the vehicle from 
each radar tower at each time step. These noisy 
measurements will then be propagated through a KF to 
estimate the current state of the vehicle in the 2D 
environment and then compare the results to the ground 
truth. I will assume no knowledge of the vehicle motion 
(random walk motion model) and start with an initial guess 
for the state. 

WORK DONE 

The 2D ground truth trajectory of the 07 KITTI data 
sequence [12], as well as the 𝑥,𝑦 coordinates for the 3 
radar towers are displayed below. 



 

Figure 1 Ground truth trajectory & Radar tower positions 

The set of measurements to be used are generated by 
first computing the distance from the ground truth states    
at each time instant to each of the respective radar towers 
by using ℓ2 norm. Next noise is applied to the 
measurements by sampling from a zero mean gaussian 
distribution of noise covariance defined as  
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0.042, are the variances for each of the radar towers. This 
yields a set of noisy measurement that will represent the 
radar tower data communicated to the vehicle. 

In order to successfully run the Kalman Filter a “good 
enough” initial guess of the vehicle state is needed. This 
can be done by using the first set of radar tower 
measurements received by triangulation of the robot in 
relation to the three reference points (radar towers). Thus, 
solving the two equations 𝐶1 = 𝐶2, and 𝐶2 = 𝐶3for the x, 
and y coordinates yields the initial vehicle state; where 
𝐶1,2,3 are the respective equations of the circle between 

the vehicle state and each radar tower.  

This initial guess can then be used to propagate the state 
through the first step of the Kalman Filter; the prediction 
step.  

In the prediction step; the vehicle motion is assumed as a 
random walk motion model, and thus the state is 
propagated as is in this step with a motion Jacobean of 

𝐴 = [
1 0
0 1

]. Then the predicted state 𝜇𝑝𝑟𝑒𝑑 = 𝜇, where 

𝜇𝑝𝑟𝑒𝑑 = [
𝑥
𝑦], and 𝜇 is the previously estimated state. The 

motion noise covariance 𝑄 is [
0.1 0
0 0.1

] and then the 

predicted covariance is Σpred = AΣAT. In summary, we 

end up with an adjusted predicted state and covariance 

defined as 𝒩(𝜇𝑝𝑟𝑒𝑑,Σpred) =  𝒩(𝐴𝜇, 𝑄Σ𝑄𝑇). 

The second step of the Kalman Filter is the measurement 
step. Since the measurements are defined as the 

distance between the vehicle and the respective radio 
towers we can define the measurement model as 𝑧′ =

[
𝑧1
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respectively (i.e. the radio tower coordinated). To linearize 
this model using Taylor series expansion we then must 
evaluate the measurement model Jacobian: 
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With the propagated measurements 𝑧′ we can compute 
the innovation (𝑣) which is defined as the difference 
between the propagated measurements and noisy 
measurements (𝑧) →  𝑣 = 𝑧 − 𝑧′. 

Next, we evaluate the Kalman gain as: 

𝐾 = ΣpredH + R [10] 

Where R is the measurement noise covariance 

[
0.042 0 0

0 0.042 0
0 0 0.042

] , and 𝑆 = 𝐻Σpred𝐻𝑇 + 𝑅 [10] 

Finally, we can compute the final corrected state at this 
time instant as 𝜇 = 𝜇𝑝𝑟𝑒𝑑 + 𝐾𝑣,  

and covariance Σ = (I − KH)Σpred(I − KH)𝑇 + 𝐾𝑅𝐾𝑇 [10] 

This KF output is the state as estimated at the next time 
instant; we repeat this process for all noisy measurements 
to end up with an estimated trajectory. 

RESULTS 

To evaluate the performance of the filter a plot of the 
trajectory of the Kalman Filter State approximation vs the 
ground truth is displayed in Fig. 2 below. 

 

 

 

 



 

 

Figure 2 Kalman Filter State Approximation vs Ground Truth 

 

Visually the Kalman Filter approximation mirrors the 
trajectory reasonably well with some noisy state 
approximations that result in oscillations away from the 
ground truth. 

Next, Fig. 3 displays the deviation of the state estimate vs 
the ground truth for the x coordinate as well as the y 
coordinate. It is apparent that the deviation error remains 
within the 3-sigma contours evaluated as 3𝜎𝑥 for the x 

coordinate and 3𝜎𝑦 for the y coordinate. Where Σ = [
𝜎𝑥

2

𝜎𝑦
2] 

is the covariance of the state approximated by the Kalman 
Filter at each time instant. 

 

 

 

Figure 3 Deviation from ground truth for x, and y coordinates 

Lastly the MSE yielded is 4.5384. 

The results are promising and show the effectiveness of 
the Kalman Filter in state estimation for a linear example 
(no rotation) as well as exposing the feasibility of Kalman 
Filter in V2I applications and smart vehicles.  

However, one of the major downsides of KF is sensor 
error and drift which can be witnessed in the beginning 
and end of the trajectory where the oscillations worsen. 
KF also struggles with non-linear motion and 
measurement models. There exist the EKF Extended 
Kalman Filter which builds on KF for nonlinear models 
and works for multimodal distributions (translations & 
rotations). Additionally, the robotics community has 
already explored solutions for drift, and one of the major 
industry leading techniques is “SLAM: Simulations 
Localization and Mapping” [10]. SLAM attempts to correct 
drift errors by observing landmarks and establishing loop 
closures that correct odometry effectively. 

 



CONCLUSION 

The world of smart vehicles and smart highways is in its 
infancy and welcomes a lot of creativity and imagination 
when it comes to possible implementations. However, it 
is not without its challenges, the considerations required 
to implement autonomous and smart features safely in 
vehicle systems are extensive. One necessary technique 
used in partial and full autonomy application is state 
estimation and “V2X (Vehicle to Everything) 
communication” [8]. In this paper I explored one of the 
most common techniques used in state estimation; the 
Kalman Filter. I evaluated the predicted state and 
corrected state to come up with a final trajectory based on 
noisy measurements generated by the 2D equivalent of 
07 KITTI data set [12]. I also utilized a set of radar towers 
to provide the vehicle measurements to explore a basic 
implementation of a V2I system. Results were promising 
but KF is not the most optimal and suffers from drift as 
well as limitations for non-linear models. 
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