
MSc Project - Binding Affinity Prediction of

Protein-Ligand Complex

Abdus Salam Khazi
abdus.khazi@students.uni-freiburg.de

Github Repository [6]

Supervisors: Simon Bray & Alireza Khanteymoori

August 4, 2021

Contents

1 Introduction 3
1.1 Biological Background . 3
1.2 Understanding Binding Affinity 4
1.3 PDBBind Dataset . 4

2 Problem Formulation 5
2.1 Problem Overview . 5
2.2 Overview of file formats . 6

2.2.1 XYZ format . 6
2.2.2 PDB format . 7
2.2.3 Structure Data File (SDF) Format 7
2.2.4 Mol2 format . 7
2.2.5 SMILES format . 7

2.3 Extraction of features . 7
2.3.1 Ligand Features using RDKit 8
2.3.2 Protein Features using fpocket/dpocket descriptors . . 8

3 Feature selection 9
3.1 Requirement of feature selection 9
3.2 Feature Selection Strategies 9

3.2.1 Selection by output correlation 9

1

mailto:abdus.khazi@students.uni-freiburg.de
https://github.com/abduskhazi/MSc-Project

3.2.2 Using genetic algorithms [3] 9
3.2.3 Manual Feature selection 10

4 Testing 11
4.1 Reproducibility . 11
4.2 Model Quality Analysis . 11

5 Machine Learning Models 12
5.1 Linear regression . 12

5.1.1 Score function of genetic feature selection 13
5.1.2 Initialization strategies of population 14

5.2 Random Forest Regression . 15
5.2.1 Feature Importance calculation 15

5.3 Permutation Importance and genetic algorithm 16

6 Discussion 17

7 Conclusion 17

8 Appendix 18
8.1 XYZ File format . 18
8.2 SDF File format . 19
8.3 MOL2 File Format . 20

2

1 Introduction

1.1 Biological Background

Proteins are the workhorses of our body. They are necessary for many
important functions in the body. Ligands are molecules that bind to proteins
to form protein-ligand complexes. They can be molecules that the protein
transports (e.g., a Haemoglobin transporter) or act as stimulating agents. In
addition to this, they can also start/stop the protein from doing its function.
The correct functioning of these protein-ligand complexes is essential for any
living organism.

The study of protein-ligand complexes is an intrinsic part of the drug dis-
covery field. It is because drugs are small molecules that act as ligands. As
the drug molecules (ligands) bind to the target proteins, they can artificially
influence the protein behavior. This causes a therapeutic effect.

Figure 1: Haemoglobin transporter protein. [15]

When we find a target drug candidate, we have to answer questions like
- How easily does the drug bind to the target protein? Does it bind to
any other protein - If so, is it desirable? Does it have any unforeseen effect
on the protein function? etc... To answer these questions biologists and
pharmacists conduct wet-lab experiments that are expensive.

One way to reduce the cost of these experiments is to make a data-
driven selection of the drugs. Using experimental data collected over many
years, one can build models to predict the behavior of the proposed drug

3

Simon

Simon
may cause

computationally. These ’In-Silico’ computational methods can aid in the
elimination of undesirable drugs as well as guide the drug selection process.

Our project aims to answer one of the above questions - How well does a
given drug bind to the target protein? We determine this computationally
by building a machine learning model that trains on the previous data. We
hope that this model will help reduce the costs of drug discovery.

1.2 Understanding Binding Affinity

The binding affinity between a protein and a ligand is quantified by the
Kd, Ki and IC50 measures in the PDBBind Data bank. Here Kd refers to
disassociation constant, Ki refers to the inhibition constant, and IC50 refers
to inhibitory concentration 50%. The reason for having different measure-
ments is because it is not possible to use the same measurement techniques
for all biological complexes/processes.

To understandKd, consider a protein and a ligand binding and unbinding
continuously in a kinetic system. In this system, let [P], [L], and [PL]
represent the concentrations of the Protein, the Ligand, and the Protein-
Ligand complex respectively. This is represented by the following equation:

[P] + [L]
 [PL]

We can quantify the binding affinity Kd by using the concentrations in the
above system at equilibrium.

Kd =
[P][L]

[PL]
=
k−1

k1

where k−1 is the disassociation rate constant and k1 is the association rate
constant. Similarly, Ki and IC50 are defined using concentration albeit
non-trivially. [11]

1.3 PDBBind Dataset

Over the last few decades, researchers have been successful in building a
single data archive for proteins. This archive, called Protein Data bank [8]
, holds 3-D structural data of the proteins determined by experiments like X-
ray crystallographic, Nuclear magnetic resonance (NMR), and cryoelectron
microscopy (cryoEM). A subset of this data also contains information about
how well a given protein and ligand bind together. It is called binding affinity
between a protein and ligands. (It also contains data about protein-protein
complexes that our project does not deal with) [7]

4

Simon

As we study the protein-ligand binding affinity here, we would like to
filter out this data from the protein data bank. It is what is done by the
maintainers of the PDBBind Data bank. [13] Using the curated protein-
ligand affinity data present in the PDBBind Data bank, we build a machine
learning model that learns to predict the affinity.

2 Problem Formulation

2.1 Problem Overview

The problem that we are solving is - Given Kd/Ki/IC50 for various com-
plexes in the PDBBind Data bank, can we predict this affinity measure for
new protein-ligand complexes? Figure 2 shows how the Protein-Ligand prob-
lem can be classified.

Figure 2: Protein-Ligand problem classifcation.

The binding of proteins and ligands is heavily influenced by their respec-
tive 3D structures. Figure 3 illustrates a hypothesis called Lock and Key. As
you can see it is very crucial that the shape of the protein’s binding location
and the shape of the ligand be complementary for the binding.

The other parts of the protein are not involved in the binding process
directly. Hence, we only get the features of the binding location. Any poten-
tial binding location in the 3D structure of a protein is called a pocket. We
use a 3D based LBS prediction package called fpocket to find the potential
pockets. A submodule in the package called dpocket is used to extract the
binding pocket’s features.

To give a plug-and-play input to our model, we keep the features of
proteins and ligands distinct till the training phase. That is, we do not use
the combined features in any pre-processing of the ML pipeline e.g. feature
reduction. This helps our model to provide the binding affinity between any
protein and any ligand.

5

Simon
The PDBBind database contains complexes from the PDB with an associated Ki, Kd or IC50 value.

Simon

Simon
it can be seen that

Simon
can you cite the fpocket paper? Le Guilloux et al, 2009

Figure 3: Lock and Key hypothesis in molecular docking. [12]

2.2 Overview of file formats

The PDBBind Data bank extracts information about the PL complexes
from the Protein Data bank and creates the following files for every com-
plex

• PDB Format - For the Protein.

• Mol2 - For the ligand.

• SDF - For the ligand.

All of the above formats contain the 3D information that is essential in
the prediction of the binding affinity. All the above mentioned formats use
the XYZ format internally to represent the 3D structure of their molecules.

2.2.1 XYZ format

XYZ format is a chemical file format that represents the geometry of a
molecule. It specifies the number of atoms and their Cartesian X, Y, Z
coordinates hence the name XYZ format. The coordinates are relative to
each other. Hence, translation and rotation do not change the molecule’s
representation. The following text illustrates the XYZ format. Section 8.1
gives an example. [18]

<number of atoms>

comment line

<element> <X> <Y> <Z>

...

6

Simon

Simon
I don't think this is true

The unit of distance used is Angstrom (Å). 1 Å = 10−10 m. [18]

2.2.2 PDB format

PDB format is a human-readable file format used to represent the protein
molecules (macromolecules). Within the PDB format, the coordinates of
atoms are represented like the XYZ format [see 2.2.1]. Because of the 3D in-
formation in this format, molecular visualization of proteins is possible with
specialized software. It also contains information about atomic connectivity
and the protein’s primary, secondary, tertiary, and quaternary structures.
[14] [4] Please see [1] for an example pdb file.

2.2.3 Structure Data File (SDF) Format

SDF format file is a Chemical Table file (CT File) that contains structure
of the molecule in the X,Y,Z format. It contains information like atomic
bonds, connectivity information, molecular weight, and molecular formula.
[17] Section 8.2 illustrates the SDF file format.

2.2.4 Mol2 format

Similar to SDF format, Mol2 also represents the 3D structure of a molecule in
the X,Y,Z format. It contains the atomic bond and connectivity information
but does not contain the other data like molecular weight and formula. We
use the ligands given in this format because more ligands in mol2 format
could be processed with the RDKit feature extractor. Section 8.3 illustrates
the Mol2 file format.

2.2.5 SMILES format

SMILES is an acronym for Simplified Molecular-Input Line-Entry System.
It represents a molecule using an ASCII string. Using the 3D data in SDF
and Mol2 formats, we can create an atomic graph representation. Using this
graph the SMILES string for the molecule can be generated. The smiles for-
mat itself is not very helpful for us as we lose the 3D structural information
after converting to it. [16]

2.3 Extraction of features

As the file formats are different for proteins and ligands, we use different
tools to extract their features.

7

Simon

2.3.1 Ligand Features using RDKit

RDKit is an open-source cheminformatics software [9]. The core data struc-
tures and algorithms of RDKit are written in C++ and the python wrappers
are generated using Boost.Python. Using the module, RDKit.Chem.Descriptors
we extract 402 features for each ligand [2]. Each descriptor value is taken as
a real number, hence the input space of ligand features is R402 before any
feature elimination.

2.3.2 Protein Features using fpocket/dpocket descriptors

Fpocket stands for ”Find pocket” whereas Dpocket stands for ”Describe
pocket”. Fpocket uses 3D Voronoi tessalation and the concepts of ”Alpha
Spheres” to find out pockets in the protein structure [5] [19]. Given a protein
PDB file, we can extract the descriptors of all pockets in the protein. For
every pocket, we get 55 descriptors in total which are take as R values.
Hence the input space for protein features is R55.

To get the descriptors of the ligand-binding pockets, we use Dpocket.
Dpocket is provided with the protein PDB file and the ligand ID of the PL
complex as input. It generates 3 files as output files, namely, dpout fpocketp.txt,
dpout fpocketnp.txt, and dpout explicitp.txt.

• dpout fpocketp.txt. This file contains the descriptors (a.k.a fea-
tures) of all pockets that are considered to be binding pockets based
on a binding criterion. Multiple pockets can bind with the same ligand.
Hence, there may be features of more than 1 pocket in this file.

• dpout fpocketnp.txt. This file contains the descriptors of all pock-
ets that are non-binding according to the criteria.

• dpout explicitp.txt. An explicit pocket is defined as a pocket con-
sisting of all vertices/atoms situated at a specific distance from the
ligand in the PL complex. This distance is 4 Å by default. This file
contains the descriptors of all explicit pockets in the PL complex.

In our project, we do not use dpout fpocketnp.txt as they contain non-
binding pockets. In the other 2 files, we prefer using pocket descriptors
given by dpout fpocketp.txt as explicitly defined pockets are heavily biased
towards the ligand.

8

Simon

Simon
"A protein may possess multiple pockets."

Simon

3 Feature selection

3.1 Requirement of feature selection

Both the protein and the ligand are equally responsible for the affinity of
the PL complex. Hence we concatenate their descriptors to get a high de-
mentional R457 input for our model. There are a couple of issues with using
all of the descriptors.

• The amount of data is not very large. For example, we could only get
≈ 35000 data points after concatenating the ligand features with the
fpocketp pocket descriptors.

• The number of ligand descriptors >> protein descriptors. This creates
a data imbalance and may lead the model to select only ligand features
for their prediction.

Hence we need some methods to reduce the input dimensions.

3.2 Feature Selection Strategies

We try to select features of the protein and the ligand separately. This helps
us make our model plug-and-play as discussed in section 2.1. The best com-
bination, i.e Global Optima, cannot be obtained practically by brute force
algorithms. This is because we would have to try

(
402
k1

)
∗
(
55
k1

)
(k1, k2 ∈ I+)

possibilities which is impractical. The following feature selection heuristics
were used instead -

3.2.1 Selection by output correlation

The pearson and spearmann correlations of each feature were calculated
against the output variable. We assumed that the features were either lin-
early related to the output (in the case of Pearson correlation) or had a
monotonic relationship (in the case of Spearmann correlation). The fea-
tures with the highest correlation were selected as inputs to the model.

3.2.2 Using genetic algorithms [3]

Since the feature space is a non-continuous problem of combinatorial com-
plexity, we also studied genetic feature selection algorithms. We represent
each feature by a binary number, 1 for the inclusion of the feature and 0
for the exclusion. Each feature selection p ∈ B456 (401 for ligands + 55

9

Simon

Simon

Simon

Simon
B not defined, did you mean R? is it 456 or 457?

for proteins) is called a chromosome. A ”population” of n chromosomes is
maintained. For each generation, the best pairs of chromosomes are selected
as parents. The next generation is created by crossover and mutation of the
chromosomes. Algorithm 1 below gives complete pseudocode for this.

The scoring function used to select the best chromosome can vary ac-
cording to the type of the model being fit. [See Section 5]

3.2.3 Manual Feature selection

Features selected by expert. Given by Simon Bray. (Yet to do)

Algorithm 1 Selection of features in our model using genetic algorithm [3]

1: procedure GENETIC ALGORITHM BASED SELECTOR
2: scoringfunction ← Get model specific scoring function
3: population = {C1, C2, C3...Cn} ∈ B456 (initial chromosomes).
4: best ← C1 // Arbitrarily initialized
5: i← 0
6: gen← number of generations to run.
7: for i < gen with step 1 do
8: {S1, S2, S3...Sn} ← scoringfunction(population) ∀Si ∈ R.
9: // Do a tournament selection for the best chromosomes

10: genetically better population← empty list
11: for j < len(population) do
12: Set ← random k selections(population)
13: c← best(Set) // Based on scoringfunction.
14: genetically better population.add(c)
15: end for
16: children← empty list
17: for j < len(population) with step 2 do
18: P1, P2 ← population[j], population[j + 1]
19: c1, c2 ← crossover(P1, P2)
20: c1 ← mutation(c1)
21: c2 ← mutation(c2)
22: children.add(c1, c2)
23: end for
24: population← children
25: end for
26: return best(population)
27: end procedure

10

4 Testing

4.1 Reproducibility

Reproducible ML models are very crucial for verifying any project or re-
search results. Due to the stochastic nature of many ML training processes,
reproducing the exact model (and consequently the exact output) is a chal-
lenge. Two methods can be employed to produce verifiable results:

• Training many models and reporting the average results.

• Controlling the randomness of the trained models. It is done by setting
the seed of the pseudo-random algorithms.

We use the second approach in our project. Every script, when executed,
reports an execution ID. This is the random seed used during the execution.
If we want to reproduce the exact results, we give this execution ID to the
script as the first argument.

4.2 Model Quality Analysis

We are trying to predict the following function

Binding affinity prediction : Rn 7→ R where n ∈ I+

Since the input space is multi-dimensional, we cannot fully visualize our
model as a function of the input space. To get around this using the following
methods

• We report Coefficient of determination, R2 ∈ (−∞, 1.0] where 1.0 is
the best score. [10]

R2(y, ŷ) = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

where ȳ =
1

n

n∑
i=1

yi and

n∑
i=1

(yi−ŷi)2 =

n∑
i=1

ε2i

• For visualizing the results, we plot a 2D plot of expected values against
the model’s output.

A perfect model would have all the points on the y = x line. This
corresponds to R2 score of 1.0. Figure 4, shows the validation accuracy of
a sample Random Forest Regressor model. y validate (x axis) represents
the actual validation data. y validate pred (y axis) represents the predicted
output from the model.

11

Figure 4: (Sample) Visualizing accuracy. R2 ≈ 0.805.

5 Machine Learning Models

Various machine learning models were trained using the extracted data.
We tried out Linear Regression, Support Vector Regression, a small Neural
Network, as well as a Random Forest Regression. But by far the most
impressive performance was given by Random Forest Regression.

5.1 Linear regression

Linear regression fits a linear model to a given data. It tries to minimize the
square of errors between the predicted output value and the actual output
value. This is the cheapest model (computationally) that we used to fit our
data. Table 1 shows the overview of our analysis with this model. Figure 5
shows the best results obtained with linear regression.

The reason for the low R2 score is that linear models assume a strong
linearity between the input variables and the output variable. This is not
always true.

12

Features Selected Training R2 Score Validation R2 Score

457 (all) 0.458 0.414
50 (Genetic - Random init)1 ≈0.379 ≈0.359
49 (Genetic - Specific init)1 ≈0.378 ≈0.368

- (Output Correlation) - -
- (manual) - -

Table 1: Simple linear model overview

(a) Training Accuracy (R2 ≈ 0.458) (b) Validation Accuracy (R2 ≈ 0.414)

Figure 5: Best Linear Model. All 457 features selected.

5.1.1 Score function of genetic feature selection

Since the fitting of the linear regression model was very cheap, we could
afford to refit the model every time in our genetic algorithm. We had 2
objectives at hand

• Get the best performing model.

• Reduce the number of input features to make our model simple and
explainable.

The above objectives may not completely be against each other. This is
because removing a feature that has no correlation (or random correlation)
with the output may improve the model whereas removing a feature that
the output is highly correlated on degrades the model.

1Approximately reproducible as the reproducibility module was introduced later.

13

Simon

Simon
conflict with

Hence, taking inspiration from the hypervolume-based multi-objective
optimization, we designed the following score function.

score = R2 ∗ Features Eliminated

Figure 6 gives us an intuition about this function. Here the score function
represents the area of the square formed between a given point and the
origin. Trying to improve the score means, it will try to eliminate more
features as well as try to get a higher R2 score. In the example below, the
point a is preferred over b as it gives almost the same R2 score and eliminates
a larger number of features. Another advantage of this score function is that
the scale of both axes is irrelevant.

Figure 6: Genetic Algorithm score function representation.

5.1.2 Initialization strategies of population

Two main strategies were used to initialize the population for the genetic
algorithm

• Random Initialization. A population of 2400 chromosomes was
randomly initialized and run for 500 generations.

• Specific Initialization. Here, the initial population was kept at 457.
The algorithm was run for 2000 generations. Each chromosome in the
population had 1 distinct feature excluded. The following represents
the initialization of the chromosomes.

14

c1 = [01111......11]
c2 = [10111......11]
c3 = [11011......11]
...
c457 = [11111......10]

The rationale was that using the above score function we could go to
a local minimum by eliminating the worst performing features rather
than trying to select the best performing features as in the case of
random initialization.

Both the initialization strategies gave similar results as shown in Table 1

5.2 Random Forest Regression

Random forest regression is an ensemble ML model of regression trees.
When training each tree, the algorithm finds out which feature value can
divide the data into 2 groups to yield the lowest sum of squared values on
both sides (The criterion can be different as well e.g. lowest absolute error).
Then each of the sub-data is split recursively till a stopping criterion (e.g a
set number of data points in the leaf).

For each tree, a subset of the data is used for training. The subset of
data is sampled with replacement a.k.a bagging. After training, the bunch
of ”Experts” that are good at different data subsets predict the output of
new given inputs. The average of the predicted outputs is the result of the
whole random forest regressor.

This model is non-linear. One advantage is that there is no need for any
assumption about the data. Moreover, random forests can handle categorical
features together with the real-valued features very easily. On the negative
side, the function represented by the ensemble cannot be easily represented
and has to be interpreted as a black-box function.

Figure 7 shows the validation and accuracy results obtained by a random
forest of 100 trees when we use all the 457 features as input. As you can
see, this model far outperforms the linear one.

5.2.1 Feature Importance calculation

The Random Forest regression model fitting is very expensive as compared
to the simple linear regression. Hence the same strategy cannot be used
for feature selection as used in the linear models. We used the following
strategies to determine the importance of features in the model.

15

(a) Training Accuracy (R2 ≈ 0.971) (b) Validation Accuracy (R2 ≈ 0.797)

Figure 7: Random Forest Regressor with 457 features and 100 trees.

• Gini Importance (or) Decrease in impurity. This is calculated
by the model itself. For every feature, it calculates how much decrease
in the split criterion the feature contributes to the entire ensemble (i.e
in every node its used in all the trees). The disadvantage is that they
cannot be reliable when the features have a high cardinality. Figure 8a
illustrates this importance.

• Permutation Importance - This is a model agnostic method. It
tries to calculate the reduction in the accuracy we shuffle each fea-
ture. The more the reduction the more important the feature is. The
disadvantage is that since each feature is checked independently, cor-
related input features make the results unreliable. If feature A and
feature B are correlated, the shuffling of A may not impact the model
as the model can rely on B for its prediction. Figure 8b illustrates this
importance.

5.3 Permutation Importance and genetic algorithm

To overcome the issue with the above feature importance selection, we plan
to use a combination of the concepts of permutation importance and genetic
algorithm to find out the importance of the selected features. This is because
it is very expensive to refit the model and cheap enough to check the results
of shuffling the model.

16

(a) Gini importance (b) Permutation importance

Figure 8: Feature Importance calculation of Random Forest Regressor

6 Discussion

7 Conclusion

References

[1] Protein Data Bank. Example Protein - 2Y07. Link. [Online; accessed
1-Aug-2021].

[2] Uni-Freiburg) Björn Grüning (Department of Bioinformatics. Galaxy
Tool wrappers. Link. [Online; accessed 1-Aug-2021].

[3] Jason Brownlee. Simple Genetic Algorithm From scratch. Link. [Online;
accessed 28-June-2021].

[4] TMP Chem. Computational Chemistry 1.2 - PDB File Format. Link.
[Online; accessed 22-July-2021].

[5] Vincent Le Guilloux and Peter Schmidtke. fpocket User Manual. Link.
[Online; accessed 2-Aug-2021].

[6] Abdus Salam Khazi. Code for the whole project. Link. [Online; accessed
22-July-2021].

[7] PDBank. PDBank History. Link. [Online; accessed 22-July-2021].

17

https://files.rcsb.org/view/2Y07.pdb
https://github.com/bgruening/galaxytools
https://machinelearningmastery.com/simple-genetic-algorithm-from-scratch-in-python/
https://www.youtube.com/watch?v=_1q7sfjl2Kw
https://github.com/Discngine/fpocket/blob/master/doc/MANUAL.md
https://github.com/abduskhazi/MSc-Project
https://www.rcsb.org/pages/about-us/history

[8] PDBank. PDBank Homepage. Link. [Online; accessed 22-July-2021].

[9] RDKit. RDKit: Open-Source Cheminformatics Software. Link. [Online;
accessed 1-Aug-2021].

[10] scikit learn. R2 score, the coefficient of determination. Link. [Online;
accessed 22-July-2021].

[11] The Science Snail. Difference between Ki, Kd, IC50 and EC50 values.
Link. [Online; accessed 22-July-2021].

[12] Wikipedia. Docking (molecular). Link. [Online; accessed 1-Aug-2021].

[13] Wikipedia. PDBbind database. Link. [Online; accessed 22-July-2021].

[14] Wikipedia. Protein Data Bank (file format). Link. [Online; accessed
22-July-2021].

[15] Wikipedia. Protein–ligand complex. Link. [Online; accessed 24-June-
2021].

[16] Wikipedia. Simplified molecular-input line-entry system. Link. [Online;
accessed 1-Aug-2021].

[17] Wikipedia. Structure Data File format. Link. [Online; accessed 1-Aug-
2021].

[18] Wikipedia. XYZ Format. Link. [Online; accessed 22-July-2021].

[19] Gaming World. Procedural Terrain Generation with Unity : What is
Voronoi Tessellation. Link. [Online; accessed 2-Aug-2021].

8 Appendix

8.1 XYZ File format

The following represents the pyridine molecule in the XYZ format.

11

C -0.180226841 0.360945118 -1.120304970

C -0.180226841 1.559292118 -0.407860970

C -0.180226841 1.503191118 0.986935030

N -0.180226841 0.360945118 1.29018350

18

https://www.rcsb.org/
https://www.rdkit.org/
https://scikit-learn.org/stable/modules/model_evaluation.html#r2-score
https://www.sciencesnail.com/science/the-difference-between-ki-kd-ic50-and-ec50-values
https://en.wikipedia.org/wiki/Docking_(molecular)
https://en.wikipedia.org/wiki/PDBbind_database
https://en.wikipedia.org/wiki/Protein_Data_Bank_(file_format)
https://en.wikipedia.org/wiki/Protein%E2%80%93ligand_complex
https://en.wikipedia.org/wiki/Simplified_molecular-input_line-entry_system
https://en.wikipedia.org/wiki/Chemical_table_file
https://en.wikipedia.org/wiki/XYZ_file_format
https://www.youtube.com/watch?v=pVIsLgAqXVI

C -0.180226841 -0.781300882 0.986935030

C -0.180226841 -0.837401882 -0.407860970

H -0.180226841 0.360945118 -2.206546970

H -0.180226841 2.517950118 -0.917077970

H -0.180226841 2.421289118 1.572099030

H -0.180226841 -1.699398882 1.572099030

H -0.180226841 -1.796059882 -0.917077970

8.2 SDF File format

2uzn_ligand

Created by X-TOOL on Fri Nov 18 14:55:27 2016

37 39 0 0 0 0 0 0 0 0999 V2000

7.1480 60.4530 6.6830 O 0 0 0 1 0 1

6.0470 60.1670 7.5640 S 0 0 0 1 0 4

.......

.......

-2.6338 67.4589 8.1225 H 0 0 0 1 0 1

1 2 2 0 0 2

2 3 2 0 0 2

.......

.......

23 37 1 0 0 2

M END

> <MOLECULAR_FORMULA>

C15H13N3O4S2

> <MOLECULAR_WEIGHT>

363.3

> <NUM_HB_ATOMS>

7

> <NUM_ROTOR>

1

> <XLOGP2>

1.31

19

8.3 MOL2 File Format

###

Created by X-TOOL on Fri Sep 26 17:34:18 2014

###

@<TRIPOS>MOLECULE

1fo2_ligand

25 25 1 0 0

SMALL

GAST_HUCK

@<TRIPOS>ATOM

1 C4 39.0090 40.2680 25.5130 C.3 1 DMJ 0.1280

2 O4 39.2170 40.5810 26.8980 O.3 1 DMJ -0.3835

.......

25 H14 38.0787 41.8134 21.3802 H 1 DMJ 0.2097

@<TRIPOS>BOND

1 1 9 1

2 1 3 1

.......

25 11 25 1

@<TRIPOS>SUBSTRUCTURE

1 DMJ 1

20

	Introduction
	Biological Background
	Understanding Binding Affinity
	PDBBind Dataset

	Problem Formulation
	Problem Overview
	Overview of file formats
	XYZ format
	PDB format
	Structure Data File (SDF) Format
	Mol2 format
	SMILES format

	Extraction of features
	Ligand Features using RDKit
	Protein Features using fpocket/dpocket descriptors

	Feature selection
	Requirement of feature selection
	Feature Selection Strategies
	Selection by output correlation
	Using genetic algorithms geneticalgorithm
	Manual Feature selection

	Testing
	Reproducibility
	Model Quality Analysis

	Machine Learning Models
	Linear regression
	Score function of genetic feature selection
	Initialization strategies of population

	Random Forest Regression
	Feature Importance calculation

	Permutation Importance and genetic algorithm

	Discussion
	Conclusion
	Appendix
	XYZ File format
	SDF File format
	MOL2 File Format

