
Low Level Design (LLD)
Blog Creator Web Application

– BlogVerse –

Revision Number: 2.0
Last date of revision: 22/09/2023

Document Version Control

Date Issued Version Description Author

05/10/2023 1 Initial LLD - V1.0 Abhijit Paul

Contents

Document Version Control... 2
Abstract..4
1 Introduction.. 5

1.1 Why this High-Level Design Document?...5
2 General Description... 6

2.1 Product Perspective.. 6
2.2 Problem Statement..6
2.3 Proposed Solution... 7
2.4 Further Improvements... 7
2.5 Tools used... 7
2.6 Constraints.. 8
2.7 Assumptions..8

3 Design Details...9
3.1 Process Flow...9
3.2 Event log... 9
3.3 Error Handling... 9

4 Performance... 10
4.1 Reusability...10
4.2 Application Compatibility... 10
4.3 Resource Utilisation.. 10
4.4 Deployment... 10

5 Conclusion..10

Abstract

The Low-Level Design (LLD) document for the Blog Creator Web Application
developed using Python Flask provides a detailed insight into the internal
architecture, components, and interactions within the system.

This document outlines the key technical aspects of the application, including the
frontend and backend components, data flow, data tables endpoints, and security
measures.

It serves as a comprehensive guide for developers and stakeholders, ensuring a
clear understanding of the application's design principles, facilitating efficient
implementation, and ensuring consistency in the development process. The
document emphasizes the use of Python Flask as the backend framework, outlining
its specific functionalities in the context of the Blog Creator Web Application.

This document helps everyone involved understand how the blog website is
designed and built, making it easier for developers to create a functional and
user-friendly platform for blogging.

1 Introduction

1.1 Why this Low-Level Design Document?
The purpose of this Low-Level Design (LLD) Document is to add the detailed description of
the Blog Creator Web Application. It will explain the purpose and features of the system,
the interfaces of the system, what the system will do, the constraints under which it must
operate and how the system will react to external stimuli. This document is intended for
both the stakeholders and the developers of the system and will be proposed to the higher
management for its approval. The Blog Creator Web Application is designed to allow users
to create, edit, and manage their blogs online. This document provides a detailed description
of the application's internal design, focusing on various components and their interactions.

1.2 Scope
Low-level design (LLD) is a component-level design process that follows a
step-by-step refinement process. This process can be used for designing data
structures, required software architecture and source code. Overall, the data
organisation may be defined during requirement analysis and then refined during
data design work.

2 Architecture

3 Architecture Description

3.1 Product Perspective
The Blogging Website is a web application developed using Python Flask, designed to
provide a platform for users to create, publish, and interact with blog posts.

3.2 Front End Web Interface
In order to create the web interface we will need to use

● HTML
● Native CSS along with Bootstrap
● Jinja2

3.3 Server Development
To create a robust and simple backend server process we will use flask & flask_user which
will cater creating routes and models and handling the user requests and serve responses.

3.4 Database
a. Database Creation and connection - Create a database on MongoDB. If the

database is already created, open the connection to the database using the URI.
b. Collection creation in the database using MongoEngine ORM
c. Insertion of documents in the collections.

3.5 Insertion of data into Database using ORM
To create a swift mechanism of creating schema-less collections in MongoDb, we will use
flask_mongoengine which is an ORM.

This schema will never be passed on to MongoDB — this will only be enforced at the
application level, making future changes easy to manage. Also, the User documents will be
stored in a MongoDB collection rather than a table.

3.6 User Registration
As soon as the root (’/’) route of the Web Application will be called, by default an ‘Admin’
user will be created in the database.
To get other users registered on the web application, we will make use of the ‘Registration
Form’.

3.7 User Login
Once the registered user activates their account using the email link, users will be able to
login to the web-application and access the features of it thoroughly.

3.8 Blog Creation
To create a blog, logged in users will be able to use this feature. Once the blog gets created,
it will be immediately visible on the dashboard to all the other users.

3.9 Blog Reading
Logged in users will be able to read the blogs posted by other users. Once the blog is
opened in full view mode, read count gets incremented by ‘1’. If the user opens up any of the
blogs written by him/herself, it will be launched in update/delete mode.

3.10 Blog Updation
Users will be able to modify the blog written by him/herself only. Modification will be
immediately visible on the dashboard to all the other users.

3.11 Blog Deletion
Users will be able to delete the blog written by him/herself only. As soon as a Blog post gets
deleted, it will be immediately removed from the application.

3.10 Rating & Commenting Blogs
Logged in users will be able to comment on the blogs posted by other users. Also they will
be able to choose a rating on the scale of 1 to 5. This feature will not be available on blogs
written by the logged in user.

4 Deployment
We will be deploying the web application to AWS as well as Render.
For AWS, we will make use of AWS CodePipeline for CI/CD and AWS ElasticBeanstalk for
orchestration services such as EC2.

5 Unit Test Cases

Test Case Description Pre-Requisite Expected Result

Verify whether the Web
Application URL is accessible
to the user

1.Application URL should be
defined

2.Application should be hosted
and live

Application URL should be

accessible to the user

Verify whether user is able to
sign up in the application

1.Application is accessible

2.Application should be hosted
and live

Users should be able to sign
up in the application

Verify whether user is able to

successfully login to the
application

1. Application is

accessible

2. User is signed up

to the application

Users should be able to
successfully login to the
application

Verify whether user is able to
‘add a new user’ on
application

1. Application is

accessible

2. User is signed up

to the application

3. User is logged in to the
application

Users should be able to
create a new user

Verify whether user is able to
‘add a new blog post’ on
application

1. Application is

accessible

2. User is signed up

to the application

3. User is logged in to the
application

Users should be able to post
a new blog

Verify whether user is able to
‘add a new comment’ on a
blog on the application

1. Application is

accessible

2. User is signed up

to the application

3. User is logged in to the
application

Users should be able to post
a new comment on a blog
post

Verify whether user is able to
‘delete a comment’ on a blog
on the application

1. Application is

accessible

2. User is signed up

to the application

3. User is logged in to the
application

Users should be able to
delete the comment on a
blog post

Verify whether user is able to
‘delete a blog’ on the
application

1. Application is

accessible

2. User is signed up

to the application

3. User is logged in to the
application

Users should be able to
delete the blog post.

Verify whether user is able to
‘delete user’ on the
application

1. Application is

accessible

2. User is signed up

to the application

3. User is logged in to the
application

User should be able to
delete the user from the web
application.

6 Conclusion

The blogging website will serve CRUD(Create, Read, Update and Delete)
functionality by using the Flask web framework in Python. It will prioritise user
experience, offering a seamless login process that ensures the security and privacy
of every user, so that users can have a pleasant environment and enjoy blogging!

