
2D Grid Mapping and Navigation with ORB SLAM
CMPUT 631 Project Report

Abhineet Kumar Singh
Ali Jahani Amiri

1 Introduction

Simultaneous Localization and Mapping (SLAM) is an important field in
robotics and autonomous navigation. It is the process by which a robot
moves around an unknown environment and uses its sensor and odome-
try information to build a map of the environment while simultaneously
estimating its location within this map. SLAM is indispensable for the au-
tonomous operation of robotic systems for both simple indoor applications
like automatic vacuum cleaners as well as far more complex outdoor ones
like self driving cars. Using sophisticated 3D sensors like LiDAR and Kinect,
SLAM is now by and large considered a solved problem at least in most non-
challenging indoor environments [1]. However, these sensors have limitations
like the high cost of LiDAR and the limited range of Kinect which render the
former unusable for low cost systems and the latter for outdoor scenarios.
As a result, visual SLAM - where only one or two 2D cameras are used as
sensors - is still a popular area of research. It is also a very challenging one
since the absence of direct 3D information means that the 3D structure of
the scene has to be deduced by matching features in multiple images of the
scene taken from different viewpoints. However, since the rich visual infor-
mation from cameras is needed anyway for reliable loop closure detection
even in the presence of 3D sensors, it can be highly advantageous if the same
information can also be used for map generation and localization. Hence,
the potential benefits of getting such a system to work are also significant.

ORB-SLAM [2, 3] is a state of the art visual SLAM system that is
capable of creating a point cloud based map of even challenging outdoor
environments using only a monocular camera. Though this point cloud can
be useful for obtaining the 3D structure of the environment, it is not as useful
for path planning and navigation using algorithms that need a 2D occupancy
grid map [4] as input. The point cloud produced by ORB SLAM is somewhat
sparse which makes it difficult to generate an occupancy map that contains
most of the obstacles while also providing sufficient contiguity in the known
free spaces for path planning to work reliably. This is the problem that this
project aims to solve by finding a way to build an occupancy grid map in real

1



time using the 3D points produced by ORB SLAM. The grid map should
be good enough for the standard navigation stack of ROS [5] to be able to
use it to generate navigation commands that can allow a robot (actual or
simulated) to follow the camera trajectory also produced by ORB SLAM.

2 Literature Review

Occupancy grid map generation and obstacle detection from a point cloud
is a fairly well researched topic in the literature. A recent work by Goeddel
et. al [6] presented a method for extracting a 2D map from 3D LiDAR data
for performing localization. It works by imposing a verticality constraint
on each point by thresholding on the slope of the plane that the point is
estimated to lie in. In order to discriminate between obstacles at a finer level,
it uses two different thresholds - a smaller one (15 degrees) for detecting
navigation hazards and a larger one (80 degrees) for detecting slammable
structures. Two additional constraints are imposed on obstacles to further
reduce false detections. Firstly, only those points are considered whose z-
height from the ground is within a specified range. Secondly, the number of
occupied voxels present in the vertical line containing the point is required to
exceed a threshold. The core idea of using slope thresholding to determine
obstacles has also been used by Huesman [7] to convert a point cloud to a
2D occupancy map. Our own approach too uses this as one of the ways to
detect false obstacles.

A somewhat different approach based on natural neighbor interpolation
was used by Beutel et. al [8] to generate both 2D and 3D grid maps where
the latter contain surface elevation information in addition to occupancy
probability. The ROS grid mapping library [9] also provides functions to
generate several types of 2D grid maps from a variety of input sources though
we could not find a way to use it to generate occupancy maps from 3D point
clouds. The learning based approach proposed by Thrun [10] that uses
expectation maximization to directly generate occupancy maps from sensor
data is likewise not applicable to our case.

Unlike the above methods that only use 3D data, Santana et. al [11]
also take advantage of the available image data by performing color based
visual segmentation of the scene to divide it into floor and non floor regions.
This is followed by using the homograhy matrix generated by SLAM to
map the floor parts of the image to free cells in the occupancy map. We
considered using this method to refine our map but did bot have enough
time to implement it. Also, performing image segmentation along with
running ORB SLAM and our base grid map generation algorithm in real
time would be very challenging on mobile computing hardware. Another
possible approach to solve our problem is to convert the point cloud into
simulated LiDAR scans using, for instance, the pointcloud to laserscan

2



ROS package [12] and then using the resulting data as input to a mapping
algorithm like Gmapping [13] that can produce occupancy maps from LiDAR
scans. However, this method might introduce additional uncertainty into
the map since the mapping algorithm always assumes the LiDAR data to
be noisy while in our case the point cloud produced by ORB SLAM is
known to contain only reliable points. This approach was therefore also not
considered.

3 Methodology

3.1 Common Components

This includes the project components common for all students and consists
of the following tasks:

3.1.1 Review of literature on using vision to build a grid map

This part has been detailed in Sec. 2.

3.1.2 Installation of ORB-SLAM

This part consisted of installing ORB-SLAM2 using the instructions pro-
vided on the project Github page [14]. The current version of ORB-SLAM2
has some conflicts with Eigen 3.3.3 and OpenCV 3 on ROS-Indigo. As a
result, we used Eigen 3.2.10 and did not install OpenCV 3, instead using
the OpenCV 2.4 that comes with ROS-Indigo.

3.1.3 Calibration of camera

For this part, we followed the instructions provided on the ROS camera cal-
ibration tutorial [15] to calibrate the Logitech C615 1080p web cam that we
used for generating our testing sequence (Sec. 3.1.7). The camera parame-
ters thus obtained are given in Table 1.

Table 1: Camera Calibration Parameters
Camera
Matrix

fx fy cx cy
642.994934 647.678101 315.938509 235.397152

Distortion
Coefficients

k1 k2 p1 p2 k3
-0.084841 0.041748 -0.007377 0.004092 0.000000

3.1.4 Reproduction of results on KITTI and TUM

For this part, we first downloaded sequences 00 and 05 of the KITTI dataset
[16] and sequence fr3 walking halfsphere from the TUM dataset [17]. We

3



then ran ORB-SLAM on all 3 sequences following the instructions on the
Github page [14] to reproduce the results. Screen shots of the point clouds
thus generated are shown in Fig. 1. Following commands were used for
running ORB SLAM on the three sequences:

./ Examples/Monocular/mono_kitti Vocabulary/ORBvoc.txt Examples/Monocular/KITTI00 -02. yaml

./KITTI /00

./ Examples/Monocular/mono_kitti Vocabulary/ORBvoc.txt Examples/Monocular/KITTI04 -12. yaml

./KITTI /05

./ Examples/Monocular/mono_tum Vocabulary/ORBvoc.txt Examples/Monocular/TUM3.yaml

./TUM -RGBD/rgbd_dataset_freiburg3_walking_halfsphere

Figure 1: Screen shots of the point clouds produced by running ORB-SLAM
on KITTI and TUM datasets: from left to right: KITTI 00, KITTI 05 and
TUM fr3 walking halfsphere

3.1.5 Production of 2D grid map using ORB-SLAM map points

For this step, we created a Python script to generate a 2D occupancy grid
map off line by processing all the keyframes and map points produced by
ORB SLAM after it has completed processing all the frames in the sequence.
This script is included with this report as pointCloudToGridMap2D.py.

In order to generate the input data needed by this script, we modified
the ORB SLAM monocular application Examples/Monocular/mono tum to
output the 3D poses of all keyframes along with all map points visible in each
keyframe to a text file. The script parses this file and stores all keyframe/-
camera poses and the associated map points into a dictionary structure after
projecting them to the XZ plane. This projection is done by simply remov-
ing the y coordinate. Since the ORB SLAM coordinate locations are in units
of meters, a finer grid resolution is obtained by multiplying all positions by
a scaling factor which is chosen as the inverse of the desired resolution in
m/cell. For instance, if a resolution of 10 cm/cell or 0.1 m/cell is needed, the
scaling factor becomes 10. The keyframes are then processed one at a time
and following steps are applied to all map points visible in each keyframe:

1. Cast a ray from the camera position to all the visible points using the
Bressenham’s line drawing algorithm [18].

4



2. Increment a visit counter for each point along the ray and an occupied
counter for the end point that corresponds to the location of the map
point.

The visit and occupied counters are stored as integral arrays of the same
size as the range of x and z locations of the camera and map points after
scaling. Note that ORB SLAM considers the XZ plane as the horizontal
plane so that the y coordinate of a point is regarded as its height. Once all
keyframes have been processed, the occupancy probability for each cell of
the grid map is computed as:

pfree(i, j) = 1 − occupied(i, j)

visit(i, j)
(1)

where occupied(i, j) and visit(i, j) are the corresponding entries in the oc-
cupied and visit counters respectively and pfree is the probability that this
cell is not occupied. This probability map is converted into a ternary cost
map by using two thresholds free thresh and occupied thresh such that
a particular cell is considered as free if its pfree is greater than free thresh,
occupied if it is less than occupied thresh and unknown otherwise.

Figure 2: Probability maps before thresholding for to KITTI 00 sequence
(left) and CSC first floor sequence (right) (Sec. 3.1.7)

5



3.1.6 Map visualization and robot navigation in Rviz

Since we do not have access to a real Turtlebot robot, we use simulation for
this part instead. First, we create a virtual Turtlebot in an empty world
using the Gazebo [19] simulator and then use adaptive Monte Carlo lo-
calization (AMCL) [20, 21] for navigation and Rviz [22] for visualization.
Following commands are used for running these nodes:

roslaunch turtlebot_gazebo turtlebot_world.launch

world_file :=/opt/ros/indigo/share/turtlebot_gazebo/worlds/empty.world

roslaunch turtlebot_gazebo amcl_demo.launch map_file :=./ grid_map.yaml

roslaunch turtlebot_rviz_launchers view_navigation.launch

Fig. 3 shows screen shots of the map generated by the Python script and
the navigation path produced by AMCL as visualized in Rviz.

Figure 3: Map visualization and robot navigation

3.1.7 Evaluation and comparison of the result with that found in
the literature

We could not find any existing work in literature where a 2D grid map was
created using only 3D points generated by a visual SLAM method like ORB
SLAM. Therefore, we needed LiDAR data for our datasets to compare with
existing results which we also did not have. As a result, in order to evaluate
our work, we recorded our own sequence using the calibrated camera on
the first floor of the CSC building. Fig. 4 shows a couple of frames from
this sequence along with the corresponding point cloud generated by ORB
SLAM.

6



Next, we created the ground truth map for this sequence using the floor
plan for CSC provided on the University website and used two measures for
evaluation - an accuracy measure and a completeness score. The accuracy
measure shows well our map agrees with the ground truth map while the
completeness score shows how much of the true map our algorithm was able
to generate regardless of it being correct or not. Before the two maps can
be compared, they need to be aligned which can be done by estimating
the homography between them. Then we use the following formulations to
obtain the evaluation metrics:

Completeness =
number of known cells in the map

total number of cells in the map
(2)

Accuracy =
number of correct known cells in the map

total number of known cells in the map
(3)

3.2 Novel Components

In this part, we built on the results of the previous section to generate a grid
map in real time and use it for navigation to follow the camera trajectory.
This included the following steps:

3.2.1 Online variant

The Python code was converted into C++ and adapted to work in an incre-
mental manner since it is not possible to process in real time all keyframes
and map points obtained up to any given point in the sequence. This in-
volved the creation of two ROS nodes by modifying the monocular ROS
node Examples/ROS/ORB SLAM2/Mono. The first node is called Monopub and
publishes the pose of each keyframe whenever it is added to the map along
with all map points visible in that keyframe. In addition, it detects when-
ever a loop closure is performed and then publishes all keyframes along with
all map points added thus far. Monopub was also modified to accept input
images from live cameras and ROS topics in addition to reading them from
images on disk. Following four commands can be used to run this node
on the KITTI 00 sequence, TUM frg3 walking halfsphere sequence, live
camera, and a ROS node publishing images to /usb cam/image raw topic:

rosrun ORB_SLAM2 Monopub Vocabulary/ORBvoc.txt Examples/Monocular/KITTI00 -02. yaml ./KITTI /00 0

rosrun ORB_SLAM2 Monopub Vocabulary/ORBvoc.txt Examples/Monocular/TUM3.yaml

./TUM -RGBD/rgbd_dataset_freiburg3_walking_halfsphere

rosrun ORB_SLAM2 Monopub Vocabulary/ORBvoc.txt Examples/Monocular/mono.yaml 0

rosrun ORB_SLAM2 Monopub Vocabulary/ORBvoc.txt Examples/Monocular/demo_cam.yaml -1

/usb_cam/image_raw

7



Figure 4: Two frames from the CSC sequence showing the ORB feature
points (top row) and the 3D point cloud produced by running ORB SLAM
on this sequence (bottom row)

8



The second node is called Monosub and subscribes to the pose data pub-
lished by Monopub. When it receives a single keyframe, it processes it using
the same method as in Sec. 3.1.5 though with several additional tricks
that are described in the subsequent sections. The visit and occupied coun-
ters corresponding to each such keyframe are added together to build the
map incrementally. Since the counters are updated independently for each
keyframe and co-visibility between different keyframes are not taken into ac-
count, the map thus produced is only an approximation to the true map. In
practice, however, it turned out to be quite accurate and more than sufficient
for navigation.

When all keyframes are received after a loop closure, the counters are
completely rest and recomputed using all the keyframes and map points
received from the publisher simultaneously. This allows us to deal with
the slight inaccuracies that may have accumulated over time. Monopub also
provides the option to periodically publish all keyframes and points even if
no loop closure is detected for scenarios where loop closures are too too few
and far between. Map resetting is a time consuming process but needs to
be performed rarely enough for it to not matter.

Monosub publishes the generated map and its meta data along with the
camera trajectories to be used as navigation goals in AMCL and Rviz. Due
to the many parameters that can be adjusted in Monosub, it accepts a large
number of command line arguments that are listed below:

rosrun ORB_SLAM2 Monosub <scale_factor > <resize_factor > <cloud_max_x > <cloud_min_x >

<cloud_max_z > <cloud_min_z > <free_thresh > <occupied_thresh > <use_local_counters >

<visit_thresh > <use_gaussian_counters > <use_boundary_detection >

<use_height_thresholding > <normal_thresh_deg > <canny_thresh > <enable_goal_publishing >

<show_camera_location > <gauss_kernel_size >

For example, following commands can be used to run the two nodes on
the KITTI 00 and the CSC first floor sequences respectively with different
parameters fine tuned for each:

rosrun ORB_SLAM2 Monosub 10 1 29 -25 48 -12 0.55 0.50 1 5 1 0 1 75 350

rosrun ORB_SLAM2 Monosub 30 1 10 -10 22 -12 0.45 0.40 1 10 1 1 1 30 400

Note that the resolution for the first command is 1/10 m/cell and for second
one is 1/30 m/cell. This node also allows the parameters to be adjusted at
runtime through key presses whose details can be found in the showGridMap
function of the Monopub source file. The code for both nodes in included
with this report along with the modified version of ORB SLAM needed to
run them. The source files for the publisher and subscriber are called
Examples/ROS/ORB SLAM2/src/ros mono pub.cc

and
Examples/ROS/ORB SLAM2/src/ros mono sub.cc

respectively.

9



3.2.2 Local and global counters

The idea of having local and global counters arises from an issue with the
simple 2D projection of 3D points into the XZ plane which is used as the
first step in ray casting. Let us consider a scenario in a single keyframe in
which the projections of multiple points are co-linear in 2D (e.g. Fig. 5]).
In this case, if we only use one global counter for generating the 2D map,
we are misrepresenting the available information. For instance, the middle
point in Fig. 5 is actually occupied but we are decreasing the occupied ratio
for all the points that lie along this line by incrementing their visit counter.
This means that, by only using global counters, we will end up replacing
some occupied cells with free ones. Fig. 6 shows the comparison between
using and not using local counters with our CSC sequence. As we can see, a
lot of actually occupied points get replaced with free space if local counters
are not used.

Figure 5: Issue of corrupting counters when points are co-linear in 2D

3.2.3 Visit thresholding

We have used the visit count of a cell as a measure of confidence of that cell
such that we only make a grid cell occupied or empty if its total visit count
is higher than a threshold. This allows us to remove outliers generated by
wrong triangulations in ORB SLAM specially those that are a long distance
away from the camera. Fig. 7 presents a comparison of maps generated
using different visit thresholds. We have used a default visit threshold of 5
for our tests.

3.2.4 Height thresholding

Similar to the approach used by Goeddel et. al [6] (Sec. 2), only points that
lie within a specific range of y-height above the XZ plane are accepted as
obstacles. Therefore, we converted all points back to the camera coordinate
frame and imposed a threshold on their height. Points whose y coordinates
are below this threshold are assumed to lie on the floor/road and instead of

10



Figure 6: Effect of local counters on map quality. The map on the left was
generated without local counters while the one on the right was generated
with local counters.

removing them or counting the corresponding cells as occupied, we consider
them as a free space by increasing only their visit counter. Fig. 8 shows a
comparison of the maps obtained with and without height thresholding. As
we can see, many of the occupied cells on the floor have been changed to
free space after using height thresholding.

3.2.5 Gaussian smoothing of counters

Since space is not discrete, it is very likely that when two cells separated
by a small distance are occupied, the cells between them are also occupied.
These, however, might get marked as unknown leading to ”holes” between
otherwise contiguous regions of free or occupied cells. Inspired by the ap-
proach employed in the likelihood field model, we apply Gaussian smoothing
to the local counters (both visit and occupied counters) to handle this issue.
This causes the value in any given cell to influence its neighboring cells too
so that any cells that were empty before would take on values similar to their
nearby non-empty cells in both the counters. This in turn causes transitions
within the probability map to become smoother such that the occupied and
free cells affect their neighborhood. Fig. 9 illustrates the effect of different
sizes of the Gaussian kernel used for smoothing. Based on these results, we
have used a kernel size of 3 as the default for our tests.

11



Figure 7: Comparison of different visit thresholds: from left to right and
top to bottom - 0, 3, 5, 10, 20, 40

12



Figure 8: Effect of height thresholding on KITTI 00 sequence. In the left
image, height thresholding has been disabled while the right one shows the
result in the presence of the height thresholding

3.2.6 Canny boundary detection

Since most of the tricks we have employed are designed to remove false
obstacles, an issue that is encountered is that too many of the true obstacles
also get removed. We noted that most of these removed obstacles lay at
the boundary between the free and unknown areas. Therefore, a simple
way to bring them back is to mark the boundary pixels between the two
areas as obstacles. We used Canny edge detection to find these boundary
pixels and then set all pixels corresponding to the detected edges as 0 in the
probability map to mark them as occupied. Fig. 10 shows the raw output
of canny contour and the comparison between the maps obtained using
different thresholds. It can be seen that this relatively simple approach not
only produces a better map in terms of accuracy but also leads to better
navigation paths that do not get too close to the unknown areas.

Fig. 11 shows the effect of the lower Canny threshold on the quality of
the generated map with the upper threshold fixed to twice the lower one. We
have used a default Canny threshold of 350 for our tests as it was found to
eliminate most false edges in the interior of the free areas without removing
any of the outer boundaries that we need.

3.2.7 Slope thresholding

This method is similar to the approach used by Goeddel et. al [6] (Sec. 2)
where points that are estimated to lie on relatively horizontal planes are not
regarded as obstacles. The plane that a point lies in is estimated by finding
the two points nearest to it and computing the best fit plane containing these

13



Figure 9: Maps generated using Gaussian smoothing of counters with dif-
ferent kernel sizes: left to right and top to bottom - 3, 5, 10 and 30

14



Figure 10: An example of finding contours

Figure 11: Comparison of maps generated by using different thresholds for
Canny boundary detection: from left to right - 200, 350, 700

15



three points in the least squares sense. If the angle made by the normal to
this this plane with the XZ plane exceeds a threshold, this plane is regarded
as horizontal and the point is considered as corresponding to a free cell. A
threshold of 75 degrees was found to give good results in our tests. The
FLANN library [23] has been used to find the nearest points quickly and
SVD was used to estimate the best fit plane.

4 Results

The main results with real time navigation have already been shown in the
demo during the project presentation. Fig. 12 presents a couple of screen
shots from that demo showing the grid map for KITTI 00 sequence and its
navigation result in Rviz. Fig. 13 shows these results for the CSC sequence.

Figure 12: Online occupancy grid map and navigation on KITTI OO

We had to modify the launch files used in Sec. 3.1.6 to get them working
with the online map and goals being published by Monosub. The modified
launch files are included in the ORB SLAM root as amcl demo.launch and
view navigation.launch. Following commands can be used to get the
automatic navigation running:

roslaunch turtlebot_gazebo turtlebot_world.launch

world_file :=/opt/ros/indigo/share/turtlebot_gazebo/worlds/empty.world

roslaunch amcl_demo.launch

roslaunch view_navigation.launch

<run Monopub >

<run Monosub with enable_goal_publishing set to 1 for automatic goal setting and 0 for manual

goal selection in Rviz >

16



Figure 13: Online occupancy grid map and navigation on the CSC sequence

5 Conclusion

In this project, we investigated different ways of generating a 2D occupancy
grid map from the sparse 3D map produced by ORB-SLAM. We experi-
mented with several tricks like local counters, visit thresholding, Gaussian
smoothing of counters, Canny boundary detection, height thresholding and
slope thresholding to find the combination that produced the best map. We
also used the resultant map for navigation of a simulated Turtlebot and
found it to work quite well.

References

[1] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” Trans.
Rob., vol. 32, no. 6, pp. 1309–1332, Dec. 2016. [Online]. Available:
https://doi.org/10.1109/TRO.2016.2624754

[2] M. J. M. M. Mur-Artal, Raúl and J. D. Tardós, “ORB-SLAM: a ver-
satile and accurate monocular SLAM system,” IEEE Transactions on
Robotics, vol. 31, no. 5, pp. 1147–1163, 2015.

17

https://doi.org/10.1109/TRO.2016.2624754


[3] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: An open-source SLAM
system for monocular, stereo and RGB-D cameras,” arXiv preprint
arXiv:1610.06475, 2016.

[4] A. Elfes, “Occupancy grids: A probabilistic framework for robot percep-
tion and navigation,” Ph.D. dissertation, Pittsburgh, PA, USA, 1989,
aAI9006205.

[5] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, 2009.

[6] R. Goeddel, C. Kershaw, J. Serafin, and E. Olson, “Flat2d: Fast local-
ization from approximate transformation into 2d,” in 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Oct 2016, pp. 1932–1939.

[7] J. Huesman, “Converting 3D Point Cloud Data into 2D Oc-
cupancy Grids suitable for Robot Applications,” Online:
https://library.ndsu.edu/repository/handle/10365/25535.

[8] A. Beutel, T. Mølhave, and P. K. Agarwal, “Natural neighbor
interpolation based grid dem construction using a gpu,” in
Proceedings of the 18th SIGSPATIAL International Conference on
Advances in Geographic Information Systems, ser. GIS ’10. New
York, NY, USA: ACM, 2010, pp. 172–181. [Online]. Available:
http://doi.acm.org/10.1145/1869790.1869817

[9] P. Fankhauser and M. Hutter, A Universal Grid Map Library:
Implementation and Use Case for Rough Terrain Navigation.
Cham: Springer International Publishing, 2016, pp. 99–120. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-26054-9 5

[10] S. Thrun, “Learning occupancy grid maps with forward sensor models,”
Autonomous Robots, vol. 15, no. 2, pp. 111–127, 2003.

[11] A. M. Santana, K. R. Aires, R. M. Veras, and A. A. Medeiros, “An
approach for 2d visual occupancy grid map using monocular vision,”
Electronic Notes in Theoretical Computer Science, vol. 281, pp. 175 –
191, 2011.

[12] P. Bovbel and T. Foote, “pointcloud to laserscan,” Online:
http://wiki.ros.org/pointcloud to laserscan.

[13] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for
grid mapping with rao-blackwellized particle filters,” IEEE Transac-
tions on Robotics, vol. 23, no. 1, pp. 34–46, Feb 2007.

18

http://doi.acm.org/10.1145/1869790.1869817
http://dx.doi.org/10.1007/978-3-319-26054-9_5


[14] J. M. M. M. Raul Mur-Artal, Juan D. Tardos and D. Galvez-Lopez,
“Orb-slam2,” Online: https://github.com/raulmur/ORB SLAM2.

[15] “How to calibrate a monocular camera,” Online:
http://wiki.ros.org/camera calibration/Tutorials/MonocularCalibration.

[16] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2012.

[17] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of rgb-d slam systems,” in Proc. of the
International Conference on Intelligent Robot Systems (IROS), Oct.
2012.

[18] “The bresenham line-drawing algorithm,” Online:
https://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html.

[19] “gazebo,” Online: http://wiki.ros.org/gazebo.

[20] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press, 2005.

[21] “amcl,” Online: http://wiki.ros.org/amcl.

[22] “rviz,” Online: http://wiki.ros.org/rviz.

[23] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with au-
tomatic algorithm configuration,” in International Conference on Com-
puter Vision Theory and Application VISSAPP’09). INSTICC Press,
2009, pp. 331–340.

19


	Introduction
	Literature Review
	Methodology
	Common Components
	Review of literature on using vision to build a grid map
	Installation of ORB-SLAM
	Calibration of camera
	Reproduction of results on KITTI and TUM
	Production of 2D grid map using ORB-SLAM map points
	Map visualization and robot navigation in Rviz
	Evaluation and comparison of the result with that found in the literature

	Novel Components
	Online variant
	Local and global counters
	Visit thresholding
	Height thresholding
	Gaussian smoothing of counters
	Canny boundary detection
	Slope thresholding


	Results
	Conclusion

