SE 2023 Winter - Project Report <WO04IST-S14023P-3> <3.3> F4

Group symbol: W04IST-S14023P-3

Team: 3.3

Project title: TaleTinker

Team members (filled by PM, Team Leader):

No Name Surname Student ID Role
1 | Mateusz Molenda 259905 PM, Team Leader
2 | Abrorjon Ruziboev 269617 Team member
3 | Maurycy Jakiel 266622 Team member
4 | Dominika Kotowrotkiewicz 266908 Team member




SE 2023 Winter - Project Report <WO04IST-S14023P-3> <3.3> F4

4. Construction and tests (F4)

4.1. Implementation

Backend artifacts:
alembic.ini

docker-compose.yml

Dockerfile

init.sqgl

TTTTTT

poetry.lock

— pyproject.toml

— README.md

— scripts

| L

— src

| F— api

| | F— init .py

| =

| | — endpoints

| | | F— account.py

| | | — audiobook.py
(. | = category.py
| | | — chapter.py
I | b= _init__.py

| | | — listening.py
I | b= review.py

| | | b— settings.py

| | | L— user audiobook.py
| | L—  init .py

| app.py

| — core

| | b= auth.py



SE 2023 Winter - Project Report <WO04IST-S14023P-3> <3.3> F4
| — errors.py
| L— init .py
— db
| b— builder.py
| F— decorators.py
| F—  init .py
| — migrations

| | — env.py

| | — README

| | F— script.py.mako

| | L— versions

| | F— 08473aef6l12a chapter and user chapter.py

| | F— 1347aa4629al default to server default.py

| | F— 5£6bbb80201c initial revision.py

| | F— 7c¢70c2bca38f server default to default.py

| | — 8b5afc6fb3e6 user audiobook added.py

| | L— e8frff70a5889 review and listening tables.py
| L— models.py

— init .py

— repo

| — account.py

| — audiobook.py
base.py
category.py

chapter.py

__1nit .py
listening.py
review.py

user audiobook.py

user chapter.py

T TTTTTTT

user settings.py
— schemas

| b— account.py

| F— audiobook.py

| — base.py



SE 2023 Winter - Project Report <WO04IST-S14023P-3> <3.3> F4
| | — category.py
| | b— chapter.py
| | = _init .py
| | b— listening.py
| | F— review.py

| | — user audiobook.py

| | F— user chapter.py

L— user settings.py

| — settings.py

| L— web

| — admin.py

| b— auth.py

| b— factory.py
| L— init .py
L— tests

— conftest.py

L—  init .py

16 directories, 70 files total

Dockerfile (file for creating docker image serving as server)
src (folder with source code for the application to run)
src/api/ _init__.py (code for initiating the router)

src/api/vl/ _init__.py (code for initiating router for managing routes
defined in endpoints below)

src/api/vl/endpoints: (files defining the endpoints for the FastApi REST
server, each file is managing different part of objects/tables, split allows for
easier debugging and future management)

src/db/migrations/versions (folder containing database migrations)
src/db/migrations/ _inti__.py (file for initiating database session)

src/db/migrations/builder.py (defining building database engine, later
used)



SE 2023 Winter - Project Report <WO04IST-S14023P-3> <3.3> F4

src/db/migrations/models.py (main file containing definition for each table
int the database, along with relationships between them)

src/app.py (running the application builded from src/web/factory.py

src/settings.py (defining type of database to use [here Postgres], which
port for database connection, api _key for development communication with
mobile app, defining what user connects to database, defining database pool
size, etc. general settings to be used by database and application in general)

src/repo/ (folder containing repo files/classes used as an intermediary for
communication between api logic layer to database objects, each repo class
additionally has validation schema to make sure the data is in correct form,
used as output format for api calls defined in src/api/v1/endpoints)

src/repo/base.py (defining the BaseRepo class)

src/vepo/ ‘etc.’.py (other classes for database objects inheriting from base
repo class)

src/schemas (folder for schema files, used in repo class for validating the
output)

Frontend artifacts:

696 directories, 1085 files

which is too much to show as earlier, as it would take over 80 pages. Most of the files are fonts,
or files specific for android, 10S, Windows etc. as the app was developed using flutter, so that it can run
on many OS. So here are files written by us:

— 1ib

| — config

| | — base url config.dart

| | L— constant config.dart

| — data

| | — datasource

| | | — audiobook chapters remote data source.dart
| | | — audiobook remote data source.dart

| | | — category remote data source.dart

| | | L— settings remote datasource.dart

| | F— model

| | | F— audiobook.dart



SE 2023 Winter - Project Report <WO04IST-S14023P-3> <3.3> F4

| | F— audiobook listening.dart
| | b— category.dart

| | — settings.dart

| | L— user audiobook.dart

| L repository

| F— audiobook chapters repository.dart
| — audiobook repository.dart
| F— category repository.dart
| L— settings repository.dart
— error

| — exceptions.dart

| L— failure.dart

b— main.dart

— pages

| b— audiobook.dart
catalogue.dart

category.dart

home.dart

listening.dart

login.dart

search.dart

settings.dart

TTTTTTTT

shelf.dart

| L— signup.dart

— providers

| — bottom sheet.dart

| — listening session.dart
| L— user settings.dart

— routes.dart

— services

| — network info.dart

| — network service.dart

| F— network service response.dart

| L— restclient.dart

— themes



SE 2023 Winter - Project Report <WO04IST-S14023P-3> <3.3> F4

| | L— main theme.dart

| — utils

| | F—— audio player manager.dart
| | L uidata.dart

| L widgets

| — base tab bar.dart

| — content item.dart

| — content section.dart

| — listening

| | F— choice button.dart

| | — controls hero.dart

| | — listening controls.dart
| | F— path choices.dart

| | F—— progress_hero.dart

| | L— story visualizer.dart
| — promo banner.dart

| L— section header.dart

lib/config/configs (development bool flag, files defining development and
production servers to connect to along with API key to use while in production)

lib/data/datasource/data_sources (methods for api calls to the server to
retrieve information about audiobooks)

lib/data/model/models (class defining actual objects such as Audiobook
used in the application)

lib/data/repository/repos  (classes combining models and network
information [not used for now, still in development] )

lib/error/errors (definitions of errors/exceptions used in the application)

lib/pages/pages (main code defining how each page should behave and be
rendered on the screen)



SE 2023 Winter - Project Report <WO04IST-S14023P-3> <3.3> F4

lib/providers/providers (providers used in the application - objects used to
preserve and share state among the whole application while changing pages,
used by pages to check and change global state of application)

lib/services/. . . (services used by other methods, mostly by repositories,
restclient.py is used by data sources to manage the way they communicate with
rest server)

lib/themes/main_theme.dart (main theme of an application, used mainly in
pages whenever there'’s something to render on the screen, the colors and font
style will be used directly from main_theme)

lib/utils/uidata.dart (definitions for routing among pages, defining what
routes should lead to which pages, const configuration)

lib/utils/audio player manager.dart (defining class to handle logic about
connecting and managing data stream when downloading/streaming

audiobook)

lib/widgets/. . . (custom widgets used in the application to produce
repeatable same results, widgets for display audiobook)

lib/widgets/listening/. . . (widgets specific to listening displays)

lib/routes.dart (defining the router which manages actual logic behind
switching pages, and how they should be built)

lib/main.dart (initial starting point of an application)

pubsec.yaml (file with requirements for flutter project,

specify version of flutter, dart sdk, along with libraries needed to run and compile
the application)

version.: 1.0.0+1
environment:

sdk: >=3.1.5 <4.0.0'
dependencies:

Slutter:

sdk: flutter



SE 2023 Winter - Project Report <W04IST-S14023P-3> <3.3> F4

cupertino_icons: "1.0.2

go_router: N2.1.1

audio_video_progress_bar: "2.0.1

provider: "6.1.1

http: N.1.2

internet_connection_checker: "~1.0.0+1

dartz: "0.10.1

equatable: "2.0.5

lorem_ipsum: "0.0.3

Just_audio: 0.9.36

Jjust_audio_mpv: "0.1.7

rxdart: "0.27.7

flutter rating bar: "4.0.1

auto_size_text: "3.0.0

connectivity: "3.0.6

shared_preferences: "2.0.10
dev_dependencies:

Sflutter test:

sdk: flutter

Sflutter lints: "2.0.0

Slutter:
uses-material-design: false
assets.
- images/
fonts:
- family: SF Pro
fonts:
- asset: fonts/SF-Pro.ttf
- asset: fonts/SF-Pro-Italic.ttf

style: italic

4.2. Tests

The documentation should cover the methods and test results of the specific systems element
both from the functional and non-functional point of view. The scope and the description



SE 2023 Winter - Project Report <WO04IST-S14023P-3> <3.3> F4

should conform to the specification of the requirements (F2). You should include a description
of at least one test of each type of requirement (e.g. business logic, user interface, data
exchange, etc.).

4.2.1.Requirements Tests

In this section, you should differentiate the description of tests from manual and automated
tests. You should include scripts or test case scenarios in the report.

4.2.1.1. Functional requirements tests

(User interface) R2

[The user should be able to browse audiobooks in the store or in his own library. These
stories should cover various genres such as fiction, non-fiction, mystery, romance,
science fiction, etc.]. Manual testing by checking if audiobooks in home, shelf and
category pages show up correctly and can be played.

(Data exchange) R4

[Users should have the ability to rate audiobooks.]. Manual testing by checking if after
the audiobook is rated, a given user rating is shown on the next opening of the page, as
well as if the general rating of the audiobook changes.

(Business logic) R8
[The user should be able to browse audiobooks in the store or in his own library. These
stories should cover various genres such as fiction, non-fiction, mystery, romance,
science fiction, etc.]. Manual testing by checking if after uploading a new audiobook it
can be found in the search page.

4.2.1.2. Non-Functional requirements tests
(Security) R9

[Users must be able to create an account, log in and out of their account]. Manual
testing by checking if after uploading a new audiobook it can be found in the search
page.

(Reliability) R12
[In case of an internal error there should exist recovery plan /procedures to minimize
downtime and potential data loss]. Manual testing, save server state to external device
and forcibly shut it down, deleting all the data. Then restart server and check if data data
loaded from the backup server has loaded correctly and is the same as the one saved
just before shutdown.



SE 2023 Winter - Project Report <WO04IST-S14023P-3> <3.3> F4

(Maintainability) R17
[At least 90% of all methods/classes should be documented]. Automated testing using
python ‘pylint” module which allows checking the percentage of documented classes
and functions in given python files. And for dart files, manual testing.

(Localization) R18
[The application should support multiple languages (at least top 3 most used by the
(target) client base)]. Manual testing by checking if language is properly implemented
and everything is properly translated.

(Usability) R19
[The platform should have a library of audiobooks available for users to listen to, at least
20 different audiobooks]. Automated testing by checking the server response length in
the application when requesting for all available audiobooks. Simple ‘response.length <
20’ check.

4.2.2.Remaining Tests



