
Version	1.4	–	September	2019	

	 1	

TeraTools:	enabling	Ultra-Terabyte	Image	Processing		
	
Alessandro	Bria,	Department	of	Electrical	and	Information	Engineering,	University	of	Cassino	and	Southern	Lazio,	
a.bria@unicas.it	
Giulio	Iannello,	Department	of	Engineering,	University	Campus	Bio-Medico	di	Roma,	g.iannello@unicampus.it	
	
	
TeraTools	is	a	suite	of	software	tools	designed	to	process	ultra-terabyte	sized	image	datasets.	
These	datasets	may	contain	both	very	large	4D	images	(three	spatial	dimensions	plus	multiple	
channels)	and	time	series	of	relatively	small	4D	images.	TeraTools	are	cross-platform	and	are	
currently	available	on	MacOS,	Linux	and	Windows.		
	
TeraTools	are	open-source	and	available	at	http://abria.github.io/TeraStitcher/.	
	
Some	tools	of	the	suite	are	relatively	stable	and	are	available	within	the	installer.	Other	tools	
are	still	under	testing	and	are	included	in	the	distribution	as	source	code	or	are	not	included	
yet.	All	features	described	in	the	following	are	included	in	the	installer,	unless	differently	
stated	with	the	words:	“source	code	only”	or	“not	included”.		
	
Currently	the	suite	covers	the	following	functionalities:	
1. Stitching:	the	computation	of	the	correct	alignments	of	the	tiles	in	which	a	large	volume	

has	been	partitioned	during	acquisition	and	the	generation	of	a	stitched	image.	Available	
both	through	a	command	line	interface	and	a	GUI.	

2. Format	conversion:	the	conversion	of	an	already	stitched	image	to	a	different	format	more	
suited	for	processing	or	visualization.	Available	through	a	command	line	interface	only.	

3. Parallel	execution	of	stitching	and	conversion:	parallelism	available	at	hardware	level	can	
be	exploited	to	speedup	both	stitching	and	conversion	of	very	large	images.	It	requires	
python,	an	MPI	installation,	and	the	mpi4py	package.	Not	included.	

4. Transparent	access:	the	efficient	extraction	of	any	sub-region	of	a	larger	image	for	further	
processing	(image	enhancement,	object	detection	and/or	segmentation,	etc.).	Available	
through	a	python	interface.	Not	Included.	

5. Visualization	and	annotation:	the	ability	to	explore	and	annotate	the	image	in	3D.	Not	
included,	but	it	is	available	within	the	Vaa3D	software	(www.vaa3d.org)	under	the	menu	
“Advanced	>	Big	Image	Data	>	TeraFly”..	

	
In	the	following	the	functionalities	of	the	TeraTools	are	presented	making	reference	to	their	
command	line	interface,	since	this	interface	gives	full	access	to	the	options	available.	
	
To	Download/use/run/edit/change	any	portion	of	the	code	of	the	suite	users	must	agree	to	
the	following	license.		

1. This	material	is	free	for	non-profit	research,	but	needs	a	special	license	for	any	

commercial	purpose.	Please	contact	Alessandro	Bria	at	a.bria@unicas.it	or	Giulio	Iannello	
at	g.iannello@unicampus.it	for	further	details.	

2. You	agree	to	appropriately	cite	this	work	in	your	related	studies	and	publications	(see	
below	for	references).	

3. This	material	is	provided	by		the	copyright	holders	(Alessandro	Bria		and		Giulio	Iannello),		
University	Campus	Bio-Medico	and	contributors	"as	is"	and	any	express	or	implied	
warranties,	including,	but		not	limited	to,		any	implied	warranties		of	merchantability,		
non-infringement,	or	fitness	for	a	particular	purpose	are		disclaimed.	In	no	event	shall	the	

Version	1.4	–	September	2019	

	 2	

copyright	owners,	University	Campus	Bio-Medico,	or	contributors	be	liable	for	any	direct,	
indirect,	incidental,	special,	exemplary,	or		consequential		damages		(including,	but	not	
limited	to,	procurement	of	substitute	goods	or	services;	loss	of	use,	data,	or	profits;	
reasonable	royalties;	or	business	interruption)	however	caused		and	on	any	theory	of	
liability,	whether	in	contract,	strict	liability,	or	tort		(including	negligence	or	otherwise)	
arising	in	any	way	out	of	the	use	of	this	software,		even	if	advised	of	the	possibility	of	such	
damage.	

4. Neither	the	name	of	University		Campus	Bio-Medico	of	Rome,	nor	Alessandro	Bria	and	
Giulio	Iannello,	may	be	used	to	endorse	or		promote	products		derived	from	this	software	
without	specific	prior	written	permission.	

If	use	our	tools	in	your	work,	please	cite	one	or	more	of	the	following	publications	where	you	
can	find	additional	information	with	respect	to	this	guide:	
	
[1]	Bria	A,	Iannello	G	,	“TeraStitcher	-	A	tool	for	fast	automatic	3D-stitching	of	teravoxel-
sized	microscopy	images”,	BMC	Bioinformatics,	2012,	13:316	
	
[2]	Bria	A,	Iannello	G,	Peng	H,	"An	open-source	Vaa3D	plugin	for	real-time	3D	
visualization	of	Terabyte-sized	volumetric	images",	ISBI	2015,	April	16,	2015	
	
[3]	Bria	A,	Iannello	G,	Onofri	L,	Peng	H,	“TeraFly:	real-time	three-dimensional	
visualization	and	annotation	of	terabytes	of	multidimensional	volumetric	images”,	
Nature	Methods,	February	25,	2016	
	
[4]	Bria	A,	Bernaschi	M,	Guarrasi	M,	Iannello	G,	“Exploiting	multi-level	parallelism	for	
stitching	very	large	microscopy	images”,	Frontiers	in	Neuroinformatics,	13,	art.	no.	41,	
2019.	
	 	

Version	1.4	–	September	2019	

	 3	

1	Stitching	
	

The	first	tool	of	the	suite	is	TeraStitcher,	designed	for	computing	the	correct	alignments	of	the	
tiles	in	which	a	large	volume	has	been	partitioned	during	acquisition.	
TeraStitcher	assumes	that	the	Raw	Unstitched	Image,	i.e.	what	is	generated	by	the	acquisition	
system	(RUI	in	the	following),	consists	of	overlapping	tiles	arranged	according	to	a	2D	regular	
matrix	along	X-Y	dimensions.	Each	tile	consists	of	2D	slices	along	the	Z	dimension.	All	slices	
must	have	the	same	size	along	X-Y	dimensions.	
Tile	slices	can	be	stored	as	either	series	of	2D	slices,	or	as	one	or	more	3D	sub-stacks.	The	first	
alternative	is	referred	to	as	“TiledXY|2Dseries”,	whereas	the	second	one	is	referred	to	as	
“TiledXY|3Dseries”.	
RUIs	can	be	sparse,	which	means	that	tiles	can	be	incomplete,	i.e.	not	all	tiles	must	have	the	
same	number	of	slices	and	they	may	even	be	empty.	
The	RUI	must	be	imported,	which	means	that	an	xml	file	(the	import	xml	file	in	the	following)	
must	be	produced	that	is	compliant	with	what	TeraStitcher	expects	(see	below	for	details).	
After	the	xml	import	file	has	been	generated,	all	other	steps	of	the	stitching	process	can	be	
executed	on	any	dataset,	providing	that	the	dataset	meets	the	above	assumptions	and	that	
image	data	are	stored	in	a	supported	input	file	format.	

	
TeraStitcher	performs	stitching	in	six	steps:	
• Step	1	(import):	an	xml	import	file	containing	the	relevant	information	about	the	RUI	is	

generated.	
• Step	2	(displcompute):	multiple	relative	displacements	(i.e.	alignments)	between	each	pair	

of	tiles	that	are	adjacent	in	the	tile	matrix	are	computed	with	a	reliability	score.	
• Step	3	(displproj):	for	each	pair	of	adjacent	tiles	the	displacement	with	the	best	reliability	

score	is	chosen.	
• Step	4	(displthresh):	displacements	with	too	low	reliability	(less	than	a	threshold)	are	

discarded	
• Step	5	(placetiles):	a	global	optimization	algorithm	is	applied	to	determine	a	coherent	set	

of	displacements	between	adjacent	tiles.	
• Step	6	(merge):	a	multi-resolution	stitched	(i.e.	without	overlapping	regions)	image	is	

generated.	
	
Step	6	can	be	performed	using	TeraConverter,	a	different	tool	that	can	convert	images	in	a	
number	of	supported	format	and	that	can	accept	as	an	input	format	also	the	output	of	any	
step	of	TeraStitcher,	i.e.	a	RUI	and	its	alignment	information.		
	
Early	versions	of	TeraStitcher	had	their	own	merge	step	that	was	less	general	than	the	
function	provided	by	TeraConverter.	For	this	reason,	the	merge	step	of	TeraStitcher	is	not	
supported	any	longer	and	it	will	not	be	further	documented	here.	
	
Besides	the	command	line	interface	of	both	TeraStitcher	and	TeraConverter,	a	GUI	interface	
that	integrates	both	TeraStitcher	for	steps	1-5	and	TeraConverter	for	step	6	is	included	in	the	
installer.	A	user	guide	for	this	GUI	is	in	preparation.	
	
	
1.1	TeraStitcher	input	formats	
	
TeraStitcher	can	accept	and	generate	images	in	several	formats.	

Version	1.4	–	September	2019	

	 4	

In	most	cases	images	are	read	using	special	modules	referred	to	in	the	following	as	input	
plugins	and	characterized	by	a	well	defined	interface.	Additional	input	plugins	supporting	new	
formats	can	be	added	providing	they	implement	this	interface.	
Input	plugins	can	be	either	2D	or	3D	plugins	according	to	they	are	designed	to	support	2D	of	
3D	file	formats.	Moreover	they	are	characterized	as	either	non-interleaved	or	interleaved	
according	to	the	supported	format	represents	channels	in	spatially	separate	planes	or	not.	In	
the	table	below	are	reported	all	the	plugins	currently	available	with	their	characteristics	and	
limitations.	
	
Name	 2D/3D	 Format	description	 Interleaved	 Notes	

opencv2D	 TiledXY|2Dseries	
Any	2D	format	supported	
by	the	OpenCV	library	
(tested	with	rel.	2.4.8)	

yes	
Tested	with	Rel.	2.4.8	
http://opencv.org/opencv-2-
4-8.html	

tiff2D	 TiledXY|2Dseries	 Standard	TIFF	 yes	

Files	larger	that	4	GB	allowed	
(BigTiff	format)	
http://www.awaresystems.be
/imaging/tiff.html	

tiff3D	 TiledXY|3Dseries	 Standard	multi-page	TIFF	 yes	

Files	larger	that	4	GB	allowed	
(BigTiff	format)	
http://www.awaresystems.be
/imaging/tiff.html	

IMS_HDF5	 TiledXY|3Dseries	

Imaris	File	Format		
(Imaris	5.5)	
	
See	section	Processing	
Imaris	datasets	for	details	

no	

HDF5-based	format	
http://open.bitplane.com/Def
ault.aspx?tabid=268		
Compatible	with	Fusion		
http://www.andor.com/micr
oscopy-systems/dragonfly		

Bioformats2D	 TiledXY|2Dseries	

Any	2D	image	accepted	
by	the	Bio-Formats	
library		
	

no	

Partially	tested	with	
bioformats_package.jar,	Rel.	
5.0.3	
http://downloads.openmicros
copy.org/bio-formats/5.0.3/	
See	Appendix	E	for	how	to	
use	this	plugin	

Bioformats3D	 TiledXY|3Dseries	
Any	image	accepted	by	
the	Bio-Formats	library	
	

no	

Partially	tested	with	
bioformats_package.jar,	Rel.	
5.0.3	
http://downloads.openmicros
copy.org/bio-formats/5.0.3/	
See	Appendix	E	for	how	to	
use	this	plugin	

magellan	 TiledXY|3Dseries	 Micro-Magellan	file	
format	(Image	File	Stack)	 no	

Partially	tested	
https://micro-
manager.org/wiki/Micro-
Manager_File_Formats	

	
WARNING:	bioformats	and	magellan	plugins	are	currently	NOT	included	in	the	
distribution.	
	
	
1.2	Import	step	
	
1.2.1	The	standard	import	step	
	
The	standard	import	step	of	TeraStitcher	assumes	that	the	RUI	is	stored	according	to	the	
organization	described	at:	

Version	1.4	–	September	2019	

	 5	

	
https://github.com/abria/TeraStitcher/wiki/Supported-volume-formats#two-level-
hierarchy-of-folders		
	
To	execute	the	standard	import	step	TeraStitcher	must	be	given:	
• The	path	where	the	two-level	hierarchy	of	folders	is	stored	(command	option	–volin)	
• The	method	used	to	store	tile	slices	(command	option	–volin_plugin)	
• The	voxel	size	in	each	dimension	in	microns	(command	options	–vxl1	–vxl2	–vxl3)	
• The	physical	coordinates	system	used	by	the	acquisition	system	to	name	the	folders	in	the	

two-level	hierarchy	of	folders	(command	options	–ref1	–ref2	–ref3,	see	section	The	
reference	system	for	deatils)	

	
Other	relevant	command	options	for	the	import	step	(optional)	are:	
• --imin_channel:	it	is	one	of	the	letters	‘R’,	‘G’	or	‘B’	or	a	digit:	‘0’,	‘1’,	…	,	‘9’1;	it	must	be	

specified	if	the	image	is	multi-channel	(any	channel	is	equivalent	in	the	import	step,	but	
the	most	informative	should	be	chosen	to	generate	a	useful	middle	test	image)	

• --imout_depth:	it	is	the	color	depth	in	bits	of	the	output	image;	it	must	be	specified	if	the	
middle	slice	test	image	generated	during	the	import	phase	must	be	saved	with	a	color	
depth	of	16	bits	

• --imin_plugin:	file	format	to	be	used	to	read	the	individual	files	in	the	RUI;	it	must	be	
specified	if	the	format	file	is	not	TIFF	

• --sparse_data:	it	is	a	flag;	it	must	by	specified	if	the	RUI	is	sparse		
	
The	xml	file	generated	by	the	import	step	of	TeraStitcher	is	the	only	information	needed	to	
perform	all	other	steps	of	TeraStitcher	as	well	as	to	generate	the	stitched	image	by	means	of	
TeraConverter.	
	
If	the	RUI	can	be	saved	during	acquisition	(or	easily	re-organized	after	acquisition)	according	
to	the	two-level	hierarchy	of	folders	mentioned	above,	the	standard	import	step	of	
TeraStitcher	can	be	used	to	generate	the	import	xml	file.		
	
More	details	about	the	xml	import	file	can	be	found	at:	
	
https://github.com/abria/TeraStitcher/wiki/Supported-volume-formats#xml-descriptors		
	
	
1.2.2	The	import	step	using	an	externally	generated	xml	import	file	
	
Alternatively,	an	independently	developed	tool	can	be	used	to	generate	the	xml	import	file.		
Thanks	to	the	ability	of	TeraStitcher	to	use	regular	expressions	to	discriminate	the	names	of	
files	containing	slices	belonging	to	a	given	tile,	any	folder	organization	can	be	used	to	save	the	
RUI.	Nevertheless,	to	generate	the	xml	import	file	(see	link	above),	at	least	the	following	
information	should	be	made	available	in	some	way:	
• the	kind	of	tile	matrix	(2D	or	3D2)		
• the	folder	where	the	RUI	is	stored	
• the	orientation	of	the	reference	system	in	which	tile	positions	are	given	(see	more	details	

below).	
	

1	See	section	for	details	and	in	particular	when	use	letters	and	when	use	digits.	
2	For	3D	tiled	volumes	see	the	section	Importing	3D	tiled	RUIs	below.	

Version	1.4	–	September	2019	

	 6	

• the	voxel	size	
• the	number	of	channels	
• the	number	of	bytes	per	channel	
• the	dimensions	of	the	tile	matrix	
• the	paths	of	files	storing	the	slices	of	each	tile	(different	tiles	may	have	the	same	path)	
• how	file	names	storing	the	slices	of	each	tile	can	be	selected	using	regular	expressions	

(this	information	is	needed	only	if	files	storing	the	slices	of	different	tiles	have	the	same	
path)	

• either	the	nominal	positions	of	the	tiles	in	the	physical	space	of	the	acquisition	instrument	
or,	alternatively,	the	mechanical	displacements	between	tiles	in	X-Y	dimensions		

	
If	the	RUI	is	sparse	the	generation	of	the	xml	import	file	is	more	complex	and	more	
information	is	needed,	depending	on	the	way	tile	slices	are	stored	(if	as	2D	images	or	as	3D	
substacks).	See	Z_RANGES	attribute	in	the	xml	import	file	documented	at	the	link	above	for	
more	information.	
	
A	simple	way	to	generate	an	xml	import	file	starting	from	the	above	listed	information	is	to	
generate	a	text	file	containing	all	of	them.	To	simplify	this	task	for	those	that	cannot	rearrange	
their	RUIs	according	to	the	folder	structure	expected	by	TeraStitcher,	a	few	python	scripts	are	
available.	These	scripts	are:	
• import_objects.py	containing	the	classes	ImportData	and	StackDescriptor	

used	to	represent	in	a	structured	way	the	above	information	about	the	RUI	
• gen_xmlimport.py	containing	the	code	that	generates	a	provisional	xml	import	file	
• parse_ini_file.py	containing	the	code	that	creates	an	ImportData	object	parsing	and	

.ini	file	containing	the	information	about	the	RUI	in	a	format	inspired	to	the	windows	.ini	
files3;	if	the	information	about	RUI	organization	is	available	in	other	forms,	this	python	
script	can	be	substituted	by	any	other	parsing	algorithm	providing	that	it	contains	a	
function	returning	an	object	of	class	ImportData	initialized	with	the	right	import	
information	(see	comments	in	classes	ImportData	e	StackDescriptor	for	more	
details).	

The	first	two	scripts	are	independent	of	the	format	used	to	generate	the	text	file.	The	third	
script	can	be	used	either	to	read	directly	an	.ini	file	if	the	format	described	in	the	section	
Writing	a	.ini	file	describing	the	RUI	configuration	can	be	easily	generated	by	the	software	
controlling	the	acquisition	system,	or	as	an	example	of	how	the	data	structure	required	by	the	
first	script	can	be	generated.	
		
If	these	scripts	are	used,	a	provisional	import	xml	file	is	created	that	can	be	accepted	by	
TeraStitcher	and	TeraConverter.		
	
A	final	note	is	that,	as	it	has	been	pointed	out,	this	solution	currently	cannot	deal	with	sparse	
datasets,	i.e.	datasets	in	which	some	tiles	are	missing	or	incomplete.	For	these	datasets	the	
folder	hierarchy	and	the	file	naming	conventions	used	for	the	standard	import	step	are	still	
the	only	viable	option.		
	
	

	
3	The	format	of	this	.ini	file	is	described	in	detail	in	the	section	Writing	a	.ini	file	describing	the	
RUI	configuration.	

Version	1.4	–	September	2019	

	 7	

1.3	The	reference	system	
	
In	the	import	step,	when	the	two-level	hierarchy	of	folders	is	used	to	specify	the	dataset	
structure,	the	reference	system	used	at	acquisition	time	must	be	specified	using	the	command	
options	--ref1,	--ref2	and	--ref3,	according	to	the	following	conventions.	These	conventions	
must	be	followed	also	if	an	externally	generated	xml	import	file	is	used,	if	the	association	of	
the	image	to	a	physical	acquisition	space	must	be	kept	coherent.	
	
The	physical	acquisition	space	is	assumed	to	have	a	Cartesian	reference	system.	The	two	
dimensions	of	the	X-Y	plane	are	conventionally	named	as	‘V’	the	vertical	one,	also	commonly	
referred	to	as	‘Y’,	and	as	‘H’	the	horizontal	one,	also	commonly	referred	to	as	‘X’.	
The	third	dimension,	commonly	referred	to	as	‘Z’,	is	conventionally	named	as	‘D’,	for	depth.	
These	three	dimensions	are	assumed	ordered,	being	V	the	first	dimension,	H	the	second,	and	
D	the	third.	Indeed,	if	we	see	a	3D	image	as	a	series	of	slices,	and	each	slice	as	a	2D	matrix	of	
voxels,	the	first	index	V	is	the	index	of	rows	of	slices,	the	second	index	H	is	the	index	of	
columns	of	slices,	and	the	third	index	D	is	the	slice	index.	
When	tiles	are	saved	during	acquisition,	they	may	have	a	nominal	physical	position	in	the	
reference	space,	i.e.	they	are	associated	to	three	real	numbers	that	specify	the	position	of	
some	fixed	point	of	the	tile,	usually	the	left-most,	upper	vertex	of	the	first	slice.	The	third	
number	is	assumed	to	be	always	the	coordinate	along	dimension	D,	but	the	first	two	may	refer	
to	either	V	and	H,	or	to	H	and	V,	respectively,	depending	on	the	orientation	of	the	pixel	matrix	
with	respect	to	the	physical	reference	system.	In	the	first	case,	the	first	coordinate	refers	to	
the	first	dimension	and	the	second	coordinate	to	the	second	dimension	of	the	voxel	matrix,	
whereas	in	the	second	case	the	opposite	happens.	Moreover,	considering	the	relations	
between	physical	coordinates	and	indices	in	the	3D	image	matrix,	for	any	dimension	physical	
coordinates	can	increase	or	decrease	with	the	corresponding	index.	
To	precisely	specify	the	relations	between	physical	acquisition	space	and	indices	in	the	3D	
voxel	matrix	we	use	the	command	options	--ref1,	--ref2	and	--ref3,	associated	respectively	to	
dimensions	V,	H,	and	D,	to	specify	which	is	the	correspondent	coordinate	provided	by	the	
acquisition	system.	A	positive	number	is	then	used	to	associate	a	coordinate	with	a	dimension	
if	the	coordinate	grows	with	increasing	indices,	whereas	a	negative	number	is	used	in	the	
opposite	case.	
	
For	instance	the	command	options		
	

--ref1=1	--=2	--ref3=3	
	
mean	that	the	first	coordinate	refers	to	V,	the	second	to	H	and	the	third	to	D,	and	that	all	grow	
with	increasing	indices.	Conversely	the	command	options:	
	

--ref1=2	--ref2=-1	--ref3=3	
	
mean	that	the	first	coordinate	refers	to	H,	the	second	to	V	and	the	third	to	D,	and	that	
coordinates	along	H	decrease	with	increasing	indices.		
	
With	this	convention,	assuming	that	the	third	coordinate	(the	one	identifying	the	slice)	is	
always	associated	to	D,	there	are	16	different	possible	reference	systems,	which	are	listed	in	
Table	I.	It	is	worth	noting	however	that	TeraStitcher	currently	does	not	support	reference	
systems	in	which	coordinates	along	D	decrease	with	increasing	indices.		
	

Version	1.4	–	September	2019	

	 8	

	
Ref1	 ref2	 ref3	 Description	

1	 2	 3	
First	coordinate	is	associate	to	V	and	increases	with	indices	
Second	coordinate	is	associated	to	H	and	increases	with	indices	
Third	coordinate	is	associated	to	D	and	increases	with	indices	

-1	 2	 3	
First	coordinate	is	associate	to	V	and	decreases	with	indices	
Second	coordinate	is	associated	to	H	and	increases	with	indices	
Third	coordinate	is	associated	to	D	and	increases	with	indices	

1	 -2	 3	
First	coordinate	is	associate	to	V	and	increases	with	indices	
Second	coordinate	is	associated	to	H	and	decreases	with	indices	
Third	coordinate	is	associated	to	D	and	increases	with	indices	

-1	 -2	 3	
First	coordinate	is	associate	to	V	and	decreases	with	indices	
Second	coordinate	is	associated	to	H	and	decreases	with	indices	
Third	coordinate	is	associated	to	D	and	increases	with	indices	

2	 1	 3	
First	coordinate	is	associate	to	H	and	increases	with	indices	
Second	coordinate	is	associated	to	V	and	increases	with	indices	
Third	coordinate	is	associated	to	D	and	increases	with	indices	

-2	 1	 3	
First	coordinate	is	associate	to	H	and	decreases	with	indices	
Second	coordinate	is	associated	to	V	and	increases	with	indices	
Third	coordinate	is	associated	to	D	and	increases	with	indices	

2	 -1	 3	
First	coordinate	is	associate	to	H	and	increases	with	indices	
Second	coordinate	is	associated	to	V	and	decreases	with	indices	
Third	coordinate	is	associated	to	D	and	increases	with	indices	

-2	 -1	 3	
First	coordinate	is	associate	to	H	and	decreases	with	indices	
Second	coordinate	is	associated	to	V	and	decreases	with	indices	
Third	coordinate	is	associated	to	D	and	increases	with	indices	

1	 2	 -3	
First	coordinate	is	associate	to	V	and	increases	with	indices	
Second	coordinate	is	associated	to	H	and	increases	with	indices	
Third	coordinate	is	associated	to	D	and	decreases	with	indices	

-1	 2	 -3	
First	coordinate	is	associate	to	V	and	decreases	with	indices	
Second	coordinate	is	associated	to	H	and	increases	with	indices	
Third	coordinate	is	associated	to	D	and	decreases	with	indices	

1	 -2	 -3	
First	coordinate	is	associate	to	V	and	increases	with	indices	
Second	coordinate	is	associated	to	H	and	decreases	with	indices	
Third	coordinate	is	associated	to	D	and	decreases	with	indices	

-1	 -2	 -3	
First	coordinate	is	associate	to	V	and	decreases	with	indices	
Second	coordinate	is	associated	to	H	and	decreases	with	indices	
Third	coordinate	is	associated	to	D	and	decreases	with	indices	

2	 1	 -3	
First	coordinate	is	associate	to	H	and	increases	with	indices	
Second	coordinate	is	associated	to	V	and	increases	with	indices	
Third	coordinate	is	associated	to	D	and	decreases	with	indices	

-2	 1	 -3	
First	coordinate	is	associate	to	H	and	decreases	with	indices	
Second	coordinate	is	associated	to	V	and	increases	with	indices	
Third	coordinate	is	associated	to	D	and	decreases	with	indices	

2	 -1	 -3	
First	coordinate	is	associate	to	H	and	increases	with	indices	
Second	coordinate	is	associated	to	V	and	decreases	with	indices	
Third	coordinate	is	associated	to	D	and	decreases	with	indices	

-2	 -1	 -3	
First	coordinate	is	associate	to	H	and	decreases	with	indices	
Second	coordinate	is	associated	to	V	and	decreases	with	indices	
Third	coordinate	is	associated	to	D	and	decreases	with	indices	

Table	I:	The	16	possible	reference	systems	for	the	acquisition	instrument	space	(the	gray		
cells	correspond	to	reference	system	that	are	not	currently	supported	by	TeraStitcher).	

	
As	mentioned	above,	the	actual	reference	system	used	by	the	motorized	microscope	must	be	
specified	when	the	import	step	is	executed	relying	on	the	two-level	hierarchy	of	folders,	
otherwise	the	dataset	structure	is	erroneously	imported,	and	tiles	are	stitched	in	flipped	
positions.	Conversely,	when	an	externally	generated	xml	import	file	is	used,	command	line	

Version	1.4	–	September	2019	

	 9	

options	--ref1,	--ref2	and	--ref3	are	ignored	and	the	reference	system	specified	in	the	xml	file	
is	taken	as	valid.	In	the	latter	case,	each	dimension	of	the	voxel	size	must	have	the	same	sign	
of	the	corresponding	axis	in	the	reference	system.	For	instance,	if	reference	system	is:		
	

--ref1=2	--ref2=-1	--ref3=3	
	
the	voxel	size	along	H	must	be	negative.	
	
	
1.4 	Alignment	computation	
	
The	xml	import	file	already	contains	alignment	information	that	can	be	used	to	generate	a	
stitched	image.	These	alignments	are	the	nominal	ones,	i.e.	those	generated	by	the	motorized	
acquisition	system.		
If	nominal	alignments	are	not	reliable	and	they	can	introduce	significant	artifacts	in	the	
stitched	image,	alignment	errors	have	to	be	corrected	using	steps	2-5	of	TeraStitcher.	Each	
step	generates	an	xml	file	containing	improved	alignment	information.	However,	only	the	xml	
generated	by	step	5	(global	optimization	for	tile	placement)	contains	the	corrected	alignments	
that	can	be	used	to	generate	a	stitched	image	without	artifacts.	
	
The	details	of	the	algorithms	used	to	compute	the	correct	alignments	between	adjacent	tiles	
are	described	in	reference	[1].	Here	we	report	in	the	following	table	the	parameters	that	
influence	the	behavior	of	these	algorithms.	
	
Parameter		 Command	line	option	 Notes	

Input	channel	 --imin_channel=chanID	

chanID	is	a	either	letter	‘R’,	‘G’,	or	‘B’,	or	
a	digit	‘0’,	‘1’,	…	,	‘9’.	
In	step	2	of	TeraStitcher	is	the	channel	
used	to	compute	the	alignments.	
Significant	only	for	multi-channel	
datasets.	

Substack	depth	 --subvoldim=depth	

depth	is	a	positive	integer.	
In	step	2	of	TeraStitcher	adjacent	tiles	
are	partitioned	in	substacks	of	up	to	
depth	slices.	A	separate	alignment	with	
its	reliability	is	computed	for	each	pair	
of	corresponding	substacks.	The	most	
reliable	alignment	is	retained	by	step	3	
of	TeraStitcher.	

Search	range	in	V	
dimension	 --sV=range	

range	is	a	non	negative	integer.	
In	step	2	of	TeraStitcher,	starting	from	
the	nominal	alignment	a	better	
alignment	is	searched	in	V	dimension	in	
the	range	[-range,	range].	

Search	range	in	H	
dimension	 --sH=range	

range	is	a	non	negative	integer.	
In	step	2	of	TeraStitcher,	starting	from	
the	nominal	alignment	a	better	
alignment	is	searched	in	H	dimension	in	
the	range	[-range,	range].	

Version	1.4	–	September	2019	

	 10	

Search	range	in	D	
dimension	 --sD=range	

range	is	a	non	negative	integer.	
In	step	2	of	TeraStitcher,	starting	from	
the	nominal	alignment	a	better	
alignment	is	searched	in	D	dimension	in	
the	range	[-range,	range].	

Threshold	to	
eliminate	unreliable	
alignments	

--threshold=value	

value	is	a	real	value	in	[0,1].	
In	step	4	of	TeraStiticher	all	alignments	
which	reliability	is	less	than	value	are	
discarded.	

	
It	is	worth	noting	that	the	value	of	these	parameters	must	be	adapted	to	the	characteristics	of	
the	source	dataset.	More	specifically:	
• Substack	depth	should	be	sufficiently	large	to	include	with	high	probability	in	the	

substacks	information	(i.e.	marked	objects)	useful	for	alignment.	
• Search	ranges	should	be	larger	than	expected	errors	introduced	by	the	motorized	

acquisition	system.	Consider	that	they	are	expressed	in	voxels	while	errors	are	typically	
expressed	in	distance	units	(e.g.	um).	Hence,	these	ranges	should	increase	if	voxel	sizes	
reduce.	

• The	threshold	should	be	chosen	taking	into	account	the	sharpness	of	the	objects	used	for	
alignment	computation.	Although	the	threshold	should	filter	away	unreliable	alignments	
that	could	introduce	alignment	artifacts,	if	input	images	contain	relatively	smooth	objects,	
lower	thresholds	should	be	chosen	to	avoid	discarding	too	many	alignments.	

	
Consider	that	step	2	of	TeraStitcher	can	be	computationally	intensive	for	very	large	images.	
Workload	slightly	increases	with	substack	depth,	whereas	it	greatly	depend	on	search	ranges.	
Since	resolution	is	typically	higher	in	V-H	dimensions,	workload	is	generally	dominated	by	the	
values	of	sV	and	sH	options	and	it	roughly	grows	linearly	with	their	product.	
	
In	a	version	of	TeraStitcher	that	has	not	been	released	yet,	A	CUDA	version	of	the	MIP-NCC	
algorithm	has	been	included.	See	Appendix	A	for	more	details.	
	
After	pairwise	alignments	between	adjacent	tiles	have	been	computed	(step	2	of	the	pipeline),	
if	the	substack	depth	used	is	less	than	the	total	number	of	slices	of	the	tiles,	multiple	
alignments	per	tiles	pair	are	available.	Using	the	reliability	associated	to	each	alignment,	one	
alignment	per	adjacent	tile	pair	is	chosen	(step	3	or	displacement	projection),	and	alignments	
with	too	low	reliability	are	discarded	(step	4	or	thresholding).	This	leads	to	have	just	one	
(sufficiently	reliable)	alignment	between	each	adjacent	tile	pair.	If	there	is	no	reliable	
alignment	between	an	adjacent	tile	pair,	the	nominal	alignment	with	reliability	0	is	chosen.	
Note	that	these	steps	are	carried	out	separately	for	each	dimension	(V,	H	and	D)	of	the	image.		
	
	
1.5	Global	optimization	of	tile	placement	
	
Once	a	sufficiently	reliable	displacement	or,	alternatively,	the	nominal	alignments	with	
reliability	0	has	been	assigned	to	each	adjacent	tile	pair,	all	alignments	have	to	be	made	
compatible	before	to	proceed	to	the	final	merge	step	(step	6).		
Indeed,	considering	each	group	of	four	adjacent	tiles	forming	a	square,	the	alignments	
between	them	are	compatible	if	their	sum	is	0.	More	formally,	if	the	tile	matrix	is	modeled	as	a	
labeled	graph	where	every	edge	between	adjacent	tiles	is	labeled	with	the	displacement	

Version	1.4	–	September	2019	

	 11	

between	them,	the	set	of	alignments	is	compatible	if	the	sum	of	labels	over	the	edges	forming	
any	cycle	is	0.		
	
For	this	reason,	the	computed	alignments	(including	the	nominal	ones	when	the	reliability	
was	too	low)	have	to	be	“adjusted”	to	meet	the	above	introduced	compatibility	condition.	
	
This	can	be	performed	by	means	of	a	global	optimization	that	tries	to	find	a	set	of	compatible	
alignments	that	minimizes	the	differences	with	the	computed	alignments,	taking	into	account	
their	reliability.	
	
Currently	two	different	global	optimization	algorithms	have	been	implemented.	Both	consider	
the	tile	matrix	as	a	labeled	graph,	with	the	tiles	as	vertices	and	the	edge	between	each	pair	of	
adjacent	tiles	labeled	with	the	inverse	of	the	reliability	of	the	computed	alignment	between	
them.	
	
The	first	algorithm,	referred	to	as	MST	(which	stands	for	Minimal	Spanning	Tree),	is	based	on	
finding	the	minimal	path	between	each	vertex	of	the	graph	(i.e.	each	tile)	and	another	tile	
chosen	as	a	reference.	This	algorithm	tries	to	preserve	the	alignments	with	the	highest	
reliability	and	to	introduce	changes,	that	can	be	also	relevant	in	less	reliable,	or	even	no	
reliable	at	all,	alignments.	This	algorithm	is	suited	to	be	used	with	relatively	small	tile	
matrices	and/or	when	alignments	are	either	highly	reliable	or	not	reliable	at	all.	MST	is	the	
default	algorithm	and	it	can	be	always	used.		
	
The	second	algorithm,	referred	to	as	LQP	(which	stands	for	Linear	Quadratic	Programming),	
is	based	on	minimizing	the	differences	between	the	computed	alignments	and	the	compatible	
ones,	weighted	with	the	inverse	of	displacement	reliabilities.	This	algorithm	may	change	in	
principle	all	alignments,	but	taking	into	account	their	reliability,	and	keeping	all	changes	as	
small	as	possible.	It	is	suited	when	the	tile	matrix	is	large	and	path	towards	the	reference	tile	
may	be	long	and/or	when	most	alignments	are	more	or	less	reliable.	LQP	can	be	used	
specifying	the	command	line	option	--algorithm=LQP,	but	it	requires	that	a	python	
interpreter	and	packages	numpy	and	scipy	are	available,	as	well	as	the	environment	variable	
__LQP_PATH__	be	properly	set	(see	Appendix	B	for	more	details).		
	
	
1.6	Stitched	image	generation	
	
The	stitched	image	can	be	generated	using	TeraConverter	giving	in	input	the	RUI	and	its	
alignment	information.	Currently	TeraConverter	is	integrated	in	the	TeraStitcher	GUI,	but	its	
command	line	interface	has	to	be	used	to	have	full	access	to	its	options.	See	section	
TeraConverter	for	more	details.	
	
When	TeraConverter	is	used	to	generated	a	stitched	image	from	a	RUI	and	the	alignment	
information	generated	by	TeraStitcher,	the	following	command	line	options	have	to	specified:		
• --sfmt=“TIFF	(unstitched,	3D)”;	
• --imin_plugin=the	plugin	name	corresponding	to	the	format	in	which	the	tile	of	the	RUI	are	

stored	(see	section	TeraStitcher	input	formats);	
• -s=the	complete	path	of	the	xml	file	generated	by	any	step	of	TeraStitcher4;	

	
4	At	any	step	TeraStitcher	generates	an	xml	file	containing	valid	alignment	information.	After	
steps	1-4	the	alignments	are	the	nominal	ones	(i.e.	those	provided	at	the	import	step),	

Version	1.4	–	September	2019	

	 12	

• --dfmt=one	of	the	available	output	format	name	(see	table	below);	
• -d=	the	complete	path	of	the	destination	folder/file	(see	table	below).		
	
The	TeraConverter	can	then	generate	the	stitched	images	in	several	output	formats	reported	
in	the	table	below.	Note	that	no	output	plugins	are	used	by	TeraConverter	for	image	
generation.		
	
1.6.1	Generation	of	TIFF	images	
	
If	the	chosen	output	format	saves	the	image	data	as	TIFF	files,	a	few	options	are	available	to	
control	the	characteristics	of	the	generated	image.	First	images	can	be	generated	in	a	lossless	
compressed	format	or,	alternatively,	in	an	uncompressed	format.	In	the	latter	case,	one	of	
more	lines	of	each	slice	can	be	packed	in	one	strip.	Packing	more	lines	in	the	one	strip	
increases	the	compression	factor,	makes	faster	the	access	to	the	whole	slice,	but	may	greatly	
increase	to	sub-regions	of	slices.	Finally,	images	may	be	generated	using	the	BigTiff	format	
that	supports	single	TIFF	files	larger	than	4	Gbytes.	The	characteristics	of	the	generated	TIFF	
files	are	controlled	by	the	command	line	options	of	TeraConverter.	
	
Format	name	 Description	 Destination	

(folder/file)	
Max	

#channels	 Notes	

TIFF	(series,	2D)1	

A	folder	containing	
a	series	(1+)	of	2D	
TIFF	files	
(grayscale	or	RGB)	

folder	 3	(RGB)	

Compressed	(default)	/	
uncompressed.		
Each	image	slice	is	a	unique	
file.	Access	to	subregions	in	x-
y	inefficient	for	very	large	
slices.	

TIFF	(tiled,	2D)	1	

y-x-z	hierarchy	of	
separate	tiles,	each	
tile	is	a	series	of	
2D	TIFF	files	
(grayscale	or	RGB)	

folder	 3	(RGB)	

Compressed	(default)	/	
uncompressed.		
Efficient	access	to	subregions.		
Potentially	millions	of	files	for	
very	large	images.	

TIFF	(tiled,	3D)	1	

y-x-z	hierarchy	of	
tiles,	each	tile	is	a	
series	of	multipage	
3D	TIFF	files	
(grayscale	or	RGB)	

folder	 3	(RGB)	
Compressed	(default)	/	
uncompressed.		
Efficient	access	to	subregions.	

TIFF	(tiled,	4D)	1	

c-y-x-z	hierarchy	
of	tiles,	each	tile	is	
a	series	of	single-
channel	multipage	
3D	TIFF	files	
(grayscale	only)	

folder	 unlimited	

Compressed	(default)	/	
uncompressed.		
Efficient	access	to	subregions.		
Efficient	access	to	subsets	of	
channels.	

HDF5(BigDataViewer)	

A	HDF5	file	
containing	a	
BigDataViewer	3D	
image	(grayscale	
or	multi-channel)	

file	 unlimited	

Compressed.		
Efficient	access	to	subregions.		
Efficient	access	to	subsets	of	
channels.	

	
whereas	after	step	5	they	are	the	result	of	the	correct	alignment	computation	(step	2)	and	the	
global	optimization	algorithm	(steps	3-5).	

Version	1.4	–	September	2019	

	 13	

HDF5(Imaris	IMS)	

A	HDF5	file	
containing	a	
Imaris	3D	image	
(grayscale	or	
multi-channel)	

file	 unlimited	

Compressed.		
Efficient	access	to	subregions.		
Efficient	access	to	subsets	of	
channels.	
See	section	Processing	Imaris	
datasets	for	details	

Vaa3D	raw	(series,	2D)	

A	folder	containing	
a	series	(1+)	of	2D	
Vaa3D	raw	files	
(grayscale	or	
multi-channel)	

folder	 unlimited	

Uncompressed.		
Each	image	slice	is	a	unique	
file.	Access	to	subregions	in	x-
y	inefficient	for	very	large	
slices.	

Vaa3D	raw	(tiled,	3D)	

y-x-z	hierarchy	of	
tiles,	each	tile	is	a	
series	of	2D	Vaa3D	
raw	files	
(grayscale	or	
multi-channel)	

folder	 unlimited	 Uncompressed.		
Efficient	access	to	subregions.	

Vaa3D	raw	(tiled,	4D)	

c-y-x-z	hierarchy	
of	tiles,	each	tile	is	
a	series	of	3D	
single-channel	
Vaa3D	raw	files	
(grayscale	only)	

folder	 unlimited	

Uncompressed.		
Efficient	access	to	subregions.		
Efficient	access	to	subsets	of	
channels.	

1	If	the	expected	size	of	a	new	file	is	larger	than	4	Gbytes,	the	BigTiff	format	is	used.		
	
1.7	Stitching	2D	images	
	
TeraStitcher	has	been	initially	designed	to	process	3D	images.	It	can	nevertheless	process	2D	
images	too	if	command	line	options	are	set	accordingly	to	the	following	guidelines.	
• In	step	2	of	TeraStitcher	the	search	space	along	D	dimension	must	be	set	to	zero	(option		

--sD=0).	
• If	the	nth	resolution	of	the	stitched	image	should	be	generated	(n>0),	the	flag	–isotropic	

must	be	added	in	the	command	line	of	TeraConverter,	and	a	value	for	voxel	size	vxl_D	in	D	
dimension	(field	D	of	tag	voxel_dims	in	the	xml	import	file)	must	be	specified	that	
satisfies	the	relation:			

vxl_D	≥	n	max(vxl_V,vxl_H)		
where	vxl_V,	and	vxl_H	are	the	sizes	of	the	voxel	in	V	and	D	dimensions,	respectively	(fields	V	
and	H	of	tag	voxel_dims	in	the	xml	import	file).	
	
	
1.8	Support	for	multi-channel	images	
	
There	are	two	types	of	multi-channel	datasets.		
	
The	first	one	is	when	all	channels	of	a	given	tile	of	the	RUI	are	stored	in	the	same	file(s).	
Allowed	formats	are:		

• RGB	TIFFs	(both	sngle	and	multi-page)	with	channels	interleaved	
• HDF5	formats		

It	is	also	assumed	that	all	channels	in	each	file	are	co-registered.	
	
To	perform	stitching	in	this	case,	one	channel	has	to	be	chosen	to	perform	both	the	import	
and	the	alignment	step.	The	channel	must	be	specified	using	letters	‘R’,	‘G’,	‘B’	for	the	first	
three	channels	in	the	command	line	option	--imin_channel.	For	HDF5	formats,	digits	can	

Version	1.4	–	September	2019	

	 14	

be	used	to	specify	the	channel	(digits	in	the	range	0-2	may	also	be	used	in	substitution	of	
letters	‘R’,	‘G’,	‘B’).	To	perform	the	alignment	step,	the	most	informative	channel	should	be	
chosen,	i.e.	the	one	containing	the	structures	most	suited	for	computing	alignments	with	the	
MIP-NCC	algorithm	(see	[1]	for	details).	The	resulting	xml	file	should	be	then	processed	by	
steps	3-5	of	TeraStitcher.	In	steps	3-5	it	is	not	required	to	specify	the	input	channel.	
	
The	TeraConveter	can	then	be	used	to	generate	a	multi-channel	stitched	image,	using	the	
“TIFF	(unstitched,	3D)”	format	as	an	input	format	(see	section	1.6	Stitched	image	generation	
for	details),	and	specifying	as	source	the	xml	file	produced	by	step	5	of	TeraStitcher.		
By	default	TeraConverter	generates	a	stitched	image	containing	all	channels	present	in	the	
source	image.	However,	a	subset	of	channels	to	be	converted	can	be	specified	using	the	option	
--clist,	that	accepts	a	string	of	digits,	each	of	which	identifies	one	channel.	Only	the	first	10	
channels	(using	digits	from	0	to	9)	can	be	specified	with	this	method.	
	
Note	that	TeraConverter	can	generate	RGB	images	only	if	the	source	image	has	up	to	three	
channels.	If	channels	are	more	than	three,	HDF5	based	formats	or	the	“TIFF	(tiled,	4D)”	format	
can	be	used	to	generate	a	multi-channel	output	image.	Nevertheless,	if	the	option	--clist	is	
used	to	specify	that	up	to	three	channels	must	be	generated,	TeraConverter	can	be	still	used	
to	generate	RGB	images	from	RUIs	with	more	than	three	channels.		
	
The	second	case	is	when	each	channel	is	stored	in	different	file(s),	i.e.	channels	are	actually	
separate	datasets.	This	case	is	supported	by	TeraStitcher	providing	that:	

• each	channel	is	stored	in	file(s)	different	from	the	others;	
• the	RUIs	corresponding	to	each	channel	have	exactly	the	same	structure	(i.e.	the	tile	

matrices	have	all	the	same	size	in	each	dimension,	tiles	have	all	the	same	size,	overlaps	
between	adjacent	tiles	are	the	same	for	all	channels,	voxel	size	is	the	same	for	all	
channels);	

• homologous	tiles	of	all	channels	are	co-registered.	
	

To	perform	stitching	in	this	case,	first	all	channels	have	to	be	imported	as	they	were	single-
channel	datasets.	Two	cases,	should	be	distinguished.	The	first	is	when	channels	are	stored	
not	only	in	different	files	but	also	under	different	root	directories	(i.e.	only	files	of	one	channel	
are	under	a	given	directory).	In	this	case,	the	root	directory	in	the	xml	import	file	(attribute	
value	of	tag	stacks_dir)	of	each	channel	is	different	and	the	import	can	be	done	as	usual.	
Then	you	can	proceed	as	explained	below.	Conversely,	if	files	corresponding	to	different	
channels	are	stored	in	the	same	directories,	the	root	directory	in	the	xml	import	file	of	each	
channel	is	the	same	and	a	conflict	arises	on	the	auxiliary	metadata	file	mdata.bin	that	is	
stored	in	the	root	directory	by	default.	In	this	case,	an	additional	tag	in	the	xml	import	file	
must	be	used	to	specify	a	different	metadata	auxiliary	file	name	(and	possibly	path)	for	each	
channel.	This	can	be	achieved	by	specifying	the	command	line	option:	
	

--mdata_bin="path	and	name	of	the	auxiliary	metadata		file"	
	
when	each	channel	is	imported.	For	instance,	if	channels	0,	1	and	2	are	stored	in	different	files,	
but	all	in	the	same	directories	under	a	root	/User/myname/mydataset,	when	importing	
files	corresponding	to	channel	0	the	option:	
	

--mdata_bin=/User/myname/mydataset/mdata_ch0.bin	
	
should	be	added	to	the	command	line.	

Version	1.4	–	September	2019	

	 15	

	
Using	the	–mdata_bin	command	line	option	adds	in	the	generated	xml	import	file	after	the	
tag	stacks_dir	the	line:	
	

<mdata_bin value="path	and	name	of	the	auxiliary	metadata	file" />	
	
With	this	change,	each	channel	can	be	imported	separately	without	conflicts	(a	different	
metadata	auxiliary	file	is	generated	for	each	channel)	and	the	procedure	can	then	proceed	as	
follows.	See	Appendix	C	for	a	complete	example.	
	
After	all	channels	have	been	imported,	one	channel	has	to	be	chosen	to	perform	the	alignment	
step	as	it	were	a	single-channel	dataset.	The	most	informative	channel	should	be	chosen,	i.e.	
the	one	containing	the	structures	most	suited	for	computing	alignments	with	the	MIP-NCC	
algorithm	(see	[1]	for	details).	The	resulting	xml	file	should	be	then	processed	by	steps	3-5	of	
TeraStitcher.		
	
After	these	steps	have	been	completed,	we	have	for	the	chosen	channel	an	xml	file	containing	
the	correct	positions	of	tiles	in	the	3D	matrix	corresponding	to	the	final	image,	and	for	all	
other	channels	the	xml	import	file.	All	these	files	have	to	be	put	in	an	empty	folder.	Note	that	
they	should	be	named	in	such	a	way	that	the	order	with	which	files	are	listed	does	correspond	
to	the	desired	order	of	channels	(i.e.	the	first	listed	xml	file	is	that	generated	by	the	dataset	
corresponding	to	channel	0,	the	second	listed	xml	file	is	that	generated	by	the	dataset	
corresponding	to	channel	1,	and	so	on).	If	path	is	the	complete	path	of	this	folder,	a	new	
import	step	has	to	be	executed	where	the	command	line	options	--volin,			
--volin_plugin	and	--imin_channel	have	the	values:	path,	“MultiVolume”	and	the	
identifier	of	the	channel	chosen	for	alignment	computation,	respectively.	A	new	xml	import	
file	is	generated,	which	has	the	form	reported	in	the	Appendix	C.	Alternatively,	this	xml	
import	file	can	be	generated	with	an	additional	tool.	
	
The	TeraConveter	can	then	be	used	to	generate	a	multi-channel	stitched	image,	using	the	
“TIFF	(unstitched,	3D)”	format	as	an	input	format	(see	section	1.6	Stitched	image	generation	
for	details),	and	specifying	as	source	the	xml	import	file	produced	according	to	the	procedure	
just	described.	Also	in	this	case	all	considerations	about	channels	of	the	output	image	made	
for	the	case	when	channels	are	stored	in	the	same	file(s)	apply.	
	
	
1.9	Processing	Imaris	IMS	datasets	
	
An	input	plugin	named	IMS_HDF5	has	been	added	to	read	image	files	according	to	the	Imaris	
IMS	format.	To	use	the	plugin,	the	corresponding	check	box	must	be	checked	before	
generating	the	project	configuration	files	with	Cmake.	This	requires	that	an	HDF5	static	
library	is	available	and	its	path	is	visible	by	Cmake.	The	tests	have	been	carried	out	using	the	
release	1.8.16	if	the	HDF5	library	(https://support.hdfgroup.org/ftp/HDF5/releases/hdf5-
1.8.16/obtain51816.html).	
	
Currently,	to	stitch	RUI	stored	in	Imaris	IMS	format	an	xml	import	file	must	be	generated.	See	
sections	The	standard	import	step	and	The	import	step	using	an	externally	generated	xml	
import	file	for	alternative	ways	to	generate	this	file.	
	

Version	1.4	–	September	2019	

	 16	

Once	an	xml	import	file	has	been	generated	it	can	be	used	to	run	the	other	steps	of	the	
stitching	process.	In	particular,	for	step	2	(displacements	computation),	the	input	plugin	
IMS_HDF5	has	to	be	specified	with	the	command	line	option	–imin_plugin.	
	
For	generating	a	final	stitched	image	still	using	the	Imaris	IMS	format,	the	TeraConverter	
must	be	used.	The	following	command	line	options	must	be	used:	
	

Command	option	 Description	

--sfmt=”TIFF	(unstitched,	3D)”	

input	image	is		
unstitched:	an	xml	
import	file	with	
actual	tile	positions	
must	be	provided	

--imin_plugin=IMD_HDF5	
input	image	data	is	
stored	in	Imaris	IMS	
files	

--dfmt=”HDF5	(Imaris	IMS)”	
output	multi-
resolution	image	
format		

-s=”complete	path	of	xml	import	file	with	tile	positions”	

xml	import	file	
describing	the	RUI	
including	tile	
positions	to	be	used	
for	stitching	

-d=”complete	path	of	output	file	(.ims	suffix)”	
file	containing	the	
output	stitched	
image	

--mdata_fname=”complete	path	of	ims	file	with	image	metadata”	
	
or	
	

--mdata_fname=null	

any	Imaris	IMS	file	
containing	the	
general	metadata	
characterizing	the	
image	to	be	stitched;	
alternatively	if	‘null’	
is	specified,	default	
metadata	are	stored	
in	the	output	image	

--resolutions=xxxxxxxxx	

Resolutions	to	be	
generated	(optional,	
default	resolution	0	
only).	See	also	
section	
TeraConverter	for	
more	details	

	
Note	that	the	command	line	option	–mdata_fname	must	always	be	specified	when	the	Imaris	
IMS	format	is	specified	for	the	output	image.		
	
The	option	should	specify	the	path	of	a	file	containing	the	image	metadata	when	also	the	input	
RUI	is	in	Imaris	IMS	format.	This	file	is	typically	one	of	the	Imaris	IMS	files	generated	during	
the	acquisition	process.	TeraConverter	extracts	from	this	file	all	attributes	referring	to	general	

Version	1.4	–	September	2019	

	 17	

characteristics	of	the	image	and	add	them	to	the	output	image.	Non-general	attributes	like	the	
image	dimensions	both	physical	and	as	a	matrix,	image	position	in	the	physical	acquisition	
space,	etc.,	if	any,	are	not	transferred	to	the	output	image,	but	they	are	re-computed	for	the	
image	to	be	generated	and	then	added.	
For	the	sake	of	flexibility,	it	is	possible	to	determine	which	attributes	that	must	be	transferred	
from	the	metadata	file	to	the	output	image	by	modifying	the	list	of	attributed	that	must	NOT	
be	transferred	(currently	a	recompilation	of	the	code	is	needed).	
	
Alternatively,	if	the	source	RUI	is	in	any	other	format,	the	option	–mdata_fname	can	be	set	to	
‘null’	to	generate	a	fully	compatible		Imaris	IMS	output	file	with	default	metadata.	
	
	
1.9.1	Stitching	multi-resolution	and	time-series	datasets	
	
A	source	dataset	in	Imaris	IMS	format	may	contain	in	the	same	files	multiple	resolutions	
and/or	multiple	time	points	of	a	time	series.		
	
To	enable	the	reading	of	a	resolution	and	a	time	point	different	from	resolution	0	and	time	
point	0,	the	optional	tags	‘subimage’	has	been	added	to	the	xml	import	file.	It	has	the	form:	
	

<subimage resolution=”n” timepoint=”m” />
	
where	‘n’	and	‘m’	are	integer	values	starting	from	0.	The	fields	‘resolution’	and	‘timepoint’	are	
optional	and	the	default	value	is	0	for	both	fields.	
	
All	fields	in	the	xml	import	file	have	to	be	set	coherently	with	the	specified	resolution	and	
time	point	(including	the	default	ones).	In	particular:	

• the	voxel	sizes	(tag	voxel_dims)	must	have	the	values	corresponding	to	the	specified	
resolution	

• tile	displacements	(fields	ABS_V,	ABS_H,	and	ABS_D	of	tag	Stack)	have	to	be	the	ones	
corresponding	to	the	specified	resolution	and	time	point.		

	
All	steps	of	TeraStitcher	apply	to	the	resolution	and	time	point	specified	in	the	xml	import	file.	
This	implies	that	in	order	to	stitch	an	image	at	a	given	resolution	using	the	displacements	
computed	at	another	resolution,	a	new	xml	import	file	has	to	be	created	with	the	right	voxel	
sizes	and	displacements	(they	can	be	easily	computed	starting	from	the	ratio	between	the	two	
resolutions).	The	same	apply	for	the	stitched	image	generation	using	TeraConverter	(see	the	
warning	below).	
	
Note	that	specifying	a	resolution	and/or	a	time	point	has	effect	only	if	the	source	file	format	is	
a	multi-resolution	format	and/or	can	store	time-series.	Currently	only	the	IMS_HDF5	input	
plugin	supports	these	features.	Other	plugins	ignore	the	the	subimage	tag.	
	
WARNING:		
When	TeraConverter	is	used	to	stitch	resolution	‘n’	of	the	RUI	with	‘n’	greater	than	0	(i.e.	
using	an	xml	import	file	where	the	fields	‘resolution’	is	specified	and	it	is	different	from	0),	the	
resolution	0	of	the	output	image	corresponds	to	resolution	‘n’	of	the	RUI,	resolution	1	of	the	
output	image	corresponds	to	resolution	‘n+1’	of	the	RUI,	and	so	on.	The	metadata	of	the	
output	file	are	set	accordingly.	
	

Version	1.4	–	September	2019	

	 18	

	
1.9.2	Compression	with	dynamically	loaded	filters	
	
The	HDF5	library	has	a	few	internal	compressors	(referred	to	as	“filters”)	that	can	be	used	to	
perform	compression/decompression	of	data.	It	has	also	a	mechanism	to	dynamically	load	
external	compressors	that	can	process	data	both	in	read	and	write	operations.	Filters	must	be	
dynamically	libraries	located	in	a	folder	which	path	is	stored	in	the	environment	variable	
HDF5_PLUGIN_PATH.	Filters	are	uniquely	identified	by	an	integer	in	interval	[0,65535].	A	list	
of	HDF5	registered	filters	can	be	found	at	
https://support.hdfgroup.org/services/contributions.html.	When	data	in	an	HDF5	file	are	
compressed	the	library	automatically	tries	to	load	the	appropriate	filter	from	the	folder	
stored	in	HDF5_PLUGIN_PATH	environment	variable.	Conversely,	the	filter	identifier	together	
with	possible	filter	parameters	have	to	be	passed	to	the	library	to	compress	data	when	a	file	is	
written.	
	
TeraConverter	supports	dynamically	loaded	filters	both	in	reading	and	writing	operations	on	
files	in	IMS	Imaris	format,	providing	that	the	HDF5_PLUGIN_PATH		environment	variable	is	
set	to	the	path	where	the	requested	filter	is	stored.	In	read	operations	the	filter	is	loaded	
automatically	to	decompress	data,	whereas	when	data	have	to	be	compressed	before	write	
them	to	disk	the	filter	has	to	be	explicitly	specified	together	with	possible	filter	parameters.		
	
To	specify	a	filter	to	be	used	in	file	generation,	the	command	line	option:		

--compress_params=ID[:param1:param2:	…]	

where	ID	is	the	unique	identifier	of	the	filter,	and	param1,	param2,	…	are	unsigned	integers	
corresponding	to	the	(optional)	configuration	parameters	accepted	by	the	filter.	
	
	
2	TeraConveter	(source	code	only)	
	
TeraConverter	is	a	command-line	tool	for	converting	terabytes	(and	more)	of	
multidimensional	(3/4/5D)	image	data	from/to	different	formats.		
	
Specifically,	it	can:	
• convert	one	format	(e.g.	TIFF	series)	to	another	(e.g.	Imaris	IMS	file	format)		
• generate	a	multiresolution	pyramid	suited	for	real-time	visualization	with	TeraFly,	

BigDataViewer	and	Andor/Bitplane	tools	
• stitch	multiple	image	stacks	given	their	positions	(this	replaces	the	Merge	step	of	

TeraStitcher)		
• perform	any	of	the	previous	tasks	on	images	being	part	of	a	time	series	
• perform	any	of	the	previous	tasks	on	a	x-y-z	subset	of	the	input	data,	with	one	or	multiple	

CPUs	(for	more	details	about	parallel	execution,	see	ParaConverter)		
	
	
2.1	Command	line	options	
	
--sfmt=<string>
Any	of	the	supported	input	formats	listed	in	the	Supported	file	formats	section.	
	
--dfmt=<string>

Version	1.4	–	September	2019	

	 19	

Any	of	the	supported	output	formats	listed	in	the	Supported	file	formats	section.	
	
-s=<string>
Path	of	source	image	(it	is	the	path	of	a	folder	or	a	file	according	to	the	input	format.		
	
-d=<string>
Path	of	destination	image	(it	is	the	path	of	a	folder	or	a	file,	according	to	the	output	format.		
	
--resolutions=<string>
Resolutions	indices	(layers	l)	of	the	image	pyramid	to	be	produced.	l	must	be	in	[0,10]	and	2^l	
is	the	corresponding	subsampling	factor.	Default	is	0,	that	means	that	only	the	original	
resolution	(subsampling	factor	2^0=1)	will	be	produced.	For	instance:	0123	means	pyramid	
layers	0,	1,	2	and	3	will	be	produced;	25	means	pyramid	layers	2	and	5	will	be	produced;	and	
so	on.	
	
--width=<integer>, --height, --depth
Tiles	dimension	along	x,	y	and	z,	respectively	(for	tiled	output	formats,	only).	
	
--H0=<integer>, --H1, --V0, --V1, --D0, --D1
[H0,H1)	x	[V0,V1)	x	[D0,D1)	define	the	x-y-z	subset	of	the	input	data	to	process.	Note	that	
intervals	are	open	on	the	right.	
	
--libtiff_uncompress
Configure	the	LibTIFF	library	to	not	compress	output	files	(default:	compression	enabled)	
	
--libtiff_bigtiff
Forces	the	creation	of	BigTiff	files	(default:	BigTiff	disabled).		
WARNING:	if	the	expected	size	of	a	new	file	is	larger	than	4	GBytes,	the	BigTiff	format	is	used	
even	if	this	flag	has	not	been	set.	This	rule	applies	to	compressed	files	too,	since	it	is	difficult	
to	predict	if	compression	turns	out	in	an	actual	file	size	lesser	or	equal	than	4	GBytes.	
	
--libtiff_rowsperstrip=<integer>
Configure	the	LibTIFF	library	to	pack	n	rows	per	strip	when	compression	is	enabled	(default:	
1	row	per	strip).	To	have	just	one	strip	per	slice	(i.e.	to	pack	all	the	rows	of	a	slice	in	a	single	
strip),	this	option	must	be	set	to	-1.	
	
--timeseries
Apply	the	conversion	to	all	images	stored	into	the	source	path	(option	–s),	which	must	be	a	
folder	(see	also	section	2.6)	
	
For	other	command	line	options	launch	TeraConverter	with	–h	or	–-help	option	and/or	
additional	information	below.	
	
	
2.2	Supported	file	formats	
	
TeraConverter	accepts	the	following	formats	(in	square	brackets	is	specified	if	the	format	is	
supported	for	both	input	and	output	image	of	for	the	input	image	only).	
	
• TIFF	(3D)	[input]	

Version	1.4	–	September	2019	

	 20	

a	multipage	3D	TIFF	file	(grayscale	or	RGB)	
	

• TIFF	(series,	2D)	[input/output]	
a	folder	containing	a	series	(1+)	of	2D	TIFF	files	(grayscale	or	RGB)	
	

• TIFF	(tiled,	2D)	[input/output]	
y-x-z	hierarchy	of	tiles,	each	tile	is	a	series	of	2D	TIFF	files	(grayscale	or	RGB)	
	

• TIFF	(tiled,	3D)	[input/output]	
y-x-z	hierarchy	of	tiles,	each	tile	is	a	series	of	multipage	3D	TIFF	files	(grayscale	or	RGB)	
	

• TIFF	(tiled,	4D)	[input/output]	
c-y-x-z	hierarchy	of	tiles,	each	tile	is	a	series	of	single-channel	multipage	3D	TIFF	files	
(grayscale	only)	
	

• Vaa3D	raw	[input]	
a	3D	Vaa3D	raw	file	(grayscale	or	multi-channel)	
	

• Vaa3D	raw	(series,	2D)	[input/output]	
a	folder	containing	a	series	(1+)	of	2D	Vaa3D	raw	files	(grayscale	or	multi-channel)	
	

• Vaa3D	raw	(tiled,	2D)	[input/output]	
y-x-z	hierarchy	of	tiles,	each	tile	is	a	series	of	2D	Vaa3D	raw	files	(grayscale	or	multi-
channel)	
	

• Vaa3D	raw	(tiled,	3D)	[input/output]	
y-x-z	hierarchy	of	tiles,	each	tile	is	a	series	of	3D	Vaa3D	raw	files	(grayscale	or	multi-
channel)	
	

• Vaa3D	raw	(tiled,	4D)	[input/output]	
c-y-x-z	hierarchy	of	tiles,	each	tile	is	a	series	of	3D	single-channel	Vaa3D	raw	files	
(grayscale	only)	
	

• HDF5	(BigDataViewer)	[input/output]	
a	HDF5	file	containing	a	BigDataViewer	3D	image	(grayscale	or	multi-channel)	
	

• HDF5	(Imaris	IMS)	[output]	
a	HDF5	file	containing	a	Imaris	3D	image	(grayscale	or	multi-channel)	
	

• TIFF	(unstitched,	3D)	[input]	
a	TeraStitcher	XML	descriptor	pointing	to	a	valid	unstitched	image	(tiles	of	the	
unstitched	image	can	be	stored	in	any	format	accepted	by	TeraStitcher	(see	section	1.1)		
	

Formats:	TIFF	(tiled,	2D),	TIFF	(tiled,	3D),	TIFF	(tiled	4D),	Vaa3D	raw	(tiled,	2D),	Vaa3D	raw	
(tiled,	3D),	and	Vaa3D	raw	(tiled	4D)	are	externally	tiled	formats,	i.e.	the	output	image	is	
partitioned	into	multiple	files,	and	in	each	file	is	stored	a	contiguous	sub-region	of	the	image.	
	
	

Version	1.4	–	September	2019	

	 21	

2.3	Tiled	4D	formats	
	
Among	allowed	output	formats	there	are	“TIFF	(tiled,	4D)”	and	“Vaa3D	raw	(tiled,	4D)”.	
These	formats	provide	a	number	of	advantages	for	multi-channel	datasets:	
• They	are	not	limited	in	the	number	of	channels.		
• Channels	are	represented	as	separate	and	independent	single	channel	images	with	a	valid	

(tiled,	3D)	structure.	If	individual	channels	have	to	be	manipulated	only	files	belonging	to	
those	channels	must	be	accessed.	

• New	channels	can	be	dynamically	added,	providing	that	all	channels	of	the	image	have	the	
same	characteristics	(basically	image	size,	color	depth,	reference	system,	and	voxel	size).		

	
To	exploit	the	latter	feature,	each	channel	must	be	converted	separately	using	the	same	
output	folder	(option	–d=output_directory)	and	adding	the	command	line	option	--ch_dir=,	
with	a	different	string	for	every	channel.	When	all	the	desired	channels	have	been	added,	the	
metadata	files	have	to	be	regenerated	with	the	command:	
	

mdatagenerator –r=output_directory –sfmt=tiled_4D_format –-update
	
where	output_directory	is	the	output	directory	used	to	perform	conversion.	Note	that	if	other	
channels	are	added	at	a	later	time,	the	metadata	can	be	regenerated	with	the	same	command	
repeatedly.	
	
	
2.4	Using	TeraConverter	for	stitched	image	generation		
	
Since	one	of	the	allowed	inputs	is	an	xml	file	specifying	the	alignments	of	an	unstitched	image	
according	to	TeraStitcher	conventions,	TeraConverter	can	be	used	in	place	of	the	last	step	of	
TeraStitcher.	In	other	words,	TeraStitcher	can	be	used	to	import	and	unstitched	image	
(step	1)	and	compute	the	correct	tiles	alignments	(steps:	2-5)	and	then	the	resulting	xml	file	
can	be	given	as	an	input	to	TeraConverter	(“TIFF	(unstitched,	3D)”	input	format)	that	can	
generate	the	corresponding	stitched	image	in	any	of	the	output	formats	it	supports.	This	
introduces	a	great	flexibility	in	the	generation	of	the	stitched	image.		
	
	
2.5	Lossy	compression	
	
When	images	are	very	large	(much	larger	than	1	TByte)	their	manipulation	may	become	
unacceptably	expensive	in	term	of	time	or	space	or	both.	In	this	case,	resorting	to	lossy	
compression	can	be	an	option	to	reduce	the	cost	of	simple	operations	like	visualization	or	
copy.		
	
The	command	line	option:	
	
--rescale=<integer>
	
sets	to	0	the	n	least	significant	bits	of	each	voxel	of	the	output	image,	where	n	is	the	integer	
specified	in	the	option.	This	corresponds	to	map	each	voxel	value	to	values	that	are	multiple	
of	2n.	If	the	image	is	saved	in	a	compressed	format,	this	mapping	may	remarkably	increase	the	
compression	ratio.	
	

Version	1.4	–	September	2019	

	 22	

If	the	output	formats	are	tiled	(e.g.	“TIFF	(tiled,	xD)”	or	“HDF5	(xxx)”),		compression	ratio	may	
by	further	increased	by	combining	the	--rescale	option	adding	the	command	line	option:		
	
--libtiff_rowsperstrip=-1		
	
because	compression	ration	increases	as	long	as	more	rows	are	packed	in	one	strip.	However,	
do	not	use	this	option	if	the	image	is	very	large	in	X-Y	dimensions	and	the	output	format	is	
“TIFF	(series,	2D)”,	because	in	this	case	the	reading	performance	would	dramatically	drop.	
	
	
2.6	Time	series	
	
If	the	flag	--timeseries	has	been	specified,	the	path	of	the	source	must	be	a	folder	
containing	a	series	of	images	corresponding	to	the	timepoints	of	a	time	series.	All	images	of	
the	time	series	must	have	the	same	dimensions,	channels,	color	depth,	etc.	Teraconverter	
applies	the	conversion	to	each	image	in	the	folder	and	generates	as	many	output	images	as	
are	the	timepoints.	
	 	

Version	1.4	–	September	2019	

	 23	

3	ParaTools	
	
ParaTools	are	python	scripts	that	use	an	implementation	of	MPI	(e.g.	OpenMPI,	MPICH,	
proprietary	implementations,	etc.)	and	the	package	mpi4py	
(http://pythonhosted.org/mpi4py/)	to	execute	multiple	instances	of	the	TeraTools	in	
parallel.	See	Appendix	D	for	details	about	the	tools	to	be	installed	and	other	information	on	
how	to	use	ParaTools.	
	
ParaTools	have	been	designed	to	parallelize	the	most	computation	intensive	steps	of	the	
stitching	pipeline,	i.e.	step	2	(alignment	computation)	and	step	6	(tile	fusion	and	generation	of	
the	final	stitched	image).	To	avoid	confusion	we	clarify	that	in	other	documents	we	have	used	
the	term	align	step	to	refer	to	step	2	and	fusion	step	to	refer	to	step	6.	
	
3.1	Parastitcher	
	
Parastitcher	executes	a	pipeline	of	commands	that	launches	multiple	instances	of	TeraStitcher	
in	parallel	performing	each	the	displacement	computation	(step	2)	on	a	portion	of	the	dataset.	
The	script	includes	an	algorithm	for	efficient	partition	of	the	image	to	be	converted	and	the	
needed	synchronization	between	the	serial	and	the	parallel	part	of	the	pipeline.	
	
Parastitcher	can	be	launched	in	several	ways,	depending	on	the	parallel	platform	on	which	it	
is	executed.	On	high-end	workstations	that	have	no	special	scheduler	for	controlling	job	
execution,	Parastitcher	must	be	launched	using	mpirun	or	equivalent	commands.	In	this	
introduction	we	will	use	in	all	example	mpirun.	The	command	to	be	issued	must	have	the	
form:	
	

mpirun -np	num_procs	python
parastitcherX.Y.Z.py -2 --projin=import_xml_file

--projout=displacement_xml_file other_options	
	
where:	

• num_procs	is	the	desired	level	of	parallelism	plus	one,	i.e.	how	many	MPI	processes	are	
launched	(one	of	the	launched	process	is	the	master	and	does	not	perform	any	useful	
work);	

• in	the	script	name	X	is	the	major	version,	Y	is	the	minor	version,	Z	is	the	patch;	
• import_xml_file	is	the	complete	path	of	the	import	xml	file	generated	following	one	of	

the	approaches	discussed	in	section	1.2;	
• displacement_xml_file	is	the	complete	path	of	the	xml	file	containing	the	results	of	the	

displacement	computation	on	the	whole	dataset;	
• other_options	are	any	other	the	command	line	options	that	should	be	passed	to	

TeraStitcher.	
	
Parallel	execution	of	step	2	with	Parastitcher	produces	an	xml	file	with	all	computed	
alignments	(the	same	it	had	been	generated	by	a	sequential	execution	of	step	2),	which	can	be	
given	as	an	input	to	step	3	of	TeraStitcher.		
	
Since	versione	3	of	Parastitcher,	the	script	can	be	used	to	perform	also	step	6	of	the	stitching	
pipeline.	In	this	case	the	script	launches	multiple	instances	of	TeraConverter	and	
transparently	maps	the	command	line	options	of	TeraStitcher	on	those	required	by	

Version	1.4	–	September	2019	

	 24	

TeraConveter	so	as	the	users	deal	with	a	unique	command	line	interface	(the	one	of	
TeraStitcher).	
To	perform	step	6	with	Parastitcher3	The	command	to	be	issued	must	have	the	form:	
	

mpirun -np	num_procs	python
parastitcher3.Y.Z.py -6 --projin=import_xml_file

--volout=fused_image_destination other_options	
	
where:	

• num_procs	is	the	desired	level	of	parallelism	plus	one,	i.e.	how	many	MPI	processes	are	
launched	(one	of	the	launched	process	is	the	master	and	does	not	perform	any	useful	
work);	

• in	the	script	name	X	is	the	major	version,	Y	is	the	minor	version,	Z	is	the	patch;	
• import_xml_file	is	the	complete	path	of	the	import	xml	file	generated	following	one	of	

the	approaches	discussed	in	section	1.2;	
• fused_image_destination	is	the	complete	path	of	the	folder	where	the	fused	image	has	

to	be	saved;	
• other_options	are	any	other	the	command	line	options	that	should	be	passed	to	

perform	the	fusion.		
	
The	other_options	should	be	passed	in	the	same	form	as	it	is	required	by	TeraStitcher.	In	
particular:		

• --volout_plugin	specifies	the	format	to	be	used	for	the	generation	of	the	fused	
image;	possible	values	are:	“TiledXY|2Dseries”	(default	value)	to	generate	a	tiled	
image	in	which	tiles	are	series	of	2D	TIFFs,	and	“TiledXY|3Dseries”	to	generate	a	
tiled	image	in	which	tiles	are	series	of	multipage	TIFFs;		

• --sliceheight,	--slicewidth,	--slicedepth	specify	the	size	of	the	tiles	to	be	
generated	in	V,	H,	and	D	direction,	respectively;	for	all	options	the	default	is	256.	

	
It	is	worth	noting	that	using	Parastitcher3	to	generate	the	final	fused	image	has	some	
limitations	with	respect	to	using	Paraconverter	(see	section	3.2).	In	particular,	Paraconverter	
allows	more	formats	for	the	fused	image.	
	
	
3.1.1	Hints	for	performing	step	2	with	Parastitcher		
	
1. One	parameter	that	can	be	used	to	control	how	the	dataset	is	partitioned	for	parallel	

execution	is	the	value	of	the	command	line	option	--subvoldim.	,	which	default	value	is	
200.	More	specifically,	let	be	D	the	total	number	of	slices	and	subvoldim	the	value	of	
subvoldim	option.	The	dataset	is	initially	partitioned	in	ceil(D/subvoldim)	subregions.	If	
this	number	can	saturate	the	requested	degree	of	parallelism,	i.e.	ceil(D/subvoldim)	>	2	×
(num_procs	-1),	as	many	instances	of	Terastitcher	are	launched	and	scheduled	on	a	FIFO	
bases	onto	num_procs	-1	MPI	processes,	otherwise	the	dataset	is	further	partitioned	at	tile	
level.	This	further	partitioning,	however,	introduces	some	I/O	overhead	and	it	should	be	
avoided	properly	setting	subvoldim	if	D	is	large	enough.		
Just	to	make	an	example	if	D	=	3430	and	the	requested	degree	of	parallelism	is	10,	
subvoldim	should	be	set	to	a	value	not	larger	than	=180	to	avoid	partitioning	at	tile	level.	
Consider	however,	that	the	value	of	subvoldim	should	not	be	set	to	an	artificially	low	value,	
since	the	amount	of	computation	needed	for	alignment	grows	roughly	inversely	
proportionally	with	subvoldim.		

Version	1.4	–	September	2019	

	 25	

	
2. Running	multiple	instances	of	TeraStitcher	in	parallel	might	require	much	more	memory	

than	running	a	single	instance	with	the	same	options.	To	have	an	rough	estimate	of	
memory	requirements	the	following	formula	can	be	used:	

slice_height	×	slice_width	×	4	×	(min(n_tiles_V,n_tiles_H)		+	1)	×	subvoldim	×	(num_procs	–	1)	

where:	
• slice_height	is	the	height	of	a	slice	of	a	tile;	
• slice_width	is	the	width	of	a	slice	of	a	tile:	
• n_tiles_V	is	the	number	of	rows	of	the	tile	matrix	
• n_tiles_H	is	the	number	of	columns	of	the	tile	matrix	

	
	
3.2	Paraconverter	
	
Paraconverter	executes	a	pipeline	of	commands	that	launches	multiple	instances	of	
TeraConverter	in	parallel.	The	script	includes	an	algorithm	for	efficient	partition	of	the	image	
to	be	converted	and	the	needed	synchronization	between	the	serial	and	the	parallel	part	of	
the	pipeline.	
	
Paraconverter	can	be	launched	in	several	ways,	depending	on	the	parallel	platform	on	which	
is	executed.	On	highend	workstations	that	have	no	special	scheduler	for	controlling	job	
execution,	Paraconverter	must	be	launched	using	mpirun	or	equivalent	commands.	In	this	
introduction	we	will	use	in	all	example	mpirun.	Hence	in	all	cases	the	command	to	be	issued	
must	have	the	form:	
	

mpirun -np num_procs python
paraconverterX.Y.Z.py -s=source_volume -d=destination_path

--depth=dd --height=	hh --width=	ww --sfmt=source_format
--dfmt=destination_format --resolutions=rr other_options

	
where:	

• num_procs	is	the	desired	level	of	parallelism	plus	one,	i.e.	how	many	MPI	processes	are	
launched	(one	of	the	launched	process	is	the	master	and	does	not	perform	any	useful	
work);	

• in	the	script	name	X	is	the	major	version,	Y	is	the	minor	version,	Z	is	the	patch;	
• dd,	hh,	ww	are	the	values	used	to	partition	the	image	for	parallel	execution;	
• source_volume	is	the	complete	path	of	the	directory/file	where	the	image	to	be	

converted	is	stored;	
• destination_path	is	the	complete	path	of	the	directory	where	the	converted	image	has	

to	be	stored;	
• source_format	is	one	of	the	following	input	formats	allowed	by	TeraConverter:	“TIFF	

(3D)”,	“TIFF	(series,	2D)”	,	“TIFF	(tiled,	2D)”	,	“TIFF	(tiled,	3D)”	,	“TIFF	(tiled,	4D)”,	
“Vaa3D	raw”,	“Vaa3D	raw	(series,	2D)”,	“Vaa3D	raw	(tiled,	2D)”,	“Vaa3D	raw	(tiled,	
3D”,	“Vaa3D	raw	(tiled,	4D)”,	“TIFF	(unstitched,	3D)”;		

• destination_format	is	one	of	the	following	input	formats	allowed	by	TeraConverter:	
“TIFF	(series,	2D)”	,	“TIFF	(tiled,	2D)”	,	“TIFF	(tiled,	3D)”	,	“TIFF	(tiled,	4D)”,	“Vaa3D	
raw	(series,	2D)”,	“Vaa3D	raw	(tiled,	2D)”,	“Vaa3D	raw	(tiled,	3D”,	“Vaa3D	raw	(tiled,	
4D)”;	

• rr	are	the	requested	resolutions	(according	to	the	convention	used	by	teraconverter);	

Version	1.4	–	September	2019	

	 26	

• other_options	are	any	other	the	command	line	options	that	should	be	passed	to	
TeraConverter,	excluding	option	--V0,	--V1,	--H0,	--H1,	--D0,	--D1,	that	cannot	
be	used	with	Paraconverter	(in	other	words	Paraconverter	cam	be	used	to	convert	the	
whole	image	only).	

	
Note	that	options	--depth,	--height,	and	--width	are	mandatory	when	Paraconverter	is	
used	since	they	are	used	by	the	partitioning	algorithm	(see	below).	See	also	the	comments	at	
the	beginning	of	the	script	for	more	details	and	options.	Note	also	that	not	all	input/output	
formats	allowed	by	TeraConverter	are	allowed	with	Paraconveter.	
	
Paraconverter	parallelizes	execution	according	to	the	master-slave	approach.	The	command	
launches	one	master	process	and	num_procs–1	slave	processes.	The	master	process	creates	
the	directory	hierarchy	where	the	converted	image	has	to	be	stored,	and	then	partitions	the	
image	to	be	converted	into	cuboid	subregions	and	assigns	each	subregion	to	a	slave	process,	
which	runs	a	different	instance	of	TeraConverter	for	each	subregion	to	be	converted.	If	the	
number	of	subregions	is	larger	than	the	number	of	slaves,	Paraconverter	assings	the	first	
num_procs–1	subregions	to	the	slaves,	and	then	assigns	the	remaining	subregions	to	slaves	as	
soon	as	an	instance	of	TeraConverter	terminates	its	task,	until	all	subregions	have	been	
converted.	When	all	subregions	have	been	converted	the	master	generates	the	metadata	
needed	to	manage	the	converted	image,	if	any.	
	
It	must	be	noted	that	the	specified	tile	sizes	(dd,	hh,	ww)	play	the	role	of	upper	bounds	to	the	
actual	tile	sizes	of	the	output	image.	Indeed,	the	specified	sizes	are	used	by	the	partitioning	
algorithm	to	compute	an	optimal	partition	of	the	source	image.	Actual	tile	sizes	of	the	output	
image	are	guaranteed	to	be	not	larger	than	those	specified	by	the	above	options,	and	
reasonably	near	to	them.		
	
3.2.1	Hints	for	using	Paraconverter	
	
1. Running	multiple	instances	of	TeraConverter	in	parallel	might	require	much	more	

memory	than	running	a	single	instance	with	the	same	options.	To	have	an	estimate	of		
memory	requirements	the	script	should	be	launched	with	all	the	parameters	that	have	to	
be	used	for	the	conversion	and	adding	the	option	--info.	In	this	case	the	conversion	
does	not	take	place,	but	information	about	the	partition	that	will	be	used	is	sent	to	
standard	output,	including	an	estimate	memory	occupancy	in	Gbytes	in	the	form:	

Memory needed for num_procs-1 concurrent processes: N GBytes

Memory	occupancy	depends	on	many	factors,	but	as	a	rule	of	thumb,	it	can	be	assumed	
that	it	increases	proportionally	to	the	requested	parallelism	degree	(num_procs-1)	for	
datasets	with	a	number	of	slices	greater	than:	

2	×	(num_procs-1)	×	dd	

where	dd	is	the	value	of	option	--depth	above,	while	the	increase	is	less	than	
proportional	if	the	number	of	slices	smaller.	

	
2. Image	conversion	is	a	highly	I/O	bound	process.	Excluding	high	performance	machines	

with	a	highly	parallel	file	system	where	I/O	throughput	scales	with	the	number	of	
processing	elements	used,	usually	I/O	operations	represent	a	fraction	of	the	whole	
workload	that	cannot	be	parallelized.	Hence,	parallelism	can	be	effectively	exploited	as	

Version	1.4	–	September	2019	

	 27	

long	as	the	throughput	of	the	I/O	system	is	not	saturated.	For	the	Amdahl	law,	when	this	
happen,	increasing	the	degree	of	parallelism	does	not	reduce	further	the	conversion	time.		

	
3. Since	only	externally	tiled	formats	are	allowed	for	the	output	image,	the	user	should	

choose	between	TIFF-based	and	Vaa3D	raw-based	formats.		
TIFF-based	formats	can	be	compressed	(is	the	default)	which	means	that	conversion	
requires	more	computation,	but	the	output	image	is	smaller	(a	compression	factor	of	4	has	
been	observed	for	images	with	large	empty	regions)	and	more	parallelism	can	be	
exploited	(10x	speedups	have	been	observed	with	SATA	disks).	Conversely,	Vaa3D	raw-
based	formats	require	more	space	on	disks	and	a	limited	degree	of	parallelism	can	be	
effectively	exploited	(2-3x	speedups	have	been	observed	on	the	same	I/O	subsystem).	
When	all	exploitable	parallelism	is	used,	the	total	completion	time	of	the	conversion	of	the	
two	output	formats	is	comparable.	
These	considerations	suggest	that	TIFF-based	format	could	be	preferable,	especially	if	
images	have	large	empty	sub-regions.		

	
4. For	images	with	thousand	of	planes	in	Z,	tiled	2D	output	formats	should	be	avoided	to	

limit	the	number	of	files	generated	by	the	conversion.		
	
5. For	images	with	more	than	three	channels,	the	format	“TIFF	(tiled	3D)”	cannot	be	used,	

unless	channels	are	converted	separately.	In	this	case,	the	format	“TIFF	(tiled,	4D)”	can	be	
used	if	a	TIFF-based	format	is	preferred.	This	can	be	done	in	two	ways:	
• all	channels	are	converted	together	simply	specifying	“TIFF	(tiled,	4D)”	as	output	

format	
• one	channel	at	the	time	is	converted,	and	the	image	generated	by	each	conversion	is	

incrementally	added	in	order	to	have	a	complete	TIFF	(tiled,	4D)	image	at	the	end	of	
the	process;	to	follow	this	alternative	the	option	--ch_dir=channel_folder_name	
must	be	specified	at	each	conversion,	using	a	different	name	for	every	channel	and	
specifying	for	all	channels	the	same	output	folder	(option	–d=output_directory);	when	
all	desired	channels	have	been	added,	the	metadata	have	to	regenerated	(see	
TeraConverter	documentation	for	more	details).	

	
	
	 	

Version	1.4	–	September	2019	

	 28	

4	Importing	3D	tiled	RUIs	(source	code	only)	
	
TeraStitcher	has	been	initially	designed	to	stitch	RUIs	consisting	of	overlapping	tiles	arranged	
according	to	a	2D	regular	matrix	along	X-Y	dimensions.	Nevertheless,	there	are	acquisition	
systems	that	generate	RUIs	consisting	of	overlapping	tiles	arranged	according	to	a	3D	regular	
matrix.	
	
A	new	experimental	tool	has	been	developed	to	deal	with	stitching	these	3D	tiled	RUIs	
referred	to	in	the	following	as	TeraStitcher3D.	The	tool	is	still	under	development,	but	it	is	
possible	already	execute	the	whole	pipeline	needed	to	stitch	a	3D	tiled	RUIs	using	a	command	
line	tool	named	TeraStitcher2	(not	documented	yet).	
	
A	critical	step	of	the	TeraStitcher3D	stitching	pipeline	is	the	import	step,	which	relies	on	the	
ability	to	use	externally	generated	import	xml	files	to	cope	with	the	much	more	complex	
structure	of	3D	tiled	RUI.		
	
Before	providing	further	details	on	how	to	make	available	to	the	tool	the	information	it	needs	
to	import	the	RUI,	we	introduce	some	terminology	and	conventions.	
	
	
4.1	Terminology	and	conventions	
	
A	3D	image	stack	is	a	series	of	equally	sized	2D	images	(planes)	that	form	a	3D	matrix	of	voxels.	
Stacks	are	assumed	to	be	partially	overlapped	tiles	of	a	larger	3D	image,	arranged	according	to	
a	regular	grid.	The	tile	grid	can	be	either	bi-dimensional	(i.e.	tiles	are	arranged	according	to	a	
2D	matrix	and	their	positions	are	identified	by	two	indices),	or	tri-dimensional	(i.e.	 tiles	are	
arranged	according	to	a	3D	matrix	and	their	positions	are	identified	by	three	indices).	
	
As	explained	in	section	The	reference	system,	we	assume	that	the	three	dimensions	of	a	stack	
are	referred	to	as	vertical	(V),	horizontal	(H),	and	depth	(D),	where	V	is	the	vertical	dimension	
of	a	plane	viewed	as	a	matrix,	H	is	the	horizontal	dimension	of	a	plane	viewed	as	a	matrix,	and	
D	is	the	dimension	perpendicular	to	the	planes.	Note	that	this	convention	is	related	to	the	actual	
orientation	of	the	image	planes	and	not	to	the	physical	coordinates	of	the	acquisition	system.		
	
A	stack	(or	tile)	may	physically	consist	of:	
a) a	series	of	files	storing	one	2D	image	each	
b) multiple	files	storing	one	3D	substack	of	the	stack	each	
c) a	single	file	storing	the	whole	3D	stack.	
	
In	case	the	tile	grid	is	a	3D	matrix,	the	set	of	all	tiles	corresponding	to	a	given	position	along	D	
is	referred	to	as	a	layer.	Note	that	a	layer	is	a	2D	matrix	of	partially	overlapped	tiles.	
	
	
4.2	Writing	a	.ini	file	describing	the	RUI	configuration	
	
A	tiled	RUI	(both	2D	and	3D)	can	be	imported	using	the	python	scripts	mentioned	in	section	
The	import	step	using	an	externally	generated	xml	import	file	plus	the	python	script	
terastitcher3D.py	which	is	a	driver	that	executes	the	stitching	pipeline	automatically.	
	

Version	1.4	–	September	2019	

	 29	

All	these	scripts	read	the	RUI	metadata	from	a	text	file	written	according	to	the	following	
rules:	
• lines	starting	with	the	character	‘#’	are	comments	
• lines	that	are	not	comments	contain	a	key	or	a	section	header	
• a	key	(or	a	property)	consists	of	a	name	(case	sensitive)	and	a	value,	delimited	by	the	symbol	

‘=’,	e.g.	keyname	=	value;	a	key	can	also	have	multiple	values,	separated	by	a	space	or	a	tab,	
e.g.	keyname	=	value1	value2	...			

• a	 section	header	 is	 a	 name	 (case	 sensitive)	 delimited	by	 square	brakets	 and	preceeds	 a	
group	of	keys	associated	with	that	section.	

	
The	following	sections	and	keys	are	mandatory:	
• section	[format]	has	keys:		

• tiling:	can	assume	values	'2D'	or	'3D';	'2D'	means	that	tiles	are	organized	in	a	2D	matrix,	
'3D'	means	that	tiles	are	organized	in	a	3D	matrix	

• filetype:	can	assume	values	'slice',	'block'	or	'stack';	'slice'	means	that	stacks	are	stored	
as	series	of	2D	image	files,	'block'	means	that	stacks	are	stored	as	one	or	more	3D	image	
files,	 'stack'	means	 that	 stacks	are	 stored	as	one	 single	3D	 image	 file	 (the	 case	when	
multiple	stacks	are	stored	in	a	same	single	file	is	included	in	this	case)	

• sparse:	must	assume	the	fixed	value	‘false’	(for	future	use)	
• section	[reference	system]	has	keys:		

• vertical:	can	assume	values	‘X’,	 ‘Y’,	or	 ‘Z’,	possibly	preceded	by	the	symbol	 ‘-‘	(minus);	
specifies	which	element	of	the	triplets	specifying	spatial	properties	(X,	Y	or	Z)	maps	to	
dimension	V;	if	the	symbol	‘-‘	is	not	present,	spatial	coordinates	(see	origin	and	spacing	
keys	 description	 below)	 increase	with	 tile	matrix	 indices	 (see	 stack	 key	 description	
below),	otherwise	spatial	coordinates	decrease	with	tile	matrix	indices	

• horizontal:	can	assume	values	‘X’,	‘Y’,	or	‘Z’,	possibly	preceded	by	the	symbol	‘-‘	(minus);	
specifies	which	element	of	the	triplets	specifying	spatial	properties	map	to	dimension	H;	
if	 the	 symbol	 ‘-‘	 is	 not	 present,	 spatial	 coordinates	 (see	 origin	 and	 spacing	 keys	
description	below)	increase	with	tile	matrix	indices	(see	stack	key	description	below),	
otherwise	spatial	coordinates	decrease	with	tile	matrix	indices	

• depth:	 can	 assume	 values	 ‘X’,	 ‘Y’,	 or	 ‘Z’,	 possibly	 preceded	by	 the	 symbol	 ‘-‘	 (minus);	
specifies	which	element	of	the	triplets	specifying	spatial	properties	map	to	dimension	D;	
if	 the	 symbol	 ‘-‘	 is	 not	 present,	 spatial	 coordinates	 (see	 origin	 and	 spacing	 keys	
description	below)	increase	with	tile	matrix	indices	(see	stack	key	description	below),	
otherwise	spatial	coordinates	decrease	with	tile	matrix	indices	

• section	[acquisition	data]	has	keys:		
• origin:	 three	real	numbers	specifying	the	spatial	coordinates	 in	mm	of	a	well	defined	

voxel	(e.g.	the	up,	left,	top	corner	of	the	the	image	cuboid)	in	the	physical	space	of	the	
acquisition	system;	these	coordinates	can	be	set	to	(0,	0,	0)	if	they	are	not	relevant	

• voxel:	three	real	numbers	specifying	the	voxel	size	in	um	
• spacing:	three	real	numbers	specifying	the	offsets	in	um	between	adjacent	tiles	in	the	

tile	matrix;	if	the	tile	matrix	is	2D	the	offset	of	the	dimension	associated	to	D	(i.e.	the	one	
specified	by	attribute	'ref_sys')	must	be	0	

• channels:	number	of	channels	
• colordepth:	number	of	bits	per	channel	

• section	[grid]	has	keys:		
• rootdir:	root	directory	where	RUI	is	stored	

Version	1.4	–	September	2019	

	 30	

• dims:	three	real	numbers	specifying	the	dimensions	of	the	tile	matrix	(how	many	tiles	in	
each	dimension);	if	it	is	a	2D	matrix	the	value	of	the	dimension	associated	do	D	(i.e.	the	
one	specified	by	attribute	'ref_sys')	must	be	1	

• stack:	this	is	a	muti-value	key	providing	all	the	needed	information	concerning	a	single	
tile;	the	first	value	is	the	relative	path	(with	respect	to	the	value	of	the	key	rootdir	above)	
of	the	directory	where	all	data	belonging	to	the	tile	is	stored;	the	second,	third	and	fourth	
values	are	the	indices	X,	Y	and	Z	of	the	tile	in	the	tile	matrix;	the	fifth	value	is	a	regular	
expression	identifying	all	and	only	the	names	of	the	file	in	the	directory	of	the	tile	that	
contain	planes	of	that	tile;	the	sixth	value	is	used	only	if	more	tiles	are	stored	in	the	same	
physical	file	(e.g.	in	the	.czi	file	format)	and	it	is	used	to	identify	the	sub-image	in	the	file	
containing	the	data	of	that	tile;	in	the	.ini	file	there	must	be	as	many	stack	keys	as	are	the	
tiles	in	the	tile	matrix	(i.e.	the	result	of	the	product	of	the	three	values	of	the	key	dims).	

	
All	triplets	related	to	a	spatial	property	(e.g.	origin,	voxel,	spacing,	dims,	stack	indices)	refer	to	
dimensions	X,	Y,	Z,	respectively.	Their	mapping	to	V,	H,	D	is	specified	by	keys	vertical,	
horizontal,	and	depth.	
	
	
4.3	Constraints	on	RUI	configuration	
	
The	procedure	designed	to	import	3D	tiled	RUIs	makes	a	few	assumptions	that	must	be	
satisfied	by	the	acquisition	system.	They	are:	
• All	tiles	in	the	same	layer	must	have	the	same	number	of	planes	
• Data	 (files)	 corresponding	 to	 one	 tile	 must	 be	 all	 stored	 in	 the	 same	 folder;	 if	 data	

corresponding	to	different	tiles	are	stored	in	different	files	in	the	same	folder,	the	names	of	
the	files	corresponding	to	a	given	tile	should	be	distinguishable	by	others	files	in	that	folder	
using	a	regular	expression		

• In	 each	dimension,	 spacing	 among	 tiles	 imposed	by	 the	 acquisition	 system	 (i.e.	 nominal	
offsets	between	adjacent	tiles)	must	be	the	all	same		

	
	
5.	Stitching	3D	tiled	RUIs	(source	code	only)	
	
An	experimental	tool	names	TeraStitcher2	is	under	development	to	enable	stitching	of	
datasets	organized	as	a	3D	matrix	of	tiles.	The	tool	has	been	designed	to	deal	with	datasets	
generated	by	acquisition	systems	that	scan	a	layer	at	the	time	of	the	sample,	typically	by	
physically	slicing	the	sample.	
	
<work	in	progress:	documentation	to	developed>	
	 	

Version	1.4	–	September	2019	

	 31	

Appendix	
	
A. Using	CUDA	implementation	of	MIP-NCC	alignment	algorithm	
	
From	version	1.11	of	TeraStitcher,	a	CUDA	implementation	of	the	MIP-NCC	alignment	
algorithm	has	been	included	in	the	distribution.	In	order	to	execute	the	MIP-NCC	alignment	
algorithm	on	NVIDIA	accelerators	set	the	environment	variable:		

USECUDA_X_NCC=1	
Use	nvprof	to	check	if	the	GPU	is	actually	used	by	TeraStitcher.	
	
Before	enabling	the	execution	of	CUDA	code,	a	check	should	be	done	about	compatibility	of	
the	GPU	device	and	its	driver	with	the	Toolkit	used	to	generate	the	TeraStitcher	binaries.	
TeraStitcher	has	been	generated	using	NVIDIA	CUDA	Toolkit	7.5	and	Visual	Studio	2013	
Community.		
	
In	order	to	check	GPU	device	and	driver	compatibility,	right-click	on	desktop,	select	NVIDIA	
configuration	panel.	After	the	panel	opens,	go	to	help->system	information.	In	the	Display	tab	
you	find	which	is	the	GPU	device	and	its	driver.	Check	if	they	are	compatible	with	NVIDIA	
CUDA	Toolkit	7.5.	If	the	device	is	compatible,	but	the	driver	not,	download	and	install	the	
latest	driver	for	your	device	at	http://www.nvidia.it/Download/index.aspx?lang=en.		
	
	
B. Requirements	for	running	the	LQP	global	optimization	algorithm	

	
To	run	the	LQP	algorithm,	a	python	2	interpreter	must	be	available	and	standard	packages	
numpy	(http://www.numpy.org)	and	scipy	(https://www.scipy.org)	installed.	
	
Moreover,	the	python	script	LQP_HE.py	(which	is	separately	provided)	must	be	placed	
somewhere	and	the	environment	variable	__LQP_PATH__	must	be	set	to	the	path	where	the	
script	has	been	placed.		
	
For	instance,	under	Linux	or	Mac	OS	X,	assuming	that	the	script	is	placed	in	folder:	
	

/Users/johndoe/mypyhthonscripts
	
to	run	LQP	algorithm	on	file	xml_displthres.xml,	containing	the	computed	alignments	between	
tiles	with	their	reliabilities,	the	commands	should	be	issued:	
	

export __LQP_PATH__=/Users/johndoe/mypyhthonscripts
terastitcher -5 --projin=xml_displthres.xml --algorithm=LQP

	
Under	Windows,	assuming	that	the	script	is	placed	in	folder:	
	

C:\Users\johndoe\mypyhthonscripts
	
to	run	LQP	algorithm	issue	the	commands:	
	

set __LQP_PATH__=C:\Users\johndoe\mypyhthonscripts
terastitcher -5 --projin= xml_displthres.xml --algorithm=LQP

	

Version	1.4	–	September	2019	

	 32	

	
C. Xml	import	file	for	datasets	storing	channels	in	separate	files	

	
To	process	multi-channel	RUIs	in	which	channels	are	stored	in	separate	files,	first	all	
channels	must	be	imported	separately.		
	
If	files	of	different	channels	are	under	the	same	root	directory,	the	xml	import	files	of	all	
channels	must	use	the	mdata_bin	tag	according	to	the	following	example:		
	
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE TeraStitcher SYSTEM "TeraStitcher.DTD">
<TeraStitcher volume_format="TiledXY|2Dseries" input_plugin="tiff2D">
 <stacks_dir value="path_of	folder_where_the_xml_files_of_all_channels_are_stored" />
 <mdata_bin value="path_and_name_of_the_	metadata_auxiliary_file" />
 <voxel_dims V="V_size" H="H_size " D="D_size " />
 <origin V="V_orig_coord" H="H_orig_coord " D="D_orig_coord " />
 <mechanical_displacements V="V_mech_displ" H="	H_mech_displ " />
 <dimensions stack_rows="#rows" stack_columns="#cols" stack_slices="#slices" />
 <STACKS>

 … attributes	and	displacements	of	stacks	…	

 </STACKS>
</TeraStitcher>

	
After	import,	one	of	them	should	be	used	to	compute	the	correct	tile	positions	(see	section	
1.8	for	details),	then	a	xml	file	with	the	following	structure	must	be	used	to	perform	the	
merge	step	and	generate	a	multi-channel	stitched	image.	
	
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE TeraStitcher SYSTEM "TeraStitcher.DTD">
<TeraStitcher volume_format="MultiVolume" input_plugin="MultiVolume">
 <subvolumes_dir value="path_of	folder_where_the_xml_files_of_all_channels_are_stored" />
 <ref_sys ref1="axis_V" ref2="	axis_H" ref3="	axis_D" />
 <voxel_dims V="voxel_size_V" H="	voxel_size_H " D="	voxel_size_D" />
 <origin V="origin_V" H="	origin_H" D="	origin_D" />
 <mechanical_displacements V="-1" H="-1" />
 <dimensions stack_rows="-1" stack_columns="-1" stack_slices="-1" />
 <SUBVOLUMES N_SUBVOLUMES="#channels" ENABLED_SUBVOLUME="main_channel" ALIGNED="false">
 <Subvolume xml_fname="path_and_name_of_xml_file_of_main_channel" />
 <Subvolume xml_fname="path_and_name_of_xml_file_of_other_channel" />
 . . .	
 </SUBVOLUMES>
</TeraStitcher>

	
where	main_channel	(value	of	attribute	ENABLED_SUBVOLUME)	is	the	digit	identifying	the	
channel	chosen	to	compute	the	correct	tile	positions	that	are	applied	to	al	channels.	
	
This	xml	file	can	be	generated	by	an	external	tool	or	by	TeraStitcher	following	the	
procedure	described	in	section	1.8.	Note	that:	

• In	tag	mechanical_displacemets	the	values	of	attributes	V	and	H	are	not	used	
and	they	should	be	set	to	-1;	

• In	tag	dimensions	the	values	of	attributes	stack_rows,	stack_columns	and	
stack_slices	are	not	used	and	they	should	be	set	to	-1;	

• In	tag	SUBVOLUMES:	attribute	N_SUBVOLUMES	is	the	numer	of	channels,	attribute	
ENABLED_SUBVOLUME	is	the	identifier	of	the	channel	whose	tile	positions	have	

Version	1.4	–	September	2019	

	 33	

been	computed	and	are	used	for	all	other	channels,	and	ALIGNE	is	not	currently	
used	and	it	should	be	set	to	false.	

	
	
D. Using	ParaTools		
	
To	use	Parastitcher	and	Paraconverter	on	the	following	tools	have	to	be	installed:	

• MPI;	

• Python	2;	

• mpi4py	package	installed	(install	MPI	first).	

• The	following	executables	have	to	be	installed	:	

- terastitcher	(at	least	version	1.10)	

- mergedisplacements	

- teraconverter		

- mdatagenerator	

On	Linux	and	MacOS	platforms	Open	MPI	has	been	tested.		

On	Windows	platforms	Microsoft	MPI	(version	8.1)	has	been	tested.	Since	Microsoft	MPI	uses	
mpiexec	instead	of	mpirun	to	launch	multiple	MPI	processes,	substitute	mpiexec	to	mpirun	in	
examples	given	in	section	3.	
All	Python	scripts	can	be	easily	adapted	to	the	actual	platform	where	they	are	executed	and	to	
specific	needs	.	Here	we	provide	some	additional	information	useful	in	this	respect.		
	

1. The	scripts	needs	to	know	where	the	executables	of	TeraStitcher	and	TeraConverter	
are	located.	For	this	reason	at	the	beginning	of	the	script	there	is	a	global	variable	
named	prefix	that	control	where	the	executables	are	searched.	If	prefix	is	set	to	
the	empty	string	the	folder	where	the	executables	are	stored	needs	to	be	in	the	PATH	
environment	variable.	Conversely,	prefix	must	be	set	to	the	complete	path	of	the	
foder	where	the	executable	are	stores	(‘./’	if	executables	are	in	the	current	folder).			

2. The	scripts	generate	a	rich	output	including	all	the	commands	issued	to	launch	
instances	of	TeraStitcher	or	TeraConverter.	It	is	convenient	redirect	this	output	to	text	
file	for	later	verification.	In	particular	the	output	reports	detailed	information	about	
execution	times	of	single	commands	and	of	whole	execution.	

3. Script	Paraconverter3.X.X.py	has	the	global	variable	debug_level	to	enable	
additional	output	information.	In	particular,	it	saves	in	text	files	named	
output_XX.out,	and	located	in	the	current	folder,	the	output	of	all	commands	
issued.	

4. Script	Paraconverter3.X.X.py	has	a	PARAMETERS	section	where	the	values	of	
parameters	controlling	some	default	values	can	be	changed	according	to	needs.	

	
	

Version	1.4	–	September	2019	

	 34	

E. Using	the	Bioformats2D	and	Bioformats3D	plugins	
	
To	use	the	plugins	relying	on	the	Bio-Formats	library	the	following	tools	have	to	be	installed:	

• Java	Runtime	Ennvironment	
• Java	Development	Kit	
• Bio-Formats	library	(file	bioformats_package.jar)	

Both	plugins	are	input	plugins,	i.e.	they	can	be	used	to	read	images,	but	not	to	write	them.		
The	plugins	has	been	tested	on	Windows,	Linux	and	Mac	OS	X	with	release	5.0.3	of	the	Bio-
Formats	library	(download	at:	https://downloads.openmicroscopy.org/bio-formats/5.0.3/).	
Depending	of	the	Java	version	installed	in	your	machine,	latest	versions	of	the	Bio-Formats	
library	may	also	be	used.	
The	environment	variable	__BIOFORMATS_PATH__	must	be	set	to	the	complete	path	
<bioformats_path>	where	the	bioformats-package.jar	file	is	stored.		

On	Linux	and	Mac	OS	X:	

export __BIOFORMATS_PATH__=<bioformats_path>	

On	Windows:	

set __BIOFORMATS_PATH__=<bioformats_path>	

N.B.	<bioformats_path>	must	specify	only	the	path	where	file	bioformats-package.jar	
is	stored.	It	should	not	contain	the	file	name	of	the	.jar	file.	
	
F. Stitching	multi-channel	images	when	channels	in	the	RUI	are	stored	in	separate	files.	(This	

procedure	is	deprecated:	a	much	simpler	procedure	is	described	in	section	1.8	and	
Appendix	C)	

	
There	are	two	cases:		

a) A	separate	stitched	monochromatic	image	has	to	be	generated	for	each	channel,	with	
the	constraint	that	co-registration	between	homologous	tiles	must	be	maintained	after	
stitching	(implying	that	the	stitched	images	of	all	channels	have	the	same	size	in	all	
dimensions).		

b) All,	or	a	subset,	of	channels	have	to	be	stored	in	a	single	multi-channel	image	(e.g.	using	
RGB	TIFF,	HDF5	formats,	etc.).	

	
Case	a)	
Perform	the	following	steps:	

1. Chose	the	most	suited	channel	for	alignment	computation	(see	section	1.8).	
2. Execute	steps	1-5	on	this	channel	(using	option	--imin_channel	in	steps	1	amd	2).	This	

can	be	done	also	using	the	GUI	of	TeraStitcher	(steps	“Import”	and	“Align”).	Assuming	
without	loss	of	generality	that	this	channel	is	channel	0,	let	xml_merging.xml	be	the	file	
so	generated.	For	the	sake	of	clarity	rename	it	as	xml_merging_CH0.xml.	

3. Execute	step	1	on	all	channels	(or	generate	in	any	way	the	corresponding	xml	import	file,	
see	section	1.2).	For	the	sake	of	clarity,	let	these	files	have	names	
xml_import_CH1.xml,	xml_import_CH2.xml,	etc.	

Version	1.4	–	September	2019	

	 35	

4. From	each	file	obtained	at	step	3	generate	the	xml	files	xml_merging_CH1.xml,	
xml_merging_CH2.xml,	etc.,	that	are	identical,	except	for	attributes	ABS_V,	ABS_H,	
and	ABS_D	that	must	have	the	same	values	of	xml_merging_CH0.xml	in	
correspondence	of	homologous	tiles	(i.e.	in	Stack	tags	with	the	same	values	of	ROW,	COL	
attributes).	

5. For	every	channel,	run	the	command	line	version	of	TeraConverter	(see	section	2):	

• 	using	as	input	format	“TIFF	(unstitched,	3D)”	(command	line	option	--sfmt);	

• specifying	as	source	the	path	of	the	xml	files	xml_merging_CH0.xml,	
xml_merging_CH1.xml,	xml_merging_CH2.xml,	etc.	(command	line	option	-s);	

• specifying	the	path	of	a	different	directory	or	file	name	as	a	destination	(command	line	
option	-d).		

WARNING:	before	processing	any	channel	with	TeraConverter,	the	mdata.bin	file	
in	the	directories	specified	at	tag	stacks_dir	in	the	above	mentioned	xml	files	
must	be	deleted.	

	
Case	b)	
Perform	the	following	steps:	

1. Chose	the	most	suited	channel	for	alignment	computation	(see	section	1.8).	
2. Execute	steps	1-5	on	this	channel	(using	option	--imin_channel	in	steps	1	amd	2).	This	

can	be	done	also	using	the	GUI	of	TeraStitcher	(steps	“Import”	and	“Align”).	Assuming	
without	loss	of	generality	that	this	channel	is	channel	0,	let	xml_merging.xml	be	the	file	
so	generated.	For	the	sake	of	clarity	rename	it	as	xml_merging_CH0.xml.	

3. Execute	step	1	on	all	channels	(or	generate	in	any	way	the	corresponding	xml	import	file,	
see	section	1.2).	For	the	sake	of	clarity,	let	these	files	have	names	
xml_import_CH1.xml,	xml_import_CH2.xml,	etc.	

4. From	each	file	obtained	at	step	3	generate	the	xml	files	xml_merging_CH1.xml,	
xml_merging_CH2.xml,	etc.,	that	are	identical,	except	for	attributes	ABS_V,	ABS_H,	
and	ABS_D	that	must	have	the	same	values	of	xml_merging_CH0.xml	in	
correspondence	of	homologous	tiles	(i.e.	in	Stack	tags	with	the	same	values	of	ROW,	COL	
attributes).	

5. For	every	channel	run	the	command	line	version	of	TeraConverter	(see	section	2):	

• using	as	input	format	“TIFF	(unstitched,	3D)”	(command	line	option	--sfmt);	

• specifying	as	source	the	path	of	the	xml	files	xml_merging_CH0.xml,	
xml_merging_CH1.xml,	xml_merging_CH2.xml,	etc.	(command	line	option	-s);	

• using	as	output	format	“TIFF	(tiled,	4D)”;	

• specifying	always	the	same	directory	as	a	destination	(command	line	option	-d);	

• adding	the	command	line	option	--ch_dir	with	a	different	string	for	each	channel	(it	
is	a	good	practice	to	use	the	same	convention	used	for	the	names	of	the	xml	files,	for	
instance	something	like	--ch_dir=CH0).	See	also	section	2.3	for	further	details	on	
this	procedure.		

Version	1.4	–	September	2019	

	 36	

WARNING:	before	processing	any	channel	with	TeraConverter,	the	mdata.bin	file	
in	the	directories	specified	at	tag	stacks_dir	in	the	above	mentioned	xml	files	
must	be	deleted.	

6. After	all	channels	have	been	processed,	run	the	command:		
mdatagenerator –r=output_directory –sfmt=”TIFF (tiled, 4D)” –-update

where	output_directory	is	the	same	directory	specified	as	a	destination	at	step	4.	

7. Run	again	the	command	line	version	of	TeraConverter:		

• using	as	input	format	“TIFF	(tiled,	4D)”;	

• specifying	as	a	source	the	same	directory	specified	as	a	destination	at	step	4.		

All	other	options	can	be	normally	used	to	control	the	generation	of	the	final	multi-channel	
image	(format,	resolutions,	tiling,	etc.).		

	
Note	that	in	case	b)	the	whole	dataset	has	to	be	read	and	written	one	more	time.	This	can	be	
very	time	consuming	for	large	datasets,	but	it	is	the	only	way	currently	available	to	perform	
this	task	with	TeraTools.	
	
As	a	final	comment	we	note	that	if	the	constraint	that	channels	must	be	stitched	without	
preserving	the	co-registration	between	homologous	tiles	can	be	released,	the	stitching	
problem	becomes	trivial	since	each	channel	can	be	processed	independently	as	usual.	
Nevertheless,	the	WARNING	highlighted	above	still	holds:	if	the	directory	specified	at	tag	
stacks_dir	in	the	xml	files	is	the	same	for	all	channels,	before	processing	any	channel,	file	
mdata.bin	present	in	that	directory	must	be	deleted.		
	
	

