Permalink
Cannot retrieve contributors at this time
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
866 lines (756 sloc)
32.4 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// Copyright 2019 The Abseil Authors. | |
// | |
// Licensed under the Apache License, Version 2.0 (the "License"); | |
// you may not use this file except in compliance with the License. | |
// You may obtain a copy of the License at | |
// | |
// https://www.apache.org/licenses/LICENSE-2.0 | |
// | |
// Unless required by applicable law or agreed to in writing, software | |
// distributed under the License is distributed on an "AS IS" BASIS, | |
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
// See the License for the specific language governing permissions and | |
// limitations under the License. | |
// | |
// ----------------------------------------------------------------------------- | |
// File: inlined_vector.h | |
// ----------------------------------------------------------------------------- | |
// | |
// This header file contains the declaration and definition of an "inlined | |
// vector" which behaves in an equivalent fashion to a `std::vector`, except | |
// that storage for small sequences of the vector are provided inline without | |
// requiring any heap allocation. | |
// | |
// An `absl::InlinedVector<T, N>` specifies the default capacity `N` as one of | |
// its template parameters. Instances where `size() <= N` hold contained | |
// elements in inline space. Typically `N` is very small so that sequences that | |
// are expected to be short do not require allocations. | |
// | |
// An `absl::InlinedVector` does not usually require a specific allocator. If | |
// the inlined vector grows beyond its initial constraints, it will need to | |
// allocate (as any normal `std::vector` would). This is usually performed with | |
// the default allocator (defined as `std::allocator<T>`). Optionally, a custom | |
// allocator type may be specified as `A` in `absl::InlinedVector<T, N, A>`. | |
#ifndef ABSL_CONTAINER_INLINED_VECTOR_H_ | |
#define ABSL_CONTAINER_INLINED_VECTOR_H_ | |
#include <algorithm> | |
#include <cstddef> | |
#include <cstdlib> | |
#include <cstring> | |
#include <initializer_list> | |
#include <iterator> | |
#include <memory> | |
#include <type_traits> | |
#include <utility> | |
#include "absl/algorithm/algorithm.h" | |
#include "absl/base/internal/throw_delegate.h" | |
#include "absl/base/macros.h" | |
#include "absl/base/optimization.h" | |
#include "absl/base/port.h" | |
#include "absl/container/internal/inlined_vector.h" | |
#include "absl/memory/memory.h" | |
namespace absl { | |
ABSL_NAMESPACE_BEGIN | |
// ----------------------------------------------------------------------------- | |
// InlinedVector | |
// ----------------------------------------------------------------------------- | |
// | |
// An `absl::InlinedVector` is designed to be a drop-in replacement for | |
// `std::vector` for use cases where the vector's size is sufficiently small | |
// that it can be inlined. If the inlined vector does grow beyond its estimated | |
// capacity, it will trigger an initial allocation on the heap, and will behave | |
// as a `std::vector`. The API of the `absl::InlinedVector` within this file is | |
// designed to cover the same API footprint as covered by `std::vector`. | |
template <typename T, size_t N, typename A = std::allocator<T>> | |
class InlinedVector { | |
static_assert(N > 0, "`absl::InlinedVector` requires an inlined capacity."); | |
using Storage = inlined_vector_internal::Storage<T, N, A>; | |
template <typename TheA> | |
using AllocatorTraits = inlined_vector_internal::AllocatorTraits<TheA>; | |
template <typename TheA> | |
using MoveIterator = inlined_vector_internal::MoveIterator<TheA>; | |
template <typename TheA> | |
using IsMemcpyOk = inlined_vector_internal::IsMemcpyOk<TheA>; | |
template <typename TheA, typename Iterator> | |
using IteratorValueAdapter = | |
inlined_vector_internal::IteratorValueAdapter<TheA, Iterator>; | |
template <typename TheA> | |
using CopyValueAdapter = inlined_vector_internal::CopyValueAdapter<TheA>; | |
template <typename TheA> | |
using DefaultValueAdapter = | |
inlined_vector_internal::DefaultValueAdapter<TheA>; | |
template <typename Iterator> | |
using EnableIfAtLeastForwardIterator = absl::enable_if_t< | |
inlined_vector_internal::IsAtLeastForwardIterator<Iterator>::value, int>; | |
template <typename Iterator> | |
using DisableIfAtLeastForwardIterator = absl::enable_if_t< | |
!inlined_vector_internal::IsAtLeastForwardIterator<Iterator>::value, int>; | |
public: | |
using allocator_type = A; | |
using value_type = inlined_vector_internal::ValueType<A>; | |
using pointer = inlined_vector_internal::Pointer<A>; | |
using const_pointer = inlined_vector_internal::ConstPointer<A>; | |
using size_type = inlined_vector_internal::SizeType<A>; | |
using difference_type = inlined_vector_internal::DifferenceType<A>; | |
using reference = inlined_vector_internal::Reference<A>; | |
using const_reference = inlined_vector_internal::ConstReference<A>; | |
using iterator = inlined_vector_internal::Iterator<A>; | |
using const_iterator = inlined_vector_internal::ConstIterator<A>; | |
using reverse_iterator = inlined_vector_internal::ReverseIterator<A>; | |
using const_reverse_iterator = | |
inlined_vector_internal::ConstReverseIterator<A>; | |
// --------------------------------------------------------------------------- | |
// InlinedVector Constructors and Destructor | |
// --------------------------------------------------------------------------- | |
// Creates an empty inlined vector with a value-initialized allocator. | |
InlinedVector() noexcept(noexcept(allocator_type())) : storage_() {} | |
// Creates an empty inlined vector with a copy of `allocator`. | |
explicit InlinedVector(const allocator_type& allocator) noexcept | |
: storage_(allocator) {} | |
// Creates an inlined vector with `n` copies of `value_type()`. | |
explicit InlinedVector(size_type n, | |
const allocator_type& allocator = allocator_type()) | |
: storage_(allocator) { | |
storage_.Initialize(DefaultValueAdapter<A>(), n); | |
} | |
// Creates an inlined vector with `n` copies of `v`. | |
InlinedVector(size_type n, const_reference v, | |
const allocator_type& allocator = allocator_type()) | |
: storage_(allocator) { | |
storage_.Initialize(CopyValueAdapter<A>(std::addressof(v)), n); | |
} | |
// Creates an inlined vector with copies of the elements of `list`. | |
InlinedVector(std::initializer_list<value_type> list, | |
const allocator_type& allocator = allocator_type()) | |
: InlinedVector(list.begin(), list.end(), allocator) {} | |
// Creates an inlined vector with elements constructed from the provided | |
// forward iterator range [`first`, `last`). | |
// | |
// NOTE: the `enable_if` prevents ambiguous interpretation between a call to | |
// this constructor with two integral arguments and a call to the above | |
// `InlinedVector(size_type, const_reference)` constructor. | |
template <typename ForwardIterator, | |
EnableIfAtLeastForwardIterator<ForwardIterator> = 0> | |
InlinedVector(ForwardIterator first, ForwardIterator last, | |
const allocator_type& allocator = allocator_type()) | |
: storage_(allocator) { | |
storage_.Initialize(IteratorValueAdapter<A, ForwardIterator>(first), | |
static_cast<size_t>(std::distance(first, last))); | |
} | |
// Creates an inlined vector with elements constructed from the provided input | |
// iterator range [`first`, `last`). | |
template <typename InputIterator, | |
DisableIfAtLeastForwardIterator<InputIterator> = 0> | |
InlinedVector(InputIterator first, InputIterator last, | |
const allocator_type& allocator = allocator_type()) | |
: storage_(allocator) { | |
std::copy(first, last, std::back_inserter(*this)); | |
} | |
// Creates an inlined vector by copying the contents of `other` using | |
// `other`'s allocator. | |
InlinedVector(const InlinedVector& other) | |
: InlinedVector(other, other.storage_.GetAllocator()) {} | |
// Creates an inlined vector by copying the contents of `other` using the | |
// provided `allocator`. | |
InlinedVector(const InlinedVector& other, const allocator_type& allocator) | |
: storage_(allocator) { | |
if (other.empty()) { | |
// Empty; nothing to do. | |
} else if (IsMemcpyOk<A>::value && !other.storage_.GetIsAllocated()) { | |
// Memcpy-able and do not need allocation. | |
storage_.MemcpyFrom(other.storage_); | |
} else { | |
storage_.InitFrom(other.storage_); | |
} | |
} | |
// Creates an inlined vector by moving in the contents of `other` without | |
// allocating. If `other` contains allocated memory, the newly-created inlined | |
// vector will take ownership of that memory. However, if `other` does not | |
// contain allocated memory, the newly-created inlined vector will perform | |
// element-wise move construction of the contents of `other`. | |
// | |
// NOTE: since no allocation is performed for the inlined vector in either | |
// case, the `noexcept(...)` specification depends on whether moving the | |
// underlying objects can throw. It is assumed assumed that... | |
// a) move constructors should only throw due to allocation failure. | |
// b) if `value_type`'s move constructor allocates, it uses the same | |
// allocation function as the inlined vector's allocator. | |
// Thus, the move constructor is non-throwing if the allocator is non-throwing | |
// or `value_type`'s move constructor is specified as `noexcept`. | |
InlinedVector(InlinedVector&& other) noexcept( | |
absl::allocator_is_nothrow<allocator_type>::value || | |
std::is_nothrow_move_constructible<value_type>::value) | |
: storage_(other.storage_.GetAllocator()) { | |
if (IsMemcpyOk<A>::value) { | |
storage_.MemcpyFrom(other.storage_); | |
other.storage_.SetInlinedSize(0); | |
} else if (other.storage_.GetIsAllocated()) { | |
storage_.SetAllocation({other.storage_.GetAllocatedData(), | |
other.storage_.GetAllocatedCapacity()}); | |
storage_.SetAllocatedSize(other.storage_.GetSize()); | |
other.storage_.SetInlinedSize(0); | |
} else { | |
IteratorValueAdapter<A, MoveIterator<A>> other_values( | |
MoveIterator<A>(other.storage_.GetInlinedData())); | |
inlined_vector_internal::ConstructElements<A>( | |
storage_.GetAllocator(), storage_.GetInlinedData(), other_values, | |
other.storage_.GetSize()); | |
storage_.SetInlinedSize(other.storage_.GetSize()); | |
} | |
} | |
// Creates an inlined vector by moving in the contents of `other` with a copy | |
// of `allocator`. | |
// | |
// NOTE: if `other`'s allocator is not equal to `allocator`, even if `other` | |
// contains allocated memory, this move constructor will still allocate. Since | |
// allocation is performed, this constructor can only be `noexcept` if the | |
// specified allocator is also `noexcept`. | |
InlinedVector( | |
InlinedVector&& other, | |
const allocator_type& | |
allocator) noexcept(absl::allocator_is_nothrow<allocator_type>::value) | |
: storage_(allocator) { | |
if (IsMemcpyOk<A>::value) { | |
storage_.MemcpyFrom(other.storage_); | |
other.storage_.SetInlinedSize(0); | |
} else if ((storage_.GetAllocator() == other.storage_.GetAllocator()) && | |
other.storage_.GetIsAllocated()) { | |
storage_.SetAllocation({other.storage_.GetAllocatedData(), | |
other.storage_.GetAllocatedCapacity()}); | |
storage_.SetAllocatedSize(other.storage_.GetSize()); | |
other.storage_.SetInlinedSize(0); | |
} else { | |
storage_.Initialize(IteratorValueAdapter<A, MoveIterator<A>>( | |
MoveIterator<A>(other.data())), | |
other.size()); | |
} | |
} | |
~InlinedVector() {} | |
// --------------------------------------------------------------------------- | |
// InlinedVector Member Accessors | |
// --------------------------------------------------------------------------- | |
// `InlinedVector::empty()` | |
// | |
// Returns whether the inlined vector contains no elements. | |
bool empty() const noexcept { return !size(); } | |
// `InlinedVector::size()` | |
// | |
// Returns the number of elements in the inlined vector. | |
size_type size() const noexcept { return storage_.GetSize(); } | |
// `InlinedVector::max_size()` | |
// | |
// Returns the maximum number of elements the inlined vector can hold. | |
size_type max_size() const noexcept { | |
// One bit of the size storage is used to indicate whether the inlined | |
// vector contains allocated memory. As a result, the maximum size that the | |
// inlined vector can express is half of the max for `size_type`. | |
return (std::numeric_limits<size_type>::max)() / 2; | |
} | |
// `InlinedVector::capacity()` | |
// | |
// Returns the number of elements that could be stored in the inlined vector | |
// without requiring a reallocation. | |
// | |
// NOTE: for most inlined vectors, `capacity()` should be equal to the | |
// template parameter `N`. For inlined vectors which exceed this capacity, | |
// they will no longer be inlined and `capacity()` will equal the capactity of | |
// the allocated memory. | |
size_type capacity() const noexcept { | |
return storage_.GetIsAllocated() ? storage_.GetAllocatedCapacity() | |
: storage_.GetInlinedCapacity(); | |
} | |
// `InlinedVector::data()` | |
// | |
// Returns a `pointer` to the elements of the inlined vector. This pointer | |
// can be used to access and modify the contained elements. | |
// | |
// NOTE: only elements within [`data()`, `data() + size()`) are valid. | |
pointer data() noexcept { | |
return storage_.GetIsAllocated() ? storage_.GetAllocatedData() | |
: storage_.GetInlinedData(); | |
} | |
// Overload of `InlinedVector::data()` that returns a `const_pointer` to the | |
// elements of the inlined vector. This pointer can be used to access but not | |
// modify the contained elements. | |
// | |
// NOTE: only elements within [`data()`, `data() + size()`) are valid. | |
const_pointer data() const noexcept { | |
return storage_.GetIsAllocated() ? storage_.GetAllocatedData() | |
: storage_.GetInlinedData(); | |
} | |
// `InlinedVector::operator[](...)` | |
// | |
// Returns a `reference` to the `i`th element of the inlined vector. | |
reference operator[](size_type i) { | |
ABSL_HARDENING_ASSERT(i < size()); | |
return data()[i]; | |
} | |
// Overload of `InlinedVector::operator[](...)` that returns a | |
// `const_reference` to the `i`th element of the inlined vector. | |
const_reference operator[](size_type i) const { | |
ABSL_HARDENING_ASSERT(i < size()); | |
return data()[i]; | |
} | |
// `InlinedVector::at(...)` | |
// | |
// Returns a `reference` to the `i`th element of the inlined vector. | |
// | |
// NOTE: if `i` is not within the required range of `InlinedVector::at(...)`, | |
// in both debug and non-debug builds, `std::out_of_range` will be thrown. | |
reference at(size_type i) { | |
if (ABSL_PREDICT_FALSE(i >= size())) { | |
base_internal::ThrowStdOutOfRange( | |
"`InlinedVector::at(size_type)` failed bounds check"); | |
} | |
return data()[i]; | |
} | |
// Overload of `InlinedVector::at(...)` that returns a `const_reference` to | |
// the `i`th element of the inlined vector. | |
// | |
// NOTE: if `i` is not within the required range of `InlinedVector::at(...)`, | |
// in both debug and non-debug builds, `std::out_of_range` will be thrown. | |
const_reference at(size_type i) const { | |
if (ABSL_PREDICT_FALSE(i >= size())) { | |
base_internal::ThrowStdOutOfRange( | |
"`InlinedVector::at(size_type) const` failed bounds check"); | |
} | |
return data()[i]; | |
} | |
// `InlinedVector::front()` | |
// | |
// Returns a `reference` to the first element of the inlined vector. | |
reference front() { | |
ABSL_HARDENING_ASSERT(!empty()); | |
return data()[0]; | |
} | |
// Overload of `InlinedVector::front()` that returns a `const_reference` to | |
// the first element of the inlined vector. | |
const_reference front() const { | |
ABSL_HARDENING_ASSERT(!empty()); | |
return data()[0]; | |
} | |
// `InlinedVector::back()` | |
// | |
// Returns a `reference` to the last element of the inlined vector. | |
reference back() { | |
ABSL_HARDENING_ASSERT(!empty()); | |
return data()[size() - 1]; | |
} | |
// Overload of `InlinedVector::back()` that returns a `const_reference` to the | |
// last element of the inlined vector. | |
const_reference back() const { | |
ABSL_HARDENING_ASSERT(!empty()); | |
return data()[size() - 1]; | |
} | |
// `InlinedVector::begin()` | |
// | |
// Returns an `iterator` to the beginning of the inlined vector. | |
iterator begin() noexcept { return data(); } | |
// Overload of `InlinedVector::begin()` that returns a `const_iterator` to | |
// the beginning of the inlined vector. | |
const_iterator begin() const noexcept { return data(); } | |
// `InlinedVector::end()` | |
// | |
// Returns an `iterator` to the end of the inlined vector. | |
iterator end() noexcept { return data() + size(); } | |
// Overload of `InlinedVector::end()` that returns a `const_iterator` to the | |
// end of the inlined vector. | |
const_iterator end() const noexcept { return data() + size(); } | |
// `InlinedVector::cbegin()` | |
// | |
// Returns a `const_iterator` to the beginning of the inlined vector. | |
const_iterator cbegin() const noexcept { return begin(); } | |
// `InlinedVector::cend()` | |
// | |
// Returns a `const_iterator` to the end of the inlined vector. | |
const_iterator cend() const noexcept { return end(); } | |
// `InlinedVector::rbegin()` | |
// | |
// Returns a `reverse_iterator` from the end of the inlined vector. | |
reverse_iterator rbegin() noexcept { return reverse_iterator(end()); } | |
// Overload of `InlinedVector::rbegin()` that returns a | |
// `const_reverse_iterator` from the end of the inlined vector. | |
const_reverse_iterator rbegin() const noexcept { | |
return const_reverse_iterator(end()); | |
} | |
// `InlinedVector::rend()` | |
// | |
// Returns a `reverse_iterator` from the beginning of the inlined vector. | |
reverse_iterator rend() noexcept { return reverse_iterator(begin()); } | |
// Overload of `InlinedVector::rend()` that returns a `const_reverse_iterator` | |
// from the beginning of the inlined vector. | |
const_reverse_iterator rend() const noexcept { | |
return const_reverse_iterator(begin()); | |
} | |
// `InlinedVector::crbegin()` | |
// | |
// Returns a `const_reverse_iterator` from the end of the inlined vector. | |
const_reverse_iterator crbegin() const noexcept { return rbegin(); } | |
// `InlinedVector::crend()` | |
// | |
// Returns a `const_reverse_iterator` from the beginning of the inlined | |
// vector. | |
const_reverse_iterator crend() const noexcept { return rend(); } | |
// `InlinedVector::get_allocator()` | |
// | |
// Returns a copy of the inlined vector's allocator. | |
allocator_type get_allocator() const { return storage_.GetAllocator(); } | |
// --------------------------------------------------------------------------- | |
// InlinedVector Member Mutators | |
// --------------------------------------------------------------------------- | |
// `InlinedVector::operator=(...)` | |
// | |
// Replaces the elements of the inlined vector with copies of the elements of | |
// `list`. | |
InlinedVector& operator=(std::initializer_list<value_type> list) { | |
assign(list.begin(), list.end()); | |
return *this; | |
} | |
// Overload of `InlinedVector::operator=(...)` that replaces the elements of | |
// the inlined vector with copies of the elements of `other`. | |
InlinedVector& operator=(const InlinedVector& other) { | |
if (ABSL_PREDICT_TRUE(this != std::addressof(other))) { | |
const_pointer other_data = other.data(); | |
assign(other_data, other_data + other.size()); | |
} | |
return *this; | |
} | |
// Overload of `InlinedVector::operator=(...)` that moves the elements of | |
// `other` into the inlined vector. | |
// | |
// NOTE: as a result of calling this overload, `other` is left in a valid but | |
// unspecified state. | |
InlinedVector& operator=(InlinedVector&& other) { | |
if (ABSL_PREDICT_TRUE(this != std::addressof(other))) { | |
if (IsMemcpyOk<A>::value || other.storage_.GetIsAllocated()) { | |
inlined_vector_internal::DestroyAdapter<A>::DestroyElements( | |
storage_.GetAllocator(), data(), size()); | |
storage_.DeallocateIfAllocated(); | |
storage_.MemcpyFrom(other.storage_); | |
other.storage_.SetInlinedSize(0); | |
} else { | |
storage_.Assign(IteratorValueAdapter<A, MoveIterator<A>>( | |
MoveIterator<A>(other.storage_.GetInlinedData())), | |
other.size()); | |
} | |
} | |
return *this; | |
} | |
// `InlinedVector::assign(...)` | |
// | |
// Replaces the contents of the inlined vector with `n` copies of `v`. | |
void assign(size_type n, const_reference v) { | |
storage_.Assign(CopyValueAdapter<A>(std::addressof(v)), n); | |
} | |
// Overload of `InlinedVector::assign(...)` that replaces the contents of the | |
// inlined vector with copies of the elements of `list`. | |
void assign(std::initializer_list<value_type> list) { | |
assign(list.begin(), list.end()); | |
} | |
// Overload of `InlinedVector::assign(...)` to replace the contents of the | |
// inlined vector with the range [`first`, `last`). | |
// | |
// NOTE: this overload is for iterators that are "forward" category or better. | |
template <typename ForwardIterator, | |
EnableIfAtLeastForwardIterator<ForwardIterator> = 0> | |
void assign(ForwardIterator first, ForwardIterator last) { | |
storage_.Assign(IteratorValueAdapter<A, ForwardIterator>(first), | |
static_cast<size_t>(std::distance(first, last))); | |
} | |
// Overload of `InlinedVector::assign(...)` to replace the contents of the | |
// inlined vector with the range [`first`, `last`). | |
// | |
// NOTE: this overload is for iterators that are "input" category. | |
template <typename InputIterator, | |
DisableIfAtLeastForwardIterator<InputIterator> = 0> | |
void assign(InputIterator first, InputIterator last) { | |
size_type i = 0; | |
for (; i < size() && first != last; ++i, static_cast<void>(++first)) { | |
data()[i] = *first; | |
} | |
erase(data() + i, data() + size()); | |
std::copy(first, last, std::back_inserter(*this)); | |
} | |
// `InlinedVector::resize(...)` | |
// | |
// Resizes the inlined vector to contain `n` elements. | |
// | |
// NOTE: If `n` is smaller than `size()`, extra elements are destroyed. If `n` | |
// is larger than `size()`, new elements are value-initialized. | |
void resize(size_type n) { | |
ABSL_HARDENING_ASSERT(n <= max_size()); | |
storage_.Resize(DefaultValueAdapter<A>(), n); | |
} | |
// Overload of `InlinedVector::resize(...)` that resizes the inlined vector to | |
// contain `n` elements. | |
// | |
// NOTE: if `n` is smaller than `size()`, extra elements are destroyed. If `n` | |
// is larger than `size()`, new elements are copied-constructed from `v`. | |
void resize(size_type n, const_reference v) { | |
ABSL_HARDENING_ASSERT(n <= max_size()); | |
storage_.Resize(CopyValueAdapter<A>(std::addressof(v)), n); | |
} | |
// `InlinedVector::insert(...)` | |
// | |
// Inserts a copy of `v` at `pos`, returning an `iterator` to the newly | |
// inserted element. | |
iterator insert(const_iterator pos, const_reference v) { | |
return emplace(pos, v); | |
} | |
// Overload of `InlinedVector::insert(...)` that inserts `v` at `pos` using | |
// move semantics, returning an `iterator` to the newly inserted element. | |
iterator insert(const_iterator pos, value_type&& v) { | |
return emplace(pos, std::move(v)); | |
} | |
// Overload of `InlinedVector::insert(...)` that inserts `n` contiguous copies | |
// of `v` starting at `pos`, returning an `iterator` pointing to the first of | |
// the newly inserted elements. | |
iterator insert(const_iterator pos, size_type n, const_reference v) { | |
ABSL_HARDENING_ASSERT(pos >= begin()); | |
ABSL_HARDENING_ASSERT(pos <= end()); | |
if (ABSL_PREDICT_TRUE(n != 0)) { | |
value_type dealias = v; | |
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102329#c2 | |
// It appears that GCC thinks that since `pos` is a const pointer and may | |
// point to uninitialized memory at this point, a warning should be | |
// issued. But `pos` is actually only used to compute an array index to | |
// write to. | |
#if !defined(__clang__) && defined(__GNUC__) | |
#pragma GCC diagnostic push | |
#pragma GCC diagnostic ignored "-Wmaybe-uninitialized" | |
#endif | |
return storage_.Insert(pos, CopyValueAdapter<A>(std::addressof(dealias)), | |
n); | |
#if !defined(__clang__) && defined(__GNUC__) | |
#pragma GCC diagnostic pop | |
#endif | |
} else { | |
return const_cast<iterator>(pos); | |
} | |
} | |
// Overload of `InlinedVector::insert(...)` that inserts copies of the | |
// elements of `list` starting at `pos`, returning an `iterator` pointing to | |
// the first of the newly inserted elements. | |
iterator insert(const_iterator pos, std::initializer_list<value_type> list) { | |
return insert(pos, list.begin(), list.end()); | |
} | |
// Overload of `InlinedVector::insert(...)` that inserts the range [`first`, | |
// `last`) starting at `pos`, returning an `iterator` pointing to the first | |
// of the newly inserted elements. | |
// | |
// NOTE: this overload is for iterators that are "forward" category or better. | |
template <typename ForwardIterator, | |
EnableIfAtLeastForwardIterator<ForwardIterator> = 0> | |
iterator insert(const_iterator pos, ForwardIterator first, | |
ForwardIterator last) { | |
ABSL_HARDENING_ASSERT(pos >= begin()); | |
ABSL_HARDENING_ASSERT(pos <= end()); | |
if (ABSL_PREDICT_TRUE(first != last)) { | |
return storage_.Insert(pos, | |
IteratorValueAdapter<A, ForwardIterator>(first), | |
std::distance(first, last)); | |
} else { | |
return const_cast<iterator>(pos); | |
} | |
} | |
// Overload of `InlinedVector::insert(...)` that inserts the range [`first`, | |
// `last`) starting at `pos`, returning an `iterator` pointing to the first | |
// of the newly inserted elements. | |
// | |
// NOTE: this overload is for iterators that are "input" category. | |
template <typename InputIterator, | |
DisableIfAtLeastForwardIterator<InputIterator> = 0> | |
iterator insert(const_iterator pos, InputIterator first, InputIterator last) { | |
ABSL_HARDENING_ASSERT(pos >= begin()); | |
ABSL_HARDENING_ASSERT(pos <= end()); | |
size_type index = std::distance(cbegin(), pos); | |
for (size_type i = index; first != last; ++i, static_cast<void>(++first)) { | |
insert(data() + i, *first); | |
} | |
return iterator(data() + index); | |
} | |
// `InlinedVector::emplace(...)` | |
// | |
// Constructs and inserts an element using `args...` in the inlined vector at | |
// `pos`, returning an `iterator` pointing to the newly emplaced element. | |
template <typename... Args> | |
iterator emplace(const_iterator pos, Args&&... args) { | |
ABSL_HARDENING_ASSERT(pos >= begin()); | |
ABSL_HARDENING_ASSERT(pos <= end()); | |
value_type dealias(std::forward<Args>(args)...); | |
return storage_.Insert(pos, | |
IteratorValueAdapter<A, MoveIterator<A>>( | |
MoveIterator<A>(std::addressof(dealias))), | |
1); | |
} | |
// `InlinedVector::emplace_back(...)` | |
// | |
// Constructs and inserts an element using `args...` in the inlined vector at | |
// `end()`, returning a `reference` to the newly emplaced element. | |
template <typename... Args> | |
reference emplace_back(Args&&... args) { | |
return storage_.EmplaceBack(std::forward<Args>(args)...); | |
} | |
// `InlinedVector::push_back(...)` | |
// | |
// Inserts a copy of `v` in the inlined vector at `end()`. | |
void push_back(const_reference v) { static_cast<void>(emplace_back(v)); } | |
// Overload of `InlinedVector::push_back(...)` for inserting `v` at `end()` | |
// using move semantics. | |
void push_back(value_type&& v) { | |
static_cast<void>(emplace_back(std::move(v))); | |
} | |
// `InlinedVector::pop_back()` | |
// | |
// Destroys the element at `back()`, reducing the size by `1`. | |
void pop_back() noexcept { | |
ABSL_HARDENING_ASSERT(!empty()); | |
AllocatorTraits<A>::destroy(storage_.GetAllocator(), data() + (size() - 1)); | |
storage_.SubtractSize(1); | |
} | |
// `InlinedVector::erase(...)` | |
// | |
// Erases the element at `pos`, returning an `iterator` pointing to where the | |
// erased element was located. | |
// | |
// NOTE: may return `end()`, which is not dereferencable. | |
iterator erase(const_iterator pos) { | |
ABSL_HARDENING_ASSERT(pos >= begin()); | |
ABSL_HARDENING_ASSERT(pos < end()); | |
return storage_.Erase(pos, pos + 1); | |
} | |
// Overload of `InlinedVector::erase(...)` that erases every element in the | |
// range [`from`, `to`), returning an `iterator` pointing to where the first | |
// erased element was located. | |
// | |
// NOTE: may return `end()`, which is not dereferencable. | |
iterator erase(const_iterator from, const_iterator to) { | |
ABSL_HARDENING_ASSERT(from >= begin()); | |
ABSL_HARDENING_ASSERT(from <= to); | |
ABSL_HARDENING_ASSERT(to <= end()); | |
if (ABSL_PREDICT_TRUE(from != to)) { | |
return storage_.Erase(from, to); | |
} else { | |
return const_cast<iterator>(from); | |
} | |
} | |
// `InlinedVector::clear()` | |
// | |
// Destroys all elements in the inlined vector, setting the size to `0` and | |
// deallocating any held memory. | |
void clear() noexcept { | |
inlined_vector_internal::DestroyAdapter<A>::DestroyElements( | |
storage_.GetAllocator(), data(), size()); | |
storage_.DeallocateIfAllocated(); | |
storage_.SetInlinedSize(0); | |
} | |
// `InlinedVector::reserve(...)` | |
// | |
// Ensures that there is enough room for at least `n` elements. | |
void reserve(size_type n) { storage_.Reserve(n); } | |
// `InlinedVector::shrink_to_fit()` | |
// | |
// Attempts to reduce memory usage by moving elements to (or keeping elements | |
// in) the smallest available buffer sufficient for containing `size()` | |
// elements. | |
// | |
// If `size()` is sufficiently small, the elements will be moved into (or kept | |
// in) the inlined space. | |
void shrink_to_fit() { | |
if (storage_.GetIsAllocated()) { | |
storage_.ShrinkToFit(); | |
} | |
} | |
// `InlinedVector::swap(...)` | |
// | |
// Swaps the contents of the inlined vector with `other`. | |
void swap(InlinedVector& other) { | |
if (ABSL_PREDICT_TRUE(this != std::addressof(other))) { | |
storage_.Swap(std::addressof(other.storage_)); | |
} | |
} | |
private: | |
template <typename H, typename TheT, size_t TheN, typename TheA> | |
friend H AbslHashValue(H h, const absl::InlinedVector<TheT, TheN, TheA>& a); | |
Storage storage_; | |
}; | |
// ----------------------------------------------------------------------------- | |
// InlinedVector Non-Member Functions | |
// ----------------------------------------------------------------------------- | |
// `swap(...)` | |
// | |
// Swaps the contents of two inlined vectors. | |
template <typename T, size_t N, typename A> | |
void swap(absl::InlinedVector<T, N, A>& a, | |
absl::InlinedVector<T, N, A>& b) noexcept(noexcept(a.swap(b))) { | |
a.swap(b); | |
} | |
// `operator==(...)` | |
// | |
// Tests for value-equality of two inlined vectors. | |
template <typename T, size_t N, typename A> | |
bool operator==(const absl::InlinedVector<T, N, A>& a, | |
const absl::InlinedVector<T, N, A>& b) { | |
auto a_data = a.data(); | |
auto b_data = b.data(); | |
return absl::equal(a_data, a_data + a.size(), b_data, b_data + b.size()); | |
} | |
// `operator!=(...)` | |
// | |
// Tests for value-inequality of two inlined vectors. | |
template <typename T, size_t N, typename A> | |
bool operator!=(const absl::InlinedVector<T, N, A>& a, | |
const absl::InlinedVector<T, N, A>& b) { | |
return !(a == b); | |
} | |
// `operator<(...)` | |
// | |
// Tests whether the value of an inlined vector is less than the value of | |
// another inlined vector using a lexicographical comparison algorithm. | |
template <typename T, size_t N, typename A> | |
bool operator<(const absl::InlinedVector<T, N, A>& a, | |
const absl::InlinedVector<T, N, A>& b) { | |
auto a_data = a.data(); | |
auto b_data = b.data(); | |
return std::lexicographical_compare(a_data, a_data + a.size(), b_data, | |
b_data + b.size()); | |
} | |
// `operator>(...)` | |
// | |
// Tests whether the value of an inlined vector is greater than the value of | |
// another inlined vector using a lexicographical comparison algorithm. | |
template <typename T, size_t N, typename A> | |
bool operator>(const absl::InlinedVector<T, N, A>& a, | |
const absl::InlinedVector<T, N, A>& b) { | |
return b < a; | |
} | |
// `operator<=(...)` | |
// | |
// Tests whether the value of an inlined vector is less than or equal to the | |
// value of another inlined vector using a lexicographical comparison algorithm. | |
template <typename T, size_t N, typename A> | |
bool operator<=(const absl::InlinedVector<T, N, A>& a, | |
const absl::InlinedVector<T, N, A>& b) { | |
return !(b < a); | |
} | |
// `operator>=(...)` | |
// | |
// Tests whether the value of an inlined vector is greater than or equal to the | |
// value of another inlined vector using a lexicographical comparison algorithm. | |
template <typename T, size_t N, typename A> | |
bool operator>=(const absl::InlinedVector<T, N, A>& a, | |
const absl::InlinedVector<T, N, A>& b) { | |
return !(a < b); | |
} | |
// `AbslHashValue(...)` | |
// | |
// Provides `absl::Hash` support for `absl::InlinedVector`. It is uncommon to | |
// call this directly. | |
template <typename H, typename T, size_t N, typename A> | |
H AbslHashValue(H h, const absl::InlinedVector<T, N, A>& a) { | |
auto size = a.size(); | |
return H::combine(H::combine_contiguous(std::move(h), a.data(), size), size); | |
} | |
ABSL_NAMESPACE_END | |
} // namespace absl | |
#endif // ABSL_CONTAINER_INLINED_VECTOR_H_ |