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Abstract

Video object segmentation has increased in popularity
since the release of Davis2016 in which a single object
had to be segmented. With the release of Davis2017 and
YouTube-VOS the task moved to multiple object segmen-
tation, increasing in difficulty. In this work we focus on
this scenario, presenting a novel graph convolutional neu-
ral network that has the sense of each object of the video se-
quence in each node, working entirely in the feature space
domain. The nodes are initialized using an encoder that
takes as input features from the image together with each
object’s mask. After graph message passing, we use a de-
coder on each final node state to segment the object that
node is referring to.

1. Introduction
Video object segmentation aims to detect and segment

objects from the scene. One of the first datasets, Davis2016,
a single object was given for the entire sequence. In recent
datasets, Davis2017 and YoutubeVOS one or more objects
are introduced, making the task more challenging. First pro-
posed methods tried to give emphasis on the appearance of
the object [2], finetuning the model at the start of the se-
quence to quickly learn what it had to segment, without tak-
ing into account temporal consistency of the video. Other
methods focus on this aspect leveraging RNN [8], but it has
been shown that these architectures are unstable to train and
have been recently outperformed by Transformers [7]. Re-
cent work has adapted the idea of Attention [6] showing
outstanding results compared to previous methods, thus, ex-
hibiting the power of these types of architectures. Graph
Neural Networks have been recently proposed for VOS as
well, but we will explain the presented architectures in more
detail in section 2.1.

Inspired from the work of [9] together with [8] we pro-
pose a combined architecture that uses Graph Convolutional
Neural Networks but giving the nodes the sense of each
object in the video, instead of working in the whole im-
age. Our presented graph is constructed in the spatial do-

main, and is proposed to give to each node the power to de-
scribe its object as best as possible. When nodes exchange
messages, gathering information about all the nodes gives
the graph the capacity that all the nodes agree to segment
its particular object. Our proposed method also uses other
modules in conjunction to work. More specifically, we have
divided our architecture into four main components. First
we extract features from the image using a CNN. Then we
introduce a Mask Encoder that receives as input the ex-
tracted features and the mask from each object in the pre-
vious frame and with this initializes the nodes of the graph.
The idea behind this module is to learn to align the mask
from the previous frame with the new features from the cur-
rent one. Apart from this, the graph also receives the hidden
state of the corresponding node at the end of the message
aggregation of the last frame. At this point we can perform
K-message passing steps so each node is able to focus on
its particular object using the information of other objects
in the frame. When finished, we use another simple CNN
on the state of each node to obtain the corresponding pre-
dicted mask of each object. Recent work from Liu et al. [4]
presents a similar architecture as the one we are using, but
we give the graph the power to work exclusively in the fea-
ture space domain instead of working with binary masks to
be aggregated.

Our contributions can be summarized as follow:

• Our GCNN gives to the nodes the sense of each object
in the feature space domain, instead of working in the
frame domain or working with masks.

2. Related Work
2.1. Graph Neural Networks

Based on deep neural networks and graph theory, GNNs
are powerful for collectively aggregating information from
data represented in graph domains. They have recently been
used with high success in VOS. As far as we know, the first
adaptation of graphs on VOS was made by Wang et. al. [9].
The graph was constructed from the feature representation
of consecutive frames and was able to extract relations be-
tween these feature tensors via attention mechanism. After
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Figure 1: Our proposed architecture for video object segmentation for a single frame at time step t. Note that we use
the predicted masks from previous frame t-1. *Figure illustrates state propagation, which means that final states from the
previous frame are used as initial states to be updated by the first k iteration.

K-message passing steps, a decoder module was applied in
each final node (frame) in order to get the final masks from
that set of frames. Similar idea was presented by Lu et.
al. [5], which leverages a memory cell in conjunction with
the graph in order to keep in mind all the frames that have
been already seen in the video. With the K-message pass-
ing step,they learn how to segment the actual query image,
based on the past segmented images. They also learn how
to include the current image features in the memory cell.
We can see this method as a fusion from the work of Oh et.
al. [6] and Lu et. al. [5]. Finally, the most recent approach
has been presented by Liu et. al. [4]. In this case, the graph
aims to learn how to combine all the pieces of masks we
have from a set of consecutive images to segment. The set
of masks from each frame are computed combining mask

propagation using Optical Flow from the previous frame to-
gether with an instance segmentation network that produces
masks for each frame. The graph is used in order to refine
and aggregate all the pieces of masks from all the nodes,
thus, leveraging temporal coherence. Note that in this case
graph nodes have the sense of object, different from both
previous works that nodes represented frames. This work is
the one that is more similar to the one we present. The ma-
jor difference is that we aim to work on the feature domain
in the graph, thus trying to give more freedom to learn what
is best for the task.



Feat. ext. Mask Enc. Graph Neural Netowork ReadOut Performance

Out. dim. Concat Conv & Pool K Neigh. Agg. State Agg. Node Update Temporal
state passing Skip conn. Overall J&FMean Max None Sum Conv ReLU GRU

112x224x8 3 7 4 3 7 7 3 7 3 7 7 7 0.3035
112x224x8 3 7 4 7 3 7 7 3 7 3 7 7 0.3847
112x224x8 3 7 4 7 3 7 7 3 7 3 3 7 0.4031
112x224x8 7 3 3 7 3 7 7 3 7 3 3 7 0.4338
112x224x8 7 3 3 7 7 3 7 3 7 3 3 7 0.4401

Table 1: Model performance comparison from different architectures approaches presented in 3. Overall J and F is the
arithmetic mean from J seen, J unseen, F seen, J unseen from the YouTubeVOS validation split using the official evaluator
server

3. Model
Our model has four major components: Feature Extrac-

tor, Mask Encoder, Graph Neural Network and finally, De-
coder. At the moment we are focused on One-shot Video
Object Segmentation, thus, the mask from the first appear-
ance on the sequence of each object is given. The input of
the model consists on the RGB image I ∈ RWxHx3 from
the current frame and GT masks SGT ∈ {0, 1}N , where N
represents the number of objects.

3.1. Feature extractor

The aim of the feature extractor module is to receive
as input the RGB image I from the current frame of the
video sequence and obtain a feature tensor Ft ∈ Rhxwxc

where h,w � H,W and c � C. The first component of
the Feature Extractor is a ResNet-101 [3] used to extract a
set of features ft = {f ′t,1, f ′t,2, ..., f ′t,k} at different scales
following the work from [8]. Then we use 1x1 convolu-
tions to reduce the number of channels on each of the fea-
tures and we resize them to concatenate all in a single ten-
sor F

′

t = [ft,1, ft,2, ..., ft,k]. Finally we use a CNN com-
posed by two sets of convolution, ReLU & Dropout layers
together with a final 1x1 conv layer to obtain the final fea-
ture tensor of the image Ft

3.2. Mask Encoder

The mask encoder is the one responsible for initializing
the nodes of the graph based on each object we have. It re-
ceives as input the output from the Feature Extractor Ft and
a binary mask S ∈ {0, 1}1 for each of the N objects ac-
tive on the video sequence (explained in detail in 3.2.1).We
will use the ground truth mask when an object appears for
the first time and otherwise we will use the predicted mask
from the previous frame. We have studied two different ar-
chitectures for this module: The first simply generates the
h0t that represents each object by simply concatenating the
mask from that object with Ft (eq. 1). The second aggre-
gates to the first one a convolution layer and a max pooling
operation in order to obtain a new more compressed rep-
resentation in the feature space domain of that object (eq.

2).

h0t = [Ft, S] ∈ Rhxwx(c+1)xN (1)

h0t = FGMP (Wencoder ∗ [Ft, S]) ∈ R
w
2 xh

2 x(c×2)xN (2)

where FGMP indicates Global Max Pooling and (Wencoder

has a 3x3 kernel.

3.2.1 Active Object Tracker

As we are dealing with one-shot VOS we need to exactly
know when an object enters in the sequence for the first
time, as we will use the GT mask at that point. We have
introduced an Active Object Tracker to our architecture that
aims to look in each frame the objects we need to segment
and look for new ground truth objects that may start appear-
ing in the middle of the sequence. Note that during training
it can only update new objects to segment and it can not de-
activate objects that at some point do not appear any more,
as it would not be a realistic scenario.

3.3. Convolutional Graph Neural Network

GNNs are a really powerful architecture for aggregat-
ing information from data represented in the graph domain.
Thus, a critical aspect to make them work is how your data
is characterized, this is, how you build the nodes and the
edges. Our graph characterizes in each node the representa-
tion in the feature space of each object from a single frame
of the sequence, extracted from the Mask Encoder module
(3.2). Our graph is fully connected, which means that all the
nodes are connected with each other. Note that our graph
representation is in the spatial domain, as the K-message
passing steps only occur with nodes that represent the ob-
jects of the same frame.The temporal consistency is given
by the predicted mask propagation and the node state prop-
agation.

The h0t computed for each of the N objects of the frame
represents the initial state we will have in each node. We
will perform K-message passing steps now in the graph in
order to update the representation of each node. Each of



this K-message passing step is composed by the following
four different stages: Neighbour Aggregation, Intra Update,
State Aggregation and Node Update. We will also present
different architectures we have tested in each one. The re-
sults using different combinations are presented in Table 1

3.3.1 Neighbour Aggregation

The first step is to define how we aggregate each node
neighbours in a single state. We have define two different
methods. The first simply averages all the neighbour states
(eq. 3). The second uses element-wise MAX operator over
all the neighbours j ∈ {Vj} of node i in order to take what
is more descriptive of each one (eq. 4). Both are then feed
to a convolutional layer with weight matrix Wagg to obtain
the final feature representation.

m′ ki =Wagg ∗ (
1

‖Vj‖ − 1

∑
j∈{Vj 6=i}

hk−1j ) (3)

m′ ki =Wagg ∗ max
j∈{Vj 6=i}

hk−1j (4)

3.3.2 Intra update

We simply use a convolutional layer to compute a new rep-
resentation of the node being update in order to learn what
we want to transform from it (eq. 5).

h
′ k
i =Wself ∗ hk−1i (5)

3.3.3 State aggregation

Now we need to combine what we have from the neigh-
bours nodes 3.3.1 and itself new representation 3.3.2. We
have studied two different approaches: simply summing
both (eq. 6) or concatenating and applying a convolutional
layer (eq. 7).

mk
i = h

′ k
i +m

′ k
i (6)

mk
i =Wstate ∗ [h

′ k
i , m

′ k
i ] (7)

3.3.4 Node update

With the computed mk
i we can update each node new state.

We have experimented along two different approaches in
this step as well: using a non linear ReLU activation on the
message (eq. 8) or leveraging a ConvGRU cell [1] in order
to preserve the appearance of each object inducted by the
Mask Encoder (eq. 9). With this second approach we also
bring the possibility to use when K = 0 the final state from
that object on the previous frame hKi , t−1 as initial state to

be updated by the ConvGRU.

hki = ReLU(mi) (8)

hki =

{
UConvGRU (h

K
i,t−1,mi) k = 0 & temp

UConvGRU (h
k−1
i,t ,mi) otherwise

(9)

3.4. Read out

Once the K-message passing steps are finished, we have
in each node the final state hKi ∈ Rhxwxcx1 that consists
on a rich representation in the feature space domain of each
particular object. To obtain the final mask, we apply Read-
out R(·) function to each final state and obtain the predicted
Ŝ = {0, 1} ∈ RHxWx1 mask. The architecture consists
on a 3x3 convolutional layer, a non linearity and a final 1x1
convolution. The output tensor is then up-sampled to the
input dimensions WxH and we finally apply the sigmoid
activation function to obtain the final mask output probabil-
ities of that object in the image (eq. 10). We have also stud-
ied a variation that concatenates hKi with the output from
the Feature Extractor Ft 3.1 to incorporate semantic infor-
mation of overall image features in order to produce better
masks (eq. 11).

Ŝi = σ(Up(Wclass ∗ReLU(Wdec ∗ hKi ))) (10)

Ŝi = σ(Up(Wclass ∗ReLU(Wdec ∗ [hKi , Ft]))) (11)

where Up(·) denotes the upsampling operator.

4. Experiments
4.1. Dataset

We have used YouTube-VOS dataset [11] for all the
experiments conducted. YouTube-VOS consists of 3,471
videos in the training set and 474 videos in the validation
set, being the largest video object segmentation benchmark.
We have split the training set in 2 subsets, train and valida-
tion, with 80% and 20% of the data correspondingly. The
original validation split is left as test-set.

4.2. Model configurations

We present in Table 1 the performance obtained using
different combinations of the above presented variants of
each module. They are all tested using the validation split
from YouTube-VOS and the official evaluator server. We
can extract several conclusion of what works best and which
components are not contributing much, presented on the
next section Next Steps 4.4. In the table below we show
comparison results with other methods.

4.3. Training details

The original RGB frames and annotations have been re-
sized to 256x448 as it is the resolution in which annotations



Figure 2: Qualitative results for one-shot video object segmentation on YouTube-VOS. First row shows an example with a
single object, second row with two objects and the rest are for three objects.

Method OL Overall J&F
Ours 7 44.0
RVOS[8] 7 56.8
OSVOS[2] 3 58.8
S2S[10] 7 64.4
STM[6] 7 79.4
EGMNN[5] 7 80.2

Table 2: Performance comparison of SOTA architectures
for VOS, all evaluated on YouTube-VOS validation split.
[5] is currently the best model to our knowledge. Note that
this comparison is not fair, as models are usually trained
with extra training data from Davis or saliency datasets.

are given. Each training minibatch is composed with 4 clips
of 5 consecutive frames, same as [8]. We have separated the
training process in two different parts: First, we propagate
the GT mask of the active objects in the sequence from the
last frame to the Mask Encoder for 7 epochs. Then we use
the predicted mask (instead of the GT) of each object which
is the real scenario as we do not have GT mask when test-
ing. The idea is to make training more stable, as we guar-
antee no noise propagation between frames when the model
does worse. We use Adam optimizer to train our network
and the initial learning rate is set 10−3. We train a total
of 14 epochs including both mentioned phases. We use the

trained ResNet-101 weights from [8] as initial weights for
the Feature Extractor backbone and freeze them the whole
training process. We use SoftIoU as our loss function.

4.4. Future Work and Conclusions

The actual performance of the model is not competitive,
as almost any well-known VOS algorithm works better (see
Table 2 for a comparison with popular architectures). The
presented model though is not finished, and in this section
we would like to introduce some ideas on how to improve
parts of the model architecture.

4.4.1 Visual results

We show in Figure 2 some examples of how the models per-
forms. The most noticeable problem is related with the mo-
tion capacity of the network, especially when we have more
than one object and they share the same spatial position in
the image at any time. This is, if we have an object that
during the first 5 frames is still and then it moves an its spa-
tial position is occupied by another object, we will just mix
up masks from the object that enters the region and the one
that was there and now is leaving. In other words, once a re-
gion is activated by one object, we will always predict that
object in the region regardless it moves and that region is
occupied by another one. On the other hand, we are able to
handle quite successfully sequences with just one object de-



spite having motion. With more than one object, our model
works when motion is really low and the objects are easy to
differentiate.

4.4.2 Mask Propagation & Encoding

The idea to introduce a separated module to encode the
mask concatenated with the obtained image features works
well, as we can see an improve of 0.3 on the J&F (third vs
fourth experiment in Table 1). The problem with it though is
that its job is different depending on if we are working with
the first frame of the sequence or not. In the first scenario,
the mask of the object will be completely aligned with the
features from the image, thus it will be relatively easy to en-
code the object pointed by the mask. If this is not the case,
the mask will be the one from the previous frame, thus I will
not be aligned with the features from the current frame. This
makes the same architecture does two different jobs with
20% and 80% of the time correspondingly as we are work-
ing with clips of length five. In order to fix this, we would
need a sort of optical flow estimation to properly align im-
age features with each object mask from the previous frame
(Liu. et. al. [4] uses FlowNet2.0 for this same purpose).
We have thought in different approaches that could help fix
this issue:

• Use optical flow as additional input to the Mask En-
coder, that would be filled with zeros at t == 0 so
it would be able to distinguish between different time
steps.

• Use correlation between image features of consecutive
frames: This would be the fully feature approach that
would integrate better on our architecture. The idea
is that by getting the correlation in the feature space
domain we could have a sort of movement estimation
in the feature domain that could be incorporated to the
model. Note that this is typically used for attention
mechanism for VOS.

4.4.3 Spatial Graph

Our presented graph architecture has a long way to go to be
as powerful as it could be. In this preliminary work, we just
present the simplest possible approach, connecting all the
nodes with each other in the spatial domain, with no mes-
sage passing in the time domain. Experiments show that
this needs to be improved, as the current neighbor aggrega-
tion strategy (which is strongly related with how the graph
is build) is currently making the performance of the model
worse (fourth vs fifth row in Table 1). Visual results show
also that it looks like objects gets mixed-up. In order to im-
prove performance, we could add the following changes in
the graph:

• Restrict nodes connectivity: A typical presented ap-
proach to connect nodes in the spatial domain is to de-
fine a distance measure between regions in the image
and establish a particular threshold. Then nodes are
connected in the graph if the distance between the re-
gions of the image they describe are below the thresh-
old. This allows to only connect nodes that refer to
regions that are close in the image. This could help the
graph learning to differentiate two objects that are re-
ally close to each other without receiving information
from other nodes that are at the other end of the image.

• Edge weighting strategy: Recent GNN work also typi-
cally use edge weighting strategy in order to assign to
each neighbour node an importance measure when be-
ing aggregated. This weight is usually obtained using
any sort of attention mechanism, computing the simi-
larity of each node with its neighbors. Note that this is
complementary with the above point.

• Add temporal message propagation: The true power
of the graph may be obtained when adding the tempo-
ral message passing. This could bring the possibility
to allow the graph learning for instance the intrinsic
flow estimation of objects. Note that this also would
makes us change the overall structure of the model, as
right now we operate each frame individually which is
not compatible with this (several masks from different
frames are predicted on the same time).

• Add extra node representing background: An inter-
esting idea to help improve the performance could
be adding an extra node that represent the back-
ground. Once initialized in the first frame, it could help
the model learn the representation of the background
across the video in order to differentiate it from the
objects. This would require to add an extra loss func-
tion to measure background loss, thus optimizing the
overall segmentation power of the model.
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