Skip to content

acca3003/d2l-es

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

D2L.ai: Libro Interactivo de Deep Learning Book con Código Multi-Framework Code, Conceptos Matemáticos, y Debates

Build Status

Book website | STAT 157 Course at UC Berkeley, Spring 2019 | Latest version: v0.17.0

La mejor forma de comprender el Deep Learning es practicándolo.

Este libro de código abierto resperesenta nuestro intento de hacer el deep learning This open-source book represents our attempt to make deep learning accesible, enseñándote los conceptos, el contexto y el código. El libro completo está redactado en notebooks de Jupiter, The entire book is drafted in Jupyter notebooks, integración a la perfeccción gráficos explicativos, conceptos matemáticos, y ejemplos interactivos con código autocontenido.

Nuestra meta es ofrecer un recurso que pueda

  1. ser libremente disponible para todo el mundo;
  2. ofrecer suficiente profundidad técnica para proporcionar un punto de entrada en el camino de convertirte en un científico de machine learning;
  3. incluir código ejecutable, mostrando a los lectores que pueden resolver problemas en la práctica;
  4. permitir rápidas actualizaciones, tanto por nosotros, así como por la comuniadad en general;
  5. ser complementado por un foro para discuciones interactivas de detalles técnicos y respuestas a consultas.

Universidades Usando D2L

Interesantes Artículos Usando D2L

  1. Descending through a Crowded Valley--Benchmarking Deep Learning Optimizers. R. Schmidt, F. Schneider, P. Hennig. International Conference on Machine Learning, 2021

  2. Universal Average-Case Optimality of Polyak Momentum. D. Scieur, F. Pedregosan. International Conference on Machine Learning, 2020

  3. 2D Digital Image Correlation and Region-Based Convolutional Neural Network in Monitoring and Evaluation of Surface Cracks in Concrete Structural Elements. M. Słoński, M. Tekieli. Materials, 2020

  4. GluonCV and GluonNLP: Deep Learning in Computer Vision and Natural Language Processing. J. Guo, H. He, T. He, L. Lausen, M. Li, H. Lin, X. Shi, C. Wang, J. Xie, S. Zha, A. Zhang, H. Zhang, Z. Zhang, Z. Zhang, S. Zheng, and Y. Zhu. Journal of Machine Learning Research, 2020

  5. Detecting Human Driver Inattentive and Aggressive Driving Behavior Using Deep Learning: Recent Advances, Requirements and Open Challenges. M. Alkinani, W. Khan, Q. Arshad. IEEE Access, 2020

más
  1. Diagnosing Parkinson by Using Deep Autoencoder Neural Network. U. Kose, O. Deperlioglu, J. Alzubi, B. Patrut. Deep Learning for Medical Decision Support Systems, 2020

  2. Deep Learning Architectures for Medical Diagnosis. U. Kose, O. Deperlioglu, J. Alzubi, B. Patrut. Deep Learning for Medical Decision Support Systems, 2020

  3. ControlVAE: Tuning, Analytical Properties, and Performance Analysis. H. Shao, Z. Xiao, S. Yao, D. Sun, A. Zhang, S. Liu, T. Abdelzaher.

  4. Potential, challenges and future directions for deep learning in prognostics and health management applications. O. Fink, Q. Wang, M. Svensén, P. Dersin, W-J. Lee, M. Ducoffe. Engineering Applications of Artificial Intelligence, 2020

  5. Learning User Representations with Hypercuboids for Recommender Systems. S. Zhang, H. Liu, A. Zhang, Y. Hu, C. Zhang, Y. Li, T. Zhu, S. He, W. Ou. ACM International Conference on Web Search and Data Mining, 2021

Si tu encuentras útil este libro, por favor marca la estrella () de este repositorio o cita este libro usando la siguiente entrada de bibtex:

@article{zhang2021dive,
    title={Dive into Deep Learning},
    author={Zhang, Aston and Lipton, Zachary C. and Li, Mu and Smola, Alexander J.},
    note={translated by Alfonso Carabantes Alamo},
    journal={arXiv preprint arXiv:2106.11342},
    year={2021}
}

Apoyos al proyecto

"In less than a decade, the AI revolution has swept from research labs to broad industries to every corner of our daily life. Dive into Deep Learning is an excellent text on deep learning and deserves attention from anyone who wants to learn why deep learning has ignited the AI revolution: the most powerful technology force of our time."

— Jensen Huang, Founder and CEO, NVIDIA

"This is a timely, fascinating book, providing with not only a comprehensive overview of deep learning principles but also detailed algorithms with hands-on programming code, and moreover, a state-of-the-art introduction to deep learning in computer vision and natural language processing. Dive into this book if you want to dive into deep learning!"

— Jiawei Han, Michael Aiken Chair Professor, University of Illinois at Urbana-Champaign

"This is a highly welcome addition to the machine learning literature, with a focus on hands-on experience implemented via the integration of Jupyter notebooks. Students of deep learning should find this invaluable to become proficient in this field."

— Bernhard Schölkopf, Director, Max Planck Institute for Intelligent Systems

Contribuir (Aprende Cómo)

Este libro de código abierto se ha beneficiado de los contribuidores de la comunidad desde sugerencias pedagócias, correcciones tipográficas, y otras mejoras.

Estimados D2L contribuidores, por favor envía tu GitHub ID y nombre a d2lbook.en AT gmail DOT com así tu nombre aparecerá en los agradecimientos. Gracias.

Sumario de Licencias

Este libro de código abierto está disponible bajo la licencia Creative Commons Attribution-ShareAlike 4.0 International License. Ver fichero de licencia LICENSE.

Los ejemplos y código de referencia dentro de este libro de código abierto está disponible bajo la versión modificada de la licencia MIT license. Ver fichero de licencia LICENSE-SAMPLECODE.

Chinese version | Discuss and report issues | Code of conduct | Other Information

About

No description, website, or topics provided.

Resources

License

Unknown and 2 other licenses found

Licenses found

Unknown
LICENSE
MIT-0
LICENSE-SAMPLECODE
Unknown
LICENSE-SUMMARY

Code of conduct

Stars

Watchers

Forks

Packages

No packages published