
Introduction Results

Conclusion

Convolutional neural networks lose shift invariance due to
downsampling (stride) layers.

Existing solutions do not enable perfect shift invariance.
• Data augmentation. The obtained gains in shift invariance do

not extend well to images outside the training distribution.

• Anti-aliasing. Improves robustness to shifts but gains limited
by the action of non-linear activation functions like ReLU.

Our goal. To design a CNN architecture that exhibits
perfect shift invariance without the above limitations.

Our approach: Adaptive Polyphase Sampling (APS)

The case for adaptive sampling
Conventional downsampling is not robust to shifts
because it samples pixels along a fixed sampling grid.
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Key idea: Choose the sampling grid adaptively to
ensure that same pixels are selected irrespective of shift.
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Polyphase components

A 1-D signal can be uniformly downsampled with stride-
2 in two ways.
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%! and %" are called polyphase components of ! and are
both equally valid results of downsampling.

Images can similarly be downsampled to yield 4
polyphase components.

Integrating APS in CNN architectures
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Shifting the input of APS by 4 pixels shifts its output by ~4/2 pixels.

APS on multi-channel image tensor
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Tab 1. Consistency and accuracy evaluated for ResNet-18 on CIFAR-10 test set. Random circular
shifts between -3 to 3 pixels used for evaluation. Models trained without random shifts.

Tab 2. Consistency and accuracy evaluated for ResNet-18 on ImageNet validation set. Random
circular shifts between -32 to 32 pixels used for evaluation. Models trained without random shifts.

Classification consistency (shift invariance measure) & accuracy.
Networks containing APS are 100% consistent to shifts and also 
exhibit improved accuracy as a side benefit.

CIFAR-10 classification

ImageNet classification

Shift invariance on out-of-distribution images

APS continues to enable
perfect shift invariance even
as images move away from
the training distribution.

This is not true for methods
like anti-aliasing (LPF) and
data augmentation (DA).

Classification consistency during training

Unlike prior methods, networks
with APS are always 100%
consistent, even before training.

The shift invariance prior is,
therefore, truly embedded in the
CNN architecture.

• CNNs lose shift invariance due to downsampling layers.

• Prior methods like data augmentation and anti-aliasing have 
limitations and do not result in perfect shift invariance.

• We propose APS, a simple non-linear sampling scheme that 
enables perfect shift invariance without any loss in accuracy.

• APS does not need any additional learnable parameters and 
can be easily integrated into existing architectures.

Code available at https://github.com/achaman2/truly_shift_invariant_cnns.

How to select polyphase component to result in shift invariance?

An image and its shift share the same set of polyphase components.

Conventional downsampling in CNNs Downsampling with APS
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Choose the component with the highest norm as the subsampled output.

APS does not require any additional learnable parameters.
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Models Baseline APS LPF-2 APS-2 LPF-3 APS-3

Consistency 80.39% 100% 84.35% 100% 86.54% 99.998%
Table 3. Imagenet no aug

Models Baseline APS LPF-2 APS-2 LPF-3 APS-3

Consistency 80.39% 100% 84.35% 100% 86.54% 99.998%
Accuracy (unshifted) 64.88% 67.05% 67.03% 67.60% 66.96% 67.43%

Table 4. Imagenet no aug

Models Baseline APS LPF-2 APS-2 LPF-3 APS-3 LPF-5 APS-5

Consistency 59.80% 100% 75.96% 100% 82.73% 100% 90.62% 100%
Accuracy (unshifted) 66.33% 75.10% 71.42% 75.41% 73.24% 75.17% 75.20% 75.64%

Table 5. cifar-100 no aug

Models Baseline APS LPF-2 APS-2 LPF-3 APS-3 LPF-5 APS-5

Consistency 59.80% 100% 75.96% 100% 82.73% 100% 90.62% 100%
Table 6. cifar-100 no aug

Models Baseline APS LPF-2 APS-2 LPF-3 APS-3 LPF-5 APS-5

Consistency 90.88% 100% 95.06% 100% 97.19% 100% 98.19% 100%
Accuracy (unshifted) 91.96% 93.97% 93.47% 94.38% 94.01% 94.53% 94.28% 94.48%

Table 7. cifar-10 resnet18 no aug circular shifts

Models Baseline APS LPF-2 APS-2 LPF-3 APS-3 LPF-5 APS-5

Consistency 80.39% 100% 84.35% 100% 86.54% 99.996% 87.88% 99.98%
Accuracy (unshifted) 64.88% 67.05% 67.03% 67.60% 66.96% 67.43% 66.85% 67.52%

Table 8. imagenet resnet18 no aug circular shifts
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