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Introduction A case for adaptive upsampling Results

Adaptive polyphase upsampling

Shift equivariance is a desirable property for image
reconstruction tasks.

𝐹 𝑇! 𝑥 = 𝑇! 𝐹 𝑥

Popular CNN architectures like U-Net are not shift
equivariant due to downsampling (stride) layers.

Existing solutions like data augmentation and anti-aliasing
do not enable perfect equivariance.

• Gains in equivariance do not extend beyond training
distribution.

• Stability to shifts improved on average but worst-case
shifts can degrade performance.

Primer: Adaptive polyphase downsampling
Conventional downsampling is not robust to shifts.
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Key idea: Choose the sampling grid adaptively.
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Adaptive polyphase downsampling chooses the sampling 
grid with the highest norm.

Shifting the input to APS-D shifts its subsampled output.

Our goal: Design a truly shift-equivariant CNN
architecture for image-to-image regression problems
without sacrificing performance.

Replacing downsampling layers of a U-Net by APS-D is not sufficient for shift
equivariance.
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By upsampling the signal onto the grid used by APS-D, shift equivariance
can be achieved.

𝑈+, 𝑦,-., 𝑖/ = 𝑇0!(𝑈+(𝑦,-.))
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Proposition 1. Let 𝐷+, and 𝑈+, denote APS-D and APS-U operators with stride
2. Then, 𝑈+, ∘ 𝐷+, is shift equivariant, i.e.

𝑈+, ∘ 𝐷+, 𝑇! 𝑥 = 𝑇! 𝑈+, ∘ 𝐷+, 𝑥 , ∀ 𝑘 ∈ 𝑍.

Proposition 2. A U-Net architecture with downsampling and upsampling
layers replaced by APS-D and APS-U layers respectively is shift equivariant.

𝑈!" ∘ 𝐷!"(𝑥) zeros out all pixels in 𝑥, except those on the grid selected by APS-D.
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MRI reconstruction

Tab 1. Results obtained with different variants of U-Net on fastMRI validation set.

U-Net variants with APS layers exhibit orders of magnitude superior
equivariance compared to other methods.

Out-of-distribution results
Networks with APS layers exhibit perfect shift equivariance even on
out-of-distribution images.

Tab 2. Equivariance metrics for networks trained on fastMRI training set but 
evaluated on ImageNet validation set.

Code available at 
https://github.com/achaman2/truly_shift_invariant_cnns.

Decline in PSNR with shifts in input

Tab 4. Decline in PSNR of MRI reconstructions caused by randomly shifting 
the images in fastMRI validation set.

With APS, U-Net reconstructions are significantly more stable to
shifts than baseline.

Conclusion
• CNNs lack shift equivariance due to downsampling (stride).

• We propose adaptive polyphase upsampling to restore shift
equivariance in symmetric encoder-decoder CNN architectures.

• APS provides SOTA in- and out-of-distribution equivariance
performance without sacrificing reconstruction quality.
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