Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
PrimePi/primepi.lua
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
113 lines (99 sloc)
3.43 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| local prime = require 'prime' | |
| local int, huge = math.floor, math.huge | |
| local lookup, psum, phi, P | |
| local function countPi(x) | |
| P = prime.primes(x) -- count pi(x) using table P | |
| P.max = x | |
| setmetatable(P, {__index = function(F, i) return huge end}) | |
| return #P | |
| end | |
| -- setup code to make critical tables for m = B-3 | |
| countPi(1000) -- default size | |
| local B = 8 -- base prime in phi() | |
| assert(P[#P] > P[B]^2) -- make sure enough primes | |
| local ka, kb = 1/P[B-2], 1/P[B-1] | |
| local kc = ka * kb | |
| local T, s, k = {[0]=0, 1}, 1, 1 | |
| for i = 1, B-3 do s = s * P[i] end | |
| for i = 1, B-3 do -- mark prime + multiples | |
| local p = P[i] | |
| T[p] = true | |
| for j = p^2, s-1, p do T[j] = true end | |
| end | |
| for i = 2, s-1 do -- make critical table | |
| if T[i] == nil then k = k + 1 end | |
| T[i] = k | |
| end | |
| -- phi(P, x, m) return count in [1, x] co-prime to first m primes | |
| -- it calculates by lookup in critical table and prime table, | |
| -- and by recursion. To simplify further, it calls psum() or | |
| -- lookup() when Legendre's condition holds. | |
| function phi(P, x, m, psum) | |
| local z = int(x) | |
| repeat | |
| local s, T, a, b, c = s, T, int(x*ka), int(x*kb), int(x*kc) | |
| if z < s then z = T[z] - T[a] - T[b] + T[c]; break end | |
| local big, tz = z, z % s | |
| big = big - tz | |
| tz = T[tz] | |
| if a >= s then z = a; a = a % s; big = big - (z-a) end | |
| if b >= s then z = b; b = b % s; big = big - (z-b) end | |
| if c >= s then z = c; c = c % s; big = big + (z-c) end | |
| z = tz - T[a] - T[b] + T[c] + big / s * k | |
| until true | |
| for i = B, m do | |
| local y = P[i] | |
| if y^3 > x then return psum(P, x, i, m, z) end | |
| z = z - phi(P, x/y, i-1, lookup) | |
| end | |
| return z | |
| end | |
| -- psum(P, x, i, m, z) == z - Sum(phi(x/P[k], k-1)), k = [i, m] | |
| function psum(P, x, i, m, z) -- assume x < P[i]^3 | |
| for k = i, m do | |
| local y = x/P[k] | |
| if y <= P.max then return lookup(P, x, k, m, z) end | |
| while y < P[i]^2 do i=i-1 end -- i == pi(sqrt(y)) | |
| z = z - (phi(P, y, i, lookup) + i - k + 1) | |
| end | |
| return z | |
| end | |
| -- calculate psum(P, x, i, m, z) by direct lookup of prime table | |
| -- lookup == z + Sum[k] - Sum(pi(x/P[k]) + 2), k = [i, m] | |
| -- NOTE: x/P[m] >= P[m], thus best to sum pi's in reverse | |
| function lookup(P, x, i, m, z) | |
| z = z + 0.5 * (i+m)*(m-i+1) -- z += Sum[k] | |
| for k = m, i, -1 do -- sum pi()'s in reverse | |
| local y = x/P[k] | |
| while y >= P[m + 8] do m = m + 10 end | |
| while y >= P[m] do m = m + 2 end | |
| if y >= P[m-1] then m = m + 1 end | |
| z = z - m -- z -= Sum[pi(y) + 2] | |
| end | |
| return z | |
| end | |
| function prime.bisect(a, x, lo, hi) -- 1 based python bisect() | |
| if lo == nil then lo = 1 end | |
| if hi == nil then hi = #a + 1 end | |
| while lo < hi do | |
| local mid = int((lo+hi)/2) | |
| if x < a[mid] then | |
| hi = mid | |
| else | |
| lo = mid+1 | |
| end | |
| end | |
| return lo | |
| end | |
| local function PI(x) return prime.bisect(P, x) - 1 end | |
| function prime.pi(x) -- number of primes <= x | |
| if x <= P.max then return PI(x) end | |
| local y = x^0.5 | |
| local m = (y <= P.max) and PI(y) or countPi(y) | |
| x = 2 * int(0.5 * (x+1)) -- "round" to even | |
| return phi(P, x, m, psum) + m - 1 | |
| end | |
| if select(1, ...) ~= 'primepi' then -- test code | |
| print(prime.pi(tonumber(select(1, ...)))) | |
| end | |
| return prime |