-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
473 lines (406 loc) · 16.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
#coding:utf-8
import gensim
from gensim import models
from gensim import corpora
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
from sklearn.model_selection import KFold
from sklearn.model_selection import train_test_split
from sklearn import linear_model
import sklearn
from sklearn import svm
from sklearn.naive_bayes import GaussianNB
from sklearn.datasets import load_svmlight_file
from sklearn import metrics
from sklearn.metrics import roc_auc_score
import pandas as pd
import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Embedding, LSTM, Dense, Activation
import tensorflow as tf
import sys
import os
dictionary = None
english_stopwords = stopwords.words('english')
st = PorterStemmer()
filt_stop_words = ['/','<','>',',','.',':',';','\'','?','!','(',')','[',']','@','&','#','%','$','{','}','--','-', '``', '\\']
extra_stop_words = ["'s", "''", "'ve", "n't"]
class Histories(keras.callbacks.Callback):
def on_train_begin(self, logs={}):
self.aucs = []
self.losses = []
def on_train_end(self, logs={}):
return
def on_epoch_begin(self, epoch, logs={}):
return
def on_epoch_end(self, epoch, logs={}):
self.losses.append(logs.get('loss'))
y_pred = self.model.predict(self.validation_data[0:2])
yp = []
for i in xrange(0, len(y_pred)):
yp.append(y_pred[i][0])
yt = []
for x in self.validation_data[2]:
yt.append(x[0])
auc = roc_auc_score(yt, yp)
self.aucs.append(auc)
print('val-loss',logs.get('loss'), ' val-auc: ',auc)
print('\n')
return
def on_batch_begin(self, batch, logs={}):
return
def on_batch_end(self, batch, logs={}):
return
class MyCorpus(object):
def __init__(self, data):
self.__dictionary = corpora.Dictionary.load("../data/labeled_train_data_dict.dict")
self.__data = data
return
def __iter__(self):
i = 0
for line in open(self.__data):
if i == 100:
break
i = i + 1
ll = line.split("\t")
if ll[0] == 'id':
continue
text = None
if len(ll) == 2:
text = ll[1]
else:
text = ll[2]
if not text:
print("wrong line:" + line)
break
corp = norm_text(text)
yield self.__dictionary.doc2bow(corp)
class MySentences(object):
def __init__(self, filename):
self.filename = filename
return
def __iter__(self):
for f in self.filename:
for line in open(f):
ll = line.strip().split("\t")
if ll[0] == "id":
continue
if len(ll) == 2:
yield norm_text(ll[1])
elif len(ll) == 3:
yield norm_text(ll[2])
def norm_text(corp):
corp = corp.lower().strip("\"").lstrip("\"").rstrip("\"")
corp = corp.replace('.', ' . ') \
.replace('<br />', ' ') \
.replace("\"", " \" ") \
.replace(",", " , ") \
.replace("\"", " \" ") \
.replace("(", " ( ") \
.replace(")", " ) ") \
.replace("!", " ! ") \
.replace("?", " ? ") \
.replace(";", " ; ") \
.replace("\\", " \\ ") \
.replace(":", " : ")
texts_tokenized = [word for word in word_tokenize(corp)]
texts_filtered_stopwords = [word for word in texts_tokenized if not word in english_stopwords and not word in filt_stop_words]
texts_stemmed = [st.stem(word) for word in texts_filtered_stopwords]
texts_final = [word for word in texts_stemmed if not word in extra_stop_words]
return texts_final
def make_dictionary():
global dictionary
doc = []
#合并训练集测试集做词典
with open("../data/labeledTrainData.tsv") as f:
for line in f:
ll = line.split("\t")
id = ll[0]
if (id == "id"):
continue
label = ll[1]
#corp = ll[2].lower().strip("\"").lstrip("\"").rstrip("\"")
corp = norm_text(ll[2])
doc.append(corp)
with open("../data/unlabeledTrainData.tsv") as f:
for line in f:
ll = line.split("\t")
id = ll[0]
if (id == "id"):
continue
#corp = ll[2].lower().strip("\"").lstrip("\"").rstrip("\"")
corp = norm_text(ll[1])
doc.append(corp)
with open("../data/testData.tsv") as f:
for line in f:
ll = line.split("\t")
id = ll[0]
if (id == "id"):
continue
#corp = ll[2].lower().strip("\"").lstrip("\"").rstrip("\"")
corp = norm_text(ll[1])
doc.append(corp)
dictionary = corpora.Dictionary(doc)
dictionary.save("../data/labeled_train_data_dict.dict")
return
def prepare_tfidf_model():
#tfidf也要合并2个训练集和1个测试集
#bag of words
corp = MyCorpus("../data/labeledTrainData.tsv")
corpus = []
for text in corp:
corpus.append(text)
corp = MyCorpus("../data/testData.tsv")
for text in corp:
corpus.append(text)
corp = MyCorpus("../data/unlabeledTrainData.tsv")
for text in corp:
corpus.append(text)
#tfidf 合并结束
#得到tfidf模型
tfidf = models.TfidfModel(corpus)
tfidf.save("../data/tfidf.model")
return
def get_vector():
tfidf_model = models.TfidfModel.load("../data/tfidf.model")
dictionary = corpora.Dictionary.load("../data/labeled_train_data_dict.dict")
train_data = []
X = []
Y = []
with open("../data/labeledTrainData.tsv", "r") as f:
for line in f:
ll = line.strip().split("\t")
if (ll[0] == "id"):
continue
label = ll[1]
doc = norm_text(ll[2])
doc2id = dictionary.doc2bow(doc)
X.append(tfidf_model[doc2id])
Y.append(label)
corpora.SvmLightCorpus.serialize(fname='../data/train_vector.mm', corpus=X, labels=Y)
X = []
Y = []
with open("../data/testData.tsv", "r") as f:
for line in f:
ll = line.strip().split("\t")
if (ll[0] == "id"):
continue
doc = norm_text(ll[1])
doc2id = dictionary.doc2bow(doc)
X.append(tfidf_model[doc2id])
#测试集不需要Y label
corpora.SvmLightCorpus.serialize(fname='../data/test_vector.mm', corpus=X)
return
def get_word2vec_vector():
need_train = False
if need_train:
sentences = MySentences(['../data/labeledTrainData.tsv', '../data/testData.tsv'])
model = models.Word2Vec(sentences, min_count=3, workers=3)
model.save("../data/w2v.model")
model = models.Word2Vec.load("../data/w2v.model")
#转化训练集的vector
X = []
Y = []
with open("../data/labeledTrainData.tsv") as f:
for line in f:
ll = line.strip().split("\t")
if (ll[0] == "id"):
continue
feature_vec = np.zeros(() ,dtype="float32")
doc = norm_text(ll[2])
nwords = 0
for word in doc:
if word not in model.wv:
continue
nwords = nwords + 1
feature_vec = np.add(feature_vec,model.wv[word])
feature_vec = np.divide(feature_vec, nwords)
X.append([ (i, feature_vec[i]) for i in range(len(feature_vec))])
Y.append(ll[1])
corpora.SvmLightCorpus.serialize(fname='../data/w2v_train_vector.mm', corpus=X, labels=Y)
X = []
Y = []
with open("../data/testData.tsv", "r") as f:
for line in f:
ll = line.strip().split("\t")
if (ll[0] == "id"):
continue
doc = norm_text(ll[1])
nwords = 0
for word in doc:
if word not in model.wv:
continue
nwords = nwords + 1
feature_vec = np.add(feature_vec,model.wv[word])
feature_vec = np.divide(feature_vec, nwords)
X.append([ (i, feature_vec[i]) for i in range(len(feature_vec))])
#测试集不需要Y label
corpora.SvmLightCorpus.serialize(fname='../data/w2v_test_vector.mm', corpus=X)
return
def get_lda_vector():
corp = MyCorpus("../data/labeledTrainData.tsv")
corpus = []
for text in corp:
corpus.append(text)
corp = MyCorpus("../data/testData.tsv")
for text in corp:
corpus.append(text)
corp = MyCorpus("../data/unlabeledTrainData.tsv")
for text in corp:
corpus.append(text)
dic = corpora.Dictionary.load("../data/labeled_train_data_dict.dict")
model = models.LdaModel(corpus, num_topics=10, id2word=dic)
print(model.show_topic(0))
print(model.print_topics(10))
print(model[corpus[0]])
return
def train(train_vector_file, test_vector_file):
(X_te, Y_te) = load_svmlight_file(test_vector_file)
#trick 读稀疏格式要指定n_features数目,不然模型预测时会报错测试集features与模型features数量不等,这里test的features数目比train的多,因此先读test,之后指定train的n_features为test的特征数量
(X, Y) = load_svmlight_file(f=train_vector_file, n_features=X_te.shape[1])
#model = svm.SVC(verbose=True)
model = linear_model.LogisticRegression(
penalty='l1',
C=1e5,
tol=1e-8,
verbose=False)
#10折交叉验证
kfold_switch = False
if kfold_switch:
kf = KFold(n_splits=10)
kf.get_n_splits(X)
print("begin 10 fold cross validation")
for tr_index, te_index in kf.split(X):
X_train, X_test = X[tr_index], X[te_index]
Y_train, Y_test = Y[tr_index], Y[te_index]
model.fit(X_train, Y_train)
tr_pr = model.predict(X_train)
te_pr = model.predict(X_test)
train_acc = metrics.roc_auc_score(Y_train, tr_pr)
test_acc = metrics.roc_auc_score(Y_test, te_pr)
print("train_acc: %f test_acc:%f" % (train_acc, test_acc))
print("begin train model")
model.fit(X, Y)
train_predict_y = model.predict(X)
test_predict_y = model.predict(X_te)
#保存predict结果
np.save("../data/lr_predict", test_predict_y)
print("\t")
print("final train_acc:%f" % metrics.roc_auc_score(Y, train_predict_y))
return
def convert_sparse_matrix_to_sparse_tensor(X) :
coo = X.tocoo()
indices = np.mat([coo.row, coo.col]) .transpose()
return tf.SparseTensor(indices, coo.data, coo.shape)
def train_lstm(train_vector_file, test_vector_file):
(X_te, Y_te) = load_svmlight_file(test_vector_file)
#trick 读稀疏格式要指定n_features数目,不然模型预测时会报错测试集features与模型features数量不等,这里test的features数目比train的多,因此先读test,之后指定train的n_features为test的特征数量
(X, Y) = load_svmlight_file(f=train_vector_file, n_features=X_te.shape[1])
X = X.todense()
X_te = X_te.todense()
X_train, X_val, Y_train, Y_val = train_test_split(X, Y, test_size=0.2, random_state=20)
#神特么技巧,要先np.array()转换后才能reshape
X_train = np.array(X_train)
X_train = X_train.reshape(X_train.shape[0], 1, X_train.shape[1])
X_val = np.array(X_val)
X_val = np.reshape(X_val, (X_val.shape[0], 1, X_val.shape[1]))
X_te = np.array(X_te)
X_te = np.reshape(X_te, (X_te.shape[0], 1, X_te.shape[1]))
#embedding_layer = Embedding(input_dim=X_train.shape[1],
# output_dim=X_train.shape[1])
need_train = True
if need_train:
print('Build model...')
model = Sequential()
#model.add(embedding_layer)
model.add(keras.layers.recurrent.LSTM(units=100,
input_shape=(None, X_train.shape[2]),
#input_dim=X_train.shape[2],
return_sequences=False,
activation='relu',
use_bias=True,
kernel_initializer='glorot_uniform',
recurrent_initializer='orthogonal',
bias_initializer='zeros',
unit_forget_bias=True,
kernel_regularizer=None,
recurrent_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
recurrent_constraint=None,
bias_constraint=None,
dropout=0.2,
recurrent_dropout=0.2))
#model.add(LSTM(100, input_dim=128))
'''
#双层lstm 需要更改第一层return_sequences=True,然效果并不好
model.add(keras.layers.recurrent.LSTM(units=100,
input_shape=(None, 100),
#input_dim=X_train.shape[2],
return_sequences=False,
activation='relu',
use_bias=True,
kernel_initializer='glorot_uniform',
recurrent_initializer='orthogonal',
bias_initializer='zeros',
unit_forget_bias=True,
kernel_regularizer=None,
recurrent_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
recurrent_constraint=None,
bias_constraint=None,
dropout=0.2,
recurrent_dropout=0.2))
'''
model.add(Dense(128, input_dim=100))
model.add(Activation('sigmoid'))
model.add(Dense(2, input_dim=100, activation='softmax'))
#model.layers[1].trainable=False
histories = Histories()
model.compile(loss='sparse_categorical_crossentropy',
optimizer='adam',
metrics=['mse'])
model.summary()
print('Train...')
model.fit(X_train, Y_train, batch_size=50, epochs=30,
validation_data=(X_train, Y_train))
score, acc = model.evaluate(X_val, Y_val,
batch_size=50)
print('Test score:', score)
print('Test accuracy:', acc)
print('Train auc:', roc_auc_score(Y_train, model.predict(X_train)[:, 1]))
print('Val auc:', roc_auc_score(Y_val, model.predict(X_val)[:, 1]))
else:
model = keras.models.load_model("../data/lstm.model")
#test_predict_y = model.predict(X_te)[:, 1]
test_predict_y = model.predict_classes(X_te)
if need_train:
model.save("../data/lstm.model")
np.save("../data/lstm_predict", test_predict_y)
return
def submission(predict):
test_data = pd.read_csv('../data/testData.tsv', header=0, sep="\t")
predict = np.load(predict)
with open("../data/submission.csv", "w") as f:
f.write('id,sentiment\n')
for i in range(len(predict)):
id = test_data['id'].iloc[i]
id = id.lstrip("\"").rstrip("\"")
f.write("%s,%d\n" % (id, predict[i]))
return
if __name__ == "__main__":
#make_dictionary()
#prepare_tfidf_model()
#get_vector()
#get_word2vec_vector()
get_lda_vector()
#train("../data/w2v_train_vector.mm", "../data/w2v_test_vector.mm")
#train_lstm("../data/train_vector.mm", "../data/test_vector.mm")
#train_lstm("../data/w2v_train_vector.mm", "../data/w2v_test_vector.mm")
#submission("../data/lr_predict.npy")
#submission("../data/lstm_predict.npy")