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1 Abstract

In this report, we derive the analytical Jacobians for particle tracks (1) in the
absence of electromagnetic fields and (2) in the presence of a constant B-field in
z-direction. Our work is a follow-up to Sec. 5.3.3 and 5.3.4 of Ref. [1]: We (1)
simplify the results obtained there by evaluating the Jacobians at the PCA and
(2) add the time coordinate to the calculations.






2 General Notions

In the Perigee representation, a track is parametrized at its point of closest ap-
proach (PCA) P to the origin R of a reference coordinate system (see Fig. 3.1 and
Fig. 4.1 for the definition of the points). The corresponding parameter vector q
reads

do

20

. ¥p
q T HP 9 (21)

(Q/p)P

tp
where
e d is the signed distance between P and R in the x-y plane
® 2y = zp — zp 18 the z-distance between P and R
e vp € [—m,m) is the polar angle of the momentum at P
e Op € (0,7) is the azimuthal angle of the momentum at P

e (q/p)p is the charge of the particle divided by the absolute value of its
momentum at P

e {p is the track time at P

The sign convention for dy requires special care. We have

>0ifIneZst. gg—@p=75+2mn
< 0 otherwise

where ¢q € [—m, ) is the polar angle of the vector pointing from R to P. Note
that for linear tracks (no EM fields) this translates to

sgn (do) = sgn (yr — yp) , (2.2)

and for helical tracks (constant B-field in z-direction, B = B €&,) we have

sgn (do) = sgn (B) sgn (¢) sgn (p* — (rr —10)?) (2.3)



where p is the helix radius.!
One can write the six parameters from Eq. 2.1 as a function of a 4D point on
the track (point V in Fig. 3.1) and the corresponding momentum, e.g.:

dO = d()(xV; Yv, zv, tVa PV, 9‘/7 (Q/p)V)7

In the following, we will compute the Jacobian of the Perigee parameters in this
representation, i.e.:

Opydo Oy, do 0,,dy Opydo Opydo  Ogy, do 8(q /o)y do
85,;‘/ 20 ’ :
g | Om¥ (2.4)
0y, 0
Dvyq/p : :
axvtp 8(q/p)vtp Vep

where we evaluate the Jacobian at the PCA P. We follow the literature convention
and split the Jacobian into the submatrices A and B, which we call position and
momentum Jacobian. Note that it is often useful to rewrite the derivative with
respect to q/p like

Oqfp = Ogsp P Op

-1
q
= q Oqyp (;) Op
¢ —2
=—q| = 19)
q<p) 8

2

P
=29, 2.5
q D ( )

where we dropped the subscript for readability.

It is important to keep in mind that the Jacobian should only depend on the
track parameters at the PCA. However, as we will see in the following, the terms
involving time will often depend on the particle speed v, which cannot be extracted
directly from q. To obtain v nonetheless, we need to exploit a mass and a charge
hypothesis:

- Pr
\/]72 + (cm0)27

where c is the speed of light and my is the rest mass of the particle, which is fixed
by the mass hypothesis. The momentum p can be determined from the track
parameters using the charge hypothesis.

lsgn (,02 —(rgr — ro)Q) is (negative) positive if R is (outside) inside of the helix.



3 Track Linearization in the
Absence of EM Fields

Figure 3.1: Projection of a track on the z-y plane in the absence of a magnetic
field. The Perigee parametrization is given with respect to a coordinate
system with origin in point R, whose axes are parallel to the global
coordinate axes. dy is the z-y-distance between the reference point R
and the PCA P of the trajectory to it. V denotes a general point on
the trajectory. Note that we have dy < 0, ¢ > 0, and g < 0 in this
plot.

If no electromagnetic field is present, the particle is not accelerated (¥ = 0) and
it thus moves on a straight trajectory, see Fig. 3.1. Therefore, ¢, 0, and ¢q/p are
constant along the track, and we have

Yy =¢Yp =@
0y = 0p
(q/p)v = (a/p)p = q/p

Il
>



in the following.

Note that we perform all calculations for the situation shown in Fig. 3.1. One
can (and should!) verify that we obtain the same results for different parame-
ter signs and reference positions (e.g., when the particle moving in the opposite
direction or when the reference R is below the track).

Let us start by expressing the coordinates of the PCA to the reference point R
(i.e., the point P) with respect to the coordinates of the point V:

sin  cos
rp=ry+v |sinfsing | (tp —ty),
cos

where v denotes the speed of the particle. Using the definition from Eq. 2.2 and
keeping the sign of ¢ in mind, we can find another equation for rp:

dp sin ¢
rp=rr+ | —docosy |,
20

as one can easily verify from Fig. 3.1. Equating the two expressions for rp, we
obtain:

sin f cos ¢ dp sin
ry +o | sinfsing | (tp —ty) =rr+ | —docosy | . (3.1)
cos f 20

Note that, the equation above contains only the Perigee parameters and the space-
time coordinates of V.!

3.1 Derivatives of ¢,

Before calculating the Jacobian, we must derive explicit functions for the Perigee
parameters from Eq. 3.1. To obtain an expression for the time coordinate ¢, we
rearrange the equations in the first two dimensions of Eq. 3.1:

dosinp = xy — xg + vsin b cos pAt
—dp cos p = yy — yr + vsin O sin pAt,

where we introduced At := tp — ty,. Division of the above equations furnishes:

Ty — Tg + vsin b cos p At

_t —
ey Yy — Yr + vsin @ sin p At

—tan ¢ (yy — yr + vsinfsin pAt) = zy — xi + vsinf cos p At
—sinp (yy — yr) — vsinfsin® pAt = cos ¢ (vy — xg) + vsin f cos® PAt,

I'The momentum at V coincides with the Perigee momentum due to the absence of a magnetic
field.
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where we multiplied by cos¢ and used tan¢ = % in the last step. We can

simplify this expression by recalling that sin? ¢ 4 cos? ¢ = 1:
vsin At = —cos @ (zy — zg) — siny (yy — yYr) -

Finally:
1
At = ~ g (cos (zy — xR) + sing (yv — yr))
— tp =ty — oS0 (cosg (zv — zgr) +sine (yv — yr)) - (3.2)
We can now calculate the last row of the Jacobian from Eq. 2.4 using Eq. 3.2:
cos
Oyt = —
v Ply_p vsin 6
sin
Oy, t = —
A vsin@
0, t =0
v Ply_p
O, t =1
VP _p
1
a,t - i ~ ) — - ‘
PPl T sind (sing (zv — zr) — cos ¢ (yv — Yr)) Vep (3.3)
do
~ wvsind

1 .
Optp T (agvsin9> (cos @ (zy — zR) + sing (yv — yr)) ‘

V=P
=0
Og/ptp = — <8q/p,;) (cos @ (zy — zR) + sing (yv — yr)) ‘
V=P vsinf V=P
= 0’
where we used that
(xy — xR)’V:P = (xp — =R)
= —siny dy

(3.4)

(yv — yR)’V p = (yp — Yr)

= cosp dp.

3.2 Derivatives of ¢/p

The fifth row of the Jacobian is obtained by noting that ¢/p is constant in the
absence of an electric field and thus

a(q/P)V(Q/p)P)V = Ogp 4/P —— 1,

=P

while all other derivatives vanish.
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3.3 Derivatives of ¢

Again, 0 is constant along the track in the absence of an electric field, and we
have

3<0>V(9)P‘ =0y 9‘V:P =1

V=P

while all other derivatives in the fourth row of the Jacobian vanish.

3.4 Derivatives of ¢

@ is constant along the track in the absence of electric and magnetic field. There-
fore, we find as before:

while all other derivatives in the third row of the Jacobian vanish.

3.5 Derivatives of z

To obtain an expression for 2y, we consider the third dimension of Eq. 3.1, i.e.:
zy +vcos At = zp + 2.

Then,
Zo = 2y — zr + v cos OAL,

and we can find the derivatives of 2y by exploiting

0g; At = Ogtp — Ogty

i
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in combination with the derivatives from Eq. 3.3. We find:

&Cvzo‘ =vcosf QEVAt’
V=pP V=P
cos
= —vcosf—
vsinf
= —cotfcosyp
8yvzo‘ ~_=wcost ayVAt‘v:P
= —vcosb SH,U'O
vsinf
= —cotfsingp
02, %0 =14 wvcosf 8ZVAt‘
V=P v=pr
=1
Oy 20 vp vcosf Oy, At
=0
B) — vcosd 9 At‘
520 vp vcost 0, vp
= — 0
veos vsin 6
= —dycot 8
Oy 2o = —vsin 9At‘ + vecos O OgAt
v=pr V=P V=P
=0
8q/p20’ = vcosf 8q/pAt‘V:P
= 07
where we used that
At’ — (tp —t ‘ —0. 3.5
V=P (tr = tv) V=P (3.5)

3.6 Derivatives of d

An expression for dy can be found by rearranging the first two dimensions of
Eq. 3.1 like:

dysinp — vsinf cos pAt = xy — xR

—dgy cos p — vsinfsin pAt = yy — yg.
Squaring and adding these equations furnishes

d3 +v?sin® 0(At)? = (v — 2g)* + (yv — yr)?,
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which could have been deduced geometrically by noting that the speed in the
x-y-plane is given by vy = vsinf and by applying the Pythagorean theorem in
Fig. 3.1. Solving for dy furnishes

|do| = \/(SUV —zp)? + (yv — yr)? — v?sin® 0(At)?,

and, by using Eq. 2.2,

do = sgn (yr — yp) \/(xv —p)? + (yv — yr)? — v2sin? (At)2.
The derivatives of d; read

8xvd0‘vzp = dlo(xv —xp —v?sin? 0At 9,,, At) vp
I'p — TR

do
— sin pdy

do

= —singp

Oy, do vp dlo(yv — yp — v?sin? AL Oy, At) vp
_Yp — YR
==

cos @d,

do

= CoS

0

1%

_ 1 2 2
dy N do(—v sin” At aZVAt)‘V:P

—0
_ 1 2 .2
Ouydo|,_, = - (—vsin® 0 8tVAt)’V:P

=0
Opdy

L e
vp do( v sin” 0At &pAt)‘

=0

V=P

Opdy

R e ’
by do( v”sin® 0AL Oy At) y

=0

1
Duypllo —v?sin? OAL 9, At) )V

ver ~ dpt
:0’

where we used Eqgs. 3.4 and 3.5.
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3.7 Results

Summing up the results from the previous sections, the position Jacobian reads:

—sinp cos 0 0
—cotfcosp —cotfsinp 1 0
0 0 00
A= 0 0 00l
0 0 0 0
_gosyp _sing 0 1
T vr

and the momentum Jacobian reads:

0
—dgcot 6
1
0
0

_do
v

SO = O OO
SO = OO OO

where vy = wsinf is the speed in the z-y-plane. When comparing to Eq 5.40
from Ref. [1], we note that several terms in the momentum Jacobian differ from
our results. This is because we evaluate the Jacobian at the PCA P while Ref. [1]
evaluates the Jacobian at a general point on the trajectory V.2

2Note that, for all practical applications, we perform the linearization at the PCA.






4 Track Linearization in a Constant
Magnetic Field

Figure 4.1: Projection of a track on the z-y plane in a constant magnetic field
in z-direction. The particle moves counterclockwise on a helix with
radius |p| (i.e., a negative (positive) particle is moving in a B-field in
positive (negative) z-direction). The Perigee parametrization is given
with respect to a coordinate system with origin in point R, whose
axes are parallel to the global coordinate axes. dy is the z-y-distance
between the reference point R and the PCA P of the trajectory to it.
V' denotes a general point on the trajectory. Note that we have dy < 0,
p<0,90p >0, py >0 X <0,and Y > 0 in this plot. For the angle
o between the z-axis and the vector from R to P, we have ¢y < 0.

For a constant B-field in z-direction, the differential equations governing the

15
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particle movement read

i i 0 yB
mli|l=qly|x|0]|=[-iB]. (4.1)
3 3 B 0

Note that the acceleration in the transverse plane (i.e., the z-y-plane) is always
perpendicular to the velocity in said plane. Therefore, the speed in the transverse
plane vy = /1% + 2 is constant. Furthermore, there is no acceleration in z-
direction and thus the speed in said direction v, = Z is constant. Consequently,
the total speed v = /v% + v? is also constant. This allows us to conclude that
0 = arcsin (vp/v) and ¢/p = q/(mv) are constant as well, and we can write

Oy = 0p = 0
(a/p)v = (a/p)p = q/p

in the following calculations.
Choosing the initial conditions

2(0) =20 y(0) =yo 2(0) =2
#(0) =wvsinf §(0) =0 2(0) =wvcosb,

we find
z(t) = zo + psin (wot)

y(t) = yo + p (cos (wot) — 1) (4.2)
2(t) = zo +vcosf t

as solution for Eq. 4.1. The particle thus follows a helix with radius

mu sin 6
qB

_ psind

=B

p:

and angular frequency

_ 4B
=
Note that the sign of the radius depends on the direction of the B-field and on
the charge of the particle. For example, if the B-field is oriented in positive z-

direction, (counter)clockwise rotation corresponds to (negative) positive charge

and consequently to (negative) positive p. Following the literature convention, we
define:

Wo

h = sgn (p) = sgn () sen (B) (4.3)
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Comparing to Eq. 2.3, we then obtain
sgn (do) = h sgn (,02 — (rg — rO)Z) )

One can relate the radius and the angular momentum like

1 P
- = 4.4
wo wvsind’ (4:4)

which will become useful later on. The particle velocity can be retrieved by
differentiating Eqs. 4.2:
(t) =  pwo cos (wot)
y(t) = —pwp sin (wot) (4.5)
2(t) = wcosh.
Like in Ch. 3, we want to express the Perigee parameters as a function of the free
parameters at V. Note that we perform all calculations for the situation shown in
Fig. 4.1. One can (and should!) verify that we obtain the same results for different

parameter signs and reference positions (e.g., when the particle moving clockwise
or when the reference R is in a different quadrant or outside of the helix).

4.1 Derivatives of ¢p

We start by finding an expression for ¢p, which is a convenient choice as we will
see a little further down the road. From Fig. 4.1 we find

ry = g + |do| sin [pp| — |p| sin |op| + |p| sin |y |
yv = yr — |do| cos |op| + |p| cos |pp| — |p| cos |ov],

and, using the correct signs for the parameters,

xy = TR — dpsinp + psin pp — psin py

4.6
Yyv = yr + docospp — pcospp + pcospy. (46)
Rearranging furnishes
—sinpp(dy — p) = vy — zr + psinpy
cospp(do — p) = yv — Yr — pcos v,
and, by dividing the equations,
Ty — X+ psinpy
—tanpp =
Yv —Yr — pCOS Yy
X



18

where we defined

X =xy —xg+ psiney

(4.8)
Y =yv —yr — pcospy.
Using the relation
; 1
—tanyr = ———
tan (z + 7/2)’
we conclude
Y
pp = arctan (}) — g (4.9)

Note that X and Y are the z- and y-coordinate of the helix center O in the refer-
ence coordinate system with origin in R.! Consequently, X and Y are independent
of where we place the point V' on the track, and we can write

XvEX
YvEY,

as the choice of notation in Eq. 4.8 already hinted. It is convenient to define the
distance S between O and R:

S =vX2+Y2
We can then express X and Y via S:

X = hSsingp

4.10
Y = —hS cos pp, (4.10)

where h is the sign of the helix radius as defined in Eq. 4.3.
Let us compute some derivatives of these quantities. We have

muv cos 6
qB
= pcot b,
2
p
Og/pp = _E P

op =

alp

! Applying this knowledge to Fig. 4.1 confirms Eq. 4.7 geometrically.
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while all other derivatives of p vanish. Therefore, from Eq. 4.8,

Opy X =1
Oy, X = pcos gy
0p X = pcotfsin py,

Og/pX = P in oV,

q/p

and

Oy, Y =1
0y, Y = psiney
0pY = —pcot f cos gy,

p
0y/pY = —— cos vy
" g fp

while all other derivatives of X and Y vanish. Keeping in mind that

1

Oy arctanr = ——,
* 1+ a2

we can derive pp with respect to X and Y

o sty ()
T\ xe

Y
R
1 1
op=—-35+
L+ (x) X
X
R

Finally, we put all pieces together to compute the third row of the Jacobian:

Oz P b= a:chaXSOP‘V

Y
T
83/V90P Vp = ayVY8YQOP‘V:
X
T 52
0. =0
vSOP vp
Oy 0P =0
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Opir| = (0o XOxgr+0,,YOver)|
(—Y cos py + Xsingpv)
=p

5? V=P
(hcoswp cos py + hsinpp sin@v)
=0
S V=P
)
—pL
S
_ el
S
3990P‘ = (0p X Oxpp + 0pY Oyp)
=P V=P
— peotd —Y sin oy — X cos py
S5? V=P

— peot (hcoswpsinapv - hsingppcosgov>

S V=P
= O,
aq/pSOP’v:P = (04/pXOxpp + OgpY Oy pp) ‘V:P
P (Ysingpv + X cos gov)
Q/p 52 v=p
P (—hcoscppsingov + hsinwpcoscpv)
Q/p S V=P
-0,

where we used the chain rule and Eq. 4.10.

4.2 Derivatives of ¢p

Let us continue by computing the last row of the Jacobian. From Fig. 4.1 we find
geometrically

y(tv)

(tv)

Using the expressions from Eq. 4.5 allows us to obtain a relation between the time
and the polar angle ¢:

tan gy =

tan py = — tan (woty)

= @y + 27rnv = —woly, Ny € N.
Note that

nv—>nv—|—1iffg0\/:—7'[',
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and thus
Opyny =0 (v + 7).
Then
At =tp —ty
———(or— oy + 22(np —v)
— lp=1tv — Usme(@P—@\/—l-%r(nP—nv)), (4.11)

where we used Eq. 4.4 to replace the angular frequency by the helix radius. The
derivatives of ¢p follow directly from the calculations for pp from Sec. 4.1:

___ P
8ajvtp‘vzp ~ psin Gazv vP ‘V:P
__r Y
vsin g S2
N
ayvtp‘v:P ~ psin Qayv @P’V:P
__r X
vsin 6 52
___Pr
aZ‘/tP‘V:P ~ psin Qazv SOP)V:P
=0
@ tp‘ :1_L8t SOP‘
ViTlvop vsing 7 lv=p
=1
P
) tp‘ = ——— (Opyop — 1+ 21(0py, 0P 6 (0p + ) — 0 (pv +7)))
Vi lv=p vsinf 7Y v vep
p ||
vsin@( S)( 270 (pp 4 7))
89tP‘V:P =— <89vsin9> (pp — v +2m(np —ny)) vp
=0
0 tp‘ = _La SOP‘
a/PePl_p vsinf PPy _p
— O7
where we used that
(gpp—gpv+27r(np—nv))‘ = (pp — @p +2m(np —np))

V=p
= 0.
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4.3 Derivatives of ¢/p

As in Ch. 3, the fifth row of the Jacobian is obtained by noting that ¢/p is constant
in the absence of an electric field and thus

a(‘]/P)v(Q/p)P‘V:P = Oq/p q/p v_p =1,

while all other derivatives vanish.

4.4 Derivatives of 0

0 is constant along the track in the absence of an electric field, and we have

a(g)v(e)p‘ Y H‘V:P _1,

V=P

while all other derivatives in the fourth row of the Jacobian vanish.

4.5 Derivatives of z
From the third equation of Eq. 4.2, we have:

2y = Zp — U COS Q(tp — tv)
=zp+ 20 —vcosO(tp —ty)
= zg=2zy —zg — pcotl (op — @y + 2m(np — ny))
where we plugged in the definition of 2y in the second step and used Eq. 4.11 in

the third step. The derivatives of zy are then obtained from the derivatives of ¢p
from Sec. 4.1:

Oy 20 - = —pcotf 81‘,901:)‘/_
Y
= —pcotf (_ﬁ)
Y
= pcot 9§
Oy 20 vp —pcotf 8yvg0p’V:
X
= —pcot9§
0, =1
VAl _p
atVZ() vp =0
Opv 20|, = —pcotl (Dpypp —1+2m(Opypp 0 (pp+7) —d(pv +m))|
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= pcotd (1 - |—g|> (14276 (pp + 7))

Oy 20

= — (ot ) (pp — pv + 2m(np — )]
=0

V=p

aq/pZO‘V:P = — (Oupp) cot O(p — v + 2m(np — ”v))‘
= 0.

V=P

4.6 Derivatives of d

To find an expression for dy, we can rearrange Eqs. 4.6 like

sinpp(p — do) = vy — zr + psinpy
=X

—cospp(p —do) = yv — Yyr — pcospy
=Y.

Squaring and adding the two equations leads to
<p_d0)2 :X2+Y2,
= 52

which is what one would expect from geometrical considerations. Taking the
square root furnishes

dy = p—sgn(p—dp)S
=p—sgn(p)S
=p—hS (4.12)

Let us proof the second equality.

Proof. We need to consider four cases:

e R is in the heliz center (R =0)
= S =0 and the equality holds.

e R is inside the helix but not in the heliz center

— sgn(p) = sgn(do), |p| > |dol

= sgn(p — do) = sgn(sgn(p) (lp| — |dol)) = sgn (p)
e R is on the helix

— dy =0

= sgn(p —do) = sgn(p)
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o R is outside the helix
= sgn(p) = —sgn(do)
= sgn(p — do) = sgn(sgn(p) (Ip| + |dol)) = sgn(p)

To compute the derivatives of Eq. 4.12, it is useful to note that
0xS =

OyS =

W <ty =

Furthermore, thanks to Eq. 4.3, all other derivatives of h vanish.
Then, by virtue of the chain rule,

&%do‘ — axvxaxdoj
V= V=P
—_h aXs]
V=pP
X
e —h—
S
8yvd0‘vzp _ ayVYaYdO)V:P
—_h ays‘
V=P
%
— —h—
S
0.dy| =0
V=P
8, d — 0
ty YO Vep
Oppdo| = (9, XOxdo + 8, Y ydy)
= V=P

X _ Y
= <pcos oy (—h§> + psin py (—h§>)

X cos py + Y sin oy

V=P

V=P
= —hp (hsingp cos py — hcospsin py) ’
=0

V=P

MO‘V — (Oop — h (9sXOxS + 8yY 9yS))

V=P

X Y
= pcotf — hpcot 6 (Sin g~ oS gpyg)

V=P

= pcot @ — hpcot O (sin gy (hsinpp) — cos py(—hcos pp))
V=P
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= pcot — h?*pcot

=0
Oufpto| = (Do = 1 (DypXOxS + 0y Y OS))
V=p V=pr
P p . X Y
=———h— [ —sinpy— +cosy —)
q/p q/p ( s 'S v=pr
P P : .
pym 2/ (—sin @y (hsingp) + cos gy (—hcos pp)) vp
P 2 P
a/p  4/p

where we used Eq. 4.10.

4.7 Results

Neglecting the terms containing Kronecker deltas, the position Jacobian for helical
tracks reads

—h% —h% 00
pcotfY; —pcot 0% 10
S
A= 0 0 0 0}
0 0 00
Y X
%y —%ﬁ 01
and the momentum Jacobian reads

0 00

pcotf |1 — %) 0 0

ol 00

— S

B 0 1 0}’

0 0 1

Lol
L(1-2) o0

where vy = wsinf is the speed in the z-y-plane. When comparing to Eq 5.36
from Ref. [1], we note that several terms in the momentum Jacobian differ from
our results. This is because we evaluate the Jacobian at the PCA P while Ref. [1]
evaluates the Jacobian at a general point on the trajectory V.2

2Note that, for all practical applications, we perform the linearization at the PCA.
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