Switch branches/tags
Nothing to show
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
119 lines (102 sloc) 3.3 KB
#!/usr/bin/env python
# This is the script used for evaluation by Berant et al.
# (
# It has been extended to also provide accuracy in addition to
# average F1 and can handle two different date formats (see below).
# The different date formats seem to be an artifact of
# Freebase version + Virtuoso.
import sys
import json
import re
# Matches date formatted like this: 2/23/1836
DATE_MDY_RE = re.compile(r'(\d+)/(\d+)/(\d+)')
# Matches date formatted like this: 1836-02-23
DATE_YMD_RE = re.compile(r'(\d+)-(\d+)-(\d+)')
if len(sys.argv) != 2:
sys.exit("Usage: %s <result_file>" % sys.argv[0])
def parse_date(date_string):
"""Try to parse string to date tuple."""
year, month, day = None, None, None
m = re.match(DATE_MDY_RE, date_string)
if m:
year =
month =
day =
m = re.match(DATE_YMD_RE, date_string)
if m:
year =
month =
day =
if year is not None:
return int(year), int(month), int(day)
return None
def parse_result_list(rlist):
"""Try to parse values to dates where possible."""
result_list = []
for e in rlist:
date = parse_date(e)
if date is not None:
return result_list
"""return a tuple with recall, precision, and f1 for one example"""
def computeF1(goldList,predictedList):
"""Assume all questions have at least one answer"""
if len(goldList)==0:
if len(predictedList)==0:
return (1,1,1)
return (0,0,0)
"""If we return an empty list recall is zero and precision is one"""
if len(predictedList)==0:
return (0,1,0)
"""It is guaranteed now that both lists are not empty"""
goldList = parse_result_list(goldList)
predictedList = parse_result_list(predictedList)
precision = 0
for entity in predictedList:
if entity in goldList:
precision = float(precision) / len(predictedList)
for entity in goldList:
if entity in predictedList:
recall = float(recall) / len(goldList)
f1 = 0
if precision+recall>0:
f1 = 2*recall*precision / (precision + recall)
return (recall,precision,f1)
"""Go over all lines and compute recall, precision and F1"""
with open(sys.argv[1]) as f:
for line in f:
tokens = line.split("\t")
gold = json.loads(tokens[1])
predicted = json.loads(tokens[2])
recall, precision, f1 = computeF1(gold,predicted)
if f1 == 1:
nCorrect += 1
averageRecall += recall
averagePrecision += precision
averageF1 += f1
"""Print final results"""
averageRecall = float(averageRecall) / count
averagePrecision = float(averagePrecision) / count
averageF1 = float(averageF1) / count
accuracy = float(nCorrect) / count
print "Number of questions: " + str(count)
print "Average recall over questions: " + str(averageRecall)
print "Average precision over questions: " + str(averagePrecision)
print "Average f1 over questions: " + str(averageF1)
print "Accuracy over questions: " + str(accuracy)
averageNewF1 = 2 * averageRecall * averagePrecision / (averagePrecision + averageRecall)
print "F1 of average recall and average precision: " + str(averageNewF1)